/* * Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "rconn.h" #include #include #include #include #include #include "coverage.h" #include "ofp-util.h" #include "ofpbuf.h" #include "openflow/openflow.h" #include "poll-loop.h" #include "sat-math.h" #include "timeval.h" #include "util.h" #include "vconn.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(rconn); COVERAGE_DEFINE(rconn_discarded); COVERAGE_DEFINE(rconn_overflow); COVERAGE_DEFINE(rconn_queued); COVERAGE_DEFINE(rconn_sent); #define STATES \ STATE(VOID, 1 << 0) \ STATE(BACKOFF, 1 << 1) \ STATE(CONNECTING, 1 << 2) \ STATE(ACTIVE, 1 << 3) \ STATE(IDLE, 1 << 4) enum state { #define STATE(NAME, VALUE) S_##NAME = VALUE, STATES #undef STATE }; static const char * state_name(enum state state) { switch (state) { #define STATE(NAME, VALUE) case S_##NAME: return #NAME; STATES #undef STATE } return "***ERROR***"; } /* A reliable connection to an OpenFlow switch or controller. * * See the large comment in rconn.h for more information. */ struct rconn { enum state state; time_t state_entered; struct vconn *vconn; char *name; /* Human-readable descriptive name. */ char *target; /* vconn name, passed to vconn_open(). */ bool reliable; struct list txq; /* Contains "struct ofpbuf"s. */ int backoff; int max_backoff; time_t backoff_deadline; time_t last_received; time_t last_connected; time_t last_disconnected; unsigned int packets_sent; unsigned int seqno; int last_error; /* In S_ACTIVE and S_IDLE, probably_admitted reports whether we believe * that the peer has made a (positive) admission control decision on our * connection. If we have not yet been (probably) admitted, then the * connection does not reset the timer used for deciding whether the switch * should go into fail-open mode. * * last_admitted reports the last time we believe such a positive admission * control decision was made. */ bool probably_admitted; time_t last_admitted; /* These values are simply for statistics reporting, not used directly by * anything internal to the rconn (or ofproto for that matter). */ unsigned int packets_received; unsigned int n_attempted_connections, n_successful_connections; time_t creation_time; unsigned long int total_time_connected; /* Throughout this file, "probe" is shorthand for "inactivity probe". * When nothing has been received from the peer for a while, we send out * an echo request as an inactivity probe packet. We should receive back * a response. */ int probe_interval; /* Secs of inactivity before sending probe. */ /* When we create a vconn we obtain these values, to save them past the end * of the vconn's lifetime. Otherwise, in-band control will only allow * traffic when a vconn is actually open, but it is nice to allow ARP to * complete even between connection attempts, and it is also polite to * allow traffic from other switches to go through to the controller * whether or not we are connected. * * We don't cache the local port, because that changes from one connection * attempt to the next. */ uint32_t local_ip, remote_ip; uint16_t remote_port; /* Messages sent or received are copied to the monitor connections. */ #define MAX_MONITORS 8 struct vconn *monitors[8]; size_t n_monitors; }; static unsigned int elapsed_in_this_state(const struct rconn *); static unsigned int timeout(const struct rconn *); static bool timed_out(const struct rconn *); static void state_transition(struct rconn *, enum state); static void rconn_set_target__(struct rconn *, const char *target, const char *name); static int try_send(struct rconn *); static void reconnect(struct rconn *); static void report_error(struct rconn *, int error); static void disconnect(struct rconn *, int error); static void flush_queue(struct rconn *); static void copy_to_monitor(struct rconn *, const struct ofpbuf *); static bool is_connected_state(enum state); static bool is_admitted_msg(const struct ofpbuf *); static bool rconn_logging_connection_attempts__(const struct rconn *); /* Creates and returns a new rconn. * * 'probe_interval' is a number of seconds. If the interval passes once * without an OpenFlow message being received from the peer, the rconn sends * out an "echo request" message. If the interval passes again without a * message being received, the rconn disconnects and re-connects to the peer. * Setting 'probe_interval' to 0 disables this behavior. * * 'max_backoff' is the maximum number of seconds between attempts to connect * to the peer. The actual interval starts at 1 second and doubles on each * failure until it reaches 'max_backoff'. If 0 is specified, the default of * 8 seconds is used. * * The new rconn is initially unconnected. Use rconn_connect() or * rconn_connect_unreliably() to connect it. */ struct rconn * rconn_create(int probe_interval, int max_backoff) { struct rconn *rc = xzalloc(sizeof *rc); rc->state = S_VOID; rc->state_entered = time_now(); rc->vconn = NULL; rc->name = xstrdup("void"); rc->target = xstrdup("void"); rc->reliable = false; list_init(&rc->txq); rc->backoff = 0; rc->max_backoff = max_backoff ? max_backoff : 8; rc->backoff_deadline = TIME_MIN; rc->last_received = time_now(); rc->last_connected = TIME_MIN; rc->last_disconnected = TIME_MIN; rc->seqno = 0; rc->packets_sent = 0; rc->probably_admitted = false; rc->last_admitted = time_now(); rc->packets_received = 0; rc->n_attempted_connections = 0; rc->n_successful_connections = 0; rc->creation_time = time_now(); rc->total_time_connected = 0; rconn_set_probe_interval(rc, probe_interval); rc->n_monitors = 0; return rc; } void rconn_set_max_backoff(struct rconn *rc, int max_backoff) { rc->max_backoff = MAX(1, max_backoff); if (rc->state == S_BACKOFF && rc->backoff > max_backoff) { rc->backoff = max_backoff; if (rc->backoff_deadline > time_now() + max_backoff) { rc->backoff_deadline = time_now() + max_backoff; } } } int rconn_get_max_backoff(const struct rconn *rc) { return rc->max_backoff; } void rconn_set_probe_interval(struct rconn *rc, int probe_interval) { rc->probe_interval = probe_interval ? MAX(5, probe_interval) : 0; } int rconn_get_probe_interval(const struct rconn *rc) { return rc->probe_interval; } /* Drops any existing connection on 'rc', then sets up 'rc' to connect to * 'target' and reconnect as needed. 'target' should be a remote OpenFlow * target in a form acceptable to vconn_open(). * * If 'name' is nonnull, then it is used in log messages in place of 'target'. * It should presumably give more information to a human reader than 'target', * but it need not be acceptable to vconn_open(). */ void rconn_connect(struct rconn *rc, const char *target, const char *name) { rconn_disconnect(rc); rconn_set_target__(rc, target, name); rc->reliable = true; reconnect(rc); } /* Drops any existing connection on 'rc', then configures 'rc' to use * 'vconn'. If the connection on 'vconn' drops, 'rc' will not reconnect on it * own. * * By default, the target obtained from vconn_get_name(vconn) is used in log * messages. If 'name' is nonnull, then it is used instead. It should * presumably give more information to a human reader than the target, but it * need not be acceptable to vconn_open(). */ void rconn_connect_unreliably(struct rconn *rc, struct vconn *vconn, const char *name) { assert(vconn != NULL); rconn_disconnect(rc); rconn_set_target__(rc, vconn_get_name(vconn), name); rc->reliable = false; rc->vconn = vconn; rc->last_connected = time_now(); state_transition(rc, S_ACTIVE); } /* If 'rc' is connected, forces it to drop the connection and reconnect. */ void rconn_reconnect(struct rconn *rc) { if (rc->state & (S_ACTIVE | S_IDLE)) { VLOG_INFO("%s: disconnecting", rc->name); disconnect(rc, 0); } } void rconn_disconnect(struct rconn *rc) { if (rc->state != S_VOID) { if (rc->vconn) { vconn_close(rc->vconn); rc->vconn = NULL; } rconn_set_target__(rc, "void", NULL); rc->reliable = false; rc->backoff = 0; rc->backoff_deadline = TIME_MIN; state_transition(rc, S_VOID); } } /* Disconnects 'rc' and frees the underlying storage. */ void rconn_destroy(struct rconn *rc) { if (rc) { size_t i; free(rc->name); free(rc->target); vconn_close(rc->vconn); flush_queue(rc); ofpbuf_list_delete(&rc->txq); for (i = 0; i < rc->n_monitors; i++) { vconn_close(rc->monitors[i]); } free(rc); } } static unsigned int timeout_VOID(const struct rconn *rc OVS_UNUSED) { return UINT_MAX; } static void run_VOID(struct rconn *rc OVS_UNUSED) { /* Nothing to do. */ } static void reconnect(struct rconn *rc) { int retval; if (rconn_logging_connection_attempts__(rc)) { VLOG_INFO("%s: connecting...", rc->name); } rc->n_attempted_connections++; retval = vconn_open(rc->target, OFP_VERSION, &rc->vconn); if (!retval) { rc->remote_ip = vconn_get_remote_ip(rc->vconn); rc->local_ip = vconn_get_local_ip(rc->vconn); rc->remote_port = vconn_get_remote_port(rc->vconn); rc->backoff_deadline = time_now() + rc->backoff; state_transition(rc, S_CONNECTING); } else { VLOG_WARN("%s: connection failed (%s)", rc->name, strerror(retval)); rc->backoff_deadline = TIME_MAX; /* Prevent resetting backoff. */ disconnect(rc, retval); } } static unsigned int timeout_BACKOFF(const struct rconn *rc) { return rc->backoff; } static void run_BACKOFF(struct rconn *rc) { if (timed_out(rc)) { reconnect(rc); } } static unsigned int timeout_CONNECTING(const struct rconn *rc) { return MAX(1, rc->backoff); } static void run_CONNECTING(struct rconn *rc) { int retval = vconn_connect(rc->vconn); if (!retval) { VLOG_INFO("%s: connected", rc->name); rc->n_successful_connections++; state_transition(rc, S_ACTIVE); rc->last_connected = rc->state_entered; } else if (retval != EAGAIN) { if (rconn_logging_connection_attempts__(rc)) { VLOG_INFO("%s: connection failed (%s)", rc->name, strerror(retval)); } disconnect(rc, retval); } else if (timed_out(rc)) { if (rconn_logging_connection_attempts__(rc)) { VLOG_INFO("%s: connection timed out", rc->name); } rc->backoff_deadline = TIME_MAX; /* Prevent resetting backoff. */ disconnect(rc, ETIMEDOUT); } } static void do_tx_work(struct rconn *rc) { if (list_is_empty(&rc->txq)) { return; } while (!list_is_empty(&rc->txq)) { int error = try_send(rc); if (error) { break; } } if (list_is_empty(&rc->txq)) { poll_immediate_wake(); } } static unsigned int timeout_ACTIVE(const struct rconn *rc) { if (rc->probe_interval) { unsigned int base = MAX(rc->last_received, rc->state_entered); unsigned int arg = base + rc->probe_interval - rc->state_entered; return arg; } return UINT_MAX; } static void run_ACTIVE(struct rconn *rc) { if (timed_out(rc)) { unsigned int base = MAX(rc->last_received, rc->state_entered); VLOG_DBG("%s: idle %u seconds, sending inactivity probe", rc->name, (unsigned int) (time_now() - base)); /* Ordering is important here: rconn_send() can transition to BACKOFF, * and we don't want to transition back to IDLE if so, because then we * can end up queuing a packet with vconn == NULL and then *boom*. */ state_transition(rc, S_IDLE); rconn_send(rc, make_echo_request(), NULL); return; } do_tx_work(rc); } static unsigned int timeout_IDLE(const struct rconn *rc) { return rc->probe_interval; } static void run_IDLE(struct rconn *rc) { if (timed_out(rc)) { VLOG_ERR("%s: no response to inactivity probe after %u " "seconds, disconnecting", rc->name, elapsed_in_this_state(rc)); disconnect(rc, ETIMEDOUT); } else { do_tx_work(rc); } } /* Performs whatever activities are necessary to maintain 'rc': if 'rc' is * disconnected, attempts to (re)connect, backing off as necessary; if 'rc' is * connected, attempts to send packets in the send queue, if any. */ void rconn_run(struct rconn *rc) { int old_state; size_t i; if (rc->vconn) { vconn_run(rc->vconn); } for (i = 0; i < rc->n_monitors; i++) { vconn_run(rc->monitors[i]); } do { old_state = rc->state; switch (rc->state) { #define STATE(NAME, VALUE) case S_##NAME: run_##NAME(rc); break; STATES #undef STATE default: NOT_REACHED(); } } while (rc->state != old_state); } /* Causes the next call to poll_block() to wake up when rconn_run() should be * called on 'rc'. */ void rconn_run_wait(struct rconn *rc) { unsigned int timeo; size_t i; if (rc->vconn) { vconn_run_wait(rc->vconn); if ((rc->state & (S_ACTIVE | S_IDLE)) && !list_is_empty(&rc->txq)) { vconn_wait(rc->vconn, WAIT_SEND); } } for (i = 0; i < rc->n_monitors; i++) { vconn_run_wait(rc->monitors[i]); } timeo = timeout(rc); if (timeo != UINT_MAX) { long long int expires = sat_add(rc->state_entered, timeo); poll_timer_wait_until(expires * 1000); } } /* Attempts to receive a packet from 'rc'. If successful, returns the packet; * otherwise, returns a null pointer. The caller is responsible for freeing * the packet (with ofpbuf_delete()). */ struct ofpbuf * rconn_recv(struct rconn *rc) { if (rc->state & (S_ACTIVE | S_IDLE)) { struct ofpbuf *buffer; int error = vconn_recv(rc->vconn, &buffer); if (!error) { copy_to_monitor(rc, buffer); if (rc->probably_admitted || is_admitted_msg(buffer) || time_now() - rc->last_connected >= 30) { rc->probably_admitted = true; rc->last_admitted = time_now(); } rc->last_received = time_now(); rc->packets_received++; if (rc->state == S_IDLE) { state_transition(rc, S_ACTIVE); } return buffer; } else if (error != EAGAIN) { report_error(rc, error); disconnect(rc, error); } } return NULL; } /* Causes the next call to poll_block() to wake up when a packet may be ready * to be received by vconn_recv() on 'rc'. */ void rconn_recv_wait(struct rconn *rc) { if (rc->vconn) { vconn_wait(rc->vconn, WAIT_RECV); } } /* Sends 'b' on 'rc'. Returns 0 if successful (in which case 'b' is * destroyed), or ENOTCONN if 'rc' is not currently connected (in which case * the caller retains ownership of 'b'). * * If 'counter' is non-null, then 'counter' will be incremented while the * packet is in flight, then decremented when it has been sent (or discarded * due to disconnection). Because 'b' may be sent (or discarded) before this * function returns, the caller may not be able to observe any change in * 'counter'. * * There is no rconn_send_wait() function: an rconn has a send queue that it * takes care of sending if you call rconn_run(), which will have the side * effect of waking up poll_block(). */ int rconn_send(struct rconn *rc, struct ofpbuf *b, struct rconn_packet_counter *counter) { if (rconn_is_connected(rc)) { COVERAGE_INC(rconn_queued); copy_to_monitor(rc, b); b->private_p = counter; if (counter) { rconn_packet_counter_inc(counter); } list_push_back(&rc->txq, &b->list_node); /* If the queue was empty before we added 'b', try to send some * packets. (But if the queue had packets in it, it's because the * vconn is backlogged and there's no point in stuffing more into it * now. We'll get back to that in rconn_run().) */ if (rc->txq.next == &b->list_node) { try_send(rc); } return 0; } else { return ENOTCONN; } } /* Sends 'b' on 'rc'. Increments 'counter' while the packet is in flight; it * will be decremented when it has been sent (or discarded due to * disconnection). Returns 0 if successful, EAGAIN if 'counter->n' is already * at least as large as 'queue_limit', or ENOTCONN if 'rc' is not currently * connected. Regardless of return value, 'b' is destroyed. * * Because 'b' may be sent (or discarded) before this function returns, the * caller may not be able to observe any change in 'counter'. * * There is no rconn_send_wait() function: an rconn has a send queue that it * takes care of sending if you call rconn_run(), which will have the side * effect of waking up poll_block(). */ int rconn_send_with_limit(struct rconn *rc, struct ofpbuf *b, struct rconn_packet_counter *counter, int queue_limit) { int retval; retval = counter->n >= queue_limit ? EAGAIN : rconn_send(rc, b, counter); if (retval) { COVERAGE_INC(rconn_overflow); ofpbuf_delete(b); } return retval; } /* Returns the total number of packets successfully sent on the underlying * vconn. A packet is not counted as sent while it is still queued in the * rconn, only when it has been successfuly passed to the vconn. */ unsigned int rconn_packets_sent(const struct rconn *rc) { return rc->packets_sent; } /* Adds 'vconn' to 'rc' as a monitoring connection, to which all messages sent * and received on 'rconn' will be copied. 'rc' takes ownership of 'vconn'. */ void rconn_add_monitor(struct rconn *rc, struct vconn *vconn) { if (rc->n_monitors < ARRAY_SIZE(rc->monitors)) { VLOG_INFO("new monitor connection from %s", vconn_get_name(vconn)); rc->monitors[rc->n_monitors++] = vconn; } else { VLOG_DBG("too many monitor connections, discarding %s", vconn_get_name(vconn)); vconn_close(vconn); } } /* Returns 'rc''s name. This is a name for human consumption, appropriate for * use in log messages. It is not necessarily a name that may be passed * directly to, e.g., vconn_open(). */ const char * rconn_get_name(const struct rconn *rc) { return rc->name; } /* Sets 'rc''s name to 'new_name'. */ void rconn_set_name(struct rconn *rc, const char *new_name) { free(rc->name); rc->name = xstrdup(new_name); } /* Returns 'rc''s target. This is intended to be a string that may be passed * directly to, e.g., vconn_open(). */ const char * rconn_get_target(const struct rconn *rc) { return rc->target; } /* Returns true if 'rconn' is connected or in the process of reconnecting, * false if 'rconn' is disconnected and will not reconnect on its own. */ bool rconn_is_alive(const struct rconn *rconn) { return rconn->state != S_VOID; } /* Returns true if 'rconn' is connected, false otherwise. */ bool rconn_is_connected(const struct rconn *rconn) { return is_connected_state(rconn->state); } /* Returns true if 'rconn' is connected and thought to have been accepted by * the peer's admission-control policy. */ bool rconn_is_admitted(const struct rconn *rconn) { return (rconn_is_connected(rconn) && rconn->last_admitted >= rconn->last_connected); } /* Returns 0 if 'rconn' is currently connected and considered to have been * accepted by the peer's admission-control policy, otherwise the number of * seconds since 'rconn' was last in such a state. */ int rconn_failure_duration(const struct rconn *rconn) { return rconn_is_admitted(rconn) ? 0 : time_now() - rconn->last_admitted; } /* Returns the IP address of the peer, or 0 if the peer's IP address is not * known. */ uint32_t rconn_get_remote_ip(const struct rconn *rconn) { return rconn->remote_ip; } /* Returns the transport port of the peer, or 0 if the peer's port is not * known. */ uint16_t rconn_get_remote_port(const struct rconn *rconn) { return rconn->remote_port; } /* Returns the IP address used to connect to the peer, or 0 if the * connection is not an IP-based protocol or if its IP address is not * known. */ uint32_t rconn_get_local_ip(const struct rconn *rconn) { return rconn->local_ip; } /* Returns the transport port used to connect to the peer, or 0 if the * connection does not contain a port or if the port is not known. */ uint16_t rconn_get_local_port(const struct rconn *rconn) { return rconn->vconn ? vconn_get_local_port(rconn->vconn) : 0; } /* Returns the total number of packets successfully received by the underlying * vconn. */ unsigned int rconn_packets_received(const struct rconn *rc) { return rc->packets_received; } /* Returns a string representing the internal state of 'rc'. The caller must * not modify or free the string. */ const char * rconn_get_state(const struct rconn *rc) { return state_name(rc->state); } /* Returns the number of connection attempts made by 'rc', including any * ongoing attempt that has not yet succeeded or failed. */ unsigned int rconn_get_attempted_connections(const struct rconn *rc) { return rc->n_attempted_connections; } /* Returns the number of successful connection attempts made by 'rc'. */ unsigned int rconn_get_successful_connections(const struct rconn *rc) { return rc->n_successful_connections; } /* Returns the time at which the last successful connection was made by * 'rc'. Returns TIME_MIN if never connected. */ time_t rconn_get_last_connection(const struct rconn *rc) { return rc->last_connected; } /* Returns the time at which 'rc' was last disconnected. Returns TIME_MIN * if never disconnected. */ time_t rconn_get_last_disconnect(const struct rconn *rc) { return rc->last_disconnected; } /* Returns the time at which the last OpenFlow message was received by 'rc'. * If no packets have been received on 'rc', returns the time at which 'rc' * was created. */ time_t rconn_get_last_received(const struct rconn *rc) { return rc->last_received; } /* Returns the time at which 'rc' was created. */ time_t rconn_get_creation_time(const struct rconn *rc) { return rc->creation_time; } /* Returns the approximate number of seconds that 'rc' has been connected. */ unsigned long int rconn_get_total_time_connected(const struct rconn *rc) { return (rc->total_time_connected + (rconn_is_connected(rc) ? elapsed_in_this_state(rc) : 0)); } /* Returns the current amount of backoff, in seconds. This is the amount of * time after which the rconn will transition from BACKOFF to CONNECTING. */ int rconn_get_backoff(const struct rconn *rc) { return rc->backoff; } /* Returns the number of seconds spent in this state so far. */ unsigned int rconn_get_state_elapsed(const struct rconn *rc) { return elapsed_in_this_state(rc); } /* Returns 'rc''s current connection sequence number, a number that changes * every time that 'rconn' connects or disconnects. */ unsigned int rconn_get_connection_seqno(const struct rconn *rc) { return rc->seqno; } /* Returns a value that explains why 'rc' last disconnected: * * - 0 means that the last disconnection was caused by a call to * rconn_disconnect(), or that 'rc' is new and has not yet completed its * initial connection or connection attempt. * * - EOF means that the connection was closed in the normal way by the peer. * * - A positive integer is an errno value that represents the error. */ int rconn_get_last_error(const struct rconn *rc) { return rc->last_error; } struct rconn_packet_counter * rconn_packet_counter_create(void) { struct rconn_packet_counter *c = xmalloc(sizeof *c); c->n = 0; c->ref_cnt = 1; return c; } void rconn_packet_counter_destroy(struct rconn_packet_counter *c) { if (c) { assert(c->ref_cnt > 0); if (!--c->ref_cnt && !c->n) { free(c); } } } void rconn_packet_counter_inc(struct rconn_packet_counter *c) { c->n++; } void rconn_packet_counter_dec(struct rconn_packet_counter *c) { assert(c->n > 0); if (!--c->n && !c->ref_cnt) { free(c); } } /* Set rc->target and rc->name to 'target' and 'name', respectively. If 'name' * is null, 'target' is used. * * Also, clear out the cached IP address and port information, since changing * the target also likely changes these values. */ static void rconn_set_target__(struct rconn *rc, const char *target, const char *name) { free(rc->name); rc->name = xstrdup(name ? name : target); free(rc->target); rc->target = xstrdup(target); rc->local_ip = 0; rc->remote_ip = 0; rc->remote_port = 0; } /* Tries to send a packet from 'rc''s send buffer. Returns 0 if successful, * otherwise a positive errno value. */ static int try_send(struct rconn *rc) { struct ofpbuf *msg = ofpbuf_from_list(rc->txq.next); struct rconn_packet_counter *counter = msg->private_p; int retval; /* Eagerly remove 'msg' from the txq. We can't remove it from the list * after sending, if sending is successful, because it is then owned by the * vconn, which might have freed it already. */ list_remove(&msg->list_node); retval = vconn_send(rc->vconn, msg); if (retval) { list_push_front(&rc->txq, &msg->list_node); if (retval != EAGAIN) { report_error(rc, retval); disconnect(rc, retval); } return retval; } COVERAGE_INC(rconn_sent); rc->packets_sent++; if (counter) { rconn_packet_counter_dec(counter); } return 0; } /* Reports that 'error' caused 'rc' to disconnect. 'error' may be a positive * errno value, or it may be EOF to indicate that the connection was closed * normally. */ static void report_error(struct rconn *rc, int error) { if (error == EOF) { /* If 'rc' isn't reliable, then we don't really expect this connection * to last forever anyway (probably it's a connection that we received * via accept()), so use DBG level to avoid cluttering the logs. */ enum vlog_level level = rc->reliable ? VLL_INFO : VLL_DBG; VLOG(level, "%s: connection closed by peer", rc->name); } else { VLOG_WARN("%s: connection dropped (%s)", rc->name, strerror(error)); } } /* Disconnects 'rc' and records 'error' as the error that caused 'rc''s last * disconnection: * * - 0 means that this disconnection is due to a request by 'rc''s client, * not due to any kind of network error. * * - EOF means that the connection was closed in the normal way by the peer. * * - A positive integer is an errno value that represents the error. */ static void disconnect(struct rconn *rc, int error) { rc->last_error = error; if (rc->reliable) { time_t now = time_now(); if (rc->state & (S_CONNECTING | S_ACTIVE | S_IDLE)) { rc->last_disconnected = now; vconn_close(rc->vconn); rc->vconn = NULL; flush_queue(rc); } if (now >= rc->backoff_deadline) { rc->backoff = 1; } else if (rc->backoff < rc->max_backoff / 2) { rc->backoff = MAX(1, 2 * rc->backoff); VLOG_INFO("%s: waiting %d seconds before reconnect", rc->name, rc->backoff); } else { if (rconn_logging_connection_attempts__(rc)) { VLOG_INFO("%s: continuing to retry connections in the " "background but suppressing further logging", rc->name); } rc->backoff = rc->max_backoff; } rc->backoff_deadline = now + rc->backoff; state_transition(rc, S_BACKOFF); } else { rc->last_disconnected = time_now(); rconn_disconnect(rc); } } /* Drops all the packets from 'rc''s send queue and decrements their queue * counts. */ static void flush_queue(struct rconn *rc) { if (list_is_empty(&rc->txq)) { return; } while (!list_is_empty(&rc->txq)) { struct ofpbuf *b = ofpbuf_from_list(list_pop_front(&rc->txq)); struct rconn_packet_counter *counter = b->private_p; if (counter) { rconn_packet_counter_dec(counter); } COVERAGE_INC(rconn_discarded); ofpbuf_delete(b); } poll_immediate_wake(); } static unsigned int elapsed_in_this_state(const struct rconn *rc) { return time_now() - rc->state_entered; } static unsigned int timeout(const struct rconn *rc) { switch (rc->state) { #define STATE(NAME, VALUE) case S_##NAME: return timeout_##NAME(rc); STATES #undef STATE default: NOT_REACHED(); } } static bool timed_out(const struct rconn *rc) { return time_now() >= sat_add(rc->state_entered, timeout(rc)); } static void state_transition(struct rconn *rc, enum state state) { rc->seqno += (rc->state == S_ACTIVE) != (state == S_ACTIVE); if (is_connected_state(state) && !is_connected_state(rc->state)) { rc->probably_admitted = false; } if (rconn_is_connected(rc)) { rc->total_time_connected += elapsed_in_this_state(rc); } VLOG_DBG("%s: entering %s", rc->name, state_name(state)); rc->state = state; rc->state_entered = time_now(); } static void copy_to_monitor(struct rconn *rc, const struct ofpbuf *b) { struct ofpbuf *clone = NULL; int retval; size_t i; for (i = 0; i < rc->n_monitors; ) { struct vconn *vconn = rc->monitors[i]; if (!clone) { clone = ofpbuf_clone(b); } retval = vconn_send(vconn, clone); if (!retval) { clone = NULL; } else if (retval != EAGAIN) { VLOG_DBG("%s: closing monitor connection to %s: %s", rconn_get_name(rc), vconn_get_name(vconn), strerror(retval)); rc->monitors[i] = rc->monitors[--rc->n_monitors]; continue; } i++; } ofpbuf_delete(clone); } static bool is_connected_state(enum state state) { return (state & (S_ACTIVE | S_IDLE)) != 0; } static bool is_admitted_msg(const struct ofpbuf *b) { struct ofp_header *oh = b->data; uint8_t type = oh->type; return !(type < 32 && (1u << type) & ((1u << OFPT_HELLO) | (1u << OFPT_ERROR) | (1u << OFPT_ECHO_REQUEST) | (1u << OFPT_ECHO_REPLY) | (1u << OFPT_VENDOR) | (1u << OFPT_FEATURES_REQUEST) | (1u << OFPT_FEATURES_REPLY) | (1u << OFPT_GET_CONFIG_REQUEST) | (1u << OFPT_GET_CONFIG_REPLY) | (1u << OFPT_SET_CONFIG))); } /* Returns true if 'rc' is currently logging information about connection * attempts, false if logging should be suppressed because 'rc' hasn't * successuflly connected in too long. */ static bool rconn_logging_connection_attempts__(const struct rconn *rc) { return rc->backoff < rc->max_backoff; }