/* * Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "in-band.h" #include #include #include #include #include #include #include #include "classifier.h" #include "dhcp.h" #include "flow.h" #include "netdev.h" #include "netlink.h" #include "odp-util.h" #include "ofproto.h" #include "ofpbuf.h" #include "ofproto-provider.h" #include "openflow/openflow.h" #include "packets.h" #include "poll-loop.h" #include "timeval.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(in_band); /* Priorities used in classifier for in-band rules. These values are higher * than any that may be set with OpenFlow, and "18" kind of looks like "IB". * The ordering of priorities is not important because all of the rules set up * by in-band control have the same action. The only reason to use more than * one priority is to make the kind of flow easier to see during debugging. */ enum { /* One set per bridge. */ IBR_FROM_LOCAL_DHCP = 180000, /* (a) From local port, DHCP. */ IBR_TO_LOCAL_ARP, /* (b) To local port, ARP. */ IBR_FROM_LOCAL_ARP, /* (c) From local port, ARP. */ /* One set per unique next-hop MAC. */ IBR_TO_NEXT_HOP_ARP, /* (d) To remote MAC, ARP. */ IBR_FROM_NEXT_HOP_ARP, /* (e) From remote MAC, ARP. */ /* One set per unique remote IP address. */ IBR_TO_REMOTE_ARP, /* (f) To remote IP, ARP. */ IBR_FROM_REMOTE_ARP, /* (g) From remote IP, ARP. */ /* One set per unique remote (IP,port) pair. */ IBR_TO_REMOTE_TCP, /* (h) To remote IP, TCP port. */ IBR_FROM_REMOTE_TCP /* (i) From remote IP, TCP port. */ }; /* Track one remote IP and next hop information. */ struct in_band_remote { struct sockaddr_in remote_addr; /* IP address, in network byte order. */ uint8_t remote_mac[ETH_ADDR_LEN]; /* Next-hop MAC, all-zeros if unknown. */ uint8_t last_remote_mac[ETH_ADDR_LEN]; /* Previous nonzero next-hop MAC. */ struct netdev *remote_netdev; /* Device to send to next-hop MAC. */ }; /* What to do to an in_band_rule. */ enum in_band_op { ADD, /* Add the rule to ofproto's flow table. */ DELETE /* Delete the rule from ofproto's flow table. */ }; /* A rule to add to or delete from ofproto's flow table. */ struct in_band_rule { struct cls_rule cls_rule; enum in_band_op op; }; struct in_band { struct ofproto *ofproto; int queue_id; /* Remote information. */ time_t next_remote_refresh; /* Refresh timer. */ struct in_band_remote *remotes; size_t n_remotes; /* Local information. */ time_t next_local_refresh; /* Refresh timer. */ uint8_t local_mac[ETH_ADDR_LEN]; /* Current MAC. */ struct netdev *local_netdev; /* Local port's network device. */ /* Flow tracking. */ struct hmap rules; /* Contains "struct in_band_rule"s. */ }; static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 60); static int refresh_remote(struct in_band *ib, struct in_band_remote *r) { struct in_addr next_hop_inaddr; char *next_hop_dev; int retval; /* Find the next-hop IP address. */ memset(r->remote_mac, 0, sizeof r->remote_mac); retval = netdev_get_next_hop(ib->local_netdev, &r->remote_addr.sin_addr, &next_hop_inaddr, &next_hop_dev); if (retval) { VLOG_WARN("cannot find route for controller ("IP_FMT"): %s", IP_ARGS(&r->remote_addr.sin_addr), strerror(retval)); return 1; } if (!next_hop_inaddr.s_addr) { next_hop_inaddr = r->remote_addr.sin_addr; } /* Open the next-hop network device. */ if (!r->remote_netdev || strcmp(netdev_get_name(r->remote_netdev), next_hop_dev)) { netdev_close(r->remote_netdev); retval = netdev_open(next_hop_dev, "system", &r->remote_netdev); if (retval) { VLOG_WARN_RL(&rl, "cannot open netdev %s (next hop " "to controller "IP_FMT"): %s", next_hop_dev, IP_ARGS(&r->remote_addr.sin_addr), strerror(retval)); free(next_hop_dev); return 1; } } free(next_hop_dev); /* Look up the MAC address of the next-hop IP address. */ retval = netdev_arp_lookup(r->remote_netdev, next_hop_inaddr.s_addr, r->remote_mac); if (retval) { VLOG_DBG_RL(&rl, "cannot look up remote MAC address ("IP_FMT"): %s", IP_ARGS(&next_hop_inaddr.s_addr), strerror(retval)); } /* If we don't have a MAC address, then refresh quickly, since we probably * will get a MAC address soon (via ARP). Otherwise, we can afford to wait * a little while. */ return eth_addr_is_zero(r->remote_mac) ? 1 : 10; } static bool refresh_remotes(struct in_band *ib) { struct in_band_remote *r; bool any_changes; if (time_now() < ib->next_remote_refresh) { return false; } any_changes = false; ib->next_remote_refresh = TIME_MAX; for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) { uint8_t old_remote_mac[ETH_ADDR_LEN]; time_t next_refresh; /* Save old MAC. */ memcpy(old_remote_mac, r->remote_mac, ETH_ADDR_LEN); /* Refresh remote information. */ next_refresh = refresh_remote(ib, r) + time_now(); ib->next_remote_refresh = MIN(ib->next_remote_refresh, next_refresh); /* If the MAC changed, log the changes. */ if (!eth_addr_equals(r->remote_mac, old_remote_mac)) { any_changes = true; if (!eth_addr_is_zero(r->remote_mac) && !eth_addr_equals(r->last_remote_mac, r->remote_mac)) { VLOG_DBG("remote MAC address changed from "ETH_ADDR_FMT " to "ETH_ADDR_FMT, ETH_ADDR_ARGS(r->last_remote_mac), ETH_ADDR_ARGS(r->remote_mac)); memcpy(r->last_remote_mac, r->remote_mac, ETH_ADDR_LEN); } } } return any_changes; } /* Refreshes the MAC address of the local port into ib->local_mac, if it is due * for a refresh. Returns true if anything changed, otherwise false. */ static bool refresh_local(struct in_band *ib) { uint8_t ea[ETH_ADDR_LEN]; time_t now; now = time_now(); if (now < ib->next_local_refresh) { return false; } ib->next_local_refresh = now + 1; if (netdev_get_etheraddr(ib->local_netdev, ea) || eth_addr_equals(ea, ib->local_mac)) { return false; } memcpy(ib->local_mac, ea, ETH_ADDR_LEN); return true; } /* Returns true if 'packet' should be sent to the local port regardless * of the flow table. */ bool in_band_msg_in_hook(struct in_band *in_band, const struct flow *flow, const struct ofpbuf *packet) { /* Regardless of how the flow table is configured, we want to be * able to see replies to our DHCP requests. */ if (flow->dl_type == htons(ETH_TYPE_IP) && flow->nw_proto == IPPROTO_UDP && flow->tp_src == htons(DHCP_SERVER_PORT) && flow->tp_dst == htons(DHCP_CLIENT_PORT) && packet->l7) { struct dhcp_header *dhcp; dhcp = ofpbuf_at(packet, (char *)packet->l7 - (char *)packet->data, sizeof *dhcp); if (!dhcp) { return false; } refresh_local(in_band); if (!eth_addr_is_zero(in_band->local_mac) && eth_addr_equals(dhcp->chaddr, in_band->local_mac)) { return true; } } return false; } /* Returns true if the rule that would match 'flow' with 'actions' is * allowed to be set up in the datapath. */ bool in_band_rule_check(const struct flow *flow, const struct nlattr *actions, size_t actions_len) { /* Don't allow flows that would prevent DHCP replies from being seen * by the local port. */ if (flow->dl_type == htons(ETH_TYPE_IP) && flow->nw_proto == IPPROTO_UDP && flow->tp_src == htons(DHCP_SERVER_PORT) && flow->tp_dst == htons(DHCP_CLIENT_PORT)) { const struct nlattr *a; unsigned int left; NL_ATTR_FOR_EACH_UNSAFE (a, left, actions, actions_len) { if (nl_attr_type(a) == OVS_ACTION_ATTR_OUTPUT && nl_attr_get_u32(a) == OVSP_LOCAL) { return true; } } return false; } return true; } static void add_rule(struct in_band *ib, const struct cls_rule *cls_rule) { uint32_t hash = cls_rule_hash(cls_rule, 0); struct in_band_rule *rule; HMAP_FOR_EACH_WITH_HASH (rule, cls_rule.hmap_node, hash, &ib->rules) { if (cls_rule_equal(&rule->cls_rule, cls_rule)) { rule->op = ADD; return; } } rule = xmalloc(sizeof *rule); rule->cls_rule = *cls_rule; rule->op = ADD; hmap_insert(&ib->rules, &rule->cls_rule.hmap_node, hash); } static void update_rules(struct in_band *ib) { struct in_band_rule *ib_rule; struct in_band_remote *r; struct cls_rule rule; /* Mark all the existing rules for deletion. (Afterward we will re-add any * rules that are still valid.) */ HMAP_FOR_EACH (ib_rule, cls_rule.hmap_node, &ib->rules) { ib_rule->op = DELETE; } if (ib->n_remotes && !eth_addr_is_zero(ib->local_mac)) { /* (a) Allow DHCP requests sent from the local port. */ cls_rule_init_catchall(&rule, IBR_FROM_LOCAL_DHCP); cls_rule_set_in_port(&rule, OFPP_LOCAL); cls_rule_set_dl_type(&rule, htons(ETH_TYPE_IP)); cls_rule_set_dl_src(&rule, ib->local_mac); cls_rule_set_nw_proto(&rule, IPPROTO_UDP); cls_rule_set_tp_src(&rule, htons(DHCP_CLIENT_PORT)); cls_rule_set_tp_dst(&rule, htons(DHCP_SERVER_PORT)); add_rule(ib, &rule); /* (b) Allow ARP replies to the local port's MAC address. */ cls_rule_init_catchall(&rule, IBR_TO_LOCAL_ARP); cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); cls_rule_set_dl_dst(&rule, ib->local_mac); cls_rule_set_nw_proto(&rule, ARP_OP_REPLY); add_rule(ib, &rule); /* (c) Allow ARP requests from the local port's MAC address. */ cls_rule_init_catchall(&rule, IBR_FROM_LOCAL_ARP); cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); cls_rule_set_dl_src(&rule, ib->local_mac); cls_rule_set_nw_proto(&rule, ARP_OP_REQUEST); add_rule(ib, &rule); } for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) { const uint8_t *remote_mac = r->remote_mac; if (eth_addr_is_zero(remote_mac)) { continue; } /* (d) Allow ARP replies to the next hop's MAC address. */ cls_rule_init_catchall(&rule, IBR_TO_NEXT_HOP_ARP); cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); cls_rule_set_dl_dst(&rule, remote_mac); cls_rule_set_nw_proto(&rule, ARP_OP_REPLY); add_rule(ib, &rule); /* (e) Allow ARP requests from the next hop's MAC address. */ cls_rule_init_catchall(&rule, IBR_FROM_NEXT_HOP_ARP); cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); cls_rule_set_dl_src(&rule, remote_mac); cls_rule_set_nw_proto(&rule, ARP_OP_REQUEST); add_rule(ib, &rule); } for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) { const struct sockaddr_in *a = &r->remote_addr; /* (f) Allow ARP replies containing the remote's IP address as a * target. */ cls_rule_init_catchall(&rule, IBR_TO_REMOTE_ARP); cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); cls_rule_set_nw_proto(&rule, ARP_OP_REPLY); cls_rule_set_nw_dst(&rule, a->sin_addr.s_addr); add_rule(ib, &rule); /* (g) Allow ARP requests containing the remote's IP address as a * source. */ cls_rule_init_catchall(&rule, IBR_FROM_REMOTE_ARP); cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); cls_rule_set_nw_proto(&rule, ARP_OP_REQUEST); cls_rule_set_nw_src(&rule, a->sin_addr.s_addr); add_rule(ib, &rule); /* (h) Allow TCP traffic to the remote's IP and port. */ cls_rule_init_catchall(&rule, IBR_TO_REMOTE_TCP); cls_rule_set_dl_type(&rule, htons(ETH_TYPE_IP)); cls_rule_set_nw_proto(&rule, IPPROTO_TCP); cls_rule_set_nw_dst(&rule, a->sin_addr.s_addr); cls_rule_set_tp_dst(&rule, a->sin_port); add_rule(ib, &rule); /* (i) Allow TCP traffic from the remote's IP and port. */ cls_rule_init_catchall(&rule, IBR_FROM_REMOTE_TCP); cls_rule_set_dl_type(&rule, htons(ETH_TYPE_IP)); cls_rule_set_nw_proto(&rule, IPPROTO_TCP); cls_rule_set_nw_src(&rule, a->sin_addr.s_addr); cls_rule_set_tp_src(&rule, a->sin_port); add_rule(ib, &rule); } } /* Updates the OpenFlow flow table for the current state of in-band control. * Returns true ordinarily. Returns false if no remotes are configured on 'ib' * and 'ib' doesn't have any rules left to remove from the OpenFlow flow * table. Thus, a false return value means that the caller can destroy 'ib' * without leaving extra flows hanging around in the flow table. */ bool in_band_run(struct in_band *ib) { struct { struct nx_action_set_queue nxsq; union ofp_action oa; } actions; const void *a; size_t na; struct in_band_rule *rule, *next; memset(&actions, 0, sizeof actions); actions.oa.output.type = htons(OFPAT_OUTPUT); actions.oa.output.len = htons(sizeof actions.oa); actions.oa.output.port = htons(OFPP_NORMAL); actions.oa.output.max_len = htons(0); if (ib->queue_id < 0) { a = &actions.oa; na = sizeof actions.oa / sizeof(union ofp_action); } else { actions.nxsq.type = htons(OFPAT_VENDOR); actions.nxsq.len = htons(sizeof actions.nxsq); actions.nxsq.vendor = htonl(NX_VENDOR_ID); actions.nxsq.subtype = htons(NXAST_SET_QUEUE); actions.nxsq.queue_id = htonl(ib->queue_id); a = &actions; na = sizeof actions / sizeof(union ofp_action); } refresh_local(ib); refresh_remotes(ib); update_rules(ib); HMAP_FOR_EACH_SAFE (rule, next, cls_rule.hmap_node, &ib->rules) { switch (rule->op) { case ADD: ofproto_add_flow(ib->ofproto, &rule->cls_rule, a, na); break; case DELETE: if (ofproto_delete_flow(ib->ofproto, &rule->cls_rule)) { /* ofproto doesn't have the rule anymore so there's no reason * for us to track it any longer. */ hmap_remove(&ib->rules, &rule->cls_rule.hmap_node); free(rule); } break; } } return ib->n_remotes || !hmap_is_empty(&ib->rules); } void in_band_wait(struct in_band *in_band) { long long int wakeup = MIN(in_band->next_remote_refresh, in_band->next_local_refresh); poll_timer_wait_until(wakeup * 1000); } int in_band_create(struct ofproto *ofproto, const char *local_name, struct in_band **in_bandp) { struct in_band *in_band; struct netdev *local_netdev; int error; *in_bandp = NULL; error = netdev_open(local_name, "system", &local_netdev); if (error) { VLOG_ERR("failed to initialize in-band control: cannot open " "datapath local port %s (%s)", local_name, strerror(error)); return error; } in_band = xzalloc(sizeof *in_band); in_band->ofproto = ofproto; in_band->queue_id = -1; in_band->next_remote_refresh = TIME_MIN; in_band->next_local_refresh = TIME_MIN; in_band->local_netdev = local_netdev; hmap_init(&in_band->rules); *in_bandp = in_band; return 0; } void in_band_destroy(struct in_band *ib) { if (ib) { struct in_band_rule *rule, *next; HMAP_FOR_EACH_SAFE (rule, next, cls_rule.hmap_node, &ib->rules) { hmap_remove(&ib->rules, &rule->cls_rule.hmap_node); free(rule); } hmap_destroy(&ib->rules); in_band_set_remotes(ib, NULL, 0); netdev_close(ib->local_netdev); free(ib); } } static bool any_addresses_changed(struct in_band *ib, const struct sockaddr_in *addresses, size_t n) { size_t i; if (n != ib->n_remotes) { return true; } for (i = 0; i < n; i++) { const struct sockaddr_in *old = &ib->remotes[i].remote_addr; const struct sockaddr_in *new = &addresses[i]; if (old->sin_addr.s_addr != new->sin_addr.s_addr || old->sin_port != new->sin_port) { return true; } } return false; } void in_band_set_remotes(struct in_band *ib, const struct sockaddr_in *addresses, size_t n) { size_t i; if (!any_addresses_changed(ib, addresses, n)) { return; } /* Clear old remotes. */ for (i = 0; i < ib->n_remotes; i++) { netdev_close(ib->remotes[i].remote_netdev); } free(ib->remotes); /* Set up new remotes. */ ib->remotes = n ? xzalloc(n * sizeof *ib->remotes) : NULL; ib->n_remotes = n; for (i = 0; i < n; i++) { ib->remotes[i].remote_addr = addresses[i]; } /* Force refresh in next call to in_band_run(). */ ib->next_remote_refresh = TIME_MIN; } /* Sets the OpenFlow queue used by flows set up by 'ib' to 'queue_id'. If * 'queue_id' is negative, 'ib' will not set any queue (which is also the * default). */ void in_band_set_queue(struct in_band *ib, int queue_id) { ib->queue_id = queue_id; }