/* * Copyright (c) 2008, 2009, 2010, 2011, 2012 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef PACKETS_H #define PACKETS_H 1 #include #include #include #include #include #include "compiler.h" #include "openvswitch/types.h" #include "random.h" #include "util.h" struct ofpbuf; struct ds; struct flow; bool dpid_from_string(const char *s, uint64_t *dpidp); #define ETH_ADDR_LEN 6 static const uint8_t eth_addr_broadcast[ETH_ADDR_LEN] OVS_UNUSED = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; static const uint8_t eth_addr_stp[ETH_ADDR_LEN] OVS_UNUSED = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x00 }; static const uint8_t eth_addr_lacp[ETH_ADDR_LEN] OVS_UNUSED = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x02 }; static inline bool eth_addr_is_broadcast(const uint8_t ea[6]) { return (ea[0] & ea[1] & ea[2] & ea[3] & ea[4] & ea[5]) == 0xff; } static inline bool eth_addr_is_multicast(const uint8_t ea[6]) { return ea[0] & 1; } static inline bool eth_addr_is_local(const uint8_t ea[6]) { /* Local if it is either a locally administered address or a Nicira random * address. */ return ea[0] & 2 || (ea[0] == 0x00 && ea[1] == 0x23 && ea[2] == 0x20 && ea[3] & 0x80); } static inline bool eth_addr_is_zero(const uint8_t ea[6]) { return !(ea[0] | ea[1] | ea[2] | ea[3] | ea[4] | ea[5]); } static inline int eth_mask_is_exact(const uint8_t ea[ETH_ADDR_LEN]) { return (ea[0] & ea[1] & ea[2] & ea[3] & ea[4] & ea[5]) == 0xff; } static inline int eth_addr_compare_3way(const uint8_t a[ETH_ADDR_LEN], const uint8_t b[ETH_ADDR_LEN]) { return memcmp(a, b, ETH_ADDR_LEN); } static inline bool eth_addr_equals(const uint8_t a[ETH_ADDR_LEN], const uint8_t b[ETH_ADDR_LEN]) { return !eth_addr_compare_3way(a, b); } static inline bool eth_addr_equal_except(const uint8_t a[ETH_ADDR_LEN], const uint8_t b[ETH_ADDR_LEN], const uint8_t mask[ETH_ADDR_LEN]) { return !(((a[0] ^ b[0]) & mask[0]) || ((a[1] ^ b[1]) & mask[1]) || ((a[2] ^ b[2]) & mask[2]) || ((a[3] ^ b[3]) & mask[3]) || ((a[4] ^ b[4]) & mask[4]) || ((a[5] ^ b[5]) & mask[5])); } static inline uint64_t eth_addr_to_uint64(const uint8_t ea[ETH_ADDR_LEN]) { return (((uint64_t) ea[0] << 40) | ((uint64_t) ea[1] << 32) | ((uint64_t) ea[2] << 24) | ((uint64_t) ea[3] << 16) | ((uint64_t) ea[4] << 8) | ea[5]); } static inline void eth_addr_from_uint64(uint64_t x, uint8_t ea[ETH_ADDR_LEN]) { ea[0] = x >> 40; ea[1] = x >> 32; ea[2] = x >> 24; ea[3] = x >> 16; ea[4] = x >> 8; ea[5] = x; } static inline void eth_addr_mark_random(uint8_t ea[ETH_ADDR_LEN]) { ea[0] &= ~1; /* Unicast. */ ea[0] |= 2; /* Private. */ } static inline void eth_addr_random(uint8_t ea[ETH_ADDR_LEN]) { random_bytes(ea, ETH_ADDR_LEN); eth_addr_mark_random(ea); } static inline void eth_addr_nicira_random(uint8_t ea[ETH_ADDR_LEN]) { eth_addr_random(ea); /* Set the OUI to the Nicira one. */ ea[0] = 0x00; ea[1] = 0x23; ea[2] = 0x20; /* Set the top bit to indicate random Nicira address. */ ea[3] |= 0x80; } bool eth_addr_is_reserved(const uint8_t ea[ETH_ADDR_LEN]); bool eth_addr_from_string(const char *, uint8_t ea[ETH_ADDR_LEN]); void compose_rarp(struct ofpbuf *, const uint8_t eth_src[ETH_ADDR_LEN]); void eth_push_vlan(struct ofpbuf *, ovs_be16 tci); void eth_pop_vlan(struct ofpbuf *); const char *eth_from_hex(const char *hex, struct ofpbuf **packetp); void eth_format_masked(const uint8_t eth[ETH_ADDR_LEN], const uint8_t mask[ETH_ADDR_LEN], struct ds *s); void eth_addr_bitand(const uint8_t src[ETH_ADDR_LEN], const uint8_t mask[ETH_ADDR_LEN], uint8_t dst[ETH_ADDR_LEN]); /* Example: * * uint8_t mac[ETH_ADDR_LEN]; * [...] * printf("The Ethernet address is "ETH_ADDR_FMT"\n", ETH_ADDR_ARGS(mac)); * */ #define ETH_ADDR_FMT \ "%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8 #define ETH_ADDR_ARGS(ea) \ (ea)[0], (ea)[1], (ea)[2], (ea)[3], (ea)[4], (ea)[5] /* Example: * * char *string = "1 00:11:22:33:44:55 2"; * uint8_t mac[ETH_ADDR_LEN]; * int a, b; * * if (sscanf(string, "%d"ETH_ADDR_SCAN_FMT"%d", * &a, ETH_ADDR_SCAN_ARGS(mac), &b) == 1 + ETH_ADDR_SCAN_COUNT + 1) { * ... * } */ #define ETH_ADDR_SCAN_FMT "%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8 #define ETH_ADDR_SCAN_ARGS(ea) \ &(ea)[0], &(ea)[1], &(ea)[2], &(ea)[3], &(ea)[4], &(ea)[5] #define ETH_ADDR_SCAN_COUNT 6 #define ETH_TYPE_IP 0x0800 #define ETH_TYPE_ARP 0x0806 #define ETH_TYPE_VLAN 0x8100 #define ETH_TYPE_IPV6 0x86dd #define ETH_TYPE_LACP 0x8809 #define ETH_TYPE_RARP 0x8035 #define ETH_TYPE_MPLS 0x8847 #define ETH_TYPE_MPLS_MCAST 0x8848 /* Minimum value for an Ethernet type. Values below this are IEEE 802.2 frame * lengths. */ #define ETH_TYPE_MIN 0x600 #define ETH_HEADER_LEN 14 #define ETH_PAYLOAD_MIN 46 #define ETH_PAYLOAD_MAX 1500 #define ETH_TOTAL_MIN (ETH_HEADER_LEN + ETH_PAYLOAD_MIN) #define ETH_TOTAL_MAX (ETH_HEADER_LEN + ETH_PAYLOAD_MAX) #define ETH_VLAN_TOTAL_MAX (ETH_HEADER_LEN + VLAN_HEADER_LEN + ETH_PAYLOAD_MAX) struct eth_header { uint8_t eth_dst[ETH_ADDR_LEN]; uint8_t eth_src[ETH_ADDR_LEN]; ovs_be16 eth_type; } __attribute__((packed)); BUILD_ASSERT_DECL(ETH_HEADER_LEN == sizeof(struct eth_header)); #define LLC_DSAP_SNAP 0xaa #define LLC_SSAP_SNAP 0xaa #define LLC_CNTL_SNAP 3 #define LLC_HEADER_LEN 3 struct llc_header { uint8_t llc_dsap; uint8_t llc_ssap; uint8_t llc_cntl; } __attribute__((packed)); BUILD_ASSERT_DECL(LLC_HEADER_LEN == sizeof(struct llc_header)); #define SNAP_ORG_ETHERNET "\0\0" /* The compiler adds a null byte, so sizeof(SNAP_ORG_ETHERNET) == 3. */ #define SNAP_HEADER_LEN 5 struct snap_header { uint8_t snap_org[3]; ovs_be16 snap_type; } __attribute__((packed)); BUILD_ASSERT_DECL(SNAP_HEADER_LEN == sizeof(struct snap_header)); #define LLC_SNAP_HEADER_LEN (LLC_HEADER_LEN + SNAP_HEADER_LEN) struct llc_snap_header { struct llc_header llc; struct snap_header snap; } __attribute__((packed)); BUILD_ASSERT_DECL(LLC_SNAP_HEADER_LEN == sizeof(struct llc_snap_header)); #define ARP_HTYPE_ETH 0x0001 #define RARP_REQUEST_REVERSE 0x0003 #define RARP_HEADER_LEN 28 /* RARP header only for Ethernet-IP. */ struct rarp_header { ovs_be16 hw_addr_space; /* ARP_HTYPE_ETH. */ ovs_be16 proto_addr_space; /* ETH_TYPE_IP. */ uint8_t hw_addr_length; /* ETH_ADDR_LEN. */ uint8_t proto_addr_length; /* IPV4_ADDR_LEN. */ ovs_be16 opcode; /* RARP_REQUEST_REVERSE. */ uint8_t src_hw_addr[ETH_ADDR_LEN]; ovs_be32 src_proto_addr; uint8_t target_hw_addr[ETH_ADDR_LEN]; ovs_be32 target_proto_addr; } __attribute__((packed)); BUILD_ASSERT_DECL(RARP_HEADER_LEN == sizeof(struct rarp_header)); #define VLAN_VID_MASK 0x0fff #define VLAN_VID_SHIFT 0 #define VLAN_PCP_MASK 0xe000 #define VLAN_PCP_SHIFT 13 #define VLAN_CFI 0x1000 /* Given the vlan_tci field from an 802.1Q header, in network byte order, * returns the VLAN ID in host byte order. */ static inline uint16_t vlan_tci_to_vid(ovs_be16 vlan_tci) { return (ntohs(vlan_tci) & VLAN_VID_MASK) >> VLAN_VID_SHIFT; } /* Given the vlan_tci field from an 802.1Q header, in network byte order, * returns the priority code point (PCP) in host byte order. */ static inline int vlan_tci_to_pcp(ovs_be16 vlan_tci) { return (ntohs(vlan_tci) & VLAN_PCP_MASK) >> VLAN_PCP_SHIFT; } #define VLAN_HEADER_LEN 4 struct vlan_header { ovs_be16 vlan_tci; /* Lowest 12 bits are VLAN ID. */ ovs_be16 vlan_next_type; }; BUILD_ASSERT_DECL(VLAN_HEADER_LEN == sizeof(struct vlan_header)); #define VLAN_ETH_HEADER_LEN (ETH_HEADER_LEN + VLAN_HEADER_LEN) struct vlan_eth_header { uint8_t veth_dst[ETH_ADDR_LEN]; uint8_t veth_src[ETH_ADDR_LEN]; ovs_be16 veth_type; /* Always htons(ETH_TYPE_VLAN). */ ovs_be16 veth_tci; /* Lowest 12 bits are VLAN ID. */ ovs_be16 veth_next_type; } __attribute__((packed)); BUILD_ASSERT_DECL(VLAN_ETH_HEADER_LEN == sizeof(struct vlan_eth_header)); /* The "(void) (ip)[0]" below has no effect on the value, since it's the first * argument of a comma expression, but it makes sure that 'ip' is a pointer. * This is useful since a common mistake is to pass an integer instead of a * pointer to IP_ARGS. */ #define IP_FMT "%"PRIu8".%"PRIu8".%"PRIu8".%"PRIu8 #define IP_ARGS(ip) \ ((void) (ip)[0], ((uint8_t *) ip)[0]), \ ((uint8_t *) ip)[1], \ ((uint8_t *) ip)[2], \ ((uint8_t *) ip)[3] /* Example: * * char *string = "1 33.44.55.66 2"; * ovs_be32 ip; * int a, b; * * if (sscanf(string, "%d"IP_SCAN_FMT"%d", * &a, IP_SCAN_ARGS(&ip), &b) == 1 + IP_SCAN_COUNT + 1) { * ... * } */ #define IP_SCAN_FMT "%"SCNu8".%"SCNu8".%"SCNu8".%"SCNu8 #define IP_SCAN_ARGS(ip) \ ((void) (ovs_be32) *(ip), &((uint8_t *) ip)[0]), \ &((uint8_t *) ip)[1], \ &((uint8_t *) ip)[2], \ &((uint8_t *) ip)[3] #define IP_SCAN_COUNT 4 /* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N * high-order 1-bits and 32-N low-order 0-bits. */ static inline bool ip_is_cidr(ovs_be32 netmask) { uint32_t x = ~ntohl(netmask); return !(x & (x + 1)); } static inline bool ip_is_multicast(ovs_be32 ip) { return (ip & htonl(0xf0000000)) == htonl(0xe0000000); } int ip_count_cidr_bits(ovs_be32 netmask); void ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *); #define IP_VER(ip_ihl_ver) ((ip_ihl_ver) >> 4) #define IP_IHL(ip_ihl_ver) ((ip_ihl_ver) & 15) #define IP_IHL_VER(ihl, ver) (((ver) << 4) | (ihl)) #ifndef IPPROTO_SCTP #define IPPROTO_SCTP 132 #endif /* TOS fields. */ #define IP_ECN_MASK 0x03 #define IP_DSCP_MASK 0xfc #define IP_VERSION 4 #define IP_DONT_FRAGMENT 0x4000 /* Don't fragment. */ #define IP_MORE_FRAGMENTS 0x2000 /* More fragments. */ #define IP_FRAG_OFF_MASK 0x1fff /* Fragment offset. */ #define IP_IS_FRAGMENT(ip_frag_off) \ ((ip_frag_off) & htons(IP_MORE_FRAGMENTS | IP_FRAG_OFF_MASK)) #define IP_HEADER_LEN 20 struct ip_header { uint8_t ip_ihl_ver; uint8_t ip_tos; ovs_be16 ip_tot_len; ovs_be16 ip_id; ovs_be16 ip_frag_off; uint8_t ip_ttl; uint8_t ip_proto; ovs_be16 ip_csum; ovs_be32 ip_src; ovs_be32 ip_dst; }; BUILD_ASSERT_DECL(IP_HEADER_LEN == sizeof(struct ip_header)); #define ICMP_HEADER_LEN 8 struct icmp_header { uint8_t icmp_type; uint8_t icmp_code; ovs_be16 icmp_csum; union { struct { ovs_be16 id; ovs_be16 seq; } echo; struct { ovs_be16 empty; ovs_be16 mtu; } frag; ovs_be32 gateway; } icmp_fields; uint8_t icmp_data[0]; }; BUILD_ASSERT_DECL(ICMP_HEADER_LEN == sizeof(struct icmp_header)); #define UDP_HEADER_LEN 8 struct udp_header { ovs_be16 udp_src; ovs_be16 udp_dst; ovs_be16 udp_len; ovs_be16 udp_csum; }; BUILD_ASSERT_DECL(UDP_HEADER_LEN == sizeof(struct udp_header)); #define TCP_FIN 0x01 #define TCP_SYN 0x02 #define TCP_RST 0x04 #define TCP_PSH 0x08 #define TCP_ACK 0x10 #define TCP_URG 0x20 #define TCP_CTL(flags, offset) (htons((flags) | ((offset) << 12))) #define TCP_FLAGS(tcp_ctl) (ntohs(tcp_ctl) & 0x003f) #define TCP_OFFSET(tcp_ctl) (ntohs(tcp_ctl) >> 12) #define TCP_HEADER_LEN 20 struct tcp_header { ovs_be16 tcp_src; ovs_be16 tcp_dst; ovs_be32 tcp_seq; ovs_be32 tcp_ack; ovs_be16 tcp_ctl; ovs_be16 tcp_winsz; ovs_be16 tcp_csum; ovs_be16 tcp_urg; }; BUILD_ASSERT_DECL(TCP_HEADER_LEN == sizeof(struct tcp_header)); #define ARP_HRD_ETHERNET 1 #define ARP_PRO_IP 0x0800 #define ARP_OP_REQUEST 1 #define ARP_OP_REPLY 2 #define ARP_ETH_HEADER_LEN 28 struct arp_eth_header { /* Generic members. */ ovs_be16 ar_hrd; /* Hardware type. */ ovs_be16 ar_pro; /* Protocol type. */ uint8_t ar_hln; /* Hardware address length. */ uint8_t ar_pln; /* Protocol address length. */ ovs_be16 ar_op; /* Opcode. */ /* Ethernet+IPv4 specific members. */ uint8_t ar_sha[ETH_ADDR_LEN]; /* Sender hardware address. */ ovs_be32 ar_spa; /* Sender protocol address. */ uint8_t ar_tha[ETH_ADDR_LEN]; /* Target hardware address. */ ovs_be32 ar_tpa; /* Target protocol address. */ } __attribute__((packed)); BUILD_ASSERT_DECL(ARP_ETH_HEADER_LEN == sizeof(struct arp_eth_header)); /* The IPv6 flow label is in the lower 20 bits of the first 32-bit word. */ #define IPV6_LABEL_MASK 0x000fffff /* Example: * * char *string = "1 ::1 2"; * char ipv6_s[IPV6_SCAN_LEN + 1]; * struct in6_addr ipv6; * * if (sscanf(string, "%d"IPV6_SCAN_FMT"%d", &a, ipv6_s, &b) == 3 * && inet_pton(AF_INET6, ipv6_s, &ipv6) == 1) { * ... * } */ #define IPV6_SCAN_FMT "%46[0123456789abcdefABCDEF:.]" #define IPV6_SCAN_LEN 46 extern const struct in6_addr in6addr_exact; #define IN6ADDR_EXACT_INIT { { { 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, \ 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff } } } static inline bool ipv6_addr_equals(const struct in6_addr *a, const struct in6_addr *b) { #ifdef IN6_ARE_ADDR_EQUAL return IN6_ARE_ADDR_EQUAL(a, b); #else return !memcmp(a, b, sizeof(*a)); #endif } static inline bool ipv6_mask_is_any(const struct in6_addr *mask) { return ipv6_addr_equals(mask, &in6addr_any); } static inline bool ipv6_mask_is_exact(const struct in6_addr *mask) { return ipv6_addr_equals(mask, &in6addr_exact); } void format_ipv6_addr(char *addr_str, const struct in6_addr *addr); void print_ipv6_addr(struct ds *string, const struct in6_addr *addr); void print_ipv6_masked(struct ds *string, const struct in6_addr *addr, const struct in6_addr *mask); struct in6_addr ipv6_addr_bitand(const struct in6_addr *src, const struct in6_addr *mask); struct in6_addr ipv6_create_mask(int mask); int ipv6_count_cidr_bits(const struct in6_addr *netmask); bool ipv6_is_cidr(const struct in6_addr *netmask); void *eth_compose(struct ofpbuf *, const uint8_t eth_dst[ETH_ADDR_LEN], const uint8_t eth_src[ETH_ADDR_LEN], uint16_t eth_type, size_t size); void *snap_compose(struct ofpbuf *, const uint8_t eth_dst[ETH_ADDR_LEN], const uint8_t eth_src[ETH_ADDR_LEN], unsigned int oui, uint16_t snap_type, size_t size); void packet_set_ipv4(struct ofpbuf *, ovs_be32 src, ovs_be32 dst, uint8_t tos, uint8_t ttl); void packet_set_tcp_port(struct ofpbuf *, ovs_be16 src, ovs_be16 dst); void packet_set_udp_port(struct ofpbuf *, ovs_be16 src, ovs_be16 dst); uint8_t packet_get_tcp_flags(const struct ofpbuf *, const struct flow *); void packet_format_tcp_flags(struct ds *, uint8_t); #endif /* packets.h */