/* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto/ofproto-dpif-xlate.h" #include #include "bfd.h" #include "bitmap.h" #include "bond.h" #include "bundle.h" #include "byte-order.h" #include "cfm.h" #include "connmgr.h" #include "coverage.h" #include "dpif.h" #include "dynamic-string.h" #include "in-band.h" #include "lacp.h" #include "learn.h" #include "list.h" #include "mac-learning.h" #include "meta-flow.h" #include "multipath.h" #include "netdev-vport.h" #include "netlink.h" #include "nx-match.h" #include "odp-execute.h" #include "ofp-actions.h" #include "ofproto/ofproto-dpif-ipfix.h" #include "ofproto/ofproto-dpif-mirror.h" #include "ofproto/ofproto-dpif-monitor.h" #include "ofproto/ofproto-dpif-sflow.h" #include "ofproto/ofproto-dpif.h" #include "ofproto/ofproto-provider.h" #include "tunnel.h" #include "vlog.h" COVERAGE_DEFINE(xlate_actions); COVERAGE_DEFINE(xlate_actions_oversize); COVERAGE_DEFINE(xlate_actions_mpls_overflow); VLOG_DEFINE_THIS_MODULE(ofproto_dpif_xlate); /* Maximum depth of flow table recursion (due to resubmit actions) in a * flow translation. */ #define MAX_RESUBMIT_RECURSION 64 #define MAX_INTERNAL_RESUBMITS 1 /* Max resbmits allowed using rules in internal table. */ /* Maximum number of resubmit actions in a flow translation, whether they are * recursive or not. */ #define MAX_RESUBMITS (MAX_RESUBMIT_RECURSION * MAX_RESUBMIT_RECURSION) struct ovs_rwlock xlate_rwlock = OVS_RWLOCK_INITIALIZER; struct xbridge { struct hmap_node hmap_node; /* Node in global 'xbridges' map. */ struct ofproto_dpif *ofproto; /* Key in global 'xbridges' map. */ struct list xbundles; /* Owned xbundles. */ struct hmap xports; /* Indexed by ofp_port. */ char *name; /* Name used in log messages. */ struct dpif *dpif; /* Datapath interface. */ struct mac_learning *ml; /* Mac learning handle. */ struct mbridge *mbridge; /* Mirroring. */ struct dpif_sflow *sflow; /* SFlow handle, or null. */ struct dpif_ipfix *ipfix; /* Ipfix handle, or null. */ struct netflow *netflow; /* Netflow handle, or null. */ struct stp *stp; /* STP or null if disabled. */ /* Special rules installed by ofproto-dpif. */ struct rule_dpif *miss_rule; struct rule_dpif *no_packet_in_rule; enum ofp_config_flags frag; /* Fragmentation handling. */ bool has_in_band; /* Bridge has in band control? */ bool forward_bpdu; /* Bridge forwards STP BPDUs? */ /* True if the datapath supports recirculation. */ bool enable_recirc; /* True if the datapath supports variable-length * OVS_USERSPACE_ATTR_USERDATA in OVS_ACTION_ATTR_USERSPACE actions. * False if the datapath supports only 8-byte (or shorter) userdata. */ bool variable_length_userdata; /* Number of MPLS label stack entries that the datapath supports * in matches. */ size_t max_mpls_depth; }; struct xbundle { struct hmap_node hmap_node; /* In global 'xbundles' map. */ struct ofbundle *ofbundle; /* Key in global 'xbundles' map. */ struct list list_node; /* In parent 'xbridges' list. */ struct xbridge *xbridge; /* Parent xbridge. */ struct list xports; /* Contains "struct xport"s. */ char *name; /* Name used in log messages. */ struct bond *bond; /* Nonnull iff more than one port. */ struct lacp *lacp; /* LACP handle or null. */ enum port_vlan_mode vlan_mode; /* VLAN mode. */ int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */ unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1. * NULL if all VLANs are trunked. */ bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */ bool floodable; /* No port has OFPUTIL_PC_NO_FLOOD set? */ }; struct xport { struct hmap_node hmap_node; /* Node in global 'xports' map. */ struct ofport_dpif *ofport; /* Key in global 'xports map. */ struct hmap_node ofp_node; /* Node in parent xbridge 'xports' map. */ ofp_port_t ofp_port; /* Key in parent xbridge 'xports' map. */ odp_port_t odp_port; /* Datapath port number or ODPP_NONE. */ struct list bundle_node; /* In parent xbundle (if it exists). */ struct xbundle *xbundle; /* Parent xbundle or null. */ struct netdev *netdev; /* 'ofport''s netdev. */ struct xbridge *xbridge; /* Parent bridge. */ struct xport *peer; /* Patch port peer or null. */ enum ofputil_port_config config; /* OpenFlow port configuration. */ enum ofputil_port_state state; /* OpenFlow port state. */ int stp_port_no; /* STP port number or -1 if not in use. */ struct hmap skb_priorities; /* Map of 'skb_priority_to_dscp's. */ bool may_enable; /* May be enabled in bonds. */ bool is_tunnel; /* Is a tunnel port. */ struct cfm *cfm; /* CFM handle or null. */ struct bfd *bfd; /* BFD handle or null. */ }; struct xlate_ctx { struct xlate_in *xin; struct xlate_out *xout; const struct xbridge *xbridge; /* Flow at the last commit. */ struct flow base_flow; /* Tunnel IP destination address as received. This is stored separately * as the base_flow.tunnel is cleared on init to reflect the datapath * behavior. Used to make sure not to send tunneled output to ourselves, * which might lead to an infinite loop. This could happen easily * if a tunnel is marked as 'ip_remote=flow', and the flow does not * actually set the tun_dst field. */ ovs_be32 orig_tunnel_ip_dst; /* Stack for the push and pop actions. Each stack element is of type * "union mf_subvalue". */ union mf_subvalue init_stack[1024 / sizeof(union mf_subvalue)]; struct ofpbuf stack; /* The rule that we are currently translating, or NULL. */ struct rule_dpif *rule; /* Resubmit statistics, via xlate_table_action(). */ int recurse; /* Current resubmit nesting depth. */ int resubmits; /* Total number of resubmits. */ bool in_group; /* Currently translating ofgroup, if true. */ uint32_t orig_skb_priority; /* Priority when packet arrived. */ uint8_t table_id; /* OpenFlow table ID where flow was found. */ uint32_t sflow_n_outputs; /* Number of output ports. */ odp_port_t sflow_odp_port; /* Output port for composing sFlow action. */ uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */ bool exit; /* No further actions should be processed. */ bool use_recirc; /* Should generate recirc? */ struct xlate_recirc recirc; /* Information used for generating * recirculation actions */ /* OpenFlow 1.1+ action set. * * 'action_set' accumulates "struct ofpact"s added by OFPACT_WRITE_ACTIONS. * When translation is otherwise complete, ofpacts_execute_action_set() * converts it to a set of "struct ofpact"s that can be translated into * datapath actions. */ struct ofpbuf action_set; /* Action set. */ uint64_t action_set_stub[1024 / 8]; }; /* A controller may use OFPP_NONE as the ingress port to indicate that * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for * when an input bundle is needed for validation (e.g., mirroring or * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have * any 'port' structs, so care must be taken when dealing with it. */ static struct xbundle ofpp_none_bundle = { .name = "OFPP_NONE", .vlan_mode = PORT_VLAN_TRUNK }; /* Node in 'xport''s 'skb_priorities' map. Used to maintain a map from * 'priority' (the datapath's term for QoS queue) to the dscp bits which all * traffic egressing the 'ofport' with that priority should be marked with. */ struct skb_priority_to_dscp { struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'skb_priorities'. */ uint32_t skb_priority; /* Priority of this queue (see struct flow). */ uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */ }; enum xc_type { XC_RULE, XC_BOND, XC_NETDEV, XC_NETFLOW, XC_MIRROR, XC_LEARN, XC_NORMAL, XC_FIN_TIMEOUT, }; /* xlate_cache entries hold enough information to perform the side effects of * xlate_actions() for a rule, without needing to perform rule translation * from scratch. The primary usage of these is to submit statistics to objects * that a flow relates to, although they may be used for other effects as well * (for instance, refreshing hard timeouts for learned flows). */ struct xc_entry { enum xc_type type; union { struct rule_dpif *rule; struct { struct netdev *tx; struct netdev *rx; struct bfd *bfd; } dev; struct { struct netflow *netflow; struct flow *flow; ofp_port_t iface; } nf; struct { struct mbridge *mbridge; mirror_mask_t mirrors; } mirror; struct { struct bond *bond; struct flow *flow; uint16_t vid; } bond; struct { struct ofproto_dpif *ofproto; struct rule_dpif *rule; } learn; struct { struct ofproto_dpif *ofproto; struct flow *flow; int vlan; } normal; struct { struct rule_dpif *rule; uint16_t idle; uint16_t hard; } fin; } u; }; #define XC_ENTRY_FOR_EACH(entry, entries, xcache) \ entries = xcache->entries; \ for (entry = ofpbuf_try_pull(&entries, sizeof *entry); \ entry; \ entry = ofpbuf_try_pull(&entries, sizeof *entry)) struct xlate_cache { struct ofpbuf entries; }; static struct hmap xbridges = HMAP_INITIALIZER(&xbridges); static struct hmap xbundles = HMAP_INITIALIZER(&xbundles); static struct hmap xports = HMAP_INITIALIZER(&xports); static bool may_receive(const struct xport *, struct xlate_ctx *); static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len, struct xlate_ctx *); static void xlate_actions__(struct xlate_in *, struct xlate_out *) OVS_REQ_RDLOCK(xlate_rwlock); static void xlate_normal(struct xlate_ctx *); static void xlate_report(struct xlate_ctx *, const char *); static void xlate_table_action(struct xlate_ctx *, ofp_port_t in_port, uint8_t table_id, bool may_packet_in, bool honor_table_miss); static bool input_vid_is_valid(uint16_t vid, struct xbundle *, bool warn); static uint16_t input_vid_to_vlan(const struct xbundle *, uint16_t vid); static void output_normal(struct xlate_ctx *, const struct xbundle *, uint16_t vlan); static void compose_output_action(struct xlate_ctx *, ofp_port_t ofp_port); static struct xbridge *xbridge_lookup(const struct ofproto_dpif *); static struct xbundle *xbundle_lookup(const struct ofbundle *); static struct xport *xport_lookup(const struct ofport_dpif *); static struct xport *get_ofp_port(const struct xbridge *, ofp_port_t ofp_port); static struct skb_priority_to_dscp *get_skb_priority(const struct xport *, uint32_t skb_priority); static void clear_skb_priorities(struct xport *); static bool dscp_from_skb_priority(const struct xport *, uint32_t skb_priority, uint8_t *dscp); static struct xc_entry *xlate_cache_add_entry(struct xlate_cache *xc, enum xc_type type); void xlate_ofproto_set(struct ofproto_dpif *ofproto, const char *name, struct dpif *dpif, struct rule_dpif *miss_rule, struct rule_dpif *no_packet_in_rule, const struct mac_learning *ml, struct stp *stp, const struct mbridge *mbridge, const struct dpif_sflow *sflow, const struct dpif_ipfix *ipfix, const struct netflow *netflow, enum ofp_config_flags frag, bool forward_bpdu, bool has_in_band, bool enable_recirc, bool variable_length_userdata, size_t max_mpls_depth) { struct xbridge *xbridge = xbridge_lookup(ofproto); if (!xbridge) { xbridge = xzalloc(sizeof *xbridge); xbridge->ofproto = ofproto; hmap_insert(&xbridges, &xbridge->hmap_node, hash_pointer(ofproto, 0)); hmap_init(&xbridge->xports); list_init(&xbridge->xbundles); } if (xbridge->ml != ml) { mac_learning_unref(xbridge->ml); xbridge->ml = mac_learning_ref(ml); } if (xbridge->mbridge != mbridge) { mbridge_unref(xbridge->mbridge); xbridge->mbridge = mbridge_ref(mbridge); } if (xbridge->sflow != sflow) { dpif_sflow_unref(xbridge->sflow); xbridge->sflow = dpif_sflow_ref(sflow); } if (xbridge->ipfix != ipfix) { dpif_ipfix_unref(xbridge->ipfix); xbridge->ipfix = dpif_ipfix_ref(ipfix); } if (xbridge->stp != stp) { stp_unref(xbridge->stp); xbridge->stp = stp_ref(stp); } if (xbridge->netflow != netflow) { netflow_unref(xbridge->netflow); xbridge->netflow = netflow_ref(netflow); } free(xbridge->name); xbridge->name = xstrdup(name); xbridge->dpif = dpif; xbridge->forward_bpdu = forward_bpdu; xbridge->has_in_band = has_in_band; xbridge->frag = frag; xbridge->miss_rule = miss_rule; xbridge->no_packet_in_rule = no_packet_in_rule; xbridge->enable_recirc = enable_recirc; xbridge->variable_length_userdata = variable_length_userdata; xbridge->max_mpls_depth = max_mpls_depth; } void xlate_remove_ofproto(struct ofproto_dpif *ofproto) { struct xbridge *xbridge = xbridge_lookup(ofproto); struct xbundle *xbundle, *next_xbundle; struct xport *xport, *next_xport; if (!xbridge) { return; } HMAP_FOR_EACH_SAFE (xport, next_xport, ofp_node, &xbridge->xports) { xlate_ofport_remove(xport->ofport); } LIST_FOR_EACH_SAFE (xbundle, next_xbundle, list_node, &xbridge->xbundles) { xlate_bundle_remove(xbundle->ofbundle); } hmap_remove(&xbridges, &xbridge->hmap_node); mac_learning_unref(xbridge->ml); mbridge_unref(xbridge->mbridge); dpif_sflow_unref(xbridge->sflow); dpif_ipfix_unref(xbridge->ipfix); stp_unref(xbridge->stp); hmap_destroy(&xbridge->xports); free(xbridge->name); free(xbridge); } void xlate_bundle_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle, const char *name, enum port_vlan_mode vlan_mode, int vlan, unsigned long *trunks, bool use_priority_tags, const struct bond *bond, const struct lacp *lacp, bool floodable) { struct xbundle *xbundle = xbundle_lookup(ofbundle); if (!xbundle) { xbundle = xzalloc(sizeof *xbundle); xbundle->ofbundle = ofbundle; xbundle->xbridge = xbridge_lookup(ofproto); hmap_insert(&xbundles, &xbundle->hmap_node, hash_pointer(ofbundle, 0)); list_insert(&xbundle->xbridge->xbundles, &xbundle->list_node); list_init(&xbundle->xports); } ovs_assert(xbundle->xbridge); free(xbundle->name); xbundle->name = xstrdup(name); xbundle->vlan_mode = vlan_mode; xbundle->vlan = vlan; xbundle->trunks = trunks; xbundle->use_priority_tags = use_priority_tags; xbundle->floodable = floodable; if (xbundle->bond != bond) { bond_unref(xbundle->bond); xbundle->bond = bond_ref(bond); } if (xbundle->lacp != lacp) { lacp_unref(xbundle->lacp); xbundle->lacp = lacp_ref(lacp); } } void xlate_bundle_remove(struct ofbundle *ofbundle) { struct xbundle *xbundle = xbundle_lookup(ofbundle); struct xport *xport, *next; if (!xbundle) { return; } LIST_FOR_EACH_SAFE (xport, next, bundle_node, &xbundle->xports) { list_remove(&xport->bundle_node); xport->xbundle = NULL; } hmap_remove(&xbundles, &xbundle->hmap_node); list_remove(&xbundle->list_node); bond_unref(xbundle->bond); lacp_unref(xbundle->lacp); free(xbundle->name); free(xbundle); } void xlate_ofport_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle, struct ofport_dpif *ofport, ofp_port_t ofp_port, odp_port_t odp_port, const struct netdev *netdev, const struct cfm *cfm, const struct bfd *bfd, struct ofport_dpif *peer, int stp_port_no, const struct ofproto_port_queue *qdscp_list, size_t n_qdscp, enum ofputil_port_config config, enum ofputil_port_state state, bool is_tunnel, bool may_enable) { struct xport *xport = xport_lookup(ofport); size_t i; if (!xport) { xport = xzalloc(sizeof *xport); xport->ofport = ofport; xport->xbridge = xbridge_lookup(ofproto); xport->ofp_port = ofp_port; hmap_init(&xport->skb_priorities); hmap_insert(&xports, &xport->hmap_node, hash_pointer(ofport, 0)); hmap_insert(&xport->xbridge->xports, &xport->ofp_node, hash_ofp_port(xport->ofp_port)); } ovs_assert(xport->ofp_port == ofp_port); xport->config = config; xport->state = state; xport->stp_port_no = stp_port_no; xport->is_tunnel = is_tunnel; xport->may_enable = may_enable; xport->odp_port = odp_port; if (xport->netdev != netdev) { netdev_close(xport->netdev); xport->netdev = netdev_ref(netdev); } if (xport->cfm != cfm) { cfm_unref(xport->cfm); xport->cfm = cfm_ref(cfm); } if (xport->bfd != bfd) { bfd_unref(xport->bfd); xport->bfd = bfd_ref(bfd); } if (xport->peer) { xport->peer->peer = NULL; } xport->peer = xport_lookup(peer); if (xport->peer) { xport->peer->peer = xport; } if (xport->xbundle) { list_remove(&xport->bundle_node); } xport->xbundle = xbundle_lookup(ofbundle); if (xport->xbundle) { list_insert(&xport->xbundle->xports, &xport->bundle_node); } clear_skb_priorities(xport); for (i = 0; i < n_qdscp; i++) { struct skb_priority_to_dscp *pdscp; uint32_t skb_priority; if (dpif_queue_to_priority(xport->xbridge->dpif, qdscp_list[i].queue, &skb_priority)) { continue; } pdscp = xmalloc(sizeof *pdscp); pdscp->skb_priority = skb_priority; pdscp->dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK; hmap_insert(&xport->skb_priorities, &pdscp->hmap_node, hash_int(pdscp->skb_priority, 0)); } } void xlate_ofport_remove(struct ofport_dpif *ofport) { struct xport *xport = xport_lookup(ofport); if (!xport) { return; } if (xport->peer) { xport->peer->peer = NULL; xport->peer = NULL; } if (xport->xbundle) { list_remove(&xport->bundle_node); } clear_skb_priorities(xport); hmap_destroy(&xport->skb_priorities); hmap_remove(&xports, &xport->hmap_node); hmap_remove(&xport->xbridge->xports, &xport->ofp_node); netdev_close(xport->netdev); cfm_unref(xport->cfm); bfd_unref(xport->bfd); free(xport); } /* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key' * respectively), populates 'flow' with the result of odp_flow_key_to_flow(). * Optionally populates 'ofproto' with the ofproto_dpif, 'odp_in_port' with * the datapath in_port, that 'packet' ingressed, and 'ipfix', 'sflow', and * 'netflow' with the appropriate handles for those protocols if they're * enabled. Caller is responsible for unrefing them. * * If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets * 'flow''s in_port to OFPP_NONE. * * This function does post-processing on data returned from * odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest * of the upcall processing logic. In particular, if the extracted in_port is * a VLAN splinter port, it replaces flow->in_port by the "real" port, sets * flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes * a VLAN header onto 'packet' (if it is nonnull). * * Similarly, this function also includes some logic to help with tunnels. It * may modify 'flow' as necessary to make the tunneling implementation * transparent to the upcall processing logic. * * Returns 0 if successful, ENODEV if the parsed flow has no associated ofport, * or some other positive errno if there are other problems. */ int xlate_receive(const struct dpif_backer *backer, struct ofpbuf *packet, const struct nlattr *key, size_t key_len, struct flow *flow, struct ofproto_dpif **ofproto, struct dpif_ipfix **ipfix, struct dpif_sflow **sflow, struct netflow **netflow, odp_port_t *odp_in_port) { const struct xport *xport; int error = ENODEV; ovs_rwlock_rdlock(&xlate_rwlock); if (odp_flow_key_to_flow(key, key_len, flow) == ODP_FIT_ERROR) { error = EINVAL; goto exit; } if (odp_in_port) { *odp_in_port = flow->in_port.odp_port; } xport = xport_lookup(tnl_port_should_receive(flow) ? tnl_port_receive(flow) : odp_port_to_ofport(backer, flow->in_port.odp_port)); flow->in_port.ofp_port = xport ? xport->ofp_port : OFPP_NONE; if (!xport) { goto exit; } if (vsp_adjust_flow(xport->xbridge->ofproto, flow)) { if (packet) { /* Make the packet resemble the flow, so that it gets sent to * an OpenFlow controller properly, so that it looks correct * for sFlow, and so that flow_extract() will get the correct * vlan_tci if it is called on 'packet'. */ eth_push_vlan(packet, htons(ETH_TYPE_VLAN), flow->vlan_tci); } } error = 0; if (ofproto) { *ofproto = xport->xbridge->ofproto; } if (ipfix) { *ipfix = dpif_ipfix_ref(xport->xbridge->ipfix); } if (sflow) { *sflow = dpif_sflow_ref(xport->xbridge->sflow); } if (netflow) { *netflow = netflow_ref(xport->xbridge->netflow); } exit: ovs_rwlock_unlock(&xlate_rwlock); return error; } static struct xbridge * xbridge_lookup(const struct ofproto_dpif *ofproto) { struct xbridge *xbridge; if (!ofproto) { return NULL; } HMAP_FOR_EACH_IN_BUCKET (xbridge, hmap_node, hash_pointer(ofproto, 0), &xbridges) { if (xbridge->ofproto == ofproto) { return xbridge; } } return NULL; } static struct xbundle * xbundle_lookup(const struct ofbundle *ofbundle) { struct xbundle *xbundle; if (!ofbundle) { return NULL; } HMAP_FOR_EACH_IN_BUCKET (xbundle, hmap_node, hash_pointer(ofbundle, 0), &xbundles) { if (xbundle->ofbundle == ofbundle) { return xbundle; } } return NULL; } static struct xport * xport_lookup(const struct ofport_dpif *ofport) { struct xport *xport; if (!ofport) { return NULL; } HMAP_FOR_EACH_IN_BUCKET (xport, hmap_node, hash_pointer(ofport, 0), &xports) { if (xport->ofport == ofport) { return xport; } } return NULL; } static struct stp_port * xport_get_stp_port(const struct xport *xport) { return xport->xbridge->stp && xport->stp_port_no != -1 ? stp_get_port(xport->xbridge->stp, xport->stp_port_no) : NULL; } static bool xport_stp_learn_state(const struct xport *xport) { struct stp_port *sp = xport_get_stp_port(xport); return stp_learn_in_state(sp ? stp_port_get_state(sp) : STP_DISABLED); } static bool xport_stp_forward_state(const struct xport *xport) { struct stp_port *sp = xport_get_stp_port(xport); return stp_forward_in_state(sp ? stp_port_get_state(sp) : STP_DISABLED); } static bool xport_stp_listen_state(const struct xport *xport) { struct stp_port *sp = xport_get_stp_port(xport); return stp_listen_in_state(sp ? stp_port_get_state(sp) : STP_DISABLED); } /* Returns true if STP should process 'flow'. Sets fields in 'wc' that * were used to make the determination.*/ static bool stp_should_process_flow(const struct flow *flow, struct flow_wildcards *wc) { /* is_stp() also checks dl_type, but dl_type is always set in 'wc'. */ memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); return is_stp(flow); } static void stp_process_packet(const struct xport *xport, const struct ofpbuf *packet) { struct stp_port *sp = xport_get_stp_port(xport); struct ofpbuf payload = *packet; struct eth_header *eth = ofpbuf_data(&payload); /* Sink packets on ports that have STP disabled when the bridge has * STP enabled. */ if (!sp || stp_port_get_state(sp) == STP_DISABLED) { return; } /* Trim off padding on payload. */ if (ofpbuf_size(&payload) > ntohs(eth->eth_type) + ETH_HEADER_LEN) { ofpbuf_set_size(&payload, ntohs(eth->eth_type) + ETH_HEADER_LEN); } if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) { stp_received_bpdu(sp, ofpbuf_data(&payload), ofpbuf_size(&payload)); } } static struct xport * get_ofp_port(const struct xbridge *xbridge, ofp_port_t ofp_port) { struct xport *xport; HMAP_FOR_EACH_IN_BUCKET (xport, ofp_node, hash_ofp_port(ofp_port), &xbridge->xports) { if (xport->ofp_port == ofp_port) { return xport; } } return NULL; } static odp_port_t ofp_port_to_odp_port(const struct xbridge *xbridge, ofp_port_t ofp_port) { const struct xport *xport = get_ofp_port(xbridge, ofp_port); return xport ? xport->odp_port : ODPP_NONE; } static bool odp_port_is_alive(const struct xlate_ctx *ctx, ofp_port_t ofp_port) { struct xport *xport; xport = get_ofp_port(ctx->xbridge, ofp_port); if (!xport || xport->config & OFPUTIL_PC_PORT_DOWN || xport->state & OFPUTIL_PS_LINK_DOWN) { return false; } return true; } static const struct ofputil_bucket * group_first_live_bucket(const struct xlate_ctx *, const struct group_dpif *, int depth); static bool group_is_alive(const struct xlate_ctx *ctx, uint32_t group_id, int depth) { struct group_dpif *group; bool hit; hit = group_dpif_lookup(ctx->xbridge->ofproto, group_id, &group); if (!hit) { return false; } hit = group_first_live_bucket(ctx, group, depth) != NULL; group_dpif_release(group); return hit; } #define MAX_LIVENESS_RECURSION 128 /* Arbitrary limit */ static bool bucket_is_alive(const struct xlate_ctx *ctx, const struct ofputil_bucket *bucket, int depth) { if (depth >= MAX_LIVENESS_RECURSION) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_WARN_RL(&rl, "bucket chaining exceeded %d links", MAX_LIVENESS_RECURSION); return false; } return !ofputil_bucket_has_liveness(bucket) || (bucket->watch_port != OFPP_ANY && odp_port_is_alive(ctx, bucket->watch_port)) || (bucket->watch_group != OFPG_ANY && group_is_alive(ctx, bucket->watch_group, depth + 1)); } static const struct ofputil_bucket * group_first_live_bucket(const struct xlate_ctx *ctx, const struct group_dpif *group, int depth) { struct ofputil_bucket *bucket; const struct list *buckets; group_dpif_get_buckets(group, &buckets); LIST_FOR_EACH (bucket, list_node, buckets) { if (bucket_is_alive(ctx, bucket, depth)) { return bucket; } } return NULL; } static const struct ofputil_bucket * group_best_live_bucket(const struct xlate_ctx *ctx, const struct group_dpif *group, uint32_t basis) { const struct ofputil_bucket *best_bucket = NULL; uint32_t best_score = 0; int i = 0; const struct ofputil_bucket *bucket; const struct list *buckets; group_dpif_get_buckets(group, &buckets); LIST_FOR_EACH (bucket, list_node, buckets) { if (bucket_is_alive(ctx, bucket, 0)) { uint32_t score = (hash_int(i, basis) & 0xffff) * bucket->weight; if (score >= best_score) { best_bucket = bucket; best_score = score; } } i++; } return best_bucket; } static bool xbundle_trunks_vlan(const struct xbundle *bundle, uint16_t vlan) { return (bundle->vlan_mode != PORT_VLAN_ACCESS && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan))); } static bool xbundle_includes_vlan(const struct xbundle *xbundle, uint16_t vlan) { return vlan == xbundle->vlan || xbundle_trunks_vlan(xbundle, vlan); } static mirror_mask_t xbundle_mirror_out(const struct xbridge *xbridge, struct xbundle *xbundle) { return xbundle != &ofpp_none_bundle ? mirror_bundle_out(xbridge->mbridge, xbundle->ofbundle) : 0; } static mirror_mask_t xbundle_mirror_src(const struct xbridge *xbridge, struct xbundle *xbundle) { return xbundle != &ofpp_none_bundle ? mirror_bundle_src(xbridge->mbridge, xbundle->ofbundle) : 0; } static mirror_mask_t xbundle_mirror_dst(const struct xbridge *xbridge, struct xbundle *xbundle) { return xbundle != &ofpp_none_bundle ? mirror_bundle_dst(xbridge->mbridge, xbundle->ofbundle) : 0; } static struct xbundle * lookup_input_bundle(const struct xbridge *xbridge, ofp_port_t in_port, bool warn, struct xport **in_xportp) { struct xport *xport; /* Find the port and bundle for the received packet. */ xport = get_ofp_port(xbridge, in_port); if (in_xportp) { *in_xportp = xport; } if (xport && xport->xbundle) { return xport->xbundle; } /* Special-case OFPP_NONE (OF1.0) and OFPP_CONTROLLER (OF1.1+), * which a controller may use as the ingress port for traffic that * it is sourcing. */ if (in_port == OFPP_CONTROLLER || in_port == OFPP_NONE) { return &ofpp_none_bundle; } /* Odd. A few possible reasons here: * * - We deleted a port but there are still a few packets queued up * from it. * * - Someone externally added a port (e.g. "ovs-dpctl add-if") that * we don't know about. * * - The ofproto client didn't configure the port as part of a bundle. * This is particularly likely to happen if a packet was received on the * port after it was created, but before the client had a chance to * configure its bundle. */ if (warn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown " "port %"PRIu16, xbridge->name, in_port); } return NULL; } static void add_mirror_actions(struct xlate_ctx *ctx, const struct flow *orig_flow) { const struct xbridge *xbridge = ctx->xbridge; mirror_mask_t mirrors; struct xbundle *in_xbundle; uint16_t vlan; uint16_t vid; mirrors = ctx->xout->mirrors; ctx->xout->mirrors = 0; in_xbundle = lookup_input_bundle(xbridge, orig_flow->in_port.ofp_port, ctx->xin->packet != NULL, NULL); if (!in_xbundle) { return; } mirrors |= xbundle_mirror_src(xbridge, in_xbundle); /* Drop frames on bundles reserved for mirroring. */ if (xbundle_mirror_out(xbridge, in_xbundle)) { if (ctx->xin->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port " "%s, which is reserved exclusively for mirroring", ctx->xbridge->name, in_xbundle->name); } ofpbuf_clear(&ctx->xout->odp_actions); return; } /* Check VLAN. */ vid = vlan_tci_to_vid(orig_flow->vlan_tci); if (!input_vid_is_valid(vid, in_xbundle, ctx->xin->packet != NULL)) { return; } vlan = input_vid_to_vlan(in_xbundle, vid); if (!mirrors) { return; } /* Restore the original packet before adding the mirror actions. */ ctx->xin->flow = *orig_flow; while (mirrors) { mirror_mask_t dup_mirrors; struct ofbundle *out; unsigned long *vlans; bool vlan_mirrored; bool has_mirror; int out_vlan; has_mirror = mirror_get(xbridge->mbridge, raw_ctz(mirrors), &vlans, &dup_mirrors, &out, &out_vlan); ovs_assert(has_mirror); if (vlans) { ctx->xout->wc.masks.vlan_tci |= htons(VLAN_CFI | VLAN_VID_MASK); } vlan_mirrored = !vlans || bitmap_is_set(vlans, vlan); free(vlans); if (!vlan_mirrored) { mirrors = zero_rightmost_1bit(mirrors); continue; } mirrors &= ~dup_mirrors; ctx->xout->mirrors |= dup_mirrors; if (out) { struct xbundle *out_xbundle = xbundle_lookup(out); if (out_xbundle) { output_normal(ctx, out_xbundle, vlan); } } else if (vlan != out_vlan && !eth_addr_is_reserved(orig_flow->dl_dst)) { struct xbundle *xbundle; LIST_FOR_EACH (xbundle, list_node, &xbridge->xbundles) { if (xbundle_includes_vlan(xbundle, out_vlan) && !xbundle_mirror_out(xbridge, xbundle)) { output_normal(ctx, xbundle, out_vlan); } } } } } /* Given 'vid', the VID obtained from the 802.1Q header that was received as * part of a packet (specify 0 if there was no 802.1Q header), and 'in_xbundle', * the bundle on which the packet was received, returns the VLAN to which the * packet belongs. * * Both 'vid' and the return value are in the range 0...4095. */ static uint16_t input_vid_to_vlan(const struct xbundle *in_xbundle, uint16_t vid) { switch (in_xbundle->vlan_mode) { case PORT_VLAN_ACCESS: return in_xbundle->vlan; break; case PORT_VLAN_TRUNK: return vid; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: return vid ? vid : in_xbundle->vlan; default: OVS_NOT_REACHED(); } } /* Checks whether a packet with the given 'vid' may ingress on 'in_xbundle'. * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs * a warning. * * 'vid' should be the VID obtained from the 802.1Q header that was received as * part of a packet (specify 0 if there was no 802.1Q header), in the range * 0...4095. */ static bool input_vid_is_valid(uint16_t vid, struct xbundle *in_xbundle, bool warn) { /* Allow any VID on the OFPP_NONE port. */ if (in_xbundle == &ofpp_none_bundle) { return true; } switch (in_xbundle->vlan_mode) { case PORT_VLAN_ACCESS: if (vid) { if (warn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "dropping VLAN %"PRIu16" tagged " "packet received on port %s configured as VLAN " "%"PRIu16" access port", vid, in_xbundle->name, in_xbundle->vlan); } return false; } return true; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: if (!vid) { /* Port must always carry its native VLAN. */ return true; } /* Fall through. */ case PORT_VLAN_TRUNK: if (!xbundle_includes_vlan(in_xbundle, vid)) { if (warn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "dropping VLAN %"PRIu16" packet " "received on port %s not configured for trunking " "VLAN %"PRIu16, vid, in_xbundle->name, vid); } return false; } return true; default: OVS_NOT_REACHED(); } } /* Given 'vlan', the VLAN that a packet belongs to, and * 'out_xbundle', a bundle on which the packet is to be output, returns the VID * that should be included in the 802.1Q header. (If the return value is 0, * then the 802.1Q header should only be included in the packet if there is a * nonzero PCP.) * * Both 'vlan' and the return value are in the range 0...4095. */ static uint16_t output_vlan_to_vid(const struct xbundle *out_xbundle, uint16_t vlan) { switch (out_xbundle->vlan_mode) { case PORT_VLAN_ACCESS: return 0; case PORT_VLAN_TRUNK: case PORT_VLAN_NATIVE_TAGGED: return vlan; case PORT_VLAN_NATIVE_UNTAGGED: return vlan == out_xbundle->vlan ? 0 : vlan; default: OVS_NOT_REACHED(); } } static void output_normal(struct xlate_ctx *ctx, const struct xbundle *out_xbundle, uint16_t vlan) { ovs_be16 *flow_tci = &ctx->xin->flow.vlan_tci; uint16_t vid; ovs_be16 tci, old_tci; struct xport *xport; vid = output_vlan_to_vid(out_xbundle, vlan); if (list_is_empty(&out_xbundle->xports)) { /* Partially configured bundle with no slaves. Drop the packet. */ return; } else if (!out_xbundle->bond) { ctx->use_recirc = false; xport = CONTAINER_OF(list_front(&out_xbundle->xports), struct xport, bundle_node); } else { struct ofport_dpif *ofport; struct xlate_recirc *xr = &ctx->recirc; struct flow_wildcards *wc = &ctx->xout->wc; if (ctx->xbridge->enable_recirc) { ctx->use_recirc = bond_may_recirc( out_xbundle->bond, &xr->recirc_id, &xr->hash_basis); if (ctx->use_recirc) { /* Only TCP mode uses recirculation. */ xr->hash_alg = OVS_HASH_ALG_L4; bond_update_post_recirc_rules(out_xbundle->bond, false); /* Recirculation does not require unmasking hash fields. */ wc = NULL; } } ofport = bond_choose_output_slave(out_xbundle->bond, &ctx->xin->flow, wc, vid); xport = xport_lookup(ofport); if (!xport) { /* No slaves enabled, so drop packet. */ return; } /* If ctx->xout->use_recirc is set, the main thread will handle stats * accounting for this bond. */ if (!ctx->use_recirc) { if (ctx->xin->resubmit_stats) { bond_account(out_xbundle->bond, &ctx->xin->flow, vid, ctx->xin->resubmit_stats->n_bytes); } if (ctx->xin->xcache) { struct xc_entry *entry; struct flow *flow; flow = &ctx->xin->flow; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_BOND); entry->u.bond.bond = bond_ref(out_xbundle->bond); entry->u.bond.flow = xmemdup(flow, sizeof *flow); entry->u.bond.vid = vid; } } } old_tci = *flow_tci; tci = htons(vid); if (tci || out_xbundle->use_priority_tags) { tci |= *flow_tci & htons(VLAN_PCP_MASK); if (tci) { tci |= htons(VLAN_CFI); } } *flow_tci = tci; compose_output_action(ctx, xport->ofp_port); *flow_tci = old_tci; } /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to * indicate this; newer upstream kernels use gratuitous ARP requests. */ static bool is_gratuitous_arp(const struct flow *flow, struct flow_wildcards *wc) { if (flow->dl_type != htons(ETH_TYPE_ARP)) { return false; } memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); if (!eth_addr_is_broadcast(flow->dl_dst)) { return false; } memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); if (flow->nw_proto == ARP_OP_REPLY) { return true; } else if (flow->nw_proto == ARP_OP_REQUEST) { memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src); memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); return flow->nw_src == flow->nw_dst; } else { return false; } } /* Checks whether a MAC learning update is necessary for MAC learning table * 'ml' given that a packet matching 'flow' was received on 'in_xbundle' in * 'vlan'. * * Most packets processed through the MAC learning table do not actually * change it in any way. This function requires only a read lock on the MAC * learning table, so it is much cheaper in this common case. * * Keep the code here synchronized with that in update_learning_table__() * below. */ static bool is_mac_learning_update_needed(const struct mac_learning *ml, const struct flow *flow, struct flow_wildcards *wc, int vlan, struct xbundle *in_xbundle) OVS_REQ_RDLOCK(ml->rwlock) { struct mac_entry *mac; if (!mac_learning_may_learn(ml, flow->dl_src, vlan)) { return false; } mac = mac_learning_lookup(ml, flow->dl_src, vlan); if (!mac || mac_entry_age(ml, mac)) { return true; } if (is_gratuitous_arp(flow, wc)) { /* We don't want to learn from gratuitous ARP packets that are * reflected back over bond slaves so we lock the learning table. */ if (!in_xbundle->bond) { return true; } else if (mac_entry_is_grat_arp_locked(mac)) { return false; } } return mac->port.p != in_xbundle->ofbundle; } /* Updates MAC learning table 'ml' given that a packet matching 'flow' was * received on 'in_xbundle' in 'vlan'. * * This code repeats all the checks in is_mac_learning_update_needed() because * the lock was released between there and here and thus the MAC learning state * could have changed. * * Keep the code here synchronized with that in is_mac_learning_update_needed() * above. */ static void update_learning_table__(const struct xbridge *xbridge, const struct flow *flow, struct flow_wildcards *wc, int vlan, struct xbundle *in_xbundle) OVS_REQ_WRLOCK(xbridge->ml->rwlock) { struct mac_entry *mac; if (!mac_learning_may_learn(xbridge->ml, flow->dl_src, vlan)) { return; } mac = mac_learning_insert(xbridge->ml, flow->dl_src, vlan); if (is_gratuitous_arp(flow, wc)) { /* We don't want to learn from gratuitous ARP packets that are * reflected back over bond slaves so we lock the learning table. */ if (!in_xbundle->bond) { mac_entry_set_grat_arp_lock(mac); } else if (mac_entry_is_grat_arp_locked(mac)) { return; } } if (mac->port.p != in_xbundle->ofbundle) { /* The log messages here could actually be useful in debugging, * so keep the rate limit relatively high. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300); VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is " "on port %s in VLAN %d", xbridge->name, ETH_ADDR_ARGS(flow->dl_src), in_xbundle->name, vlan); mac->port.p = in_xbundle->ofbundle; mac_learning_changed(xbridge->ml); } } static void update_learning_table(const struct xbridge *xbridge, const struct flow *flow, struct flow_wildcards *wc, int vlan, struct xbundle *in_xbundle) { bool need_update; /* Don't learn the OFPP_NONE port. */ if (in_xbundle == &ofpp_none_bundle) { return; } /* First try the common case: no change to MAC learning table. */ ovs_rwlock_rdlock(&xbridge->ml->rwlock); need_update = is_mac_learning_update_needed(xbridge->ml, flow, wc, vlan, in_xbundle); ovs_rwlock_unlock(&xbridge->ml->rwlock); if (need_update) { /* Slow path: MAC learning table might need an update. */ ovs_rwlock_wrlock(&xbridge->ml->rwlock); update_learning_table__(xbridge, flow, wc, vlan, in_xbundle); ovs_rwlock_unlock(&xbridge->ml->rwlock); } } /* Determines whether packets in 'flow' within 'xbridge' should be forwarded or * dropped. Returns true if they may be forwarded, false if they should be * dropped. * * 'in_port' must be the xport that corresponds to flow->in_port. * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull). * * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as * checked by input_vid_is_valid(). * * May also add tags to '*tags', although the current implementation only does * so in one special case. */ static bool is_admissible(struct xlate_ctx *ctx, struct xport *in_port, uint16_t vlan) { struct xbundle *in_xbundle = in_port->xbundle; const struct xbridge *xbridge = ctx->xbridge; struct flow *flow = &ctx->xin->flow; /* Drop frames for reserved multicast addresses * only if forward_bpdu option is absent. */ if (!xbridge->forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) { xlate_report(ctx, "packet has reserved destination MAC, dropping"); return false; } if (in_xbundle->bond) { struct mac_entry *mac; switch (bond_check_admissibility(in_xbundle->bond, in_port->ofport, flow->dl_dst)) { case BV_ACCEPT: break; case BV_DROP: xlate_report(ctx, "bonding refused admissibility, dropping"); return false; case BV_DROP_IF_MOVED: ovs_rwlock_rdlock(&xbridge->ml->rwlock); mac = mac_learning_lookup(xbridge->ml, flow->dl_src, vlan); if (mac && mac->port.p != in_xbundle->ofbundle && (!is_gratuitous_arp(flow, &ctx->xout->wc) || mac_entry_is_grat_arp_locked(mac))) { ovs_rwlock_unlock(&xbridge->ml->rwlock); xlate_report(ctx, "SLB bond thinks this packet looped back, " "dropping"); return false; } ovs_rwlock_unlock(&xbridge->ml->rwlock); break; } } return true; } static void xlate_normal(struct xlate_ctx *ctx) { struct flow_wildcards *wc = &ctx->xout->wc; struct flow *flow = &ctx->xin->flow; struct xbundle *in_xbundle; struct xport *in_port; struct mac_entry *mac; void *mac_port; uint16_t vlan; uint16_t vid; ctx->xout->has_normal = true; memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src); memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI); in_xbundle = lookup_input_bundle(ctx->xbridge, flow->in_port.ofp_port, ctx->xin->packet != NULL, &in_port); if (!in_xbundle) { xlate_report(ctx, "no input bundle, dropping"); return; } /* Drop malformed frames. */ if (flow->dl_type == htons(ETH_TYPE_VLAN) && !(flow->vlan_tci & htons(VLAN_CFI))) { if (ctx->xin->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial " "VLAN tag received on port %s", ctx->xbridge->name, in_xbundle->name); } xlate_report(ctx, "partial VLAN tag, dropping"); return; } /* Drop frames on bundles reserved for mirroring. */ if (xbundle_mirror_out(ctx->xbridge, in_xbundle)) { if (ctx->xin->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port " "%s, which is reserved exclusively for mirroring", ctx->xbridge->name, in_xbundle->name); } xlate_report(ctx, "input port is mirror output port, dropping"); return; } /* Check VLAN. */ vid = vlan_tci_to_vid(flow->vlan_tci); if (!input_vid_is_valid(vid, in_xbundle, ctx->xin->packet != NULL)) { xlate_report(ctx, "disallowed VLAN VID for this input port, dropping"); return; } vlan = input_vid_to_vlan(in_xbundle, vid); /* Check other admissibility requirements. */ if (in_port && !is_admissible(ctx, in_port, vlan)) { return; } /* Learn source MAC. */ if (ctx->xin->may_learn) { update_learning_table(ctx->xbridge, flow, wc, vlan, in_xbundle); } if (ctx->xin->xcache) { struct xc_entry *entry; /* Save enough info to update mac learning table later. */ entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NORMAL); entry->u.normal.ofproto = ctx->xin->ofproto; entry->u.normal.flow = xmemdup(flow, sizeof *flow); entry->u.normal.vlan = vlan; } /* Determine output bundle. */ ovs_rwlock_rdlock(&ctx->xbridge->ml->rwlock); mac = mac_learning_lookup(ctx->xbridge->ml, flow->dl_dst, vlan); mac_port = mac ? mac->port.p : NULL; ovs_rwlock_unlock(&ctx->xbridge->ml->rwlock); if (mac_port) { struct xbundle *mac_xbundle = xbundle_lookup(mac_port); if (mac_xbundle && mac_xbundle != in_xbundle) { xlate_report(ctx, "forwarding to learned port"); output_normal(ctx, mac_xbundle, vlan); } else if (!mac_xbundle) { xlate_report(ctx, "learned port is unknown, dropping"); } else { xlate_report(ctx, "learned port is input port, dropping"); } } else { struct xbundle *xbundle; xlate_report(ctx, "no learned MAC for destination, flooding"); LIST_FOR_EACH (xbundle, list_node, &ctx->xbridge->xbundles) { if (xbundle != in_xbundle && xbundle_includes_vlan(xbundle, vlan) && xbundle->floodable && !xbundle_mirror_out(ctx->xbridge, xbundle)) { output_normal(ctx, xbundle, vlan); } } ctx->xout->nf_output_iface = NF_OUT_FLOOD; } } /* Compose SAMPLE action for sFlow or IPFIX. The given probability is * the number of packets out of UINT32_MAX to sample. The given * cookie is passed back in the callback for each sampled packet. */ static size_t compose_sample_action(const struct xbridge *xbridge, struct ofpbuf *odp_actions, const struct flow *flow, const uint32_t probability, const union user_action_cookie *cookie, const size_t cookie_size) { size_t sample_offset, actions_offset; odp_port_t odp_port; int cookie_offset; uint32_t pid; sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE); nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability); actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS); odp_port = ofp_port_to_odp_port(xbridge, flow->in_port.ofp_port); pid = dpif_port_get_pid(xbridge->dpif, odp_port, flow_hash_5tuple(flow, 0)); cookie_offset = odp_put_userspace_action(pid, cookie, cookie_size, odp_actions); nl_msg_end_nested(odp_actions, actions_offset); nl_msg_end_nested(odp_actions, sample_offset); return cookie_offset; } static void compose_sflow_cookie(const struct xbridge *xbridge, ovs_be16 vlan_tci, odp_port_t odp_port, unsigned int n_outputs, union user_action_cookie *cookie) { int ifindex; cookie->type = USER_ACTION_COOKIE_SFLOW; cookie->sflow.vlan_tci = vlan_tci; /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output * port information") for the interpretation of cookie->output. */ switch (n_outputs) { case 0: /* 0x40000000 | 256 means "packet dropped for unknown reason". */ cookie->sflow.output = 0x40000000 | 256; break; case 1: ifindex = dpif_sflow_odp_port_to_ifindex(xbridge->sflow, odp_port); if (ifindex) { cookie->sflow.output = ifindex; break; } /* Fall through. */ default: /* 0x80000000 means "multiple output ports. */ cookie->sflow.output = 0x80000000 | n_outputs; break; } } /* Compose SAMPLE action for sFlow bridge sampling. */ static size_t compose_sflow_action(const struct xbridge *xbridge, struct ofpbuf *odp_actions, const struct flow *flow, odp_port_t odp_port) { uint32_t probability; union user_action_cookie cookie; if (!xbridge->sflow || flow->in_port.ofp_port == OFPP_NONE) { return 0; } probability = dpif_sflow_get_probability(xbridge->sflow); compose_sflow_cookie(xbridge, htons(0), odp_port, odp_port == ODPP_NONE ? 0 : 1, &cookie); return compose_sample_action(xbridge, odp_actions, flow, probability, &cookie, sizeof cookie.sflow); } static void compose_flow_sample_cookie(uint16_t probability, uint32_t collector_set_id, uint32_t obs_domain_id, uint32_t obs_point_id, union user_action_cookie *cookie) { cookie->type = USER_ACTION_COOKIE_FLOW_SAMPLE; cookie->flow_sample.probability = probability; cookie->flow_sample.collector_set_id = collector_set_id; cookie->flow_sample.obs_domain_id = obs_domain_id; cookie->flow_sample.obs_point_id = obs_point_id; } static void compose_ipfix_cookie(union user_action_cookie *cookie) { cookie->type = USER_ACTION_COOKIE_IPFIX; } /* Compose SAMPLE action for IPFIX bridge sampling. */ static void compose_ipfix_action(const struct xbridge *xbridge, struct ofpbuf *odp_actions, const struct flow *flow) { uint32_t probability; union user_action_cookie cookie; if (!xbridge->ipfix || flow->in_port.ofp_port == OFPP_NONE) { return; } probability = dpif_ipfix_get_bridge_exporter_probability(xbridge->ipfix); compose_ipfix_cookie(&cookie); compose_sample_action(xbridge, odp_actions, flow, probability, &cookie, sizeof cookie.ipfix); } /* SAMPLE action for sFlow must be first action in any given list of * actions. At this point we do not have all information required to * build it. So try to build sample action as complete as possible. */ static void add_sflow_action(struct xlate_ctx *ctx) { ctx->user_cookie_offset = compose_sflow_action(ctx->xbridge, &ctx->xout->odp_actions, &ctx->xin->flow, ODPP_NONE); ctx->sflow_odp_port = 0; ctx->sflow_n_outputs = 0; } /* SAMPLE action for IPFIX must be 1st or 2nd action in any given list * of actions, eventually after the SAMPLE action for sFlow. */ static void add_ipfix_action(struct xlate_ctx *ctx) { compose_ipfix_action(ctx->xbridge, &ctx->xout->odp_actions, &ctx->xin->flow); } /* Fix SAMPLE action according to data collected while composing ODP actions. * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested * USERSPACE action's user-cookie which is required for sflow. */ static void fix_sflow_action(struct xlate_ctx *ctx) { const struct flow *base = &ctx->base_flow; union user_action_cookie *cookie; if (!ctx->user_cookie_offset) { return; } cookie = ofpbuf_at(&ctx->xout->odp_actions, ctx->user_cookie_offset, sizeof cookie->sflow); ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW); compose_sflow_cookie(ctx->xbridge, base->vlan_tci, ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie); } static enum slow_path_reason process_special(struct xlate_ctx *ctx, const struct flow *flow, const struct xport *xport, const struct ofpbuf *packet) { struct flow_wildcards *wc = &ctx->xout->wc; const struct xbridge *xbridge = ctx->xbridge; if (!xport) { return 0; } else if (xport->cfm && cfm_should_process_flow(xport->cfm, flow, wc)) { if (packet) { cfm_process_heartbeat(xport->cfm, packet); } return SLOW_CFM; } else if (xport->bfd && bfd_should_process_flow(xport->bfd, flow, wc)) { if (packet) { bfd_process_packet(xport->bfd, flow, packet); /* If POLL received, immediately sends FINAL back. */ if (bfd_should_send_packet(xport->bfd)) { ofproto_dpif_monitor_port_send_soon(xport->ofport); } } return SLOW_BFD; } else if (xport->xbundle && xport->xbundle->lacp && flow->dl_type == htons(ETH_TYPE_LACP)) { if (packet) { lacp_process_packet(xport->xbundle->lacp, xport->ofport, packet); } return SLOW_LACP; } else if (xbridge->stp && stp_should_process_flow(flow, wc)) { if (packet) { stp_process_packet(xport, packet); } return SLOW_STP; } else { return 0; } } static void compose_output_action__(struct xlate_ctx *ctx, ofp_port_t ofp_port, bool check_stp) { const struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port); struct flow_wildcards *wc = &ctx->xout->wc; struct flow *flow = &ctx->xin->flow; ovs_be16 flow_vlan_tci; uint32_t flow_pkt_mark; uint8_t flow_nw_tos; odp_port_t out_port, odp_port; uint8_t dscp; /* If 'struct flow' gets additional metadata, we'll need to zero it out * before traversing a patch port. */ BUILD_ASSERT_DECL(FLOW_WC_SEQ == 26); if (!xport) { xlate_report(ctx, "Nonexistent output port"); return; } else if (xport->config & OFPUTIL_PC_NO_FWD) { xlate_report(ctx, "OFPPC_NO_FWD set, skipping output"); return; } else if (check_stp) { if (is_stp(&ctx->base_flow)) { if (!xport_stp_listen_state(xport)) { xlate_report(ctx, "STP not in listening state, " "skipping bpdu output"); return; } } else if (!xport_stp_forward_state(xport)) { xlate_report(ctx, "STP not in forwarding state, " "skipping output"); return; } } if (mbridge_has_mirrors(ctx->xbridge->mbridge) && xport->xbundle) { ctx->xout->mirrors |= xbundle_mirror_dst(xport->xbundle->xbridge, xport->xbundle); } if (xport->peer) { const struct xport *peer = xport->peer; struct flow old_flow = ctx->xin->flow; enum slow_path_reason special; ctx->xbridge = peer->xbridge; flow->in_port.ofp_port = peer->ofp_port; flow->metadata = htonll(0); memset(&flow->tunnel, 0, sizeof flow->tunnel); memset(flow->regs, 0, sizeof flow->regs); special = process_special(ctx, &ctx->xin->flow, peer, ctx->xin->packet); if (special) { ctx->xout->slow |= special; } else if (may_receive(peer, ctx)) { if (xport_stp_forward_state(peer)) { xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true); } else { /* Forwarding is disabled by STP. Let OFPP_NORMAL and the * learning action look at the packet, then drop it. */ struct flow old_base_flow = ctx->base_flow; size_t old_size = ofpbuf_size(&ctx->xout->odp_actions); mirror_mask_t old_mirrors = ctx->xout->mirrors; xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true); ctx->xout->mirrors = old_mirrors; ctx->base_flow = old_base_flow; ofpbuf_set_size(&ctx->xout->odp_actions, old_size); } } ctx->xin->flow = old_flow; ctx->xbridge = xport->xbridge; if (ctx->xin->resubmit_stats) { netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats); netdev_vport_inc_rx(peer->netdev, ctx->xin->resubmit_stats); if (peer->bfd) { bfd_account_rx(peer->bfd, ctx->xin->resubmit_stats); } } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NETDEV); entry->u.dev.tx = netdev_ref(xport->netdev); entry->u.dev.rx = netdev_ref(peer->netdev); entry->u.dev.bfd = bfd_ref(peer->bfd); } return; } flow_vlan_tci = flow->vlan_tci; flow_pkt_mark = flow->pkt_mark; flow_nw_tos = flow->nw_tos; if (dscp_from_skb_priority(xport, flow->skb_priority, &dscp)) { wc->masks.nw_tos |= IP_DSCP_MASK; flow->nw_tos &= ~IP_DSCP_MASK; flow->nw_tos |= dscp; } if (xport->is_tunnel) { /* Save tunnel metadata so that changes made due to * the Logical (tunnel) Port are not visible for any further * matches, while explicit set actions on tunnel metadata are. */ struct flow_tnl flow_tnl = flow->tunnel; odp_port = tnl_port_send(xport->ofport, flow, &ctx->xout->wc); if (odp_port == ODPP_NONE) { xlate_report(ctx, "Tunneling decided against output"); goto out; /* restore flow_nw_tos */ } if (flow->tunnel.ip_dst == ctx->orig_tunnel_ip_dst) { xlate_report(ctx, "Not tunneling to our own address"); goto out; /* restore flow_nw_tos */ } if (ctx->xin->resubmit_stats) { netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats); } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NETDEV); entry->u.dev.tx = netdev_ref(xport->netdev); } out_port = odp_port; commit_odp_tunnel_action(flow, &ctx->base_flow, &ctx->xout->odp_actions); flow->tunnel = flow_tnl; /* Restore tunnel metadata */ } else { odp_port = xport->odp_port; out_port = odp_port; if (ofproto_has_vlan_splinters(ctx->xbridge->ofproto)) { ofp_port_t vlandev_port; wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI); vlandev_port = vsp_realdev_to_vlandev(ctx->xbridge->ofproto, ofp_port, flow->vlan_tci); if (vlandev_port != ofp_port) { out_port = ofp_port_to_odp_port(ctx->xbridge, vlandev_port); flow->vlan_tci = htons(0); } } } if (out_port != ODPP_NONE) { ctx->xout->slow |= commit_odp_actions(flow, &ctx->base_flow, &ctx->xout->odp_actions, &ctx->xout->wc); if (ctx->use_recirc) { struct ovs_action_hash *act_hash; struct xlate_recirc *xr = &ctx->recirc; /* Hash action. */ act_hash = nl_msg_put_unspec_uninit(&ctx->xout->odp_actions, OVS_ACTION_ATTR_HASH, sizeof *act_hash); act_hash->hash_alg = xr->hash_alg; act_hash->hash_basis = xr->hash_basis; /* Recirc action. */ nl_msg_put_u32(&ctx->xout->odp_actions, OVS_ACTION_ATTR_RECIRC, xr->recirc_id); } else { nl_msg_put_odp_port(&ctx->xout->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port); } ctx->sflow_odp_port = odp_port; ctx->sflow_n_outputs++; ctx->xout->nf_output_iface = ofp_port; } out: /* Restore flow */ flow->vlan_tci = flow_vlan_tci; flow->pkt_mark = flow_pkt_mark; flow->nw_tos = flow_nw_tos; } static void compose_output_action(struct xlate_ctx *ctx, ofp_port_t ofp_port) { compose_output_action__(ctx, ofp_port, true); } static void xlate_recursively(struct xlate_ctx *ctx, struct rule_dpif *rule) { struct rule_dpif *old_rule = ctx->rule; const struct rule_actions *actions; if (ctx->xin->resubmit_stats) { rule_dpif_credit_stats(rule, ctx->xin->resubmit_stats); } ctx->resubmits++; ctx->recurse++; ctx->rule = rule; actions = rule_dpif_get_actions(rule); do_xlate_actions(actions->ofpacts, actions->ofpacts_len, ctx); ctx->rule = old_rule; ctx->recurse--; } static bool xlate_resubmit_resource_check(struct xlate_ctx *ctx) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1); if (ctx->recurse >= MAX_RESUBMIT_RECURSION + MAX_INTERNAL_RESUBMITS) { VLOG_ERR_RL(&rl, "resubmit actions recursed over %d times", MAX_RESUBMIT_RECURSION); } else if (ctx->resubmits >= MAX_RESUBMITS + MAX_INTERNAL_RESUBMITS) { VLOG_ERR_RL(&rl, "over %d resubmit actions", MAX_RESUBMITS); } else if (ofpbuf_size(&ctx->xout->odp_actions) > UINT16_MAX) { VLOG_ERR_RL(&rl, "resubmits yielded over 64 kB of actions"); } else if (ofpbuf_size(&ctx->stack) >= 65536) { VLOG_ERR_RL(&rl, "resubmits yielded over 64 kB of stack"); } else { return true; } return false; } static void xlate_table_action(struct xlate_ctx *ctx, ofp_port_t in_port, uint8_t table_id, bool may_packet_in, bool honor_table_miss) { if (xlate_resubmit_resource_check(ctx)) { ofp_port_t old_in_port = ctx->xin->flow.in_port.ofp_port; bool skip_wildcards = ctx->xin->skip_wildcards; uint8_t old_table_id = ctx->table_id; struct rule_dpif *rule; enum rule_dpif_lookup_verdict verdict; enum ofputil_port_config config = 0; ctx->table_id = table_id; /* Look up a flow with 'in_port' as the input port. Then restore the * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will * have surprising behavior). */ ctx->xin->flow.in_port.ofp_port = in_port; verdict = rule_dpif_lookup_from_table(ctx->xbridge->ofproto, &ctx->xin->flow, !skip_wildcards ? &ctx->xout->wc : NULL, honor_table_miss, &ctx->table_id, &rule, ctx->xin->xcache != NULL); ctx->xin->flow.in_port.ofp_port = old_in_port; if (ctx->xin->resubmit_hook) { ctx->xin->resubmit_hook(ctx->xin, rule, ctx->recurse); } switch (verdict) { case RULE_DPIF_LOOKUP_VERDICT_MATCH: goto match; case RULE_DPIF_LOOKUP_VERDICT_CONTROLLER: if (may_packet_in) { struct xport *xport; xport = get_ofp_port(ctx->xbridge, ctx->xin->flow.in_port.ofp_port); config = xport ? xport->config : 0; break; } /* Fall through to drop */ case RULE_DPIF_LOOKUP_VERDICT_DROP: config = OFPUTIL_PC_NO_PACKET_IN; break; case RULE_DPIF_LOOKUP_VERDICT_DEFAULT: if (!ofproto_dpif_wants_packet_in_on_miss(ctx->xbridge->ofproto)) { config = OFPUTIL_PC_NO_PACKET_IN; } break; default: OVS_NOT_REACHED(); } choose_miss_rule(config, ctx->xbridge->miss_rule, ctx->xbridge->no_packet_in_rule, &rule, ctx->xin->xcache != NULL); match: if (rule) { /* Fill in the cache entry here instead of xlate_recursively * to make the reference counting more explicit. We take a * reference in the lookups above if we are going to cache the * rule. */ if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_RULE); entry->u.rule = rule; } xlate_recursively(ctx, rule); } ctx->table_id = old_table_id; return; } ctx->exit = true; } static void xlate_group_bucket(struct xlate_ctx *ctx, const struct ofputil_bucket *bucket) { uint64_t action_list_stub[1024 / 8]; struct ofpbuf action_list, action_set; ofpbuf_use_const(&action_set, bucket->ofpacts, bucket->ofpacts_len); ofpbuf_use_stub(&action_list, action_list_stub, sizeof action_list_stub); ofpacts_execute_action_set(&action_list, &action_set); ctx->recurse++; do_xlate_actions(ofpbuf_data(&action_list), ofpbuf_size(&action_list), ctx); ctx->recurse--; ofpbuf_uninit(&action_set); ofpbuf_uninit(&action_list); } static void xlate_all_group(struct xlate_ctx *ctx, struct group_dpif *group) { const struct ofputil_bucket *bucket; const struct list *buckets; struct flow old_flow = ctx->xin->flow; group_dpif_get_buckets(group, &buckets); LIST_FOR_EACH (bucket, list_node, buckets) { xlate_group_bucket(ctx, bucket); /* Roll back flow to previous state. * This is equivalent to cloning the packet for each bucket. * * As a side effect any subsequently applied actions will * also effectively be applied to a clone of the packet taken * just before applying the all or indirect group. */ ctx->xin->flow = old_flow; } } static void xlate_ff_group(struct xlate_ctx *ctx, struct group_dpif *group) { const struct ofputil_bucket *bucket; bucket = group_first_live_bucket(ctx, group, 0); if (bucket) { xlate_group_bucket(ctx, bucket); } } static void xlate_select_group(struct xlate_ctx *ctx, struct group_dpif *group) { struct flow_wildcards *wc = &ctx->xout->wc; const struct ofputil_bucket *bucket; uint32_t basis; basis = hash_mac(ctx->xin->flow.dl_dst, 0, 0); bucket = group_best_live_bucket(ctx, group, basis); if (bucket) { memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); xlate_group_bucket(ctx, bucket); } } static void xlate_group_action__(struct xlate_ctx *ctx, struct group_dpif *group) { ctx->in_group = true; switch (group_dpif_get_type(group)) { case OFPGT11_ALL: case OFPGT11_INDIRECT: xlate_all_group(ctx, group); break; case OFPGT11_SELECT: xlate_select_group(ctx, group); break; case OFPGT11_FF: xlate_ff_group(ctx, group); break; default: OVS_NOT_REACHED(); } group_dpif_release(group); ctx->in_group = false; } static bool xlate_group_resource_check(struct xlate_ctx *ctx) { if (!xlate_resubmit_resource_check(ctx)) { return false; } else if (ctx->in_group) { /* Prevent nested translation of OpenFlow groups. * * OpenFlow allows this restriction. We enforce this restriction only * because, with the current architecture, we would otherwise have to * take a possibly recursive read lock on the ofgroup rwlock, which is * unsafe given that POSIX allows taking a read lock to block if there * is a thread blocked on taking the write lock. Other solutions * without this restriction are also possible, but seem unwarranted * given the current limited use of groups. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_ERR_RL(&rl, "cannot recursively translate OpenFlow group"); return false; } else { return true; } } static bool xlate_group_action(struct xlate_ctx *ctx, uint32_t group_id) { if (xlate_group_resource_check(ctx)) { struct group_dpif *group; bool got_group; got_group = group_dpif_lookup(ctx->xbridge->ofproto, group_id, &group); if (got_group) { xlate_group_action__(ctx, group); } else { return true; } } return false; } static void xlate_ofpact_resubmit(struct xlate_ctx *ctx, const struct ofpact_resubmit *resubmit) { ofp_port_t in_port; uint8_t table_id; bool may_packet_in = false; bool honor_table_miss = false; if (ctx->rule && rule_dpif_is_internal(ctx->rule)) { /* Still allow missed packets to be sent to the controller * if resubmitting from an internal table. */ may_packet_in = true; honor_table_miss = true; } in_port = resubmit->in_port; if (in_port == OFPP_IN_PORT) { in_port = ctx->xin->flow.in_port.ofp_port; } table_id = resubmit->table_id; if (table_id == 255) { table_id = ctx->table_id; } xlate_table_action(ctx, in_port, table_id, may_packet_in, honor_table_miss); } static void flood_packets(struct xlate_ctx *ctx, bool all) { const struct xport *xport; HMAP_FOR_EACH (xport, ofp_node, &ctx->xbridge->xports) { if (xport->ofp_port == ctx->xin->flow.in_port.ofp_port) { continue; } if (all) { compose_output_action__(ctx, xport->ofp_port, false); } else if (!(xport->config & OFPUTIL_PC_NO_FLOOD)) { compose_output_action(ctx, xport->ofp_port); } } ctx->xout->nf_output_iface = NF_OUT_FLOOD; } static void execute_controller_action(struct xlate_ctx *ctx, int len, enum ofp_packet_in_reason reason, uint16_t controller_id) { struct ofproto_packet_in *pin; struct ofpbuf *packet; struct pkt_metadata md = PKT_METADATA_INITIALIZER(0); ctx->xout->slow |= SLOW_CONTROLLER; if (!ctx->xin->packet) { return; } packet = ofpbuf_clone(ctx->xin->packet); ctx->xout->slow |= commit_odp_actions(&ctx->xin->flow, &ctx->base_flow, &ctx->xout->odp_actions, &ctx->xout->wc); odp_execute_actions(NULL, packet, false, &md, ofpbuf_data(&ctx->xout->odp_actions), ofpbuf_size(&ctx->xout->odp_actions), NULL); pin = xmalloc(sizeof *pin); pin->up.packet_len = ofpbuf_size(packet); pin->up.packet = ofpbuf_steal_data(packet); pin->up.reason = reason; pin->up.table_id = ctx->table_id; pin->up.cookie = (ctx->rule ? rule_dpif_get_flow_cookie(ctx->rule) : OVS_BE64_MAX); flow_get_metadata(&ctx->xin->flow, &pin->up.fmd); pin->controller_id = controller_id; pin->send_len = len; /* If a rule is a table-miss rule then this is * a table-miss handled by a table-miss rule. * * Else, if rule is internal and has a controller action, * the later being implied by the rule being processed here, * then this is a table-miss handled without a table-miss rule. * * Otherwise this is not a table-miss. */ pin->miss_type = OFPROTO_PACKET_IN_NO_MISS; if (ctx->rule) { if (rule_dpif_is_table_miss(ctx->rule)) { pin->miss_type = OFPROTO_PACKET_IN_MISS_FLOW; } else if (rule_dpif_is_internal(ctx->rule)) { pin->miss_type = OFPROTO_PACKET_IN_MISS_WITHOUT_FLOW; } } ofproto_dpif_send_packet_in(ctx->xbridge->ofproto, pin); ofpbuf_delete(packet); } static void compose_mpls_push_action(struct xlate_ctx *ctx, struct ofpact_push_mpls *mpls) { struct flow_wildcards *wc = &ctx->xout->wc; struct flow *flow = &ctx->xin->flow; int n; ovs_assert(eth_type_mpls(mpls->ethertype)); n = flow_count_mpls_labels(flow, wc); if (!n) { ctx->xout->slow |= commit_odp_actions(flow, &ctx->base_flow, &ctx->xout->odp_actions, &ctx->xout->wc); } else if (n >= FLOW_MAX_MPLS_LABELS) { if (ctx->xin->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet on which an " "MPLS push action can't be performed as it would " "have more MPLS LSEs than the %d supported.", ctx->xbridge->name, FLOW_MAX_MPLS_LABELS); } ctx->exit = true; return; } else if (n >= ctx->xbridge->max_mpls_depth) { COVERAGE_INC(xlate_actions_mpls_overflow); ctx->xout->slow |= SLOW_ACTION; } flow_push_mpls(flow, n, mpls->ethertype, wc); } static void compose_mpls_pop_action(struct xlate_ctx *ctx, ovs_be16 eth_type) { struct flow_wildcards *wc = &ctx->xout->wc; struct flow *flow = &ctx->xin->flow; int n = flow_count_mpls_labels(flow, wc); if (!flow_pop_mpls(flow, n, eth_type, wc) && n >= FLOW_MAX_MPLS_LABELS) { if (ctx->xin->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet on which an " "MPLS pop action can't be performed as it has " "more MPLS LSEs than the %d supported.", ctx->xbridge->name, FLOW_MAX_MPLS_LABELS); } ctx->exit = true; ofpbuf_clear(&ctx->xout->odp_actions); } } static bool compose_dec_ttl(struct xlate_ctx *ctx, struct ofpact_cnt_ids *ids) { struct flow *flow = &ctx->xin->flow; if (!is_ip_any(flow)) { return false; } ctx->xout->wc.masks.nw_ttl = 0xff; if (flow->nw_ttl > 1) { flow->nw_ttl--; return false; } else { size_t i; for (i = 0; i < ids->n_controllers; i++) { execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, ids->cnt_ids[i]); } /* Stop processing for current table. */ return true; } } static void compose_set_mpls_label_action(struct xlate_ctx *ctx, ovs_be32 label) { if (eth_type_mpls(ctx->xin->flow.dl_type)) { ctx->xout->wc.masks.mpls_lse[0] |= htonl(MPLS_LABEL_MASK); set_mpls_lse_label(&ctx->xin->flow.mpls_lse[0], label); } } static void compose_set_mpls_tc_action(struct xlate_ctx *ctx, uint8_t tc) { if (eth_type_mpls(ctx->xin->flow.dl_type)) { ctx->xout->wc.masks.mpls_lse[0] |= htonl(MPLS_TC_MASK); set_mpls_lse_tc(&ctx->xin->flow.mpls_lse[0], tc); } } static void compose_set_mpls_ttl_action(struct xlate_ctx *ctx, uint8_t ttl) { if (eth_type_mpls(ctx->xin->flow.dl_type)) { ctx->xout->wc.masks.mpls_lse[0] |= htonl(MPLS_TTL_MASK); set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse[0], ttl); } } static bool compose_dec_mpls_ttl_action(struct xlate_ctx *ctx) { struct flow *flow = &ctx->xin->flow; uint8_t ttl = mpls_lse_to_ttl(flow->mpls_lse[0]); struct flow_wildcards *wc = &ctx->xout->wc; memset(&wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse); if (eth_type_mpls(flow->dl_type)) { if (ttl > 1) { ttl--; set_mpls_lse_ttl(&flow->mpls_lse[0], ttl); return false; } else { execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0); /* Stop processing for current table. */ return true; } } else { return true; } } static void xlate_output_action(struct xlate_ctx *ctx, ofp_port_t port, uint16_t max_len, bool may_packet_in) { ofp_port_t prev_nf_output_iface = ctx->xout->nf_output_iface; ctx->xout->nf_output_iface = NF_OUT_DROP; switch (port) { case OFPP_IN_PORT: compose_output_action(ctx, ctx->xin->flow.in_port.ofp_port); break; case OFPP_TABLE: xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port, 0, may_packet_in, true); break; case OFPP_NORMAL: xlate_normal(ctx); break; case OFPP_FLOOD: flood_packets(ctx, false); break; case OFPP_ALL: flood_packets(ctx, true); break; case OFPP_CONTROLLER: execute_controller_action(ctx, max_len, OFPR_ACTION, 0); break; case OFPP_NONE: break; case OFPP_LOCAL: default: if (port != ctx->xin->flow.in_port.ofp_port) { compose_output_action(ctx, port); } else { xlate_report(ctx, "skipping output to input port"); } break; } if (prev_nf_output_iface == NF_OUT_FLOOD) { ctx->xout->nf_output_iface = NF_OUT_FLOOD; } else if (ctx->xout->nf_output_iface == NF_OUT_DROP) { ctx->xout->nf_output_iface = prev_nf_output_iface; } else if (prev_nf_output_iface != NF_OUT_DROP && ctx->xout->nf_output_iface != NF_OUT_FLOOD) { ctx->xout->nf_output_iface = NF_OUT_MULTI; } } static void xlate_output_reg_action(struct xlate_ctx *ctx, const struct ofpact_output_reg *or) { uint64_t port = mf_get_subfield(&or->src, &ctx->xin->flow); if (port <= UINT16_MAX) { union mf_subvalue value; memset(&value, 0xff, sizeof value); mf_write_subfield_flow(&or->src, &value, &ctx->xout->wc.masks); xlate_output_action(ctx, u16_to_ofp(port), or->max_len, false); } } static void xlate_enqueue_action(struct xlate_ctx *ctx, const struct ofpact_enqueue *enqueue) { ofp_port_t ofp_port = enqueue->port; uint32_t queue_id = enqueue->queue; uint32_t flow_priority, priority; int error; /* Translate queue to priority. */ error = dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &priority); if (error) { /* Fall back to ordinary output action. */ xlate_output_action(ctx, enqueue->port, 0, false); return; } /* Check output port. */ if (ofp_port == OFPP_IN_PORT) { ofp_port = ctx->xin->flow.in_port.ofp_port; } else if (ofp_port == ctx->xin->flow.in_port.ofp_port) { return; } /* Add datapath actions. */ flow_priority = ctx->xin->flow.skb_priority; ctx->xin->flow.skb_priority = priority; compose_output_action(ctx, ofp_port); ctx->xin->flow.skb_priority = flow_priority; /* Update NetFlow output port. */ if (ctx->xout->nf_output_iface == NF_OUT_DROP) { ctx->xout->nf_output_iface = ofp_port; } else if (ctx->xout->nf_output_iface != NF_OUT_FLOOD) { ctx->xout->nf_output_iface = NF_OUT_MULTI; } } static void xlate_set_queue_action(struct xlate_ctx *ctx, uint32_t queue_id) { uint32_t skb_priority; if (!dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &skb_priority)) { ctx->xin->flow.skb_priority = skb_priority; } else { /* Couldn't translate queue to a priority. Nothing to do. A warning * has already been logged. */ } } static bool slave_enabled_cb(ofp_port_t ofp_port, void *xbridge_) { const struct xbridge *xbridge = xbridge_; struct xport *port; switch (ofp_port) { case OFPP_IN_PORT: case OFPP_TABLE: case OFPP_NORMAL: case OFPP_FLOOD: case OFPP_ALL: case OFPP_NONE: return true; case OFPP_CONTROLLER: /* Not supported by the bundle action. */ return false; default: port = get_ofp_port(xbridge, ofp_port); return port ? port->may_enable : false; } } static void xlate_bundle_action(struct xlate_ctx *ctx, const struct ofpact_bundle *bundle) { ofp_port_t port; port = bundle_execute(bundle, &ctx->xin->flow, &ctx->xout->wc, slave_enabled_cb, CONST_CAST(struct xbridge *, ctx->xbridge)); if (bundle->dst.field) { nxm_reg_load(&bundle->dst, ofp_to_u16(port), &ctx->xin->flow, &ctx->xout->wc); } else { xlate_output_action(ctx, port, 0, false); } } static void xlate_learn_action(struct xlate_ctx *ctx, const struct ofpact_learn *learn) { uint64_t ofpacts_stub[1024 / 8]; struct ofputil_flow_mod fm; struct ofpbuf ofpacts; ctx->xout->has_learn = true; learn_mask(learn, &ctx->xout->wc); if (!ctx->xin->may_learn) { return; } ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub); learn_execute(learn, &ctx->xin->flow, &fm, &ofpacts); ofproto_dpif_flow_mod(ctx->xbridge->ofproto, &fm); ofpbuf_uninit(&ofpacts); if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_LEARN); entry->u.learn.ofproto = ctx->xin->ofproto; /* Lookup the learned rule, taking a reference on it. The reference * is released when this cache entry is deleted. */ rule_dpif_lookup(ctx->xbridge->ofproto, &ctx->xin->flow, NULL, &entry->u.learn.rule, true); } } static void xlate_fin_timeout__(struct rule_dpif *rule, uint16_t tcp_flags, uint16_t idle_timeout, uint16_t hard_timeout) { if (tcp_flags & (TCP_FIN | TCP_RST)) { rule_dpif_reduce_timeouts(rule, idle_timeout, hard_timeout); } } static void xlate_fin_timeout(struct xlate_ctx *ctx, const struct ofpact_fin_timeout *oft) { if (ctx->rule) { xlate_fin_timeout__(ctx->rule, ctx->xin->tcp_flags, oft->fin_idle_timeout, oft->fin_hard_timeout); if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_FIN_TIMEOUT); /* XC_RULE already holds a reference on the rule, none is taken * here. */ entry->u.fin.rule = ctx->rule; entry->u.fin.idle = oft->fin_idle_timeout; entry->u.fin.hard = oft->fin_hard_timeout; } } } static void xlate_sample_action(struct xlate_ctx *ctx, const struct ofpact_sample *os) { union user_action_cookie cookie; /* Scale the probability from 16-bit to 32-bit while representing * the same percentage. */ uint32_t probability = (os->probability << 16) | os->probability; if (!ctx->xbridge->variable_length_userdata) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_ERR_RL(&rl, "ignoring NXAST_SAMPLE action because datapath " "lacks support (needs Linux 3.10+ or kernel module from " "OVS 1.11+)"); return; } ctx->xout->slow |= commit_odp_actions(&ctx->xin->flow, &ctx->base_flow, &ctx->xout->odp_actions, &ctx->xout->wc); compose_flow_sample_cookie(os->probability, os->collector_set_id, os->obs_domain_id, os->obs_point_id, &cookie); compose_sample_action(ctx->xbridge, &ctx->xout->odp_actions, &ctx->xin->flow, probability, &cookie, sizeof cookie.flow_sample); } static bool may_receive(const struct xport *xport, struct xlate_ctx *ctx) { if (xport->config & (is_stp(&ctx->xin->flow) ? OFPUTIL_PC_NO_RECV_STP : OFPUTIL_PC_NO_RECV)) { return false; } /* Only drop packets here if both forwarding and learning are * disabled. If just learning is enabled, we need to have * OFPP_NORMAL and the learning action have a look at the packet * before we can drop it. */ if (!xport_stp_forward_state(xport) && !xport_stp_learn_state(xport)) { return false; } return true; } static void xlate_write_actions(struct xlate_ctx *ctx, const struct ofpact *a) { struct ofpact_nest *on = ofpact_get_WRITE_ACTIONS(a); ofpbuf_put(&ctx->action_set, on->actions, ofpact_nest_get_action_len(on)); ofpact_pad(&ctx->action_set); } static void xlate_action_set(struct xlate_ctx *ctx) { uint64_t action_list_stub[1024 / 64]; struct ofpbuf action_list; ofpbuf_use_stub(&action_list, action_list_stub, sizeof action_list_stub); ofpacts_execute_action_set(&action_list, &ctx->action_set); do_xlate_actions(ofpbuf_data(&action_list), ofpbuf_size(&action_list), ctx); ofpbuf_uninit(&action_list); } static void do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len, struct xlate_ctx *ctx) { struct flow_wildcards *wc = &ctx->xout->wc; struct flow *flow = &ctx->xin->flow; const struct ofpact *a; /* dl_type already in the mask, not set below. */ OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) { struct ofpact_controller *controller; const struct ofpact_metadata *metadata; const struct ofpact_set_field *set_field; const struct mf_field *mf; if (ctx->exit) { break; } switch (a->type) { case OFPACT_OUTPUT: xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port, ofpact_get_OUTPUT(a)->max_len, true); break; case OFPACT_GROUP: if (xlate_group_action(ctx, ofpact_get_GROUP(a)->group_id)) { return; } break; case OFPACT_CONTROLLER: controller = ofpact_get_CONTROLLER(a); execute_controller_action(ctx, controller->max_len, controller->reason, controller->controller_id); break; case OFPACT_ENQUEUE: xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a)); break; case OFPACT_SET_VLAN_VID: wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI); if (flow->vlan_tci & htons(VLAN_CFI) || ofpact_get_SET_VLAN_VID(a)->push_vlan_if_needed) { flow->vlan_tci &= ~htons(VLAN_VID_MASK); flow->vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid) | htons(VLAN_CFI)); } break; case OFPACT_SET_VLAN_PCP: wc->masks.vlan_tci |= htons(VLAN_PCP_MASK | VLAN_CFI); if (flow->vlan_tci & htons(VLAN_CFI) || ofpact_get_SET_VLAN_PCP(a)->push_vlan_if_needed) { flow->vlan_tci &= ~htons(VLAN_PCP_MASK); flow->vlan_tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI); } break; case OFPACT_STRIP_VLAN: memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci); flow->vlan_tci = htons(0); break; case OFPACT_PUSH_VLAN: /* XXX 802.1AD(QinQ) */ memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci); flow->vlan_tci = htons(VLAN_CFI); break; case OFPACT_SET_ETH_SRC: memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src); memcpy(flow->dl_src, ofpact_get_SET_ETH_SRC(a)->mac, ETH_ADDR_LEN); break; case OFPACT_SET_ETH_DST: memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); memcpy(flow->dl_dst, ofpact_get_SET_ETH_DST(a)->mac, ETH_ADDR_LEN); break; case OFPACT_SET_IPV4_SRC: if (flow->dl_type == htons(ETH_TYPE_IP)) { memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src); flow->nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4; } break; case OFPACT_SET_IPV4_DST: if (flow->dl_type == htons(ETH_TYPE_IP)) { memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); flow->nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4; } break; case OFPACT_SET_IP_DSCP: if (is_ip_any(flow)) { wc->masks.nw_tos |= IP_DSCP_MASK; flow->nw_tos &= ~IP_DSCP_MASK; flow->nw_tos |= ofpact_get_SET_IP_DSCP(a)->dscp; } break; case OFPACT_SET_IP_ECN: if (is_ip_any(flow)) { wc->masks.nw_tos |= IP_ECN_MASK; flow->nw_tos &= ~IP_ECN_MASK; flow->nw_tos |= ofpact_get_SET_IP_ECN(a)->ecn; } break; case OFPACT_SET_IP_TTL: if (is_ip_any(flow)) { wc->masks.nw_ttl = 0xff; flow->nw_ttl = ofpact_get_SET_IP_TTL(a)->ttl; } break; case OFPACT_SET_L4_SRC_PORT: if (is_ip_any(flow)) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); flow->tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port); } break; case OFPACT_SET_L4_DST_PORT: if (is_ip_any(flow)) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst); flow->tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port); } break; case OFPACT_RESUBMIT: xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a)); break; case OFPACT_SET_TUNNEL: flow->tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id); break; case OFPACT_SET_QUEUE: xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id); break; case OFPACT_POP_QUEUE: flow->skb_priority = ctx->orig_skb_priority; break; case OFPACT_REG_MOVE: nxm_execute_reg_move(ofpact_get_REG_MOVE(a), flow, wc); break; case OFPACT_REG_LOAD: nxm_execute_reg_load(ofpact_get_REG_LOAD(a), flow, wc); break; case OFPACT_SET_FIELD: set_field = ofpact_get_SET_FIELD(a); mf = set_field->field; /* Set field action only ever overwrites packet's outermost * applicable header fields. Do nothing if no header exists. */ if (mf->id == MFF_VLAN_VID) { wc->masks.vlan_tci |= htons(VLAN_CFI); if (!(flow->vlan_tci & htons(VLAN_CFI))) { break; } } else if ((mf->id == MFF_MPLS_LABEL || mf->id == MFF_MPLS_TC) /* 'dl_type' is already unwildcarded. */ && !eth_type_mpls(flow->dl_type)) { break; } mf_mask_field_and_prereqs(mf, &wc->masks); mf_set_flow_value(mf, &set_field->value, flow); break; case OFPACT_STACK_PUSH: nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), flow, wc, &ctx->stack); break; case OFPACT_STACK_POP: nxm_execute_stack_pop(ofpact_get_STACK_POP(a), flow, wc, &ctx->stack); break; case OFPACT_PUSH_MPLS: compose_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a)); break; case OFPACT_POP_MPLS: compose_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype); break; case OFPACT_SET_MPLS_LABEL: compose_set_mpls_label_action( ctx, ofpact_get_SET_MPLS_LABEL(a)->label); break; case OFPACT_SET_MPLS_TC: compose_set_mpls_tc_action(ctx, ofpact_get_SET_MPLS_TC(a)->tc); break; case OFPACT_SET_MPLS_TTL: compose_set_mpls_ttl_action(ctx, ofpact_get_SET_MPLS_TTL(a)->ttl); break; case OFPACT_DEC_MPLS_TTL: if (compose_dec_mpls_ttl_action(ctx)) { return; } break; case OFPACT_DEC_TTL: wc->masks.nw_ttl = 0xff; if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) { return; } break; case OFPACT_NOTE: /* Nothing to do. */ break; case OFPACT_MULTIPATH: multipath_execute(ofpact_get_MULTIPATH(a), flow, wc); break; case OFPACT_BUNDLE: xlate_bundle_action(ctx, ofpact_get_BUNDLE(a)); break; case OFPACT_OUTPUT_REG: xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a)); break; case OFPACT_LEARN: xlate_learn_action(ctx, ofpact_get_LEARN(a)); break; case OFPACT_EXIT: ctx->exit = true; break; case OFPACT_FIN_TIMEOUT: memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); ctx->xout->has_fin_timeout = true; xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a)); break; case OFPACT_CLEAR_ACTIONS: ofpbuf_clear(&ctx->action_set); break; case OFPACT_WRITE_ACTIONS: xlate_write_actions(ctx, a); break; case OFPACT_WRITE_METADATA: metadata = ofpact_get_WRITE_METADATA(a); flow->metadata &= ~metadata->mask; flow->metadata |= metadata->metadata & metadata->mask; break; case OFPACT_METER: /* Not implemented yet. */ break; case OFPACT_GOTO_TABLE: { struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a); ovs_assert(ctx->table_id < ogt->table_id); xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port, ogt->table_id, true, true); break; } case OFPACT_SAMPLE: xlate_sample_action(ctx, ofpact_get_SAMPLE(a)); break; } } } void xlate_in_init(struct xlate_in *xin, struct ofproto_dpif *ofproto, const struct flow *flow, struct rule_dpif *rule, uint16_t tcp_flags, const struct ofpbuf *packet) { xin->ofproto = ofproto; xin->flow = *flow; xin->packet = packet; xin->may_learn = packet != NULL; xin->rule = rule; xin->xcache = NULL; xin->ofpacts = NULL; xin->ofpacts_len = 0; xin->tcp_flags = tcp_flags; xin->resubmit_hook = NULL; xin->report_hook = NULL; xin->resubmit_stats = NULL; xin->skip_wildcards = false; } void xlate_out_uninit(struct xlate_out *xout) { if (xout) { ofpbuf_uninit(&xout->odp_actions); } } /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts' * into datapath actions, using 'ctx', and discards the datapath actions. */ void xlate_actions_for_side_effects(struct xlate_in *xin) { struct xlate_out xout; xlate_actions(xin, &xout); xlate_out_uninit(&xout); } static void xlate_report(struct xlate_ctx *ctx, const char *s) { if (ctx->xin->report_hook) { ctx->xin->report_hook(ctx->xin, s, ctx->recurse); } } void xlate_out_copy(struct xlate_out *dst, const struct xlate_out *src) { dst->wc = src->wc; dst->slow = src->slow; dst->has_learn = src->has_learn; dst->has_normal = src->has_normal; dst->has_fin_timeout = src->has_fin_timeout; dst->nf_output_iface = src->nf_output_iface; dst->mirrors = src->mirrors; ofpbuf_use_stub(&dst->odp_actions, dst->odp_actions_stub, sizeof dst->odp_actions_stub); ofpbuf_put(&dst->odp_actions, ofpbuf_data(&src->odp_actions), ofpbuf_size(&src->odp_actions)); } static struct skb_priority_to_dscp * get_skb_priority(const struct xport *xport, uint32_t skb_priority) { struct skb_priority_to_dscp *pdscp; uint32_t hash; hash = hash_int(skb_priority, 0); HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &xport->skb_priorities) { if (pdscp->skb_priority == skb_priority) { return pdscp; } } return NULL; } static bool dscp_from_skb_priority(const struct xport *xport, uint32_t skb_priority, uint8_t *dscp) { struct skb_priority_to_dscp *pdscp = get_skb_priority(xport, skb_priority); *dscp = pdscp ? pdscp->dscp : 0; return pdscp != NULL; } static void clear_skb_priorities(struct xport *xport) { struct skb_priority_to_dscp *pdscp, *next; HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &xport->skb_priorities) { hmap_remove(&xport->skb_priorities, &pdscp->hmap_node); free(pdscp); } } static bool actions_output_to_local_port(const struct xlate_ctx *ctx) { odp_port_t local_odp_port = ofp_port_to_odp_port(ctx->xbridge, OFPP_LOCAL); const struct nlattr *a; unsigned int left; NL_ATTR_FOR_EACH_UNSAFE (a, left, ofpbuf_data(&ctx->xout->odp_actions), ofpbuf_size(&ctx->xout->odp_actions)) { if (nl_attr_type(a) == OVS_ACTION_ATTR_OUTPUT && nl_attr_get_odp_port(a) == local_odp_port) { return true; } } return false; } /* Thread safe call to xlate_actions__(). */ void xlate_actions(struct xlate_in *xin, struct xlate_out *xout) OVS_EXCLUDED(xlate_rwlock) { ovs_rwlock_rdlock(&xlate_rwlock); xlate_actions__(xin, xout); ovs_rwlock_unlock(&xlate_rwlock); } /* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts' * into datapath actions in 'odp_actions', using 'ctx'. * * The caller must take responsibility for eventually freeing 'xout', with * xlate_out_uninit(). */ static void xlate_actions__(struct xlate_in *xin, struct xlate_out *xout) OVS_REQ_RDLOCK(xlate_rwlock) { struct flow_wildcards *wc = &xout->wc; struct flow *flow = &xin->flow; struct rule_dpif *rule = NULL; const struct rule_actions *actions = NULL; enum slow_path_reason special; const struct ofpact *ofpacts; struct xport *in_port; struct flow orig_flow; struct xlate_ctx ctx; size_t ofpacts_len; bool tnl_may_send; bool is_icmp; COVERAGE_INC(xlate_actions); /* Flow initialization rules: * - 'base_flow' must match the kernel's view of the packet at the * time that action processing starts. 'flow' represents any * transformations we wish to make through actions. * - By default 'base_flow' and 'flow' are the same since the input * packet matches the output before any actions are applied. * - When using VLAN splinters, 'base_flow''s VLAN is set to the value * of the received packet as seen by the kernel. If we later output * to another device without any modifications this will cause us to * insert a new tag since the original one was stripped off by the * VLAN device. * - Tunnel metadata as received is retained in 'flow'. This allows * tunnel metadata matching also in later tables. * Since a kernel action for setting the tunnel metadata will only be * generated with actual tunnel output, changing the tunnel metadata * values in 'flow' (such as tun_id) will only have effect with a later * tunnel output action. * - Tunnel 'base_flow' is completely cleared since that is what the * kernel does. If we wish to maintain the original values an action * needs to be generated. */ ctx.xin = xin; ctx.xout = xout; ctx.xout->slow = 0; ctx.xout->has_learn = false; ctx.xout->has_normal = false; ctx.xout->has_fin_timeout = false; ctx.xout->nf_output_iface = NF_OUT_DROP; ctx.xout->mirrors = 0; ofpbuf_use_stub(&ctx.xout->odp_actions, ctx.xout->odp_actions_stub, sizeof ctx.xout->odp_actions_stub); ofpbuf_reserve(&ctx.xout->odp_actions, NL_A_U32_SIZE); ctx.xbridge = xbridge_lookup(xin->ofproto); if (!ctx.xbridge) { return; } ctx.rule = xin->rule; ctx.base_flow = *flow; memset(&ctx.base_flow.tunnel, 0, sizeof ctx.base_flow.tunnel); ctx.orig_tunnel_ip_dst = flow->tunnel.ip_dst; flow_wildcards_init_catchall(wc); memset(&wc->masks.in_port, 0xff, sizeof wc->masks.in_port); memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority); memset(&wc->masks.dl_type, 0xff, sizeof wc->masks.dl_type); if (is_ip_any(flow)) { wc->masks.nw_frag |= FLOW_NW_FRAG_MASK; } is_icmp = is_icmpv4(flow) || is_icmpv6(flow); tnl_may_send = tnl_xlate_init(&ctx.base_flow, flow, wc); if (ctx.xbridge->netflow) { netflow_mask_wc(flow, wc); } ctx.recurse = 0; ctx.resubmits = 0; ctx.in_group = false; ctx.orig_skb_priority = flow->skb_priority; ctx.table_id = 0; ctx.exit = false; ctx.use_recirc = false; if (!xin->ofpacts && !ctx.rule) { ctx.table_id = rule_dpif_lookup(ctx.xbridge->ofproto, flow, !xin->skip_wildcards ? wc : NULL, &rule, ctx.xin->xcache != NULL); if (ctx.xin->resubmit_stats) { rule_dpif_credit_stats(rule, ctx.xin->resubmit_stats); } if (ctx.xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx.xin->xcache, XC_RULE); entry->u.rule = rule; } ctx.rule = rule; } xout->fail_open = ctx.rule && rule_dpif_is_fail_open(ctx.rule); if (xin->ofpacts) { ofpacts = xin->ofpacts; ofpacts_len = xin->ofpacts_len; } else if (ctx.rule) { actions = rule_dpif_get_actions(ctx.rule); ofpacts = actions->ofpacts; ofpacts_len = actions->ofpacts_len; } else { OVS_NOT_REACHED(); } ofpbuf_use_stub(&ctx.stack, ctx.init_stack, sizeof ctx.init_stack); ofpbuf_use_stub(&ctx.action_set, ctx.action_set_stub, sizeof ctx.action_set_stub); if (mbridge_has_mirrors(ctx.xbridge->mbridge)) { /* Do this conditionally because the copy is expensive enough that it * shows up in profiles. */ orig_flow = *flow; } if (flow->nw_frag & FLOW_NW_FRAG_ANY) { switch (ctx.xbridge->frag) { case OFPC_FRAG_NORMAL: /* We must pretend that transport ports are unavailable. */ flow->tp_src = ctx.base_flow.tp_src = htons(0); flow->tp_dst = ctx.base_flow.tp_dst = htons(0); break; case OFPC_FRAG_DROP: return; case OFPC_FRAG_REASM: OVS_NOT_REACHED(); case OFPC_FRAG_NX_MATCH: /* Nothing to do. */ break; case OFPC_INVALID_TTL_TO_CONTROLLER: OVS_NOT_REACHED(); } } in_port = get_ofp_port(ctx.xbridge, flow->in_port.ofp_port); if (in_port && in_port->is_tunnel) { if (ctx.xin->resubmit_stats) { netdev_vport_inc_rx(in_port->netdev, ctx.xin->resubmit_stats); if (in_port->bfd) { bfd_account_rx(in_port->bfd, ctx.xin->resubmit_stats); } } if (ctx.xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx.xin->xcache, XC_NETDEV); entry->u.dev.rx = netdev_ref(in_port->netdev); entry->u.dev.bfd = bfd_ref(in_port->bfd); } } special = process_special(&ctx, flow, in_port, ctx.xin->packet); if (special) { ctx.xout->slow |= special; } else { size_t sample_actions_len; if (flow->in_port.ofp_port != vsp_realdev_to_vlandev(ctx.xbridge->ofproto, flow->in_port.ofp_port, flow->vlan_tci)) { ctx.base_flow.vlan_tci = 0; } add_sflow_action(&ctx); add_ipfix_action(&ctx); sample_actions_len = ofpbuf_size(&ctx.xout->odp_actions); if (tnl_may_send && (!in_port || may_receive(in_port, &ctx))) { do_xlate_actions(ofpacts, ofpacts_len, &ctx); /* We've let OFPP_NORMAL and the learning action look at the * packet, so drop it now if forwarding is disabled. */ if (in_port && !xport_stp_forward_state(in_port)) { ofpbuf_set_size(&ctx.xout->odp_actions, sample_actions_len); } } if (ofpbuf_size(&ctx.action_set)) { xlate_action_set(&ctx); } if (ctx.xbridge->has_in_band && in_band_must_output_to_local_port(flow) && !actions_output_to_local_port(&ctx)) { compose_output_action(&ctx, OFPP_LOCAL); } fix_sflow_action(&ctx); if (mbridge_has_mirrors(ctx.xbridge->mbridge)) { add_mirror_actions(&ctx, &orig_flow); } } if (nl_attr_oversized(ofpbuf_size(&ctx.xout->odp_actions))) { /* These datapath actions are too big for a Netlink attribute, so we * can't hand them to the kernel directly. dpif_execute() can execute * them one by one with help, so just mark the result as SLOW_ACTION to * prevent the flow from being installed. */ COVERAGE_INC(xlate_actions_oversize); ctx.xout->slow |= SLOW_ACTION; } if (mbridge_has_mirrors(ctx.xbridge->mbridge)) { if (ctx.xin->resubmit_stats) { mirror_update_stats(ctx.xbridge->mbridge, xout->mirrors, ctx.xin->resubmit_stats->n_packets, ctx.xin->resubmit_stats->n_bytes); } if (ctx.xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx.xin->xcache, XC_MIRROR); entry->u.mirror.mbridge = mbridge_ref(ctx.xbridge->mbridge); entry->u.mirror.mirrors = xout->mirrors; } } if (ctx.xbridge->netflow) { const struct ofpact *ofpacts = actions->ofpacts; size_t ofpacts_len = actions->ofpacts_len; /* Only update netflow if we don't have controller flow. We don't * report NetFlow expiration messages for such facets because they * are just part of the control logic for the network, not real * traffic. */ if (ofpacts_len == 0 || ofpacts->type != OFPACT_CONTROLLER || ofpact_next(ofpacts) < ofpact_end(ofpacts, ofpacts_len)) { if (ctx.xin->resubmit_stats) { netflow_flow_update(ctx.xbridge->netflow, flow, xout->nf_output_iface, ctx.xin->resubmit_stats); } if (ctx.xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx.xin->xcache, XC_NETFLOW); entry->u.nf.netflow = netflow_ref(ctx.xbridge->netflow); entry->u.nf.flow = xmemdup(flow, sizeof *flow); entry->u.nf.iface = xout->nf_output_iface; } } } ofpbuf_uninit(&ctx.stack); ofpbuf_uninit(&ctx.action_set); /* Clear the metadata and register wildcard masks, because we won't * use non-header fields as part of the cache. */ flow_wildcards_clear_non_packet_fields(wc); /* ICMPv4 and ICMPv6 have 8-bit "type" and "code" fields. struct flow uses * the low 8 bits of the 16-bit tp_src and tp_dst members to represent * these fields. The datapath interface, on the other hand, represents * them with just 8 bits each. This means that if the high 8 bits of the * masks for these fields somehow become set, then they will get chopped * off by a round trip through the datapath, and revalidation will spot * that as an inconsistency and delete the flow. Avoid the problem here by * making sure that only the low 8 bits of either field can be unwildcarded * for ICMP. */ if (is_icmp) { wc->masks.tp_src &= htons(UINT8_MAX); wc->masks.tp_dst &= htons(UINT8_MAX); } } /* Sends 'packet' out 'ofport'. * May modify 'packet'. * Returns 0 if successful, otherwise a positive errno value. */ int xlate_send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet) { struct xport *xport; struct ofpact_output output; struct flow flow; ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output); /* Use OFPP_NONE as the in_port to avoid special packet processing. */ flow_extract(packet, NULL, &flow); flow.in_port.ofp_port = OFPP_NONE; ovs_rwlock_rdlock(&xlate_rwlock); xport = xport_lookup(ofport); if (!xport) { ovs_rwlock_unlock(&xlate_rwlock); return EINVAL; } output.port = xport->ofp_port; output.max_len = 0; ovs_rwlock_unlock(&xlate_rwlock); return ofproto_dpif_execute_actions(xport->xbridge->ofproto, &flow, NULL, &output.ofpact, sizeof output, packet); } struct xlate_cache * xlate_cache_new(void) { struct xlate_cache *xcache = xmalloc(sizeof *xcache); ofpbuf_init(&xcache->entries, 512); return xcache; } static struct xc_entry * xlate_cache_add_entry(struct xlate_cache *xcache, enum xc_type type) { struct xc_entry *entry; entry = ofpbuf_put_zeros(&xcache->entries, sizeof *entry); entry->type = type; return entry; } static void xlate_cache_netdev(struct xc_entry *entry, const struct dpif_flow_stats *stats) { if (entry->u.dev.tx) { netdev_vport_inc_tx(entry->u.dev.tx, stats); } if (entry->u.dev.rx) { netdev_vport_inc_rx(entry->u.dev.rx, stats); } if (entry->u.dev.bfd) { bfd_account_rx(entry->u.dev.bfd, stats); } } static void xlate_cache_normal(struct ofproto_dpif *ofproto, struct flow *flow, int vlan) { struct xbridge *xbridge; struct xbundle *xbundle; struct flow_wildcards wc; xbridge = xbridge_lookup(ofproto); if (!xbridge) { return; } xbundle = lookup_input_bundle(xbridge, flow->in_port.ofp_port, false, NULL); if (!xbundle) { return; } update_learning_table(xbridge, flow, &wc, vlan, xbundle); } /* Push stats and perform side effects of flow translation. */ void xlate_push_stats(struct xlate_cache *xcache, bool may_learn, const struct dpif_flow_stats *stats) { struct xc_entry *entry; struct ofpbuf entries = xcache->entries; XC_ENTRY_FOR_EACH (entry, entries, xcache) { switch (entry->type) { case XC_RULE: rule_dpif_credit_stats(entry->u.rule, stats); break; case XC_BOND: bond_account(entry->u.bond.bond, entry->u.bond.flow, entry->u.bond.vid, stats->n_bytes); break; case XC_NETDEV: xlate_cache_netdev(entry, stats); break; case XC_NETFLOW: netflow_flow_update(entry->u.nf.netflow, entry->u.nf.flow, entry->u.nf.iface, stats); break; case XC_MIRROR: mirror_update_stats(entry->u.mirror.mbridge, entry->u.mirror.mirrors, stats->n_packets, stats->n_bytes); break; case XC_LEARN: if (may_learn) { struct rule_dpif *rule = entry->u.learn.rule; /* Reset the modified time for a rule that is equivalent to * the currently cached rule. If the rule is not the exact * rule we have cached, update the reference that we have. */ entry->u.learn.rule = ofproto_dpif_refresh_rule(rule); } break; case XC_NORMAL: xlate_cache_normal(entry->u.normal.ofproto, entry->u.normal.flow, entry->u.normal.vlan); break; case XC_FIN_TIMEOUT: xlate_fin_timeout__(entry->u.fin.rule, stats->tcp_flags, entry->u.fin.idle, entry->u.fin.hard); break; default: OVS_NOT_REACHED(); } } } static void xlate_dev_unref(struct xc_entry *entry) { if (entry->u.dev.tx) { netdev_close(entry->u.dev.tx); } if (entry->u.dev.rx) { netdev_close(entry->u.dev.rx); } if (entry->u.dev.bfd) { bfd_unref(entry->u.dev.bfd); } } static void xlate_cache_clear_netflow(struct netflow *netflow, struct flow *flow) { netflow_expire(netflow, flow); netflow_flow_clear(netflow, flow); netflow_unref(netflow); free(flow); } void xlate_cache_clear(struct xlate_cache *xcache) { struct xc_entry *entry; struct ofpbuf entries; if (!xcache) { return; } XC_ENTRY_FOR_EACH (entry, entries, xcache) { switch (entry->type) { case XC_RULE: rule_dpif_unref(entry->u.rule); break; case XC_BOND: free(entry->u.bond.flow); bond_unref(entry->u.bond.bond); break; case XC_NETDEV: xlate_dev_unref(entry); break; case XC_NETFLOW: xlate_cache_clear_netflow(entry->u.nf.netflow, entry->u.nf.flow); break; case XC_MIRROR: mbridge_unref(entry->u.mirror.mbridge); break; case XC_LEARN: /* 'u.learn.rule' is the learned rule. */ rule_dpif_unref(entry->u.learn.rule); break; case XC_NORMAL: free(entry->u.normal.flow); break; case XC_FIN_TIMEOUT: /* 'u.fin.rule' is always already held as a XC_RULE, which * has already released it's reference above. */ break; default: OVS_NOT_REACHED(); } } ofpbuf_clear(&xcache->entries); } void xlate_cache_delete(struct xlate_cache *xcache) { xlate_cache_clear(xcache); ofpbuf_uninit(&xcache->entries); free(xcache); }