/* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "socket-util.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dynamic-string.h" #include "fatal-signal.h" #include "packets.h" #include "poll-loop.h" #include "util.h" #include "vlog.h" #if AF_PACKET && LINUX_DATAPATH #include #endif #ifdef HAVE_NETLINK #include "netlink-protocol.h" #include "netlink-socket.h" #endif VLOG_DEFINE_THIS_MODULE(socket_util); /* #ifdefs make it a pain to maintain code: you have to try to build both ways. * Thus, this file compiles all of the code regardless of the target, by * writing "if (LINUX_DATAPATH)" instead of "#ifdef __linux__". */ #ifndef LINUX_DATAPATH #define LINUX_DATAPATH 0 #endif #ifndef O_DIRECTORY #define O_DIRECTORY 0 #endif static int getsockopt_int(int fd, int level, int option, const char *optname, int *valuep); /* Sets 'fd' to non-blocking mode. Returns 0 if successful, otherwise a * positive errno value. */ int set_nonblocking(int fd) { int flags = fcntl(fd, F_GETFL, 0); if (flags != -1) { if (fcntl(fd, F_SETFL, flags | O_NONBLOCK) != -1) { return 0; } else { VLOG_ERR("fcntl(F_SETFL) failed: %s", ovs_strerror(errno)); return errno; } } else { VLOG_ERR("fcntl(F_GETFL) failed: %s", ovs_strerror(errno)); return errno; } } void xset_nonblocking(int fd) { if (set_nonblocking(fd)) { exit(EXIT_FAILURE); } } int set_dscp(int fd, uint8_t dscp) { int val; if (dscp > 63) { return EINVAL; } val = dscp << 2; if (setsockopt(fd, IPPROTO_IP, IP_TOS, &val, sizeof val)) { return errno; } return 0; } static bool rlim_is_finite(rlim_t limit) { if (limit == RLIM_INFINITY) { return false; } #ifdef RLIM_SAVED_CUR /* FreeBSD 8.0 lacks RLIM_SAVED_CUR. */ if (limit == RLIM_SAVED_CUR) { return false; } #endif #ifdef RLIM_SAVED_MAX /* FreeBSD 8.0 lacks RLIM_SAVED_MAX. */ if (limit == RLIM_SAVED_MAX) { return false; } #endif return true; } /* Returns the maximum valid FD value, plus 1. */ int get_max_fds(void) { static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER; static int max_fds; if (ovsthread_once_start(&once)) { struct rlimit r; if (!getrlimit(RLIMIT_NOFILE, &r) && rlim_is_finite(r.rlim_cur)) { max_fds = r.rlim_cur; } else { VLOG_WARN("failed to obtain fd limit, defaulting to 1024"); max_fds = 1024; } ovsthread_once_done(&once); } return max_fds; } /* Translates 'host_name', which must be a string representation of an IP * address, into a numeric IP address in '*addr'. Returns 0 if successful, * otherwise a positive errno value. */ int lookup_ip(const char *host_name, struct in_addr *addr) { if (!inet_aton(host_name, addr)) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl, "\"%s\" is not a valid IP address", host_name); return ENOENT; } return 0; } /* Translates 'host_name', which must be a string representation of an IPv6 * address, into a numeric IPv6 address in '*addr'. Returns 0 if successful, * otherwise a positive errno value. */ int lookup_ipv6(const char *host_name, struct in6_addr *addr) { if (inet_pton(AF_INET6, host_name, addr) != 1) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl, "\"%s\" is not a valid IPv6 address", host_name); return ENOENT; } return 0; } /* Translates 'host_name', which must be a host name or a string representation * of an IP address, into a numeric IP address in '*addr'. Returns 0 if * successful, otherwise a positive errno value. * * Most Open vSwitch code should not use this because it causes deadlocks: * getaddrinfo() sends out a DNS request but that starts a new flow for which * OVS must set up a flow, but it can't because it's waiting for a DNS reply. * The synchronous lookup also delays other activity. (Of course we can solve * this but it doesn't seem worthwhile quite yet.) */ int lookup_hostname(const char *host_name, struct in_addr *addr) { struct addrinfo *result; struct addrinfo hints; if (inet_aton(host_name, addr)) { return 0; } memset(&hints, 0, sizeof hints); hints.ai_family = AF_INET; switch (getaddrinfo(host_name, NULL, &hints, &result)) { case 0: *addr = ALIGNED_CAST(struct sockaddr_in *, result->ai_addr)->sin_addr; freeaddrinfo(result); return 0; #ifdef EAI_ADDRFAMILY case EAI_ADDRFAMILY: #endif case EAI_NONAME: case EAI_SERVICE: return ENOENT; case EAI_AGAIN: return EAGAIN; case EAI_BADFLAGS: case EAI_FAMILY: case EAI_SOCKTYPE: return EINVAL; case EAI_FAIL: return EIO; case EAI_MEMORY: return ENOMEM; #ifdef EAI_NODATA case EAI_NODATA: return ENXIO; #endif case EAI_SYSTEM: return errno; default: return EPROTO; } } int check_connection_completion(int fd) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 10); struct pollfd pfd; int retval; pfd.fd = fd; pfd.events = POLLOUT; do { retval = poll(&pfd, 1, 0); } while (retval < 0 && errno == EINTR); if (retval == 1) { if (pfd.revents & POLLERR) { ssize_t n = send(fd, "", 1, MSG_DONTWAIT); if (n < 0) { return errno; } else { VLOG_ERR_RL(&rl, "poll return POLLERR but send succeeded"); return EPROTO; } } return 0; } else if (retval < 0) { VLOG_ERR_RL(&rl, "poll: %s", ovs_strerror(errno)); return errno; } else { return EAGAIN; } } /* Drain all the data currently in the receive queue of a datagram socket (and * possibly additional data). There is no way to know how many packets are in * the receive queue, but we do know that the total number of bytes queued does * not exceed the receive buffer size, so we pull packets until none are left * or we've read that many bytes. */ int drain_rcvbuf(int fd) { int rcvbuf; rcvbuf = get_socket_rcvbuf(fd); if (rcvbuf < 0) { return -rcvbuf; } while (rcvbuf > 0) { /* In Linux, specifying MSG_TRUNC in the flags argument causes the * datagram length to be returned, even if that is longer than the * buffer provided. Thus, we can use a 1-byte buffer to discard the * incoming datagram and still be able to account how many bytes were * removed from the receive buffer. * * On other Unix-like OSes, MSG_TRUNC has no effect in the flags * argument. */ char buffer[LINUX_DATAPATH ? 1 : 2048]; ssize_t n_bytes = recv(fd, buffer, sizeof buffer, MSG_TRUNC | MSG_DONTWAIT); if (n_bytes <= 0 || n_bytes >= rcvbuf) { break; } rcvbuf -= n_bytes; } return 0; } /* Returns the size of socket 'sock''s receive buffer (SO_RCVBUF), or a * negative errno value if an error occurs. */ int get_socket_rcvbuf(int sock) { int rcvbuf; int error; error = getsockopt_int(sock, SOL_SOCKET, SO_RCVBUF, "SO_RCVBUF", &rcvbuf); return error ? -error : rcvbuf; } /* Reads and discards up to 'n' datagrams from 'fd', stopping as soon as no * more data can be immediately read. ('fd' should therefore be in * non-blocking mode.)*/ void drain_fd(int fd, size_t n_packets) { for (; n_packets > 0; n_packets--) { /* 'buffer' only needs to be 1 byte long in most circumstances. This * size is defensive against the possibility that we someday want to * use a Linux tap device without TUN_NO_PI, in which case a buffer * smaller than sizeof(struct tun_pi) will give EINVAL on read. */ char buffer[128]; if (read(fd, buffer, sizeof buffer) <= 0) { break; } } } /* Stores in '*un' a sockaddr_un that refers to file 'name'. Stores in * '*un_len' the size of the sockaddr_un. */ static void make_sockaddr_un__(const char *name, struct sockaddr_un *un, socklen_t *un_len) { un->sun_family = AF_UNIX; ovs_strzcpy(un->sun_path, name, sizeof un->sun_path); *un_len = (offsetof(struct sockaddr_un, sun_path) + strlen (un->sun_path) + 1); } /* Stores in '*un' a sockaddr_un that refers to file 'name'. Stores in * '*un_len' the size of the sockaddr_un. * * Returns 0 on success, otherwise a positive errno value. On success, * '*dirfdp' is either -1 or a nonnegative file descriptor that the caller * should close after using '*un' to bind or connect. On failure, '*dirfdp' is * -1. */ static int make_sockaddr_un(const char *name, struct sockaddr_un *un, socklen_t *un_len, int *dirfdp) { enum { MAX_UN_LEN = sizeof un->sun_path - 1 }; *dirfdp = -1; if (strlen(name) > MAX_UN_LEN) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1); if (LINUX_DATAPATH) { /* 'name' is too long to fit in a sockaddr_un, but we have a * workaround for that on Linux: shorten it by opening a file * descriptor for the directory part of the name and indirecting * through /proc/self/fd//. */ char *dir, *base; char *short_name; int dirfd; dir = dir_name(name); base = base_name(name); dirfd = open(dir, O_DIRECTORY | O_RDONLY); if (dirfd < 0) { free(base); free(dir); return errno; } short_name = xasprintf("/proc/self/fd/%d/%s", dirfd, base); free(dir); free(base); if (strlen(short_name) <= MAX_UN_LEN) { make_sockaddr_un__(short_name, un, un_len); free(short_name); *dirfdp = dirfd; return 0; } free(short_name); close(dirfd); VLOG_WARN_RL(&rl, "Unix socket name %s is longer than maximum " "%d bytes (even shortened)", name, MAX_UN_LEN); } else { /* 'name' is too long and we have no workaround. */ VLOG_WARN_RL(&rl, "Unix socket name %s is longer than maximum " "%d bytes", name, MAX_UN_LEN); } return ENAMETOOLONG; } else { make_sockaddr_un__(name, un, un_len); return 0; } } /* Binds Unix domain socket 'fd' to a file with permissions 0700. */ static int bind_unix_socket(int fd, struct sockaddr *sun, socklen_t sun_len) { /* According to _Unix Network Programming_, umask should affect bind(). */ mode_t old_umask = umask(0077); int error = bind(fd, sun, sun_len) ? errno : 0; umask(old_umask); return error; } /* Creates a Unix domain socket in the given 'style' (either SOCK_DGRAM or * SOCK_STREAM) that is bound to '*bind_path' (if 'bind_path' is non-null) and * connected to '*connect_path' (if 'connect_path' is non-null). If 'nonblock' * is true, the socket is made non-blocking. * * Returns the socket's fd if successful, otherwise a negative errno value. */ int make_unix_socket(int style, bool nonblock, const char *bind_path, const char *connect_path) { int error; int fd; fd = socket(PF_UNIX, style, 0); if (fd < 0) { return -errno; } /* Set nonblocking mode right away, if we want it. This prevents blocking * in connect(), if connect_path != NULL. (In turn, that's a corner case: * it will only happen if style is SOCK_STREAM or SOCK_SEQPACKET, and only * if a backlog of un-accepted connections has built up in the kernel.) */ if (nonblock) { error = set_nonblocking(fd); if (error) { goto error; } } if (bind_path) { struct sockaddr_un un; socklen_t un_len; int dirfd; if (unlink(bind_path) && errno != ENOENT) { VLOG_WARN("unlinking \"%s\": %s\n", bind_path, ovs_strerror(errno)); } fatal_signal_add_file_to_unlink(bind_path); error = make_sockaddr_un(bind_path, &un, &un_len, &dirfd); if (!error) { error = bind_unix_socket(fd, (struct sockaddr *) &un, un_len); } if (dirfd >= 0) { close(dirfd); } if (error) { goto error; } } if (connect_path) { struct sockaddr_un un; socklen_t un_len; int dirfd; error = make_sockaddr_un(connect_path, &un, &un_len, &dirfd); if (!error && connect(fd, (struct sockaddr*) &un, un_len) && errno != EINPROGRESS) { error = errno; } if (dirfd >= 0) { close(dirfd); } if (error) { goto error; } } return fd; error: if (error == EAGAIN) { error = EPROTO; } if (bind_path) { fatal_signal_unlink_file_now(bind_path); } close(fd); return -error; } int get_unix_name_len(socklen_t sun_len) { return (sun_len >= offsetof(struct sockaddr_un, sun_path) ? sun_len - offsetof(struct sockaddr_un, sun_path) : 0); } ovs_be32 guess_netmask(ovs_be32 ip_) { uint32_t ip = ntohl(ip_); return ((ip >> 31) == 0 ? htonl(0xff000000) /* Class A */ : (ip >> 30) == 2 ? htonl(0xffff0000) /* Class B */ : (ip >> 29) == 6 ? htonl(0xffffff00) /* Class C */ : htonl(0)); /* ??? */ } /* Parses 'target', which should be a string in the format "[:]". * is required. If 'default_port' is nonzero then is optional * and defaults to 'default_port'. * * On success, returns true and stores the parsed remote address into '*sinp'. * On failure, logs an error, stores zeros into '*sinp', and returns false. */ bool inet_parse_active(const char *target_, uint16_t default_port, struct sockaddr_in *sinp) { char *target = xstrdup(target_); char *save_ptr = NULL; const char *host_name; const char *port_string; bool ok = false; /* Defaults. */ sinp->sin_family = AF_INET; sinp->sin_port = htons(default_port); /* Tokenize. */ host_name = strtok_r(target, ":", &save_ptr); port_string = strtok_r(NULL, ":", &save_ptr); if (!host_name) { VLOG_ERR("%s: bad peer name format", target_); goto exit; } /* Look up IP, port. */ if (lookup_ip(host_name, &sinp->sin_addr)) { goto exit; } if (port_string && atoi(port_string)) { sinp->sin_port = htons(atoi(port_string)); } else if (!default_port) { VLOG_ERR("%s: port number must be specified", target_); goto exit; } ok = true; exit: if (!ok) { memset(sinp, 0, sizeof *sinp); } free(target); return ok; } /* Opens a non-blocking IPv4 socket of the specified 'style' and connects to * 'target', which should be a string in the format "[:]". * is required. If 'default_port' is nonzero then is optional and * defaults to 'default_port'. * * 'style' should be SOCK_STREAM (for TCP) or SOCK_DGRAM (for UDP). * * On success, returns 0 (indicating connection complete) or EAGAIN (indicating * connection in progress), in which case the new file descriptor is stored * into '*fdp'. On failure, returns a positive errno value other than EAGAIN * and stores -1 into '*fdp'. * * If 'sinp' is non-null, then on success the target address is stored into * '*sinp'. * * 'dscp' becomes the DSCP bits in the IP headers for the new connection. It * should be in the range [0, 63] and will automatically be shifted to the * appropriately place in the IP tos field. */ int inet_open_active(int style, const char *target, uint16_t default_port, struct sockaddr_in *sinp, int *fdp, uint8_t dscp) { struct sockaddr_in sin; int fd = -1; int error; /* Parse. */ if (!inet_parse_active(target, default_port, &sin)) { error = EAFNOSUPPORT; goto exit; } /* Create non-blocking socket. */ fd = socket(AF_INET, style, 0); if (fd < 0) { VLOG_ERR("%s: socket: %s", target, ovs_strerror(errno)); error = errno; goto exit; } error = set_nonblocking(fd); if (error) { goto exit; } /* The dscp bits must be configured before connect() to ensure that the TOS * field is set during the connection establishment. If set after * connect(), the handshake SYN frames will be sent with a TOS of 0. */ error = set_dscp(fd, dscp); if (error) { VLOG_ERR("%s: socket: %s", target, ovs_strerror(error)); goto exit; } /* Connect. */ error = connect(fd, (struct sockaddr *) &sin, sizeof sin) == 0 ? 0 : errno; if (error == EINPROGRESS) { error = EAGAIN; } exit: if (!error || error == EAGAIN) { if (sinp) { *sinp = sin; } } else if (fd >= 0) { close(fd); fd = -1; } *fdp = fd; return error; } /* Parses 'target', which should be a string in the format "[][:]": * * - If 'default_port' is -1, then is required. Otherwise, if * is omitted, then 'default_port' is used instead. * * - If (or 'default_port', if used) is 0, then no port is bound * and the TCP/IP stack will select a port. * * - If is omitted then the IP address is wildcarded. * * If successful, stores the address into '*sinp' and returns true; otherwise * zeros '*sinp' and returns false. */ bool inet_parse_passive(const char *target_, int default_port, struct sockaddr_in *sinp) { char *target = xstrdup(target_); char *string_ptr = target; const char *host_name; const char *port_string; bool ok = false; int port; /* Address defaults. */ memset(sinp, 0, sizeof *sinp); sinp->sin_family = AF_INET; sinp->sin_addr.s_addr = htonl(INADDR_ANY); sinp->sin_port = htons(default_port); /* Parse optional port number. */ port_string = strsep(&string_ptr, ":"); if (port_string && str_to_int(port_string, 10, &port)) { sinp->sin_port = htons(port); } else if (default_port < 0) { VLOG_ERR("%s: port number must be specified", target_); goto exit; } /* Parse optional bind IP. */ host_name = strsep(&string_ptr, ":"); if (host_name && host_name[0] && lookup_ip(host_name, &sinp->sin_addr)) { goto exit; } ok = true; exit: if (!ok) { memset(sinp, 0, sizeof *sinp); } free(target); return ok; } /* Opens a non-blocking IPv4 socket of the specified 'style', binds to * 'target', and listens for incoming connections. Parses 'target' in the same * way was inet_parse_passive(). * * 'style' should be SOCK_STREAM (for TCP) or SOCK_DGRAM (for UDP). * * For TCP, the socket will have SO_REUSEADDR turned on. * * On success, returns a non-negative file descriptor. On failure, returns a * negative errno value. * * If 'sinp' is non-null, then on success the bound address is stored into * '*sinp'. * * 'dscp' becomes the DSCP bits in the IP headers for the new connection. It * should be in the range [0, 63] and will automatically be shifted to the * appropriately place in the IP tos field. */ int inet_open_passive(int style, const char *target, int default_port, struct sockaddr_in *sinp, uint8_t dscp) { bool kernel_chooses_port; struct sockaddr_in sin; int fd = 0, error; unsigned int yes = 1; if (!inet_parse_passive(target, default_port, &sin)) { return -EAFNOSUPPORT; } /* Create non-blocking socket, set SO_REUSEADDR. */ fd = socket(AF_INET, style, 0); if (fd < 0) { error = errno; VLOG_ERR("%s: socket: %s", target, ovs_strerror(error)); return -error; } error = set_nonblocking(fd); if (error) { goto error; } if (style == SOCK_STREAM && setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof yes) < 0) { error = errno; VLOG_ERR("%s: setsockopt(SO_REUSEADDR): %s", target, ovs_strerror(error)); goto error; } /* Bind. */ if (bind(fd, (struct sockaddr *) &sin, sizeof sin) < 0) { error = errno; VLOG_ERR("%s: bind: %s", target, ovs_strerror(error)); goto error; } /* The dscp bits must be configured before connect() to ensure that the TOS * field is set during the connection establishment. If set after * connect(), the handshake SYN frames will be sent with a TOS of 0. */ error = set_dscp(fd, dscp); if (error) { VLOG_ERR("%s: socket: %s", target, ovs_strerror(error)); goto error; } /* Listen. */ if (style == SOCK_STREAM && listen(fd, 10) < 0) { error = errno; VLOG_ERR("%s: listen: %s", target, ovs_strerror(error)); goto error; } kernel_chooses_port = sin.sin_port == htons(0); if (sinp || kernel_chooses_port) { socklen_t sin_len = sizeof sin; if (getsockname(fd, (struct sockaddr *) &sin, &sin_len) < 0) { error = errno; VLOG_ERR("%s: getsockname: %s", target, ovs_strerror(error)); goto error; } if (sin.sin_family != AF_INET || sin_len != sizeof sin) { error = EAFNOSUPPORT; VLOG_ERR("%s: getsockname: invalid socket name", target); goto error; } if (sinp) { *sinp = sin; } if (kernel_chooses_port) { VLOG_INFO("%s: listening on port %"PRIu16, target, ntohs(sin.sin_port)); } } return fd; error: close(fd); return -error; } /* Returns a readable and writable fd for /dev/null, if successful, otherwise * a negative errno value. The caller must not close the returned fd (because * the same fd will be handed out to subsequent callers). */ int get_null_fd(void) { static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER; static int null_fd; if (ovsthread_once_start(&once)) { null_fd = open("/dev/null", O_RDWR); if (null_fd < 0) { int error = errno; VLOG_ERR("could not open /dev/null: %s", ovs_strerror(error)); null_fd = -error; } ovsthread_once_done(&once); } return null_fd; } int read_fully(int fd, void *p_, size_t size, size_t *bytes_read) { uint8_t *p = p_; *bytes_read = 0; while (size > 0) { ssize_t retval = read(fd, p, size); if (retval > 0) { *bytes_read += retval; size -= retval; p += retval; } else if (retval == 0) { return EOF; } else if (errno != EINTR) { return errno; } } return 0; } int write_fully(int fd, const void *p_, size_t size, size_t *bytes_written) { const uint8_t *p = p_; *bytes_written = 0; while (size > 0) { ssize_t retval = write(fd, p, size); if (retval > 0) { *bytes_written += retval; size -= retval; p += retval; } else if (retval == 0) { VLOG_WARN("write returned 0"); return EPROTO; } else if (errno != EINTR) { return errno; } } return 0; } /* Given file name 'file_name', fsyncs the directory in which it is contained. * Returns 0 if successful, otherwise a positive errno value. */ int fsync_parent_dir(const char *file_name) { int error = 0; char *dir; int fd; dir = dir_name(file_name); fd = open(dir, O_RDONLY); if (fd >= 0) { if (fsync(fd)) { if (errno == EINVAL || errno == EROFS) { /* This directory does not support synchronization. Not * really an error. */ } else { error = errno; VLOG_ERR("%s: fsync failed (%s)", dir, ovs_strerror(error)); } } close(fd); } else { error = errno; VLOG_ERR("%s: open failed (%s)", dir, ovs_strerror(error)); } free(dir); return error; } /* Obtains the modification time of the file named 'file_name' to the greatest * supported precision. If successful, stores the mtime in '*mtime' and * returns 0. On error, returns a positive errno value and stores zeros in * '*mtime'. */ int get_mtime(const char *file_name, struct timespec *mtime) { struct stat s; if (!stat(file_name, &s)) { mtime->tv_sec = s.st_mtime; #if HAVE_STRUCT_STAT_ST_MTIM_TV_NSEC mtime->tv_nsec = s.st_mtim.tv_nsec; #elif HAVE_STRUCT_STAT_ST_MTIMENSEC mtime->tv_nsec = s.st_mtimensec; #else mtime->tv_nsec = 0; #endif return 0; } else { mtime->tv_sec = mtime->tv_nsec = 0; return errno; } } void xpipe(int fds[2]) { if (pipe(fds)) { VLOG_FATAL("failed to create pipe (%s)", ovs_strerror(errno)); } } void xpipe_nonblocking(int fds[2]) { xpipe(fds); xset_nonblocking(fds[0]); xset_nonblocking(fds[1]); } void xsocketpair(int domain, int type, int protocol, int fds[2]) { if (socketpair(domain, type, protocol, fds)) { VLOG_FATAL("failed to create socketpair (%s)", ovs_strerror(errno)); } } static int getsockopt_int(int fd, int level, int option, const char *optname, int *valuep) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 10); socklen_t len; int value; int error; len = sizeof value; if (getsockopt(fd, level, option, &value, &len)) { error = errno; VLOG_ERR_RL(&rl, "getsockopt(%s): %s", optname, ovs_strerror(error)); } else if (len != sizeof value) { error = EINVAL; VLOG_ERR_RL(&rl, "getsockopt(%s): value is %u bytes (expected %zu)", optname, (unsigned int) len, sizeof value); } else { error = 0; } *valuep = error ? 0 : value; return error; } static void describe_sockaddr(struct ds *string, int fd, int (*getaddr)(int, struct sockaddr *, socklen_t *)) { struct sockaddr_storage ss; socklen_t len = sizeof ss; if (!getaddr(fd, (struct sockaddr *) &ss, &len)) { if (ss.ss_family == AF_INET) { struct sockaddr_in sin; memcpy(&sin, &ss, sizeof sin); ds_put_format(string, IP_FMT":%"PRIu16, IP_ARGS(sin.sin_addr.s_addr), ntohs(sin.sin_port)); } else if (ss.ss_family == AF_UNIX) { struct sockaddr_un sun; const char *null; size_t maxlen; memcpy(&sun, &ss, sizeof sun); maxlen = len - offsetof(struct sockaddr_un, sun_path); null = memchr(sun.sun_path, '\0', maxlen); ds_put_buffer(string, sun.sun_path, null ? null - sun.sun_path : maxlen); } #ifdef HAVE_NETLINK else if (ss.ss_family == AF_NETLINK) { int protocol; /* SO_PROTOCOL was introduced in 2.6.32. Support it regardless of the version * of the Linux kernel headers in use at build time. */ #ifndef SO_PROTOCOL #define SO_PROTOCOL 38 #endif if (!getsockopt_int(fd, SOL_SOCKET, SO_PROTOCOL, "SO_PROTOCOL", &protocol)) { switch (protocol) { case NETLINK_ROUTE: ds_put_cstr(string, "NETLINK_ROUTE"); break; case NETLINK_GENERIC: ds_put_cstr(string, "NETLINK_GENERIC"); break; default: ds_put_format(string, "AF_NETLINK family %d", protocol); break; } } else { ds_put_cstr(string, "AF_NETLINK"); } } #endif #if AF_PACKET && LINUX_DATAPATH else if (ss.ss_family == AF_PACKET) { struct sockaddr_ll sll; memcpy(&sll, &ss, sizeof sll); ds_put_cstr(string, "AF_PACKET"); if (sll.sll_ifindex) { char name[IFNAMSIZ]; if (if_indextoname(sll.sll_ifindex, name)) { ds_put_format(string, "(%s)", name); } else { ds_put_format(string, "(ifindex=%d)", sll.sll_ifindex); } } if (sll.sll_protocol) { ds_put_format(string, "(protocol=0x%"PRIu16")", ntohs(sll.sll_protocol)); } } #endif else if (ss.ss_family == AF_UNSPEC) { ds_put_cstr(string, "AF_UNSPEC"); } else { ds_put_format(string, "AF_%d", (int) ss.ss_family); } } } #ifdef LINUX_DATAPATH static void put_fd_filename(struct ds *string, int fd) { char buf[1024]; char *linkname; int n; linkname = xasprintf("/proc/self/fd/%d", fd); n = readlink(linkname, buf, sizeof buf); if (n > 0) { ds_put_char(string, ' '); ds_put_buffer(string, buf, n); if (n > sizeof buf) { ds_put_cstr(string, "..."); } } free(linkname); } #endif /* Returns a malloc()'d string describing 'fd', for use in logging. */ char * describe_fd(int fd) { struct ds string; struct stat s; ds_init(&string); if (fstat(fd, &s)) { ds_put_format(&string, "fstat failed (%s)", ovs_strerror(errno)); } else if (S_ISSOCK(s.st_mode)) { describe_sockaddr(&string, fd, getsockname); ds_put_cstr(&string, "<->"); describe_sockaddr(&string, fd, getpeername); } else { ds_put_cstr(&string, (isatty(fd) ? "tty" : S_ISDIR(s.st_mode) ? "directory" : S_ISCHR(s.st_mode) ? "character device" : S_ISBLK(s.st_mode) ? "block device" : S_ISREG(s.st_mode) ? "file" : S_ISFIFO(s.st_mode) ? "FIFO" : S_ISLNK(s.st_mode) ? "symbolic link" : "unknown")); #ifdef LINUX_DATAPATH put_fd_filename(&string, fd); #endif } return ds_steal_cstr(&string); } /* Returns the total of the 'iov_len' members of the 'n_iovs' in 'iovs'. * The caller must ensure that the total does not exceed SIZE_MAX. */ size_t iovec_len(const struct iovec iovs[], size_t n_iovs) { size_t len = 0; size_t i; for (i = 0; i < n_iovs; i++) { len += iovs[i].iov_len; } return len; } /* Returns true if all of the 'n_iovs' iovecs in 'iovs' have length zero. */ bool iovec_is_empty(const struct iovec iovs[], size_t n_iovs) { size_t i; for (i = 0; i < n_iovs; i++) { if (iovs[i].iov_len) { return false; } } return true; } /* Sends the 'n_iovs' iovecs of data in 'iovs' and the 'n_fds' file descriptors * in 'fds' on Unix domain socket 'sock'. Returns the number of bytes * successfully sent or -1 if an error occurred. On error, sets errno * appropriately. */ int send_iovec_and_fds(int sock, const struct iovec *iovs, size_t n_iovs, const int fds[], size_t n_fds) { ovs_assert(sock >= 0); if (n_fds > 0) { union { struct cmsghdr cm; char control[CMSG_SPACE(SOUTIL_MAX_FDS * sizeof *fds)]; } cmsg; struct msghdr msg; ovs_assert(!iovec_is_empty(iovs, n_iovs)); ovs_assert(n_fds <= SOUTIL_MAX_FDS); memset(&cmsg, 0, sizeof cmsg); cmsg.cm.cmsg_len = CMSG_LEN(n_fds * sizeof *fds); cmsg.cm.cmsg_level = SOL_SOCKET; cmsg.cm.cmsg_type = SCM_RIGHTS; memcpy(CMSG_DATA(&cmsg.cm), fds, n_fds * sizeof *fds); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = CONST_CAST(struct iovec *, iovs); msg.msg_iovlen = n_iovs; msg.msg_control = &cmsg.cm; msg.msg_controllen = CMSG_SPACE(n_fds * sizeof *fds); msg.msg_flags = 0; return sendmsg(sock, &msg, 0); } else { return writev(sock, iovs, n_iovs); } } /* Sends the 'n_iovs' iovecs of data in 'iovs' and the 'n_fds' file descriptors * in 'fds' on Unix domain socket 'sock'. If 'skip_bytes' is nonzero, then the * first 'skip_bytes' of data in the iovecs are not sent, and none of the file * descriptors are sent. The function continues to retry sending until an * error (other than EINTR) occurs or all the data and fds are sent. * * Returns 0 if all the data and fds were successfully sent, otherwise a * positive errno value. Regardless of success, stores the number of bytes * sent (always at least 'skip_bytes') in '*bytes_sent'. (If at least one byte * is sent, then all the fds have been sent.) * * 'skip_bytes' must be less than or equal to iovec_len(iovs, n_iovs). */ int send_iovec_and_fds_fully(int sock, const struct iovec iovs[], size_t n_iovs, const int fds[], size_t n_fds, size_t skip_bytes, size_t *bytes_sent) { *bytes_sent = 0; while (n_iovs > 0) { int retval; if (skip_bytes) { retval = skip_bytes; skip_bytes = 0; } else if (!*bytes_sent) { retval = send_iovec_and_fds(sock, iovs, n_iovs, fds, n_fds); } else { retval = writev(sock, iovs, n_iovs); } if (retval > 0) { *bytes_sent += retval; while (retval > 0) { const uint8_t *base = iovs->iov_base; size_t len = iovs->iov_len; if (retval < len) { size_t sent; int error; error = write_fully(sock, base + retval, len - retval, &sent); *bytes_sent += sent; retval += sent; if (error) { return error; } } retval -= len; iovs++; n_iovs--; } } else if (retval == 0) { if (iovec_is_empty(iovs, n_iovs)) { break; } VLOG_WARN("send returned 0"); return EPROTO; } else if (errno != EINTR) { return errno; } } return 0; } /* Sends the 'n_iovs' iovecs of data in 'iovs' and the 'n_fds' file descriptors * in 'fds' on Unix domain socket 'sock'. The function continues to retry * sending until an error (other than EAGAIN or EINTR) occurs or all the data * and fds are sent. Upon EAGAIN, the function blocks until the socket is * ready for more data. * * Returns 0 if all the data and fds were successfully sent, otherwise a * positive errno value. */ int send_iovec_and_fds_fully_block(int sock, const struct iovec iovs[], size_t n_iovs, const int fds[], size_t n_fds) { size_t sent = 0; for (;;) { int error; error = send_iovec_and_fds_fully(sock, iovs, n_iovs, fds, n_fds, sent, &sent); if (error != EAGAIN) { return error; } poll_fd_wait(sock, POLLOUT); poll_block(); } } /* Attempts to receive from Unix domain socket 'sock' up to 'size' bytes of * data into 'data' and up to SOUTIL_MAX_FDS file descriptors into 'fds'. * * - Upon success, returns the number of bytes of data copied into 'data' * and stores the number of received file descriptors into '*n_fdsp'. * * - On failure, returns a negative errno value and stores 0 in * '*n_fdsp'. * * - On EOF, returns 0 and stores 0 in '*n_fdsp'. */ int recv_data_and_fds(int sock, void *data, size_t size, int fds[SOUTIL_MAX_FDS], size_t *n_fdsp) { union { struct cmsghdr cm; char control[CMSG_SPACE(SOUTIL_MAX_FDS * sizeof *fds)]; } cmsg; struct msghdr msg; int retval; struct cmsghdr *p; size_t i; *n_fdsp = 0; do { struct iovec iov; iov.iov_base = data; iov.iov_len = size; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = &cmsg.cm; msg.msg_controllen = sizeof cmsg.control; msg.msg_flags = 0; retval = recvmsg(sock, &msg, 0); } while (retval < 0 && errno == EINTR); if (retval <= 0) { return retval < 0 ? -errno : 0; } for (p = CMSG_FIRSTHDR(&msg); p; p = CMSG_NXTHDR(&msg, p)) { if (p->cmsg_level != SOL_SOCKET || p->cmsg_type != SCM_RIGHTS) { VLOG_ERR("unexpected control message %d:%d", p->cmsg_level, p->cmsg_type); goto error; } else if (*n_fdsp) { VLOG_ERR("multiple SCM_RIGHTS received"); goto error; } else { size_t n_fds = (p->cmsg_len - CMSG_LEN(0)) / sizeof *fds; const int *fds_data = ALIGNED_CAST(const int *, CMSG_DATA(p)); ovs_assert(n_fds > 0); if (n_fds > SOUTIL_MAX_FDS) { VLOG_ERR("%zu fds received but only %d supported", n_fds, SOUTIL_MAX_FDS); for (i = 0; i < n_fds; i++) { close(fds_data[i]); } goto error; } *n_fdsp = n_fds; memcpy(fds, fds_data, n_fds * sizeof *fds); } } return retval; error: for (i = 0; i < *n_fdsp; i++) { close(fds[i]); } *n_fdsp = 0; return EPROTO; } /* Calls ioctl() on an AF_INET sock, passing the specified 'command' and * 'arg'. Returns 0 if successful, otherwise a positive errno value. */ int af_inet_ioctl(unsigned long int command, const void *arg) { static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER; static int sock; if (ovsthread_once_start(&once)) { sock = socket(AF_INET, SOCK_DGRAM, 0); if (sock < 0) { sock = -errno; VLOG_ERR("failed to create inet socket: %s", ovs_strerror(errno)); } ovsthread_once_done(&once); } return (sock < 0 ? -sock : ioctl(sock, command, arg) == -1 ? errno : 0); } int af_inet_ifreq_ioctl(const char *name, struct ifreq *ifr, unsigned long int cmd, const char *cmd_name) { int error; ovs_strzcpy(ifr->ifr_name, name, sizeof ifr->ifr_name); error = af_inet_ioctl(cmd, ifr); if (error) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 20); VLOG_DBG_RL(&rl, "%s: ioctl(%s) failed: %s", name, cmd_name, ovs_strerror(error)); } return error; }