/* * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto/ofproto-dpif.h" #include "ofproto/ofproto-provider.h" #include #include "bfd.h" #include "bond.h" #include "bundle.h" #include "byte-order.h" #include "connmgr.h" #include "coverage.h" #include "cfm.h" #include "dpif.h" #include "dynamic-string.h" #include "fail-open.h" #include "hmapx.h" #include "lacp.h" #include "learn.h" #include "mac-learning.h" #include "meta-flow.h" #include "multipath.h" #include "netdev-vport.h" #include "netdev.h" #include "netlink.h" #include "nx-match.h" #include "odp-util.h" #include "odp-execute.h" #include "ofp-util.h" #include "ofpbuf.h" #include "ofp-actions.h" #include "ofp-parse.h" #include "ofp-print.h" #include "ofproto-dpif-governor.h" #include "ofproto-dpif-ipfix.h" #include "ofproto-dpif-sflow.h" #include "ofproto-dpif-xlate.h" #include "poll-loop.h" #include "simap.h" #include "smap.h" #include "timer.h" #include "tunnel.h" #include "unaligned.h" #include "unixctl.h" #include "vlan-bitmap.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(ofproto_dpif); COVERAGE_DEFINE(ofproto_dpif_expired); COVERAGE_DEFINE(facet_changed_rule); COVERAGE_DEFINE(facet_revalidate); COVERAGE_DEFINE(facet_unexpected); COVERAGE_DEFINE(facet_suppress); COVERAGE_DEFINE(subfacet_install_fail); struct flow_miss; struct facet; static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *, const struct flow *, struct flow_wildcards *wc); static void rule_get_stats(struct rule *, uint64_t *packets, uint64_t *bytes); static void rule_invalidate(const struct rule_dpif *); static void mirror_destroy(struct ofmirror *); static void update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors, uint64_t packets, uint64_t bytes); static void bundle_remove(struct ofport *); static void bundle_update(struct ofbundle *); static void bundle_destroy(struct ofbundle *); static void bundle_del_port(struct ofport_dpif *); static void bundle_run(struct ofbundle *); static void bundle_wait(struct ofbundle *); static void stp_run(struct ofproto_dpif *ofproto); static void stp_wait(struct ofproto_dpif *ofproto); static int set_stp_port(struct ofport *, const struct ofproto_port_stp_settings *); static void compose_slow_path(const struct ofproto_dpif *, const struct flow *, enum slow_path_reason, uint64_t *stub, size_t stub_size, const struct nlattr **actionsp, size_t *actions_lenp); /* A subfacet (see "struct subfacet" below) has three possible installation * states: * * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the * case just after the subfacet is created, just before the subfacet is * destroyed, or if the datapath returns an error when we try to install a * subfacet. * * - SF_FAST_PATH: The subfacet's actions are installed in the datapath. * * - SF_SLOW_PATH: An action that sends every packet for the subfacet through * ofproto_dpif is installed in the datapath. */ enum subfacet_path { SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */ SF_FAST_PATH, /* Full actions are installed. */ SF_SLOW_PATH, /* Send-to-userspace action is installed. */ }; /* A dpif flow and actions associated with a facet. * * See also the large comment on struct facet. */ struct subfacet { /* Owners. */ struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */ struct list list_node; /* In struct facet's 'facets' list. */ struct facet *facet; /* Owning facet. */ struct dpif_backer *backer; /* Owning backer. */ enum odp_key_fitness key_fitness; struct nlattr *key; int key_len; long long int used; /* Time last used; time created if not used. */ long long int created; /* Time created. */ uint64_t dp_packet_count; /* Last known packet count in the datapath. */ uint64_t dp_byte_count; /* Last known byte count in the datapath. */ enum subfacet_path path; /* Installed in datapath? */ }; #define SUBFACET_DESTROY_MAX_BATCH 50 static struct subfacet *subfacet_create(struct facet *, struct flow_miss *miss, long long int now); static struct subfacet *subfacet_find(struct dpif_backer *, const struct nlattr *key, size_t key_len, uint32_t key_hash); static void subfacet_destroy(struct subfacet *); static void subfacet_destroy__(struct subfacet *); static void subfacet_destroy_batch(struct dpif_backer *, struct subfacet **, int n); static void subfacet_reset_dp_stats(struct subfacet *, struct dpif_flow_stats *); static void subfacet_update_stats(struct subfacet *, const struct dpif_flow_stats *); static int subfacet_install(struct subfacet *, const struct ofpbuf *odp_actions, struct dpif_flow_stats *); static void subfacet_uninstall(struct subfacet *); /* A unique, non-overlapping instantiation of an OpenFlow flow. * * A facet associates a "struct flow", which represents the Open vSwitch * userspace idea of an exact-match flow, with one or more subfacets. * While the facet is created based on an exact-match flow, it is stored * within the ofproto based on the wildcards that could be expressed * based on the flow table and other configuration. (See the 'wc' * description in "struct xlate_out" for more details.) * * Each subfacet tracks the datapath's idea of the flow equivalent to * the facet. When the kernel module (or other dpif implementation) and * Open vSwitch userspace agree on the definition of a flow key, there * is exactly one subfacet per facet. If the dpif implementation * supports more-specific flow matching than userspace, however, a facet * can have more than one subfacet. Examples include the dpif * implementation not supporting the same wildcards as userspace or some * distinction in flow that userspace simply doesn't understand. * * Flow expiration works in terms of subfacets, so a facet must have at * least one subfacet or it will never expire, leaking memory. */ struct facet { /* Owners. */ struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */ struct list list_node; /* In owning rule's 'facets' list. */ struct rule_dpif *rule; /* Owning rule. */ /* Owned data. */ struct list subfacets; long long int used; /* Time last used; time created if not used. */ /* Key. */ struct flow flow; /* Flow of the creating subfacet. */ struct cls_rule cr; /* In 'ofproto_dpif's facets classifier. */ /* These statistics: * * - Do include packets and bytes sent "by hand", e.g. with * dpif_execute(). * * - Do include packets and bytes that were obtained from the datapath * when a subfacet's statistics were reset (e.g. dpif_flow_put() with * DPIF_FP_ZERO_STATS). * * - Do not include packets or bytes that can be obtained from the * datapath for any existing subfacet. */ uint64_t packet_count; /* Number of packets received. */ uint64_t byte_count; /* Number of bytes received. */ /* Resubmit statistics. */ uint64_t prev_packet_count; /* Number of packets from last stats push. */ uint64_t prev_byte_count; /* Number of bytes from last stats push. */ long long int prev_used; /* Used time from last stats push. */ /* Accounting. */ uint64_t accounted_bytes; /* Bytes processed by facet_account(). */ struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */ uint8_t tcp_flags; /* TCP flags seen for this 'rule'. */ struct xlate_out xout; /* Storage for a single subfacet, to reduce malloc() time and space * overhead. (A facet always has at least one subfacet and in the common * case has exactly one subfacet. However, 'one_subfacet' may not * always be valid, since it could have been removed after newer * subfacets were pushed onto the 'subfacets' list.) */ struct subfacet one_subfacet; long long int learn_rl; /* Rate limiter for facet_learn(). */ }; static struct facet *facet_create(const struct flow_miss *, struct rule_dpif *, struct xlate_out *, struct dpif_flow_stats *); static void facet_remove(struct facet *); static void facet_free(struct facet *); static struct facet *facet_find(struct ofproto_dpif *, const struct flow *); static struct facet *facet_lookup_valid(struct ofproto_dpif *, const struct flow *); static bool facet_revalidate(struct facet *); static bool facet_check_consistency(struct facet *); static void facet_flush_stats(struct facet *); static void facet_reset_counters(struct facet *); static void facet_push_stats(struct facet *, bool may_learn); static void facet_learn(struct facet *); static void facet_account(struct facet *); static void push_all_stats(void); static bool facet_is_controller_flow(struct facet *); /* Node in 'ofport_dpif''s 'priorities' map. Used to maintain a map from * 'priority' (the datapath's term for QoS queue) to the dscp bits which all * traffic egressing the 'ofport' with that priority should be marked with. */ struct priority_to_dscp { struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'priorities' map. */ uint32_t priority; /* Priority of this queue (see struct flow). */ uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */ }; /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.) * * This is deprecated. It is only for compatibility with broken device drivers * in old versions of Linux that do not properly support VLANs when VLAN * devices are not used. When broken device drivers are no longer in * widespread use, we will delete these interfaces. */ struct vlan_splinter { struct hmap_node realdev_vid_node; struct hmap_node vlandev_node; ofp_port_t realdev_ofp_port; ofp_port_t vlandev_ofp_port; int vid; }; static bool vsp_adjust_flow(const struct ofproto_dpif *, struct flow *); static void vsp_remove(struct ofport_dpif *); static void vsp_add(struct ofport_dpif *, ofp_port_t realdev_ofp_port, int vid); static ofp_port_t odp_port_to_ofp_port(const struct ofproto_dpif *, odp_port_t odp_port); static struct ofport_dpif * ofport_dpif_cast(const struct ofport *ofport) { return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL; } static void port_run(struct ofport_dpif *); static void port_run_fast(struct ofport_dpif *); static void port_wait(struct ofport_dpif *); static int set_bfd(struct ofport *, const struct smap *); static int set_cfm(struct ofport *, const struct cfm_settings *); static void ofport_clear_priorities(struct ofport_dpif *); static void ofport_update_peer(struct ofport_dpif *); static void run_fast_rl(void); struct dpif_completion { struct list list_node; struct ofoperation *op; }; /* Reasons that we might need to revalidate every facet, and corresponding * coverage counters. * * A value of 0 means that there is no need to revalidate. * * It would be nice to have some cleaner way to integrate with coverage * counters, but with only a few reasons I guess this is good enough for * now. */ enum revalidate_reason { REV_RECONFIGURE = 1, /* Switch configuration changed. */ REV_STP, /* Spanning tree protocol port status change. */ REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/ REV_FLOW_TABLE, /* Flow table changed. */ REV_INCONSISTENCY /* Facet self-check failed. */ }; COVERAGE_DEFINE(rev_reconfigure); COVERAGE_DEFINE(rev_stp); COVERAGE_DEFINE(rev_port_toggled); COVERAGE_DEFINE(rev_flow_table); COVERAGE_DEFINE(rev_inconsistency); /* Drop keys are odp flow keys which have drop flows installed in the kernel. * These are datapath flows which have no associated ofproto, if they did we * would use facets. */ struct drop_key { struct hmap_node hmap_node; struct nlattr *key; size_t key_len; }; struct avg_subfacet_rates { double add_rate; /* Moving average of new flows created per minute. */ double del_rate; /* Moving average of flows deleted per minute. */ }; /* All datapaths of a given type share a single dpif backer instance. */ struct dpif_backer { char *type; int refcount; struct dpif *dpif; struct timer next_expiration; struct hmap odp_to_ofport_map; /* ODP port to ofport mapping. */ struct simap tnl_backers; /* Set of dpif ports backing tunnels. */ /* Facet revalidation flags applying to facets which use this backer. */ enum revalidate_reason need_revalidate; /* Revalidate every facet. */ struct tag_set revalidate_set; /* Revalidate only matching facets. */ struct hmap drop_keys; /* Set of dropped odp keys. */ bool recv_set_enable; /* Enables or disables receiving packets. */ struct hmap subfacets; struct governor *governor; /* Subfacet statistics. * * These keep track of the total number of subfacets added and deleted and * flow life span. They are useful for computing the flow rates stats * exposed via "ovs-appctl dpif/show". The goal is to learn about * traffic patterns in ways that we can use later to improve Open vSwitch * performance in new situations. */ long long int created; /* Time when it is created. */ unsigned max_n_subfacet; /* Maximum number of flows */ unsigned avg_n_subfacet; /* Average number of flows. */ long long int avg_subfacet_life; /* Average life span of subfacets. */ /* The average number of subfacets... */ struct avg_subfacet_rates hourly; /* ...over the last hour. */ struct avg_subfacet_rates daily; /* ...over the last day. */ struct avg_subfacet_rates lifetime; /* ...over the switch lifetime. */ long long int last_minute; /* Last time 'hourly' was updated. */ /* Number of subfacets added or deleted since 'last_minute'. */ unsigned subfacet_add_count; unsigned subfacet_del_count; /* Number of subfacets added or deleted from 'created' to 'last_minute.' */ unsigned long long int total_subfacet_add_count; unsigned long long int total_subfacet_del_count; }; /* All existing ofproto_backer instances, indexed by ofproto->up.type. */ static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers); static void drop_key_clear(struct dpif_backer *); static struct ofport_dpif * odp_port_to_ofport(const struct dpif_backer *, odp_port_t odp_port); static void update_moving_averages(struct dpif_backer *backer); /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only * for debugging the asynchronous flow_mod implementation.) */ static bool clogged; /* By default, flows in the datapath are wildcarded (megaflows). They * may be disabled with the "ovs-appctl dpif/disable-megaflows" command. */ static bool enable_megaflows = true; /* All existing ofproto_dpif instances, indexed by ->up.name. */ static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs); static void ofproto_dpif_unixctl_init(void); /* Upcalls. */ #define FLOW_MISS_MAX_BATCH 50 static int handle_upcalls(struct dpif_backer *, unsigned int max_batch); /* Flow expiration. */ static int expire(struct dpif_backer *); /* NetFlow. */ static void send_netflow_active_timeouts(struct ofproto_dpif *); /* Utilities. */ static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet); /* Global variables. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); /* Initial mappings of port to bridge mappings. */ static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports); /* Factory functions. */ static void init(const struct shash *iface_hints) { struct shash_node *node; /* Make a local copy, since we don't own 'iface_hints' elements. */ SHASH_FOR_EACH(node, iface_hints) { const struct iface_hint *orig_hint = node->data; struct iface_hint *new_hint = xmalloc(sizeof *new_hint); new_hint->br_name = xstrdup(orig_hint->br_name); new_hint->br_type = xstrdup(orig_hint->br_type); new_hint->ofp_port = orig_hint->ofp_port; shash_add(&init_ofp_ports, node->name, new_hint); } } static void enumerate_types(struct sset *types) { dp_enumerate_types(types); } static int enumerate_names(const char *type, struct sset *names) { struct ofproto_dpif *ofproto; sset_clear(names); HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { if (strcmp(type, ofproto->up.type)) { continue; } sset_add(names, ofproto->up.name); } return 0; } static int del(const char *type, const char *name) { struct dpif *dpif; int error; error = dpif_open(name, type, &dpif); if (!error) { error = dpif_delete(dpif); dpif_close(dpif); } return error; } static const char * port_open_type(const char *datapath_type, const char *port_type) { return dpif_port_open_type(datapath_type, port_type); } /* Type functions. */ static struct ofproto_dpif * lookup_ofproto_dpif_by_port_name(const char *name) { struct ofproto_dpif *ofproto; HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { if (sset_contains(&ofproto->ports, name)) { return ofproto; } } return NULL; } static int type_run(const char *type) { static long long int push_timer = LLONG_MIN; struct dpif_backer *backer; char *devname; int error; backer = shash_find_data(&all_dpif_backers, type); if (!backer) { /* This is not necessarily a problem, since backers are only * created on demand. */ return 0; } dpif_run(backer->dpif); /* The most natural place to push facet statistics is when they're pulled * from the datapath. However, when there are many flows in the datapath, * this expensive operation can occur so frequently, that it reduces our * ability to quickly set up flows. To reduce the cost, we push statistics * here instead. */ if (time_msec() > push_timer) { push_timer = time_msec() + 2000; push_all_stats(); } /* If vswitchd started with other_config:flow_restore_wait set as "true", * and the configuration has now changed to "false", enable receiving * packets from the datapath. */ if (!backer->recv_set_enable && !ofproto_get_flow_restore_wait()) { backer->recv_set_enable = true; error = dpif_recv_set(backer->dpif, backer->recv_set_enable); if (error) { VLOG_ERR("Failed to enable receiving packets in dpif."); return error; } dpif_flow_flush(backer->dpif); backer->need_revalidate = REV_RECONFIGURE; } if (backer->need_revalidate || !tag_set_is_empty(&backer->revalidate_set)) { struct tag_set revalidate_set = backer->revalidate_set; bool need_revalidate = backer->need_revalidate; struct ofproto_dpif *ofproto; struct simap_node *node; struct simap tmp_backers; /* Handle tunnel garbage collection. */ simap_init(&tmp_backers); simap_swap(&backer->tnl_backers, &tmp_backers); HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { struct ofport_dpif *iter; if (backer != ofproto->backer) { continue; } HMAP_FOR_EACH (iter, up.hmap_node, &ofproto->up.ports) { char namebuf[NETDEV_VPORT_NAME_BUFSIZE]; const char *dp_port; if (!iter->is_tunnel) { continue; } dp_port = netdev_vport_get_dpif_port(iter->up.netdev, namebuf, sizeof namebuf); node = simap_find(&tmp_backers, dp_port); if (node) { simap_put(&backer->tnl_backers, dp_port, node->data); simap_delete(&tmp_backers, node); node = simap_find(&backer->tnl_backers, dp_port); } else { node = simap_find(&backer->tnl_backers, dp_port); if (!node) { odp_port_t odp_port = ODPP_NONE; if (!dpif_port_add(backer->dpif, iter->up.netdev, &odp_port)) { simap_put(&backer->tnl_backers, dp_port, odp_to_u32(odp_port)); node = simap_find(&backer->tnl_backers, dp_port); } } } iter->odp_port = node ? u32_to_odp(node->data) : ODPP_NONE; if (tnl_port_reconfigure(iter, iter->up.netdev, iter->odp_port)) { backer->need_revalidate = REV_RECONFIGURE; } } } SIMAP_FOR_EACH (node, &tmp_backers) { dpif_port_del(backer->dpif, u32_to_odp(node->data)); } simap_destroy(&tmp_backers); switch (backer->need_revalidate) { case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break; case REV_STP: COVERAGE_INC(rev_stp); break; case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break; case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break; case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break; } if (backer->need_revalidate) { /* Clear the drop_keys in case we should now be accepting some * formerly dropped flows. */ drop_key_clear(backer); } /* Clear the revalidation flags. */ tag_set_init(&backer->revalidate_set); backer->need_revalidate = 0; HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { struct facet *facet, *next; struct cls_cursor cursor; if (ofproto->backer != backer) { continue; } cls_cursor_init(&cursor, &ofproto->facets, NULL); CLS_CURSOR_FOR_EACH_SAFE (facet, next, cr, &cursor) { if (need_revalidate || tag_set_intersects(&revalidate_set, facet->xout.tags)) { facet_revalidate(facet); run_fast_rl(); } } } } if (!backer->recv_set_enable) { /* Wake up before a max of 1000ms. */ timer_set_duration(&backer->next_expiration, 1000); } else if (timer_expired(&backer->next_expiration)) { int delay = expire(backer); timer_set_duration(&backer->next_expiration, delay); } /* Check for port changes in the dpif. */ while ((error = dpif_port_poll(backer->dpif, &devname)) == 0) { struct ofproto_dpif *ofproto; struct dpif_port port; /* Don't report on the datapath's device. */ if (!strcmp(devname, dpif_base_name(backer->dpif))) { goto next; } HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { if (simap_contains(&ofproto->backer->tnl_backers, devname)) { goto next; } } ofproto = lookup_ofproto_dpif_by_port_name(devname); if (dpif_port_query_by_name(backer->dpif, devname, &port)) { /* The port was removed. If we know the datapath, * report it through poll_set(). If we don't, it may be * notifying us of a removal we initiated, so ignore it. * If there's a pending ENOBUFS, let it stand, since * everything will be reevaluated. */ if (ofproto && ofproto->port_poll_errno != ENOBUFS) { sset_add(&ofproto->port_poll_set, devname); ofproto->port_poll_errno = 0; } } else if (!ofproto) { /* The port was added, but we don't know with which * ofproto we should associate it. Delete it. */ dpif_port_del(backer->dpif, port.port_no); } dpif_port_destroy(&port); next: free(devname); } if (error != EAGAIN) { struct ofproto_dpif *ofproto; /* There was some sort of error, so propagate it to all * ofprotos that use this backer. */ HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { if (ofproto->backer == backer) { sset_clear(&ofproto->port_poll_set); ofproto->port_poll_errno = error; } } } if (backer->governor) { size_t n_subfacets; governor_run(backer->governor); /* If the governor has shrunk to its minimum size and the number of * subfacets has dwindled, then drop the governor entirely. * * For hysteresis, the number of subfacets to drop the governor is * smaller than the number needed to trigger its creation. */ n_subfacets = hmap_count(&backer->subfacets); if (n_subfacets * 4 < flow_eviction_threshold && governor_is_idle(backer->governor)) { governor_destroy(backer->governor); backer->governor = NULL; } } return 0; } static int dpif_backer_run_fast(struct dpif_backer *backer, int max_batch) { unsigned int work; /* If recv_set_enable is false, we should not handle upcalls. */ if (!backer->recv_set_enable) { return 0; } /* Handle one or more batches of upcalls, until there's nothing left to do * or until we do a fixed total amount of work. * * We do work in batches because it can be much cheaper to set up a number * of flows and fire off their patches all at once. We do multiple batches * because in some cases handling a packet can cause another packet to be * queued almost immediately as part of the return flow. Both * optimizations can make major improvements on some benchmarks and * presumably for real traffic as well. */ work = 0; while (work < max_batch) { int retval = handle_upcalls(backer, max_batch - work); if (retval <= 0) { return -retval; } work += retval; } return 0; } static int type_run_fast(const char *type) { struct dpif_backer *backer; backer = shash_find_data(&all_dpif_backers, type); if (!backer) { /* This is not necessarily a problem, since backers are only * created on demand. */ return 0; } return dpif_backer_run_fast(backer, FLOW_MISS_MAX_BATCH); } static void run_fast_rl(void) { static long long int port_rl = LLONG_MIN; static unsigned int backer_rl = 0; if (time_msec() >= port_rl) { struct ofproto_dpif *ofproto; struct ofport_dpif *ofport; HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { port_run_fast(ofport); } } port_rl = time_msec() + 200; } /* XXX: We have to be careful not to do too much work in this function. If * we call dpif_backer_run_fast() too often, or with too large a batch, * performance improves signifcantly, but at a cost. It's possible for the * number of flows in the datapath to increase without bound, and for poll * loops to take 10s of seconds. The correct solution to this problem, * long term, is to separate flow miss handling into it's own thread so it * isn't affected by revalidations, and expirations. Until then, this is * the best we can do. */ if (++backer_rl >= 10) { struct shash_node *node; backer_rl = 0; SHASH_FOR_EACH (node, &all_dpif_backers) { dpif_backer_run_fast(node->data, 1); } } } static void type_wait(const char *type) { struct dpif_backer *backer; backer = shash_find_data(&all_dpif_backers, type); if (!backer) { /* This is not necessarily a problem, since backers are only * created on demand. */ return; } if (backer->governor) { governor_wait(backer->governor); } timer_wait(&backer->next_expiration); } /* Basic life-cycle. */ static int add_internal_flows(struct ofproto_dpif *); static struct ofproto * alloc(void) { struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto); return &ofproto->up; } static void dealloc(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); free(ofproto); } static void close_dpif_backer(struct dpif_backer *backer) { struct shash_node *node; ovs_assert(backer->refcount > 0); if (--backer->refcount) { return; } drop_key_clear(backer); hmap_destroy(&backer->drop_keys); simap_destroy(&backer->tnl_backers); hmap_destroy(&backer->odp_to_ofport_map); node = shash_find(&all_dpif_backers, backer->type); free(backer->type); shash_delete(&all_dpif_backers, node); dpif_close(backer->dpif); ovs_assert(hmap_is_empty(&backer->subfacets)); hmap_destroy(&backer->subfacets); governor_destroy(backer->governor); free(backer); } /* Datapath port slated for removal from datapath. */ struct odp_garbage { struct list list_node; odp_port_t odp_port; }; static int open_dpif_backer(const char *type, struct dpif_backer **backerp) { struct dpif_backer *backer; struct dpif_port_dump port_dump; struct dpif_port port; struct shash_node *node; struct list garbage_list; struct odp_garbage *garbage, *next; struct sset names; char *backer_name; const char *name; int error; backer = shash_find_data(&all_dpif_backers, type); if (backer) { backer->refcount++; *backerp = backer; return 0; } backer_name = xasprintf("ovs-%s", type); /* Remove any existing datapaths, since we assume we're the only * userspace controlling the datapath. */ sset_init(&names); dp_enumerate_names(type, &names); SSET_FOR_EACH(name, &names) { struct dpif *old_dpif; /* Don't remove our backer if it exists. */ if (!strcmp(name, backer_name)) { continue; } if (dpif_open(name, type, &old_dpif)) { VLOG_WARN("couldn't open old datapath %s to remove it", name); } else { dpif_delete(old_dpif); dpif_close(old_dpif); } } sset_destroy(&names); backer = xmalloc(sizeof *backer); error = dpif_create_and_open(backer_name, type, &backer->dpif); free(backer_name); if (error) { VLOG_ERR("failed to open datapath of type %s: %s", type, ovs_strerror(error)); free(backer); return error; } backer->type = xstrdup(type); backer->governor = NULL; backer->refcount = 1; hmap_init(&backer->odp_to_ofport_map); hmap_init(&backer->drop_keys); hmap_init(&backer->subfacets); timer_set_duration(&backer->next_expiration, 1000); backer->need_revalidate = 0; simap_init(&backer->tnl_backers); tag_set_init(&backer->revalidate_set); backer->recv_set_enable = !ofproto_get_flow_restore_wait(); *backerp = backer; if (backer->recv_set_enable) { dpif_flow_flush(backer->dpif); } /* Loop through the ports already on the datapath and remove any * that we don't need anymore. */ list_init(&garbage_list); dpif_port_dump_start(&port_dump, backer->dpif); while (dpif_port_dump_next(&port_dump, &port)) { node = shash_find(&init_ofp_ports, port.name); if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) { garbage = xmalloc(sizeof *garbage); garbage->odp_port = port.port_no; list_push_front(&garbage_list, &garbage->list_node); } } dpif_port_dump_done(&port_dump); LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) { dpif_port_del(backer->dpif, garbage->odp_port); list_remove(&garbage->list_node); free(garbage); } shash_add(&all_dpif_backers, type, backer); error = dpif_recv_set(backer->dpif, backer->recv_set_enable); if (error) { VLOG_ERR("failed to listen on datapath of type %s: %s", type, ovs_strerror(error)); close_dpif_backer(backer); return error; } backer->max_n_subfacet = 0; backer->created = time_msec(); backer->last_minute = backer->created; memset(&backer->hourly, 0, sizeof backer->hourly); memset(&backer->daily, 0, sizeof backer->daily); memset(&backer->lifetime, 0, sizeof backer->lifetime); backer->subfacet_add_count = 0; backer->subfacet_del_count = 0; backer->total_subfacet_add_count = 0; backer->total_subfacet_del_count = 0; backer->avg_n_subfacet = 0; backer->avg_subfacet_life = 0; return error; } static int construct(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct shash_node *node, *next; odp_port_t max_ports; int error; int i; error = open_dpif_backer(ofproto->up.type, &ofproto->backer); if (error) { return error; } max_ports = dpif_get_max_ports(ofproto->backer->dpif); ofproto_init_max_ports(ofproto_, u16_to_ofp(MIN(odp_to_u32(max_ports), ofp_to_u16(OFPP_MAX)))); ofproto->netflow = NULL; ofproto->sflow = NULL; ofproto->ipfix = NULL; ofproto->stp = NULL; hmap_init(&ofproto->bundles); ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME); for (i = 0; i < MAX_MIRRORS; i++) { ofproto->mirrors[i] = NULL; } ofproto->has_bonded_bundles = false; classifier_init(&ofproto->facets); ofproto->consistency_rl = LLONG_MIN; for (i = 0; i < N_TABLES; i++) { struct table_dpif *table = &ofproto->tables[i]; table->catchall_table = NULL; table->other_table = NULL; table->basis = random_uint32(); } list_init(&ofproto->completions); ofproto_dpif_unixctl_init(); ofproto->has_mirrors = false; hmap_init(&ofproto->vlandev_map); hmap_init(&ofproto->realdev_vid_map); sset_init(&ofproto->ports); sset_init(&ofproto->ghost_ports); sset_init(&ofproto->port_poll_set); ofproto->port_poll_errno = 0; SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) { struct iface_hint *iface_hint = node->data; if (!strcmp(iface_hint->br_name, ofproto->up.name)) { /* Check if the datapath already has this port. */ if (dpif_port_exists(ofproto->backer->dpif, node->name)) { sset_add(&ofproto->ports, node->name); } free(iface_hint->br_name); free(iface_hint->br_type); free(iface_hint); shash_delete(&init_ofp_ports, node); } } hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node, hash_string(ofproto->up.name, 0)); memset(&ofproto->stats, 0, sizeof ofproto->stats); ofproto_init_tables(ofproto_, N_TABLES); error = add_internal_flows(ofproto); ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY; ofproto->n_hit = 0; ofproto->n_missed = 0; return error; } static int add_internal_flow(struct ofproto_dpif *ofproto, int id, const struct ofpbuf *ofpacts, struct rule_dpif **rulep) { struct ofputil_flow_mod fm; int error; match_init_catchall(&fm.match); fm.priority = 0; match_set_reg(&fm.match, 0, id); fm.new_cookie = htonll(0); fm.cookie = htonll(0); fm.cookie_mask = htonll(0); fm.table_id = TBL_INTERNAL; fm.command = OFPFC_ADD; fm.idle_timeout = 0; fm.hard_timeout = 0; fm.buffer_id = 0; fm.out_port = 0; fm.flags = 0; fm.ofpacts = ofpacts->data; fm.ofpacts_len = ofpacts->size; error = ofproto_flow_mod(&ofproto->up, &fm); if (error) { VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)", id, ofperr_to_string(error)); return error; } *rulep = rule_dpif_lookup_in_table(ofproto, &fm.match.flow, NULL, TBL_INTERNAL); ovs_assert(*rulep != NULL); return 0; } static int add_internal_flows(struct ofproto_dpif *ofproto) { struct ofpact_controller *controller; uint64_t ofpacts_stub[128 / 8]; struct ofpbuf ofpacts; int error; int id; ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub); id = 1; controller = ofpact_put_CONTROLLER(&ofpacts); controller->max_len = UINT16_MAX; controller->controller_id = 0; controller->reason = OFPR_NO_MATCH; ofpact_pad(&ofpacts); error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule); if (error) { return error; } ofpbuf_clear(&ofpacts); error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->no_packet_in_rule); if (error) { return error; } error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->drop_frags_rule); return error; } static void complete_operations(struct ofproto_dpif *ofproto) { struct dpif_completion *c, *next; LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) { ofoperation_complete(c->op, 0); list_remove(&c->list_node); free(c); } } static void destruct(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct rule_dpif *rule, *next_rule; struct oftable *table; int i; ofproto->backer->need_revalidate = REV_RECONFIGURE; hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node); complete_operations(ofproto); OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) { struct cls_cursor cursor; cls_cursor_init(&cursor, &table->cls, NULL); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) { ofproto_rule_destroy(&rule->up); } } for (i = 0; i < MAX_MIRRORS; i++) { mirror_destroy(ofproto->mirrors[i]); } netflow_destroy(ofproto->netflow); dpif_sflow_unref(ofproto->sflow); hmap_destroy(&ofproto->bundles); mac_learning_unref(ofproto->ml); classifier_destroy(&ofproto->facets); hmap_destroy(&ofproto->vlandev_map); hmap_destroy(&ofproto->realdev_vid_map); sset_destroy(&ofproto->ports); sset_destroy(&ofproto->ghost_ports); sset_destroy(&ofproto->port_poll_set); close_dpif_backer(ofproto->backer); } static int run_fast(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofport_dpif *ofport; /* Do not perform any periodic activity required by 'ofproto' while * waiting for flow restore to complete. */ if (ofproto_get_flow_restore_wait()) { return 0; } HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { port_run_fast(ofport); } return 0; } static int run(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofport_dpif *ofport; struct ofbundle *bundle; int error; if (!clogged) { complete_operations(ofproto); } /* Do not perform any periodic activity below required by 'ofproto' while * waiting for flow restore to complete. */ if (ofproto_get_flow_restore_wait()) { return 0; } error = run_fast(ofproto_); if (error) { return error; } if (ofproto->netflow) { if (netflow_run(ofproto->netflow)) { send_netflow_active_timeouts(ofproto); } } if (ofproto->sflow) { dpif_sflow_run(ofproto->sflow); } HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { port_run(ofport); } HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { bundle_run(bundle); } stp_run(ofproto); mac_learning_run(ofproto->ml, &ofproto->backer->revalidate_set); /* Check the consistency of a random facet, to aid debugging. */ if (time_msec() >= ofproto->consistency_rl && !classifier_is_empty(&ofproto->facets) && !ofproto->backer->need_revalidate) { struct cls_table *table; struct cls_rule *cr; struct facet *facet; ofproto->consistency_rl = time_msec() + 250; table = CONTAINER_OF(hmap_random_node(&ofproto->facets.tables), struct cls_table, hmap_node); cr = CONTAINER_OF(hmap_random_node(&table->rules), struct cls_rule, hmap_node); facet = CONTAINER_OF(cr, struct facet, cr); if (!tag_set_intersects(&ofproto->backer->revalidate_set, facet->xout.tags)) { if (!facet_check_consistency(facet)) { ofproto->backer->need_revalidate = REV_INCONSISTENCY; } } } return 0; } static void wait(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofport_dpif *ofport; struct ofbundle *bundle; if (!clogged && !list_is_empty(&ofproto->completions)) { poll_immediate_wake(); } if (ofproto_get_flow_restore_wait()) { return; } dpif_wait(ofproto->backer->dpif); dpif_recv_wait(ofproto->backer->dpif); if (ofproto->sflow) { dpif_sflow_wait(ofproto->sflow); } if (!tag_set_is_empty(&ofproto->backer->revalidate_set)) { poll_immediate_wake(); } HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { port_wait(ofport); } HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { bundle_wait(bundle); } if (ofproto->netflow) { netflow_wait(ofproto->netflow); } mac_learning_wait(ofproto->ml); stp_wait(ofproto); if (ofproto->backer->need_revalidate) { /* Shouldn't happen, but if it does just go around again. */ VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()"); poll_immediate_wake(); } } static void get_memory_usage(const struct ofproto *ofproto_, struct simap *usage) { const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct cls_cursor cursor; size_t n_subfacets = 0; struct facet *facet; simap_increase(usage, "facets", classifier_count(&ofproto->facets)); cls_cursor_init(&cursor, &ofproto->facets, NULL); CLS_CURSOR_FOR_EACH (facet, cr, &cursor) { n_subfacets += list_size(&facet->subfacets); } simap_increase(usage, "subfacets", n_subfacets); } static void flush(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct subfacet *subfacet, *next_subfacet; struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH]; int n_batch; n_batch = 0; HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node, &ofproto->backer->subfacets) { if (ofproto_dpif_cast(subfacet->facet->rule->up.ofproto) != ofproto) { continue; } if (subfacet->path != SF_NOT_INSTALLED) { batch[n_batch++] = subfacet; if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) { subfacet_destroy_batch(ofproto->backer, batch, n_batch); n_batch = 0; } } else { subfacet_destroy(subfacet); } } if (n_batch > 0) { subfacet_destroy_batch(ofproto->backer, batch, n_batch); } } static void get_features(struct ofproto *ofproto_ OVS_UNUSED, bool *arp_match_ip, enum ofputil_action_bitmap *actions) { *arp_match_ip = true; *actions = (OFPUTIL_A_OUTPUT | OFPUTIL_A_SET_VLAN_VID | OFPUTIL_A_SET_VLAN_PCP | OFPUTIL_A_STRIP_VLAN | OFPUTIL_A_SET_DL_SRC | OFPUTIL_A_SET_DL_DST | OFPUTIL_A_SET_NW_SRC | OFPUTIL_A_SET_NW_DST | OFPUTIL_A_SET_NW_TOS | OFPUTIL_A_SET_TP_SRC | OFPUTIL_A_SET_TP_DST | OFPUTIL_A_ENQUEUE); } static void get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct dpif_dp_stats s; uint64_t n_miss, n_no_pkt_in, n_bytes, n_dropped_frags; uint64_t n_lookup; strcpy(ots->name, "classifier"); dpif_get_dp_stats(ofproto->backer->dpif, &s); rule_get_stats(&ofproto->miss_rule->up, &n_miss, &n_bytes); rule_get_stats(&ofproto->no_packet_in_rule->up, &n_no_pkt_in, &n_bytes); rule_get_stats(&ofproto->drop_frags_rule->up, &n_dropped_frags, &n_bytes); n_lookup = s.n_hit + s.n_missed - n_dropped_frags; ots->lookup_count = htonll(n_lookup); ots->matched_count = htonll(n_lookup - n_miss - n_no_pkt_in); } static struct ofport * port_alloc(void) { struct ofport_dpif *port = xmalloc(sizeof *port); return &port->up; } static void port_dealloc(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); free(port); } static int port_construct(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); const struct netdev *netdev = port->up.netdev; char namebuf[NETDEV_VPORT_NAME_BUFSIZE]; struct dpif_port dpif_port; int error; ofproto->backer->need_revalidate = REV_RECONFIGURE; port->bundle = NULL; port->cfm = NULL; port->bfd = NULL; port->tag = tag_create_random(); port->may_enable = true; port->stp_port = NULL; port->stp_state = STP_DISABLED; port->is_tunnel = false; port->peer = NULL; hmap_init(&port->priorities); port->realdev_ofp_port = 0; port->vlandev_vid = 0; port->carrier_seq = netdev_get_carrier_resets(netdev); if (netdev_vport_is_patch(netdev)) { /* By bailing out here, we don't submit the port to the sFlow module * to be considered for counter polling export. This is correct * because the patch port represents an interface that sFlow considers * to be "internal" to the switch as a whole, and therefore not an * candidate for counter polling. */ port->odp_port = ODPP_NONE; ofport_update_peer(port); return 0; } error = dpif_port_query_by_name(ofproto->backer->dpif, netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf), &dpif_port); if (error) { return error; } port->odp_port = dpif_port.port_no; if (netdev_get_tunnel_config(netdev)) { tnl_port_add(port, port->up.netdev, port->odp_port); port->is_tunnel = true; } else { /* Sanity-check that a mapping doesn't already exist. This * shouldn't happen for non-tunnel ports. */ if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) { VLOG_ERR("port %s already has an OpenFlow port number", dpif_port.name); dpif_port_destroy(&dpif_port); return EBUSY; } hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node, hash_odp_port(port->odp_port)); } dpif_port_destroy(&dpif_port); if (ofproto->sflow) { dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port); } return 0; } static void port_destruct(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); const char *devname = netdev_get_name(port->up.netdev); char namebuf[NETDEV_VPORT_NAME_BUFSIZE]; const char *dp_port_name; ofproto->backer->need_revalidate = REV_RECONFIGURE; dp_port_name = netdev_vport_get_dpif_port(port->up.netdev, namebuf, sizeof namebuf); if (dpif_port_exists(ofproto->backer->dpif, dp_port_name)) { /* The underlying device is still there, so delete it. This * happens when the ofproto is being destroyed, since the caller * assumes that removal of attached ports will happen as part of * destruction. */ if (!port->is_tunnel) { dpif_port_del(ofproto->backer->dpif, port->odp_port); } } if (port->peer) { port->peer->peer = NULL; port->peer = NULL; } if (port->odp_port != ODPP_NONE && !port->is_tunnel) { hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node); } tnl_port_del(port); sset_find_and_delete(&ofproto->ports, devname); sset_find_and_delete(&ofproto->ghost_ports, devname); bundle_remove(port_); set_cfm(port_, NULL); set_bfd(port_, NULL); if (ofproto->sflow) { dpif_sflow_del_port(ofproto->sflow, port->odp_port); } ofport_clear_priorities(port); hmap_destroy(&port->priorities); } static void port_modified(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); if (port->bundle && port->bundle->bond) { bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev); } if (port->cfm) { cfm_set_netdev(port->cfm, port->up.netdev); } if (port->is_tunnel && tnl_port_reconfigure(port, port->up.netdev, port->odp_port)) { ofproto_dpif_cast(port->up.ofproto)->backer->need_revalidate = REV_RECONFIGURE; } ofport_update_peer(port); } static void port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); enum ofputil_port_config changed = old_config ^ port->up.pp.config; if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP | OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD | OFPUTIL_PC_NO_PACKET_IN)) { ofproto->backer->need_revalidate = REV_RECONFIGURE; if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) { bundle_update(port->bundle); } } } static int set_sflow(struct ofproto *ofproto_, const struct ofproto_sflow_options *sflow_options) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct dpif_sflow *ds = ofproto->sflow; if (sflow_options) { if (!ds) { struct ofport_dpif *ofport; ds = ofproto->sflow = dpif_sflow_create(); HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port); } ofproto->backer->need_revalidate = REV_RECONFIGURE; } dpif_sflow_set_options(ds, sflow_options); } else { if (ds) { dpif_sflow_unref(ds); ofproto->backer->need_revalidate = REV_RECONFIGURE; ofproto->sflow = NULL; } } return 0; } static int set_ipfix( struct ofproto *ofproto_, const struct ofproto_ipfix_bridge_exporter_options *bridge_exporter_options, const struct ofproto_ipfix_flow_exporter_options *flow_exporters_options, size_t n_flow_exporters_options) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct dpif_ipfix *di = ofproto->ipfix; if (bridge_exporter_options || flow_exporters_options) { if (!di) { di = ofproto->ipfix = dpif_ipfix_create(); } dpif_ipfix_set_options( di, bridge_exporter_options, flow_exporters_options, n_flow_exporters_options); } else { if (di) { dpif_ipfix_unref(di); ofproto->ipfix = NULL; } } return 0; } static int set_cfm(struct ofport *ofport_, const struct cfm_settings *s) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); int error; if (!s) { error = 0; } else { if (!ofport->cfm) { struct ofproto_dpif *ofproto; ofproto = ofproto_dpif_cast(ofport->up.ofproto); ofproto->backer->need_revalidate = REV_RECONFIGURE; ofport->cfm = cfm_create(ofport->up.netdev); } if (cfm_configure(ofport->cfm, s)) { return 0; } error = EINVAL; } cfm_unref(ofport->cfm); ofport->cfm = NULL; return error; } static bool get_cfm_status(const struct ofport *ofport_, struct ofproto_cfm_status *status) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); if (ofport->cfm) { status->faults = cfm_get_fault(ofport->cfm); status->remote_opstate = cfm_get_opup(ofport->cfm); status->health = cfm_get_health(ofport->cfm); cfm_get_remote_mpids(ofport->cfm, &status->rmps, &status->n_rmps); return true; } else { return false; } } static int set_bfd(struct ofport *ofport_, const struct smap *cfg) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto); struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); struct bfd *old; old = ofport->bfd; ofport->bfd = bfd_configure(old, netdev_get_name(ofport->up.netdev), cfg); if (ofport->bfd != old) { ofproto->backer->need_revalidate = REV_RECONFIGURE; } return 0; } static int get_bfd_status(struct ofport *ofport_, struct smap *smap) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); if (ofport->bfd) { bfd_get_status(ofport->bfd, smap); return 0; } else { return ENOENT; } } /* Spanning Tree. */ static void send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_) { struct ofproto_dpif *ofproto = ofproto_; struct stp_port *sp = stp_get_port(ofproto->stp, port_num); struct ofport_dpif *ofport; ofport = stp_port_get_aux(sp); if (!ofport) { VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d", ofproto->up.name, port_num); } else { struct eth_header *eth = pkt->l2; netdev_get_etheraddr(ofport->up.netdev, eth->eth_src); if (eth_addr_is_zero(eth->eth_src)) { VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d " "with unknown MAC", ofproto->up.name, port_num); } else { send_packet(ofport, pkt); } } ofpbuf_delete(pkt); } /* Configures STP on 'ofproto_' using the settings defined in 's'. */ static int set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); /* Only revalidate flows if the configuration changed. */ if (!s != !ofproto->stp) { ofproto->backer->need_revalidate = REV_RECONFIGURE; } if (s) { if (!ofproto->stp) { ofproto->stp = stp_create(ofproto_->name, s->system_id, send_bpdu_cb, ofproto); ofproto->stp_last_tick = time_msec(); } stp_set_bridge_id(ofproto->stp, s->system_id); stp_set_bridge_priority(ofproto->stp, s->priority); stp_set_hello_time(ofproto->stp, s->hello_time); stp_set_max_age(ofproto->stp, s->max_age); stp_set_forward_delay(ofproto->stp, s->fwd_delay); } else { struct ofport *ofport; HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) { set_stp_port(ofport, NULL); } stp_destroy(ofproto->stp); ofproto->stp = NULL; } return 0; } static int get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (ofproto->stp) { s->enabled = true; s->bridge_id = stp_get_bridge_id(ofproto->stp); s->designated_root = stp_get_designated_root(ofproto->stp); s->root_path_cost = stp_get_root_path_cost(ofproto->stp); } else { s->enabled = false; } return 0; } static void update_stp_port_state(struct ofport_dpif *ofport) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); enum stp_state state; /* Figure out new state. */ state = ofport->stp_port ? stp_port_get_state(ofport->stp_port) : STP_DISABLED; /* Update state. */ if (ofport->stp_state != state) { enum ofputil_port_state of_state; bool fwd_change; VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s", netdev_get_name(ofport->up.netdev), stp_state_name(ofport->stp_state), stp_state_name(state)); if (stp_learn_in_state(ofport->stp_state) != stp_learn_in_state(state)) { /* xxx Learning action flows should also be flushed. */ mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); } fwd_change = stp_forward_in_state(ofport->stp_state) != stp_forward_in_state(state); ofproto->backer->need_revalidate = REV_STP; ofport->stp_state = state; ofport->stp_state_entered = time_msec(); if (fwd_change && ofport->bundle) { bundle_update(ofport->bundle); } /* Update the STP state bits in the OpenFlow port description. */ of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK; of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK : 0); ofproto_port_set_state(&ofport->up, of_state); } } /* Configures STP on 'ofport_' using the settings defined in 's'. The * caller is responsible for assigning STP port numbers and ensuring * there are no duplicates. */ static int set_stp_port(struct ofport *ofport_, const struct ofproto_port_stp_settings *s) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); struct stp_port *sp = ofport->stp_port; if (!s || !s->enable) { if (sp) { ofport->stp_port = NULL; stp_port_disable(sp); update_stp_port_state(ofport); } return 0; } else if (sp && stp_port_no(sp) != s->port_num && ofport == stp_port_get_aux(sp)) { /* The port-id changed, so disable the old one if it's not * already in use by another port. */ stp_port_disable(sp); } sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num); stp_port_enable(sp); stp_port_set_aux(sp, ofport); stp_port_set_priority(sp, s->priority); stp_port_set_path_cost(sp, s->path_cost); update_stp_port_state(ofport); return 0; } static int get_stp_port_status(struct ofport *ofport_, struct ofproto_port_stp_status *s) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); struct stp_port *sp = ofport->stp_port; if (!ofproto->stp || !sp) { s->enabled = false; return 0; } s->enabled = true; s->port_id = stp_port_get_id(sp); s->state = stp_port_get_state(sp); s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000; s->role = stp_port_get_role(sp); stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count); return 0; } static void stp_run(struct ofproto_dpif *ofproto) { if (ofproto->stp) { long long int now = time_msec(); long long int elapsed = now - ofproto->stp_last_tick; struct stp_port *sp; if (elapsed > 0) { stp_tick(ofproto->stp, MIN(INT_MAX, elapsed)); ofproto->stp_last_tick = now; } while (stp_get_changed_port(ofproto->stp, &sp)) { struct ofport_dpif *ofport = stp_port_get_aux(sp); if (ofport) { update_stp_port_state(ofport); } } if (stp_check_and_reset_fdb_flush(ofproto->stp)) { mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); } } } static void stp_wait(struct ofproto_dpif *ofproto) { if (ofproto->stp) { poll_timer_wait(1000); } } /* Returns true if STP should process 'flow'. Sets fields in 'wc' that * were used to make the determination.*/ bool stp_should_process_flow(const struct flow *flow, struct flow_wildcards *wc) { memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); return eth_addr_equals(flow->dl_dst, eth_addr_stp); } void stp_process_packet(const struct ofport_dpif *ofport, const struct ofpbuf *packet) { struct ofpbuf payload = *packet; struct eth_header *eth = payload.data; struct stp_port *sp = ofport->stp_port; /* Sink packets on ports that have STP disabled when the bridge has * STP enabled. */ if (!sp || stp_port_get_state(sp) == STP_DISABLED) { return; } /* Trim off padding on payload. */ if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) { payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN; } if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) { stp_received_bpdu(sp, payload.data, payload.size); } } int ofproto_dpif_queue_to_priority(const struct ofproto_dpif *ofproto, uint32_t queue_id, uint32_t *priority) { return dpif_queue_to_priority(ofproto->backer->dpif, queue_id, priority); } static struct priority_to_dscp * get_priority(const struct ofport_dpif *ofport, uint32_t priority) { struct priority_to_dscp *pdscp; uint32_t hash; hash = hash_int(priority, 0); HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &ofport->priorities) { if (pdscp->priority == priority) { return pdscp; } } return NULL; } bool ofproto_dpif_dscp_from_priority(const struct ofport_dpif *ofport, uint32_t priority, uint8_t *dscp) { struct priority_to_dscp *pdscp = get_priority(ofport, priority); *dscp = pdscp ? pdscp->dscp : 0; return pdscp != NULL; } static void ofport_clear_priorities(struct ofport_dpif *ofport) { struct priority_to_dscp *pdscp, *next; HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &ofport->priorities) { hmap_remove(&ofport->priorities, &pdscp->hmap_node); free(pdscp); } } static int set_queues(struct ofport *ofport_, const struct ofproto_port_queue *qdscp_list, size_t n_qdscp) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); struct hmap new = HMAP_INITIALIZER(&new); size_t i; for (i = 0; i < n_qdscp; i++) { struct priority_to_dscp *pdscp; uint32_t priority; uint8_t dscp; dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK; if (dpif_queue_to_priority(ofproto->backer->dpif, qdscp_list[i].queue, &priority)) { continue; } pdscp = get_priority(ofport, priority); if (pdscp) { hmap_remove(&ofport->priorities, &pdscp->hmap_node); } else { pdscp = xmalloc(sizeof *pdscp); pdscp->priority = priority; pdscp->dscp = dscp; ofproto->backer->need_revalidate = REV_RECONFIGURE; } if (pdscp->dscp != dscp) { pdscp->dscp = dscp; ofproto->backer->need_revalidate = REV_RECONFIGURE; } hmap_insert(&new, &pdscp->hmap_node, hash_int(pdscp->priority, 0)); } if (!hmap_is_empty(&ofport->priorities)) { ofport_clear_priorities(ofport); ofproto->backer->need_revalidate = REV_RECONFIGURE; } hmap_swap(&new, &ofport->priorities); hmap_destroy(&new); return 0; } /* Bundles. */ /* Expires all MAC learning entries associated with 'bundle' and forces its * ofproto to revalidate every flow. * * Normally MAC learning entries are removed only from the ofproto associated * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries * are removed from every ofproto. When patch ports and SLB bonds are in use * and a VM migration happens and the gratuitous ARPs are somehow lost, this * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate * with the host from which it migrated. */ static void bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos) { struct ofproto_dpif *ofproto = bundle->ofproto; struct mac_learning *ml = ofproto->ml; struct mac_entry *mac, *next_mac; ofproto->backer->need_revalidate = REV_RECONFIGURE; LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) { if (mac->port.p == bundle) { if (all_ofprotos) { struct ofproto_dpif *o; HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) { if (o != ofproto) { struct mac_entry *e; e = mac_learning_lookup(o->ml, mac->mac, mac->vlan, NULL); if (e) { mac_learning_expire(o->ml, e); } } } } mac_learning_expire(ml, mac); } } } static struct ofbundle * bundle_lookup(const struct ofproto_dpif *ofproto, void *aux) { struct ofbundle *bundle; HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0), &ofproto->bundles) { if (bundle->aux == aux) { return bundle; } } return NULL; } /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the * ones that are found to 'bundles'. */ static void bundle_lookup_multiple(struct ofproto_dpif *ofproto, void **auxes, size_t n_auxes, struct hmapx *bundles) { size_t i; hmapx_init(bundles); for (i = 0; i < n_auxes; i++) { struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]); if (bundle) { hmapx_add(bundles, bundle); } } } static void bundle_update(struct ofbundle *bundle) { struct ofport_dpif *port; bundle->floodable = true; LIST_FOR_EACH (port, bundle_node, &bundle->ports) { if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD || !stp_forward_in_state(port->stp_state)) { bundle->floodable = false; break; } } } static void bundle_del_port(struct ofport_dpif *port) { struct ofbundle *bundle = port->bundle; bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE; list_remove(&port->bundle_node); port->bundle = NULL; if (bundle->lacp) { lacp_slave_unregister(bundle->lacp, port); } if (bundle->bond) { bond_slave_unregister(bundle->bond, port); } bundle_update(bundle); } static bool bundle_add_port(struct ofbundle *bundle, ofp_port_t ofp_port, struct lacp_slave_settings *lacp) { struct ofport_dpif *port; port = get_ofp_port(bundle->ofproto, ofp_port); if (!port) { return false; } if (port->bundle != bundle) { bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE; if (port->bundle) { bundle_del_port(port); } port->bundle = bundle; list_push_back(&bundle->ports, &port->bundle_node); if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD || !stp_forward_in_state(port->stp_state)) { bundle->floodable = false; } } if (lacp) { bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE; lacp_slave_register(bundle->lacp, port, lacp); } return true; } static void bundle_destroy(struct ofbundle *bundle) { struct ofproto_dpif *ofproto; struct ofport_dpif *port, *next_port; int i; if (!bundle) { return; } ofproto = bundle->ofproto; for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *m = ofproto->mirrors[i]; if (m) { if (m->out == bundle) { mirror_destroy(m); } else if (hmapx_find_and_delete(&m->srcs, bundle) || hmapx_find_and_delete(&m->dsts, bundle)) { ofproto->backer->need_revalidate = REV_RECONFIGURE; } } } LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) { bundle_del_port(port); } bundle_flush_macs(bundle, true); hmap_remove(&ofproto->bundles, &bundle->hmap_node); free(bundle->name); free(bundle->trunks); lacp_unref(bundle->lacp); bond_unref(bundle->bond); free(bundle); } static int bundle_set(struct ofproto *ofproto_, void *aux, const struct ofproto_bundle_settings *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); bool need_flush = false; struct ofport_dpif *port; struct ofbundle *bundle; unsigned long *trunks; int vlan; size_t i; bool ok; if (!s) { bundle_destroy(bundle_lookup(ofproto, aux)); return 0; } ovs_assert(s->n_slaves == 1 || s->bond != NULL); ovs_assert((s->lacp != NULL) == (s->lacp_slaves != NULL)); bundle = bundle_lookup(ofproto, aux); if (!bundle) { bundle = xmalloc(sizeof *bundle); bundle->ofproto = ofproto; hmap_insert(&ofproto->bundles, &bundle->hmap_node, hash_pointer(aux, 0)); bundle->aux = aux; bundle->name = NULL; list_init(&bundle->ports); bundle->vlan_mode = PORT_VLAN_TRUNK; bundle->vlan = -1; bundle->trunks = NULL; bundle->use_priority_tags = s->use_priority_tags; bundle->lacp = NULL; bundle->bond = NULL; bundle->floodable = true; bundle->src_mirrors = 0; bundle->dst_mirrors = 0; bundle->mirror_out = 0; } if (!bundle->name || strcmp(s->name, bundle->name)) { free(bundle->name); bundle->name = xstrdup(s->name); } /* LACP. */ if (s->lacp) { if (!bundle->lacp) { ofproto->backer->need_revalidate = REV_RECONFIGURE; bundle->lacp = lacp_create(); } lacp_configure(bundle->lacp, s->lacp); } else { lacp_unref(bundle->lacp); bundle->lacp = NULL; } /* Update set of ports. */ ok = true; for (i = 0; i < s->n_slaves; i++) { if (!bundle_add_port(bundle, s->slaves[i], s->lacp ? &s->lacp_slaves[i] : NULL)) { ok = false; } } if (!ok || list_size(&bundle->ports) != s->n_slaves) { struct ofport_dpif *next_port; LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) { for (i = 0; i < s->n_slaves; i++) { if (s->slaves[i] == port->up.ofp_port) { goto found; } } bundle_del_port(port); found: ; } } ovs_assert(list_size(&bundle->ports) <= s->n_slaves); if (list_is_empty(&bundle->ports)) { bundle_destroy(bundle); return EINVAL; } /* Set VLAN tagging mode */ if (s->vlan_mode != bundle->vlan_mode || s->use_priority_tags != bundle->use_priority_tags) { bundle->vlan_mode = s->vlan_mode; bundle->use_priority_tags = s->use_priority_tags; need_flush = true; } /* Set VLAN tag. */ vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan : 0); if (vlan != bundle->vlan) { bundle->vlan = vlan; need_flush = true; } /* Get trunked VLANs. */ switch (s->vlan_mode) { case PORT_VLAN_ACCESS: trunks = NULL; break; case PORT_VLAN_TRUNK: trunks = CONST_CAST(unsigned long *, s->trunks); break; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: if (vlan != 0 && (!s->trunks || !bitmap_is_set(s->trunks, vlan) || bitmap_is_set(s->trunks, 0))) { /* Force trunking the native VLAN and prohibit trunking VLAN 0. */ if (s->trunks) { trunks = bitmap_clone(s->trunks, 4096); } else { trunks = bitmap_allocate1(4096); } bitmap_set1(trunks, vlan); bitmap_set0(trunks, 0); } else { trunks = CONST_CAST(unsigned long *, s->trunks); } break; default: NOT_REACHED(); } if (!vlan_bitmap_equal(trunks, bundle->trunks)) { free(bundle->trunks); if (trunks == s->trunks) { bundle->trunks = vlan_bitmap_clone(trunks); } else { bundle->trunks = trunks; trunks = NULL; } need_flush = true; } if (trunks != s->trunks) { free(trunks); } /* Bonding. */ if (!list_is_short(&bundle->ports)) { bundle->ofproto->has_bonded_bundles = true; if (bundle->bond) { if (bond_reconfigure(bundle->bond, s->bond)) { ofproto->backer->need_revalidate = REV_RECONFIGURE; } } else { bundle->bond = bond_create(s->bond); ofproto->backer->need_revalidate = REV_RECONFIGURE; } LIST_FOR_EACH (port, bundle_node, &bundle->ports) { bond_slave_register(bundle->bond, port, port->up.netdev); } } else { bond_unref(bundle->bond); bundle->bond = NULL; } /* If we changed something that would affect MAC learning, un-learn * everything on this port and force flow revalidation. */ if (need_flush) { bundle_flush_macs(bundle, false); } return 0; } static void bundle_remove(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofbundle *bundle = port->bundle; if (bundle) { bundle_del_port(port); if (list_is_empty(&bundle->ports)) { bundle_destroy(bundle); } else if (list_is_short(&bundle->ports)) { bond_unref(bundle->bond); bundle->bond = NULL; } } } static void send_pdu_cb(void *port_, const void *pdu, size_t pdu_size) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10); struct ofport_dpif *port = port_; uint8_t ea[ETH_ADDR_LEN]; int error; error = netdev_get_etheraddr(port->up.netdev, ea); if (!error) { struct ofpbuf packet; void *packet_pdu; ofpbuf_init(&packet, 0); packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP, pdu_size); memcpy(packet_pdu, pdu, pdu_size); send_packet(port, &packet); ofpbuf_uninit(&packet); } else { VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface " "%s (%s)", port->bundle->name, netdev_get_name(port->up.netdev), ovs_strerror(error)); } } static void bundle_send_learning_packets(struct ofbundle *bundle) { struct ofproto_dpif *ofproto = bundle->ofproto; int error, n_packets, n_errors; struct mac_entry *e; error = n_packets = n_errors = 0; LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) { if (e->port.p != bundle) { struct ofpbuf *learning_packet; struct ofport_dpif *port; void *port_void; int ret; /* The assignment to "port" is unnecessary but makes "grep"ing for * struct ofport_dpif more effective. */ learning_packet = bond_compose_learning_packet(bundle->bond, e->mac, e->vlan, &port_void); port = port_void; ret = send_packet(port, learning_packet); ofpbuf_delete(learning_packet); if (ret) { error = ret; n_errors++; } n_packets++; } } if (n_errors) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning " "packets, last error was: %s", bundle->name, n_errors, n_packets, ovs_strerror(error)); } else { VLOG_DBG("bond %s: sent %d gratuitous learning packets", bundle->name, n_packets); } } static void bundle_run(struct ofbundle *bundle) { if (bundle->lacp) { lacp_run(bundle->lacp, send_pdu_cb); } if (bundle->bond) { struct ofport_dpif *port; LIST_FOR_EACH (port, bundle_node, &bundle->ports) { bond_slave_set_may_enable(bundle->bond, port, port->may_enable); } bond_run(bundle->bond, &bundle->ofproto->backer->revalidate_set, lacp_status(bundle->lacp)); if (bond_should_send_learning_packets(bundle->bond)) { bundle_send_learning_packets(bundle); } } } static void bundle_wait(struct ofbundle *bundle) { if (bundle->lacp) { lacp_wait(bundle->lacp); } if (bundle->bond) { bond_wait(bundle->bond); } } /* Mirrors. */ static int mirror_scan(struct ofproto_dpif *ofproto) { int idx; for (idx = 0; idx < MAX_MIRRORS; idx++) { if (!ofproto->mirrors[idx]) { return idx; } } return -1; } static struct ofmirror * mirror_lookup(struct ofproto_dpif *ofproto, void *aux) { int i; for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *mirror = ofproto->mirrors[i]; if (mirror && mirror->aux == aux) { return mirror; } } return NULL; } /* Update the 'dup_mirrors' member of each of the ofmirrors in 'ofproto'. */ static void mirror_update_dups(struct ofproto_dpif *ofproto) { int i; for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *m = ofproto->mirrors[i]; if (m) { m->dup_mirrors = MIRROR_MASK_C(1) << i; } } for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *m1 = ofproto->mirrors[i]; int j; if (!m1) { continue; } for (j = i + 1; j < MAX_MIRRORS; j++) { struct ofmirror *m2 = ofproto->mirrors[j]; if (m2 && m1->out == m2->out && m1->out_vlan == m2->out_vlan) { m1->dup_mirrors |= MIRROR_MASK_C(1) << j; m2->dup_mirrors |= m1->dup_mirrors; } } } } static int mirror_set(struct ofproto *ofproto_, void *aux, const struct ofproto_mirror_settings *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); mirror_mask_t mirror_bit; struct ofbundle *bundle; struct ofmirror *mirror; struct ofbundle *out; struct hmapx srcs; /* Contains "struct ofbundle *"s. */ struct hmapx dsts; /* Contains "struct ofbundle *"s. */ int out_vlan; mirror = mirror_lookup(ofproto, aux); if (!s) { mirror_destroy(mirror); return 0; } if (!mirror) { int idx; idx = mirror_scan(ofproto); if (idx < 0) { VLOG_WARN("bridge %s: maximum of %d port mirrors reached, " "cannot create %s", ofproto->up.name, MAX_MIRRORS, s->name); return EFBIG; } mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror); mirror->ofproto = ofproto; mirror->idx = idx; mirror->aux = aux; mirror->out_vlan = -1; mirror->name = NULL; } if (!mirror->name || strcmp(s->name, mirror->name)) { free(mirror->name); mirror->name = xstrdup(s->name); } /* Get the new configuration. */ if (s->out_bundle) { out = bundle_lookup(ofproto, s->out_bundle); if (!out) { mirror_destroy(mirror); return EINVAL; } out_vlan = -1; } else { out = NULL; out_vlan = s->out_vlan; } bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs); bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts); /* If the configuration has not changed, do nothing. */ if (hmapx_equals(&srcs, &mirror->srcs) && hmapx_equals(&dsts, &mirror->dsts) && vlan_bitmap_equal(mirror->vlans, s->src_vlans) && mirror->out == out && mirror->out_vlan == out_vlan) { hmapx_destroy(&srcs); hmapx_destroy(&dsts); return 0; } hmapx_swap(&srcs, &mirror->srcs); hmapx_destroy(&srcs); hmapx_swap(&dsts, &mirror->dsts); hmapx_destroy(&dsts); free(mirror->vlans); mirror->vlans = vlan_bitmap_clone(s->src_vlans); mirror->out = out; mirror->out_vlan = out_vlan; /* Update bundles. */ mirror_bit = MIRROR_MASK_C(1) << mirror->idx; HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) { if (hmapx_contains(&mirror->srcs, bundle)) { bundle->src_mirrors |= mirror_bit; } else { bundle->src_mirrors &= ~mirror_bit; } if (hmapx_contains(&mirror->dsts, bundle)) { bundle->dst_mirrors |= mirror_bit; } else { bundle->dst_mirrors &= ~mirror_bit; } if (mirror->out == bundle) { bundle->mirror_out |= mirror_bit; } else { bundle->mirror_out &= ~mirror_bit; } } ofproto->backer->need_revalidate = REV_RECONFIGURE; ofproto->has_mirrors = true; mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); mirror_update_dups(ofproto); return 0; } static void mirror_destroy(struct ofmirror *mirror) { struct ofproto_dpif *ofproto; mirror_mask_t mirror_bit; struct ofbundle *bundle; int i; if (!mirror) { return; } ofproto = mirror->ofproto; ofproto->backer->need_revalidate = REV_RECONFIGURE; mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); mirror_bit = MIRROR_MASK_C(1) << mirror->idx; HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { bundle->src_mirrors &= ~mirror_bit; bundle->dst_mirrors &= ~mirror_bit; bundle->mirror_out &= ~mirror_bit; } hmapx_destroy(&mirror->srcs); hmapx_destroy(&mirror->dsts); free(mirror->vlans); ofproto->mirrors[mirror->idx] = NULL; free(mirror->name); free(mirror); mirror_update_dups(ofproto); ofproto->has_mirrors = false; for (i = 0; i < MAX_MIRRORS; i++) { if (ofproto->mirrors[i]) { ofproto->has_mirrors = true; break; } } } static int mirror_get_stats(struct ofproto *ofproto_, void *aux, uint64_t *packets, uint64_t *bytes) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofmirror *mirror = mirror_lookup(ofproto, aux); if (!mirror) { *packets = *bytes = UINT64_MAX; return 0; } push_all_stats(); *packets = mirror->packet_count; *bytes = mirror->byte_count; return 0; } static int set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) { mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); } return 0; } static bool is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofbundle *bundle = bundle_lookup(ofproto, aux); return bundle && bundle->mirror_out != 0; } static void forward_bpdu_changed(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); ofproto->backer->need_revalidate = REV_RECONFIGURE; } static void set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time, size_t max_entries) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); mac_learning_set_idle_time(ofproto->ml, idle_time); mac_learning_set_max_entries(ofproto->ml, max_entries); } /* Ports. */ struct ofport_dpif * get_ofp_port(const struct ofproto_dpif *ofproto, ofp_port_t ofp_port) { struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port); return ofport ? ofport_dpif_cast(ofport) : NULL; } struct ofport_dpif * get_odp_port(const struct ofproto_dpif *ofproto, odp_port_t odp_port) { struct ofport_dpif *port = odp_port_to_ofport(ofproto->backer, odp_port); return port && &ofproto->up == port->up.ofproto ? port : NULL; } static void ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto, struct ofproto_port *ofproto_port, struct dpif_port *dpif_port) { ofproto_port->name = dpif_port->name; ofproto_port->type = dpif_port->type; ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no); } static void ofport_update_peer(struct ofport_dpif *ofport) { const struct ofproto_dpif *ofproto; struct dpif_backer *backer; const char *peer_name; if (!netdev_vport_is_patch(ofport->up.netdev)) { return; } backer = ofproto_dpif_cast(ofport->up.ofproto)->backer; backer->need_revalidate = REV_RECONFIGURE; if (ofport->peer) { ofport->peer->peer = NULL; ofport->peer = NULL; } peer_name = netdev_vport_patch_peer(ofport->up.netdev); if (!peer_name) { return; } HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { struct ofport *peer_ofport; struct ofport_dpif *peer; const char *peer_peer; if (ofproto->backer != backer) { continue; } peer_ofport = shash_find_data(&ofproto->up.port_by_name, peer_name); if (!peer_ofport) { continue; } peer = ofport_dpif_cast(peer_ofport); peer_peer = netdev_vport_patch_peer(peer->up.netdev); if (peer_peer && !strcmp(netdev_get_name(ofport->up.netdev), peer_peer)) { ofport->peer = peer; ofport->peer->peer = ofport; } return; } } static void port_run_fast(struct ofport_dpif *ofport) { if (ofport->cfm && cfm_should_send_ccm(ofport->cfm)) { struct ofpbuf packet; ofpbuf_init(&packet, 0); cfm_compose_ccm(ofport->cfm, &packet, ofport->up.pp.hw_addr); send_packet(ofport, &packet); ofpbuf_uninit(&packet); } if (ofport->bfd && bfd_should_send_packet(ofport->bfd)) { struct ofpbuf packet; ofpbuf_init(&packet, 0); bfd_put_packet(ofport->bfd, &packet, ofport->up.pp.hw_addr); send_packet(ofport, &packet); ofpbuf_uninit(&packet); } } static void port_run(struct ofport_dpif *ofport) { long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev); bool carrier_changed = carrier_seq != ofport->carrier_seq; bool enable = netdev_get_carrier(ofport->up.netdev); ofport->carrier_seq = carrier_seq; port_run_fast(ofport); if (ofport->cfm) { int cfm_opup = cfm_get_opup(ofport->cfm); cfm_run(ofport->cfm); enable = enable && !cfm_get_fault(ofport->cfm); if (cfm_opup >= 0) { enable = enable && cfm_opup; } } if (ofport->bfd) { bfd_run(ofport->bfd); enable = enable && bfd_forwarding(ofport->bfd); } if (ofport->bundle) { enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport); if (carrier_changed) { lacp_slave_carrier_changed(ofport->bundle->lacp, ofport); } } if (ofport->may_enable != enable) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); ofproto->backer->need_revalidate = REV_PORT_TOGGLED; } ofport->may_enable = enable; } static void port_wait(struct ofport_dpif *ofport) { if (ofport->cfm) { cfm_wait(ofport->cfm); } if (ofport->bfd) { bfd_wait(ofport->bfd); } } static int port_query_by_name(const struct ofproto *ofproto_, const char *devname, struct ofproto_port *ofproto_port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct dpif_port dpif_port; int error; if (sset_contains(&ofproto->ghost_ports, devname)) { const char *type = netdev_get_type_from_name(devname); /* We may be called before ofproto->up.port_by_name is populated with * the appropriate ofport. For this reason, we must get the name and * type from the netdev layer directly. */ if (type) { const struct ofport *ofport; ofport = shash_find_data(&ofproto->up.port_by_name, devname); ofproto_port->ofp_port = ofport ? ofport->ofp_port : OFPP_NONE; ofproto_port->name = xstrdup(devname); ofproto_port->type = xstrdup(type); return 0; } return ENODEV; } if (!sset_contains(&ofproto->ports, devname)) { return ENODEV; } error = dpif_port_query_by_name(ofproto->backer->dpif, devname, &dpif_port); if (!error) { ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port); } return error; } static int port_add(struct ofproto *ofproto_, struct netdev *netdev) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); const char *devname = netdev_get_name(netdev); char namebuf[NETDEV_VPORT_NAME_BUFSIZE]; const char *dp_port_name; if (netdev_vport_is_patch(netdev)) { sset_add(&ofproto->ghost_ports, netdev_get_name(netdev)); return 0; } dp_port_name = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf); if (!dpif_port_exists(ofproto->backer->dpif, dp_port_name)) { odp_port_t port_no = ODPP_NONE; int error; error = dpif_port_add(ofproto->backer->dpif, netdev, &port_no); if (error) { return error; } if (netdev_get_tunnel_config(netdev)) { simap_put(&ofproto->backer->tnl_backers, dp_port_name, odp_to_u32(port_no)); } } if (netdev_get_tunnel_config(netdev)) { sset_add(&ofproto->ghost_ports, devname); } else { sset_add(&ofproto->ports, devname); } return 0; } static int port_del(struct ofproto *ofproto_, ofp_port_t ofp_port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port); int error = 0; if (!ofport) { return 0; } sset_find_and_delete(&ofproto->ghost_ports, netdev_get_name(ofport->up.netdev)); ofproto->backer->need_revalidate = REV_RECONFIGURE; if (!ofport->is_tunnel) { error = dpif_port_del(ofproto->backer->dpif, ofport->odp_port); if (!error) { /* The caller is going to close ofport->up.netdev. If this is a * bonded port, then the bond is using that netdev, so remove it * from the bond. The client will need to reconfigure everything * after deleting ports, so then the slave will get re-added. */ bundle_remove(&ofport->up); } } return error; } static int port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); int error; push_all_stats(); error = netdev_get_stats(ofport->up.netdev, stats); if (!error && ofport_->ofp_port == OFPP_LOCAL) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); /* ofproto->stats.tx_packets represents packets that we created * internally and sent to some port (e.g. packets sent with * send_packet()). Account for them as if they had come from * OFPP_LOCAL and got forwarded. */ if (stats->rx_packets != UINT64_MAX) { stats->rx_packets += ofproto->stats.tx_packets; } if (stats->rx_bytes != UINT64_MAX) { stats->rx_bytes += ofproto->stats.tx_bytes; } /* ofproto->stats.rx_packets represents packets that were received on * some port and we processed internally and dropped (e.g. STP). * Account for them as if they had been forwarded to OFPP_LOCAL. */ if (stats->tx_packets != UINT64_MAX) { stats->tx_packets += ofproto->stats.rx_packets; } if (stats->tx_bytes != UINT64_MAX) { stats->tx_bytes += ofproto->stats.rx_bytes; } } return error; } struct port_dump_state { uint32_t bucket; uint32_t offset; bool ghost; struct ofproto_port port; bool has_port; }; static int port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep) { *statep = xzalloc(sizeof(struct port_dump_state)); return 0; } static int port_dump_next(const struct ofproto *ofproto_, void *state_, struct ofproto_port *port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct port_dump_state *state = state_; const struct sset *sset; struct sset_node *node; if (state->has_port) { ofproto_port_destroy(&state->port); state->has_port = false; } sset = state->ghost ? &ofproto->ghost_ports : &ofproto->ports; while ((node = sset_at_position(sset, &state->bucket, &state->offset))) { int error; error = port_query_by_name(ofproto_, node->name, &state->port); if (!error) { *port = state->port; state->has_port = true; return 0; } else if (error != ENODEV) { return error; } } if (!state->ghost) { state->ghost = true; state->bucket = 0; state->offset = 0; return port_dump_next(ofproto_, state_, port); } return EOF; } static int port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_) { struct port_dump_state *state = state_; if (state->has_port) { ofproto_port_destroy(&state->port); } free(state); return 0; } static int port_poll(const struct ofproto *ofproto_, char **devnamep) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (ofproto->port_poll_errno) { int error = ofproto->port_poll_errno; ofproto->port_poll_errno = 0; return error; } if (sset_is_empty(&ofproto->port_poll_set)) { return EAGAIN; } *devnamep = sset_pop(&ofproto->port_poll_set); return 0; } static void port_poll_wait(const struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); dpif_port_poll_wait(ofproto->backer->dpif); } static int port_is_lacp_current(const struct ofport *ofport_) { const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); return (ofport->bundle && ofport->bundle->lacp ? lacp_slave_is_current(ofport->bundle->lacp, ofport) : -1); } /* Upcall handling. */ /* Flow miss batching. * * Some dpifs implement operations faster when you hand them off in a batch. * To allow batching, "struct flow_miss" queues the dpif-related work needed * for a given flow. Each "struct flow_miss" corresponds to sending one or * more packets, plus possibly installing the flow in the dpif. * * So far we only batch the operations that affect flow setup time the most. * It's possible to batch more than that, but the benefit might be minimal. */ struct flow_miss { struct hmap_node hmap_node; struct ofproto_dpif *ofproto; struct flow flow; enum odp_key_fitness key_fitness; const struct nlattr *key; size_t key_len; struct list packets; enum dpif_upcall_type upcall_type; }; struct flow_miss_op { struct dpif_op dpif_op; uint64_t slow_stub[128 / 8]; /* Buffer for compose_slow_path() */ struct xlate_out xout; bool xout_garbage; /* 'xout' needs to be uninitialized? */ struct ofpbuf mask; /* Flow mask for "put" ops. */ struct odputil_keybuf maskbuf; /* If this is a "put" op, then a pointer to the subfacet that should * be marked as uninstalled if the operation fails. */ struct subfacet *subfacet; }; /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_NO_MATCH to each * OpenFlow controller as necessary according to their individual * configurations. */ static void send_packet_in_miss(struct ofproto_dpif *ofproto, const struct ofpbuf *packet, const struct flow *flow) { struct ofputil_packet_in pin; pin.packet = packet->data; pin.packet_len = packet->size; pin.reason = OFPR_NO_MATCH; pin.controller_id = 0; pin.table_id = 0; pin.cookie = 0; pin.send_len = 0; /* not used for flow table misses */ flow_get_metadata(flow, &pin.fmd); connmgr_send_packet_in(ofproto->up.connmgr, &pin); } static struct flow_miss * flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto, const struct flow *flow, uint32_t hash) { struct flow_miss *miss; HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) { if (miss->ofproto == ofproto && flow_equal(&miss->flow, flow)) { return miss; } } return NULL; } /* Partially Initializes 'op' as an "execute" operation for 'miss' and * 'packet'. The caller must initialize op->actions and op->actions_len. If * 'miss' is associated with a subfacet the caller must also initialize the * returned op->subfacet, and if anything needs to be freed after processing * the op, the caller must initialize op->garbage also. */ static void init_flow_miss_execute_op(struct flow_miss *miss, struct ofpbuf *packet, struct flow_miss_op *op) { if (miss->flow.in_port.ofp_port != vsp_realdev_to_vlandev(miss->ofproto, miss->flow.in_port.ofp_port, miss->flow.vlan_tci)) { /* This packet was received on a VLAN splinter port. We * added a VLAN to the packet to make the packet resemble * the flow, but the actions were composed assuming that * the packet contained no VLAN. So, we must remove the * VLAN header from the packet before trying to execute the * actions. */ eth_pop_vlan(packet); } op->subfacet = NULL; op->xout_garbage = false; op->dpif_op.type = DPIF_OP_EXECUTE; op->dpif_op.u.execute.key = miss->key; op->dpif_op.u.execute.key_len = miss->key_len; op->dpif_op.u.execute.packet = packet; ofpbuf_use_stack(&op->mask, &op->maskbuf, sizeof op->maskbuf); } /* Helper for handle_flow_miss_without_facet() and * handle_flow_miss_with_facet(). */ static void handle_flow_miss_common(struct rule_dpif *rule, struct ofpbuf *packet, const struct flow *flow) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); if (rule->up.cr.priority == FAIL_OPEN_PRIORITY) { /* * Extra-special case for fail-open mode. * * We are in fail-open mode and the packet matched the fail-open * rule, but we are connected to a controller too. We should send * the packet up to the controller in the hope that it will try to * set up a flow and thereby allow us to exit fail-open. * * See the top-level comment in fail-open.c for more information. */ send_packet_in_miss(ofproto, packet, flow); } } /* Figures out whether a flow that missed in 'ofproto', whose details are in * 'miss' masked by 'wc', is likely to be worth tracking in detail in userspace * and (usually) installing a datapath flow. The answer is usually "yes" (a * return value of true). However, for short flows the cost of bookkeeping is * much higher than the benefits, so when the datapath holds a large number of * flows we impose some heuristics to decide which flows are likely to be worth * tracking. */ static bool flow_miss_should_make_facet(struct flow_miss *miss, struct flow_wildcards *wc) { struct dpif_backer *backer = miss->ofproto->backer; uint32_t hash; switch (flow_miss_model) { case OFPROTO_HANDLE_MISS_AUTO: break; case OFPROTO_HANDLE_MISS_WITH_FACETS: return true; case OFPROTO_HANDLE_MISS_WITHOUT_FACETS: return false; } if (!backer->governor) { size_t n_subfacets; n_subfacets = hmap_count(&backer->subfacets); if (n_subfacets * 2 <= flow_eviction_threshold) { return true; } backer->governor = governor_create(); } hash = flow_hash_in_wildcards(&miss->flow, wc, 0); return governor_should_install_flow(backer->governor, hash, list_size(&miss->packets)); } /* Handles 'miss' without creating a facet or subfacet or creating any datapath * flow. 'miss->flow' must have matched 'rule' and been xlated into 'xout'. * May add an "execute" operation to 'ops' and increment '*n_ops'. */ static void handle_flow_miss_without_facet(struct rule_dpif *rule, struct xlate_out *xout, struct flow_miss *miss, struct flow_miss_op *ops, size_t *n_ops) { struct ofpbuf *packet; LIST_FOR_EACH (packet, list_node, &miss->packets) { COVERAGE_INC(facet_suppress); handle_flow_miss_common(rule, packet, &miss->flow); if (xout->slow) { struct xlate_in xin; xlate_in_init(&xin, miss->ofproto, &miss->flow, rule, 0, packet); xlate_actions_for_side_effects(&xin); } if (xout->odp_actions.size) { struct flow_miss_op *op = &ops[*n_ops]; struct dpif_execute *execute = &op->dpif_op.u.execute; init_flow_miss_execute_op(miss, packet, op); xlate_out_copy(&op->xout, xout); execute->actions = op->xout.odp_actions.data; execute->actions_len = op->xout.odp_actions.size; op->xout_garbage = true; (*n_ops)++; } } } /* Handles 'miss', which matches 'facet'. May add any required datapath * operations to 'ops', incrementing '*n_ops' for each new op. * * All of the packets in 'miss' are considered to have arrived at time 'now'. * This is really important only for new facets: if we just called time_msec() * here, then the new subfacet or its packets could look (occasionally) as * though it was used some time after the facet was used. That can make a * one-packet flow look like it has a nonzero duration, which looks odd in * e.g. NetFlow statistics. * * If non-null, 'stats' will be folded into 'facet'. */ static void handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet, long long int now, struct dpif_flow_stats *stats, struct flow_miss_op *ops, size_t *n_ops) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); enum subfacet_path want_path; struct subfacet *subfacet; struct ofpbuf *packet; subfacet = subfacet_create(facet, miss, now); want_path = facet->xout.slow ? SF_SLOW_PATH : SF_FAST_PATH; if (stats) { subfacet_update_stats(subfacet, stats); } LIST_FOR_EACH (packet, list_node, &miss->packets) { struct flow_miss_op *op = &ops[*n_ops]; handle_flow_miss_common(facet->rule, packet, &miss->flow); if (want_path != SF_FAST_PATH) { struct xlate_in xin; xlate_in_init(&xin, ofproto, &miss->flow, facet->rule, 0, packet); xlate_actions_for_side_effects(&xin); } if (facet->xout.odp_actions.size) { struct dpif_execute *execute = &op->dpif_op.u.execute; init_flow_miss_execute_op(miss, packet, op); execute->actions = facet->xout.odp_actions.data, execute->actions_len = facet->xout.odp_actions.size; (*n_ops)++; } } if (miss->upcall_type == DPIF_UC_MISS || subfacet->path != want_path) { struct flow_miss_op *op = &ops[(*n_ops)++]; struct dpif_flow_put *put = &op->dpif_op.u.flow_put; subfacet->path = want_path; ofpbuf_use_stack(&op->mask, &op->maskbuf, sizeof op->maskbuf); if (enable_megaflows) { odp_flow_key_from_mask(&op->mask, &facet->xout.wc.masks, &miss->flow, UINT32_MAX); } op->xout_garbage = false; op->dpif_op.type = DPIF_OP_FLOW_PUT; op->subfacet = subfacet; put->flags = DPIF_FP_CREATE | DPIF_FP_MODIFY; put->key = miss->key; put->key_len = miss->key_len; put->mask = op->mask.data; put->mask_len = op->mask.size; if (want_path == SF_FAST_PATH) { put->actions = facet->xout.odp_actions.data; put->actions_len = facet->xout.odp_actions.size; } else { compose_slow_path(ofproto, &miss->flow, facet->xout.slow, op->slow_stub, sizeof op->slow_stub, &put->actions, &put->actions_len); } put->stats = NULL; } } /* Handles flow miss 'miss'. May add any required datapath operations * to 'ops', incrementing '*n_ops' for each new op. */ static void handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops, size_t *n_ops) { struct ofproto_dpif *ofproto = miss->ofproto; struct dpif_flow_stats stats__; struct dpif_flow_stats *stats = &stats__; struct ofpbuf *packet; struct facet *facet; long long int now; now = time_msec(); memset(stats, 0, sizeof *stats); stats->used = now; LIST_FOR_EACH (packet, list_node, &miss->packets) { stats->tcp_flags |= packet_get_tcp_flags(packet, &miss->flow); stats->n_bytes += packet->size; stats->n_packets++; } facet = facet_lookup_valid(ofproto, &miss->flow); if (!facet) { struct flow_wildcards wc; struct rule_dpif *rule; struct xlate_out xout; struct xlate_in xin; flow_wildcards_init_catchall(&wc); rule = rule_dpif_lookup(ofproto, &miss->flow, &wc); rule_credit_stats(rule, stats); xlate_in_init(&xin, ofproto, &miss->flow, rule, stats->tcp_flags, NULL); xin.resubmit_stats = stats; xin.may_learn = true; xlate_actions(&xin, &xout); flow_wildcards_or(&xout.wc, &xout.wc, &wc); /* There does not exist a bijection between 'struct flow' and datapath * flow keys with fitness ODP_FIT_TO_LITTLE. This breaks a fundamental * assumption used throughout the facet and subfacet handling code. * Since we have to handle these misses in userspace anyway, we simply * skip facet creation, avoiding the problem altogether. */ if (miss->key_fitness == ODP_FIT_TOO_LITTLE || !flow_miss_should_make_facet(miss, &xout.wc)) { handle_flow_miss_without_facet(rule, &xout, miss, ops, n_ops); return; } facet = facet_create(miss, rule, &xout, stats); stats = NULL; } handle_flow_miss_with_facet(miss, facet, now, stats, ops, n_ops); } static struct drop_key * drop_key_lookup(const struct dpif_backer *backer, const struct nlattr *key, size_t key_len) { struct drop_key *drop_key; HMAP_FOR_EACH_WITH_HASH (drop_key, hmap_node, hash_bytes(key, key_len, 0), &backer->drop_keys) { if (drop_key->key_len == key_len && !memcmp(drop_key->key, key, key_len)) { return drop_key; } } return NULL; } static void drop_key_clear(struct dpif_backer *backer) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15); struct drop_key *drop_key, *next; HMAP_FOR_EACH_SAFE (drop_key, next, hmap_node, &backer->drop_keys) { int error; error = dpif_flow_del(backer->dpif, drop_key->key, drop_key->key_len, NULL); if (error && !VLOG_DROP_WARN(&rl)) { struct ds ds = DS_EMPTY_INITIALIZER; odp_flow_key_format(drop_key->key, drop_key->key_len, &ds); VLOG_WARN("Failed to delete drop key (%s) (%s)", ovs_strerror(error), ds_cstr(&ds)); ds_destroy(&ds); } hmap_remove(&backer->drop_keys, &drop_key->hmap_node); free(drop_key->key); free(drop_key); } } /* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key' * respectively), populates 'flow' with the result of odp_flow_key_to_flow(). * Optionally, if nonnull, populates 'fitnessp' with the fitness of 'flow' as * returned by odp_flow_key_to_flow(). Also, optionally populates 'ofproto' * with the ofproto_dpif, and 'odp_in_port' with the datapath in_port, that * 'packet' ingressed. * * If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets * 'flow''s in_port to OFPP_NONE. * * This function does post-processing on data returned from * odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest * of the upcall processing logic. In particular, if the extracted in_port is * a VLAN splinter port, it replaces flow->in_port by the "real" port, sets * flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes * a VLAN header onto 'packet' (if it is nonnull). * * Similarly, this function also includes some logic to help with tunnels. It * may modify 'flow' as necessary to make the tunneling implementation * transparent to the upcall processing logic. * * Returns 0 if successful, ENODEV if the parsed flow has no associated ofport, * or some other positive errno if there are other problems. */ static int ofproto_receive(const struct dpif_backer *backer, struct ofpbuf *packet, const struct nlattr *key, size_t key_len, struct flow *flow, enum odp_key_fitness *fitnessp, struct ofproto_dpif **ofproto, odp_port_t *odp_in_port) { const struct ofport_dpif *port; enum odp_key_fitness fitness; int error = ENODEV; fitness = odp_flow_key_to_flow(key, key_len, flow); if (fitness == ODP_FIT_ERROR) { error = EINVAL; goto exit; } if (odp_in_port) { *odp_in_port = flow->in_port.odp_port; } port = (tnl_port_should_receive(flow) ? tnl_port_receive(flow) : odp_port_to_ofport(backer, flow->in_port.odp_port)); flow->in_port.ofp_port = port ? port->up.ofp_port : OFPP_NONE; if (!port) { goto exit; } /* XXX: Since the tunnel module is not scoped per backer, for a tunnel port * it's theoretically possible that we'll receive an ofport belonging to an * entirely different datapath. In practice, this can't happen because no * platforms has two separate datapaths which each support tunneling. */ ovs_assert(ofproto_dpif_cast(port->up.ofproto)->backer == backer); if (vsp_adjust_flow(ofproto_dpif_cast(port->up.ofproto), flow)) { if (packet) { /* Make the packet resemble the flow, so that it gets sent to * an OpenFlow controller properly, so that it looks correct * for sFlow, and so that flow_extract() will get the correct * vlan_tci if it is called on 'packet'. * * The allocated space inside 'packet' probably also contains * 'key', that is, both 'packet' and 'key' are probably part of * a struct dpif_upcall (see the large comment on that * structure definition), so pushing data on 'packet' is in * general not a good idea since it could overwrite 'key' or * free it as a side effect. However, it's OK in this special * case because we know that 'packet' is inside a Netlink * attribute: pushing 4 bytes will just overwrite the 4-byte * "struct nlattr", which is fine since we don't need that * header anymore. */ eth_push_vlan(packet, flow->vlan_tci); } /* We can't reproduce 'key' from 'flow'. */ fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness; } error = 0; if (ofproto) { *ofproto = ofproto_dpif_cast(port->up.ofproto); } exit: if (fitnessp) { *fitnessp = fitness; } return error; } static void handle_miss_upcalls(struct dpif_backer *backer, struct dpif_upcall *upcalls, size_t n_upcalls) { struct dpif_upcall *upcall; struct flow_miss *miss; struct flow_miss misses[FLOW_MISS_MAX_BATCH]; struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH * 2]; struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH * 2]; struct hmap todo; int n_misses; size_t n_ops; size_t i; if (!n_upcalls) { return; } /* Construct the to-do list. * * This just amounts to extracting the flow from each packet and sticking * the packets that have the same flow in the same "flow_miss" structure so * that we can process them together. */ hmap_init(&todo); n_misses = 0; for (upcall = upcalls; upcall < &upcalls[n_upcalls]; upcall++) { struct flow_miss *miss = &misses[n_misses]; struct flow_miss *existing_miss; struct ofproto_dpif *ofproto; odp_port_t odp_in_port; struct flow flow; uint32_t hash; int error; error = ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len, &flow, &miss->key_fitness, &ofproto, &odp_in_port); if (error == ENODEV) { struct drop_key *drop_key; /* Received packet on datapath port for which we couldn't * associate an ofproto. This can happen if a port is removed * while traffic is being received. Print a rate-limited message * in case it happens frequently. Install a drop flow so * that future packets of the flow are inexpensively dropped * in the kernel. */ VLOG_INFO_RL(&rl, "received packet on unassociated datapath port " "%"PRIu32, odp_in_port); drop_key = drop_key_lookup(backer, upcall->key, upcall->key_len); if (!drop_key) { drop_key = xmalloc(sizeof *drop_key); drop_key->key = xmemdup(upcall->key, upcall->key_len); drop_key->key_len = upcall->key_len; hmap_insert(&backer->drop_keys, &drop_key->hmap_node, hash_bytes(drop_key->key, drop_key->key_len, 0)); dpif_flow_put(backer->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY, drop_key->key, drop_key->key_len, NULL, 0, NULL, 0, NULL); } continue; } if (error) { continue; } ofproto->n_missed++; flow_extract(upcall->packet, flow.skb_priority, flow.skb_mark, &flow.tunnel, &flow.in_port, &miss->flow); /* Add other packets to a to-do list. */ hash = flow_hash(&miss->flow, 0); existing_miss = flow_miss_find(&todo, ofproto, &miss->flow, hash); if (!existing_miss) { hmap_insert(&todo, &miss->hmap_node, hash); miss->ofproto = ofproto; miss->key = upcall->key; miss->key_len = upcall->key_len; miss->upcall_type = upcall->type; list_init(&miss->packets); n_misses++; } else { miss = existing_miss; } list_push_back(&miss->packets, &upcall->packet->list_node); } /* Process each element in the to-do list, constructing the set of * operations to batch. */ n_ops = 0; HMAP_FOR_EACH (miss, hmap_node, &todo) { handle_flow_miss(miss, flow_miss_ops, &n_ops); } ovs_assert(n_ops <= ARRAY_SIZE(flow_miss_ops)); /* Execute batch. */ for (i = 0; i < n_ops; i++) { dpif_ops[i] = &flow_miss_ops[i].dpif_op; } dpif_operate(backer->dpif, dpif_ops, n_ops); for (i = 0; i < n_ops; i++) { if (dpif_ops[i]->error != 0 && flow_miss_ops[i].dpif_op.type == DPIF_OP_FLOW_PUT && flow_miss_ops[i].subfacet) { struct subfacet *subfacet = flow_miss_ops[i].subfacet; COVERAGE_INC(subfacet_install_fail); subfacet->path = SF_NOT_INSTALLED; } /* Free memory. */ if (flow_miss_ops[i].xout_garbage) { xlate_out_uninit(&flow_miss_ops[i].xout); } } hmap_destroy(&todo); } static enum { SFLOW_UPCALL, MISS_UPCALL, BAD_UPCALL, FLOW_SAMPLE_UPCALL, IPFIX_UPCALL } classify_upcall(const struct dpif_upcall *upcall) { size_t userdata_len; union user_action_cookie cookie; /* First look at the upcall type. */ switch (upcall->type) { case DPIF_UC_ACTION: break; case DPIF_UC_MISS: return MISS_UPCALL; case DPIF_N_UC_TYPES: default: VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type); return BAD_UPCALL; } /* "action" upcalls need a closer look. */ if (!upcall->userdata) { VLOG_WARN_RL(&rl, "action upcall missing cookie"); return BAD_UPCALL; } userdata_len = nl_attr_get_size(upcall->userdata); if (userdata_len < sizeof cookie.type || userdata_len > sizeof cookie) { VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %zu", userdata_len); return BAD_UPCALL; } memset(&cookie, 0, sizeof cookie); memcpy(&cookie, nl_attr_get(upcall->userdata), userdata_len); if (userdata_len == sizeof cookie.sflow && cookie.type == USER_ACTION_COOKIE_SFLOW) { return SFLOW_UPCALL; } else if (userdata_len == sizeof cookie.slow_path && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) { return MISS_UPCALL; } else if (userdata_len == sizeof cookie.flow_sample && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) { return FLOW_SAMPLE_UPCALL; } else if (userdata_len == sizeof cookie.ipfix && cookie.type == USER_ACTION_COOKIE_IPFIX) { return IPFIX_UPCALL; } else { VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16 " and size %zu", cookie.type, userdata_len); return BAD_UPCALL; } } static void handle_sflow_upcall(struct dpif_backer *backer, const struct dpif_upcall *upcall) { struct ofproto_dpif *ofproto; union user_action_cookie cookie; struct flow flow; odp_port_t odp_in_port; if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len, &flow, NULL, &ofproto, &odp_in_port) || !ofproto->sflow) { return; } memset(&cookie, 0, sizeof cookie); memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof cookie.sflow); dpif_sflow_received(ofproto->sflow, upcall->packet, &flow, odp_in_port, &cookie); } static void handle_flow_sample_upcall(struct dpif_backer *backer, const struct dpif_upcall *upcall) { struct ofproto_dpif *ofproto; union user_action_cookie cookie; struct flow flow; if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len, &flow, NULL, &ofproto, NULL) || !ofproto->ipfix) { return; } memset(&cookie, 0, sizeof cookie); memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof cookie.flow_sample); /* The flow reflects exactly the contents of the packet. Sample * the packet using it. */ dpif_ipfix_flow_sample(ofproto->ipfix, upcall->packet, &flow, cookie.flow_sample.collector_set_id, cookie.flow_sample.probability, cookie.flow_sample.obs_domain_id, cookie.flow_sample.obs_point_id); } static void handle_ipfix_upcall(struct dpif_backer *backer, const struct dpif_upcall *upcall) { struct ofproto_dpif *ofproto; struct flow flow; if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len, &flow, NULL, &ofproto, NULL) || !ofproto->ipfix) { return; } /* The flow reflects exactly the contents of the packet. Sample * the packet using it. */ dpif_ipfix_bridge_sample(ofproto->ipfix, upcall->packet, &flow); } static int handle_upcalls(struct dpif_backer *backer, unsigned int max_batch) { struct dpif_upcall misses[FLOW_MISS_MAX_BATCH]; struct ofpbuf miss_bufs[FLOW_MISS_MAX_BATCH]; uint64_t miss_buf_stubs[FLOW_MISS_MAX_BATCH][4096 / 8]; int n_processed; int n_misses; int i; ovs_assert(max_batch <= FLOW_MISS_MAX_BATCH); n_misses = 0; for (n_processed = 0; n_processed < max_batch; n_processed++) { struct dpif_upcall *upcall = &misses[n_misses]; struct ofpbuf *buf = &miss_bufs[n_misses]; int error; ofpbuf_use_stub(buf, miss_buf_stubs[n_misses], sizeof miss_buf_stubs[n_misses]); error = dpif_recv(backer->dpif, upcall, buf); if (error) { ofpbuf_uninit(buf); break; } switch (classify_upcall(upcall)) { case MISS_UPCALL: /* Handle it later. */ n_misses++; break; case SFLOW_UPCALL: handle_sflow_upcall(backer, upcall); ofpbuf_uninit(buf); break; case FLOW_SAMPLE_UPCALL: handle_flow_sample_upcall(backer, upcall); ofpbuf_uninit(buf); break; case IPFIX_UPCALL: handle_ipfix_upcall(backer, upcall); ofpbuf_uninit(buf); break; case BAD_UPCALL: ofpbuf_uninit(buf); break; } } /* Handle deferred MISS_UPCALL processing. */ handle_miss_upcalls(backer, misses, n_misses); for (i = 0; i < n_misses; i++) { ofpbuf_uninit(&miss_bufs[i]); } return n_processed; } /* Flow expiration. */ static int subfacet_max_idle(const struct dpif_backer *); static void update_stats(struct dpif_backer *); static void rule_expire(struct rule_dpif *); static void expire_subfacets(struct dpif_backer *, int dp_max_idle); /* This function is called periodically by run(). Its job is to collect * updates for the flows that have been installed into the datapath, most * importantly when they last were used, and then use that information to * expire flows that have not been used recently. * * Returns the number of milliseconds after which it should be called again. */ static int expire(struct dpif_backer *backer) { struct ofproto_dpif *ofproto; size_t n_subfacets; int max_idle; /* Periodically clear out the drop keys in an effort to keep them * relatively few. */ drop_key_clear(backer); /* Update stats for each flow in the backer. */ update_stats(backer); n_subfacets = hmap_count(&backer->subfacets); if (n_subfacets) { struct subfacet *subfacet; long long int total, now; total = 0; now = time_msec(); HMAP_FOR_EACH (subfacet, hmap_node, &backer->subfacets) { total += now - subfacet->created; } backer->avg_subfacet_life += total / n_subfacets; } backer->avg_subfacet_life /= 2; backer->avg_n_subfacet += n_subfacets; backer->avg_n_subfacet /= 2; backer->max_n_subfacet = MAX(backer->max_n_subfacet, n_subfacets); max_idle = subfacet_max_idle(backer); expire_subfacets(backer, max_idle); HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { struct rule *rule, *next_rule; if (ofproto->backer != backer) { continue; } /* Expire OpenFlow flows whose idle_timeout or hard_timeout * has passed. */ LIST_FOR_EACH_SAFE (rule, next_rule, expirable, &ofproto->up.expirable) { rule_expire(rule_dpif_cast(rule)); } /* All outstanding data in existing flows has been accounted, so it's a * good time to do bond rebalancing. */ if (ofproto->has_bonded_bundles) { struct ofbundle *bundle; HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { if (bundle->bond) { bond_rebalance(bundle->bond, &backer->revalidate_set); } } } } return MIN(max_idle, 1000); } /* Updates flow table statistics given that the datapath just reported 'stats' * as 'subfacet''s statistics. */ static void update_subfacet_stats(struct subfacet *subfacet, const struct dpif_flow_stats *stats) { struct facet *facet = subfacet->facet; struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); struct dpif_flow_stats diff; diff.tcp_flags = stats->tcp_flags; diff.used = stats->used; if (stats->n_packets >= subfacet->dp_packet_count) { diff.n_packets = stats->n_packets - subfacet->dp_packet_count; } else { VLOG_WARN_RL(&rl, "unexpected packet count from the datapath"); diff.n_packets = 0; } if (stats->n_bytes >= subfacet->dp_byte_count) { diff.n_bytes = stats->n_bytes - subfacet->dp_byte_count; } else { VLOG_WARN_RL(&rl, "unexpected byte count from datapath"); diff.n_bytes = 0; } ofproto->n_hit += diff.n_packets; subfacet->dp_packet_count = stats->n_packets; subfacet->dp_byte_count = stats->n_bytes; subfacet_update_stats(subfacet, &diff); if (facet->accounted_bytes < facet->byte_count) { facet_learn(facet); facet_account(facet); facet->accounted_bytes = facet->byte_count; } } /* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing * about, or a flow that shouldn't be installed but was anyway. Delete it. */ static void delete_unexpected_flow(struct dpif_backer *backer, const struct nlattr *key, size_t key_len) { if (!VLOG_DROP_WARN(&rl)) { struct ds s; ds_init(&s); odp_flow_key_format(key, key_len, &s); VLOG_WARN("unexpected flow: %s", ds_cstr(&s)); ds_destroy(&s); } COVERAGE_INC(facet_unexpected); dpif_flow_del(backer->dpif, key, key_len, NULL); } /* Update 'packet_count', 'byte_count', and 'used' members of installed facets. * * This function also pushes statistics updates to rules which each facet * resubmits into. Generally these statistics will be accurate. However, if a * facet changes the rule it resubmits into at some time in between * update_stats() runs, it is possible that statistics accrued to the * old rule will be incorrectly attributed to the new rule. This could be * avoided by calling update_stats() whenever rules are created or * deleted. However, the performance impact of making so many calls to the * datapath do not justify the benefit of having perfectly accurate statistics. * * In addition, this function maintains per ofproto flow hit counts. The patch * port is not treated specially. e.g. A packet ingress from br0 patched into * br1 will increase the hit count of br0 by 1, however, does not affect * the hit or miss counts of br1. */ static void update_stats(struct dpif_backer *backer) { const struct dpif_flow_stats *stats; struct dpif_flow_dump dump; const struct nlattr *key, *mask; size_t key_len, mask_len; dpif_flow_dump_start(&dump, backer->dpif); while (dpif_flow_dump_next(&dump, &key, &key_len, &mask, &mask_len, NULL, NULL, &stats)) { struct subfacet *subfacet; uint32_t key_hash; key_hash = odp_flow_key_hash(key, key_len); subfacet = subfacet_find(backer, key, key_len, key_hash); switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) { case SF_FAST_PATH: update_subfacet_stats(subfacet, stats); break; case SF_SLOW_PATH: /* Stats are updated per-packet. */ break; case SF_NOT_INSTALLED: default: delete_unexpected_flow(backer, key, key_len); break; } run_fast_rl(); } dpif_flow_dump_done(&dump); update_moving_averages(backer); } /* Calculates and returns the number of milliseconds of idle time after which * subfacets should expire from the datapath. When a subfacet expires, we fold * its statistics into its facet, and when a facet's last subfacet expires, we * fold its statistic into its rule. */ static int subfacet_max_idle(const struct dpif_backer *backer) { /* * Idle time histogram. * * Most of the time a switch has a relatively small number of subfacets. * When this is the case we might as well keep statistics for all of them * in userspace and to cache them in the kernel datapath for performance as * well. * * As the number of subfacets increases, the memory required to maintain * statistics about them in userspace and in the kernel becomes * significant. However, with a large number of subfacets it is likely * that only a few of them are "heavy hitters" that consume a large amount * of bandwidth. At this point, only heavy hitters are worth caching in * the kernel and maintaining in userspaces; other subfacets we can * discard. * * The technique used to compute the idle time is to build a histogram with * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet * that is installed in the kernel gets dropped in the appropriate bucket. * After the histogram has been built, we compute the cutoff so that only * the most-recently-used 1% of subfacets (but at least * flow_eviction_threshold flows) are kept cached. At least * the most-recently-used bucket of subfacets is kept, so actually an * arbitrary number of subfacets can be kept in any given expiration run * (though the next run will delete most of those unless they receive * additional data). * * This requires a second pass through the subfacets, in addition to the * pass made by update_stats(), because the former function never looks at * uninstallable subfacets. */ enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) }; enum { N_BUCKETS = 5000 / BUCKET_WIDTH }; int buckets[N_BUCKETS] = { 0 }; int total, subtotal, bucket; struct subfacet *subfacet; long long int now; int i; total = hmap_count(&backer->subfacets); if (total <= flow_eviction_threshold) { return N_BUCKETS * BUCKET_WIDTH; } /* Build histogram. */ now = time_msec(); HMAP_FOR_EACH (subfacet, hmap_node, &backer->subfacets) { long long int idle = now - subfacet->used; int bucket = (idle <= 0 ? 0 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1 : (unsigned int) idle / BUCKET_WIDTH); buckets[bucket]++; } /* Find the first bucket whose flows should be expired. */ subtotal = bucket = 0; do { subtotal += buckets[bucket++]; } while (bucket < N_BUCKETS && subtotal < MAX(flow_eviction_threshold, total / 100)); if (VLOG_IS_DBG_ENABLED()) { struct ds s; ds_init(&s); ds_put_cstr(&s, "keep"); for (i = 0; i < N_BUCKETS; i++) { if (i == bucket) { ds_put_cstr(&s, ", drop"); } if (buckets[i]) { ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]); } } VLOG_INFO("%s (msec:count)", ds_cstr(&s)); ds_destroy(&s); } return bucket * BUCKET_WIDTH; } static void expire_subfacets(struct dpif_backer *backer, int dp_max_idle) { /* Cutoff time for most flows. */ long long int normal_cutoff = time_msec() - dp_max_idle; /* We really want to keep flows for special protocols around, so use a more * conservative cutoff. */ long long int special_cutoff = time_msec() - 10000; struct subfacet *subfacet, *next_subfacet; struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH]; int n_batch; n_batch = 0; HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node, &backer->subfacets) { long long int cutoff; cutoff = (subfacet->facet->xout.slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP) ? special_cutoff : normal_cutoff); if (subfacet->used < cutoff) { if (subfacet->path != SF_NOT_INSTALLED) { batch[n_batch++] = subfacet; if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) { subfacet_destroy_batch(backer, batch, n_batch); n_batch = 0; } } else { subfacet_destroy(subfacet); } } } if (n_batch > 0) { subfacet_destroy_batch(backer, batch, n_batch); } } /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules, * then delete it entirely. */ static void rule_expire(struct rule_dpif *rule) { struct facet *facet, *next_facet; long long int now; uint8_t reason; if (rule->up.pending) { /* We'll have to expire it later. */ return; } /* Has 'rule' expired? */ now = time_msec(); if (rule->up.hard_timeout && now > rule->up.modified + rule->up.hard_timeout * 1000) { reason = OFPRR_HARD_TIMEOUT; } else if (rule->up.idle_timeout && now > rule->up.used + rule->up.idle_timeout * 1000) { reason = OFPRR_IDLE_TIMEOUT; } else { return; } COVERAGE_INC(ofproto_dpif_expired); /* Update stats. (This is a no-op if the rule expired due to an idle * timeout, because that only happens when the rule has no facets left.) */ LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) { facet_remove(facet); } /* Get rid of the rule. */ ofproto_rule_expire(&rule->up, reason); } /* Facets. */ /* Creates and returns a new facet based on 'miss'. * * The caller must already have determined that no facet with an identical * 'miss->flow' exists in 'miss->ofproto'. * * 'rule' and 'xout' must have been created based on 'miss'. * * 'facet'' statistics are initialized based on 'stats'. * * The facet will initially have no subfacets. The caller should create (at * least) one subfacet with subfacet_create(). */ static struct facet * facet_create(const struct flow_miss *miss, struct rule_dpif *rule, struct xlate_out *xout, struct dpif_flow_stats *stats) { struct ofproto_dpif *ofproto = miss->ofproto; struct facet *facet; struct match match; facet = xzalloc(sizeof *facet); facet->packet_count = facet->prev_packet_count = stats->n_packets; facet->byte_count = facet->prev_byte_count = stats->n_bytes; facet->tcp_flags = stats->tcp_flags; facet->used = stats->used; facet->flow = miss->flow; facet->learn_rl = time_msec() + 500; facet->rule = rule; list_push_back(&facet->rule->facets, &facet->list_node); list_init(&facet->subfacets); netflow_flow_init(&facet->nf_flow); netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used); xlate_out_copy(&facet->xout, xout); match_init(&match, &facet->flow, &facet->xout.wc); cls_rule_init(&facet->cr, &match, OFP_DEFAULT_PRIORITY); classifier_insert(&ofproto->facets, &facet->cr); facet->nf_flow.output_iface = facet->xout.nf_output_iface; return facet; } static void facet_free(struct facet *facet) { if (facet) { xlate_out_uninit(&facet->xout); free(facet); } } /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on * 'packet', which arrived on 'in_port'. */ static bool execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow, const struct nlattr *odp_actions, size_t actions_len, struct ofpbuf *packet) { struct odputil_keybuf keybuf; struct ofpbuf key; int error; ofpbuf_use_stack(&key, &keybuf, sizeof keybuf); odp_flow_key_from_flow(&key, flow, ofp_port_to_odp_port(ofproto, flow->in_port.ofp_port)); error = dpif_execute(ofproto->backer->dpif, key.data, key.size, odp_actions, actions_len, packet); return !error; } /* Remove 'facet' from its ofproto and free up the associated memory: * * - If 'facet' was installed in the datapath, uninstalls it and updates its * rule's statistics, via subfacet_uninstall(). * * - Removes 'facet' from its rule and from ofproto->facets. */ static void facet_remove(struct facet *facet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); struct subfacet *subfacet, *next_subfacet; ovs_assert(!list_is_empty(&facet->subfacets)); /* First uninstall all of the subfacets to get final statistics. */ LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { subfacet_uninstall(subfacet); } /* Flush the final stats to the rule. * * This might require us to have at least one subfacet around so that we * can use its actions for accounting in facet_account(), which is why we * have uninstalled but not yet destroyed the subfacets. */ facet_flush_stats(facet); /* Now we're really all done so destroy everything. */ LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node, &facet->subfacets) { subfacet_destroy__(subfacet); } classifier_remove(&ofproto->facets, &facet->cr); cls_rule_destroy(&facet->cr); list_remove(&facet->list_node); facet_free(facet); } /* Feed information from 'facet' back into the learning table to keep it in * sync with what is actually flowing through the datapath. */ static void facet_learn(struct facet *facet) { long long int now = time_msec(); if (!facet->xout.has_fin_timeout && now < facet->learn_rl) { return; } facet->learn_rl = now + 500; if (!facet->xout.has_learn && !facet->xout.has_normal && (!facet->xout.has_fin_timeout || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) { return; } facet_push_stats(facet, true); } static void facet_account(struct facet *facet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); const struct nlattr *a; unsigned int left; ovs_be16 vlan_tci; uint64_t n_bytes; if (!facet->xout.has_normal || !ofproto->has_bonded_bundles) { return; } n_bytes = facet->byte_count - facet->accounted_bytes; /* This loop feeds byte counters to bond_account() for rebalancing to use * as a basis. We also need to track the actual VLAN on which the packet * is going to be sent to ensure that it matches the one passed to * bond_choose_output_slave(). (Otherwise, we will account to the wrong * hash bucket.) * * We use the actions from an arbitrary subfacet because they should all * be equally valid for our purpose. */ vlan_tci = facet->flow.vlan_tci; NL_ATTR_FOR_EACH_UNSAFE (a, left, facet->xout.odp_actions.data, facet->xout.odp_actions.size) { const struct ovs_action_push_vlan *vlan; struct ofport_dpif *port; switch (nl_attr_type(a)) { case OVS_ACTION_ATTR_OUTPUT: port = get_odp_port(ofproto, nl_attr_get_odp_port(a)); if (port && port->bundle && port->bundle->bond) { bond_account(port->bundle->bond, &facet->flow, vlan_tci_to_vid(vlan_tci), n_bytes); } break; case OVS_ACTION_ATTR_POP_VLAN: vlan_tci = htons(0); break; case OVS_ACTION_ATTR_PUSH_VLAN: vlan = nl_attr_get(a); vlan_tci = vlan->vlan_tci; break; } } } /* Returns true if the only action for 'facet' is to send to the controller. * (We don't report NetFlow expiration messages for such facets because they * are just part of the control logic for the network, not real traffic). */ static bool facet_is_controller_flow(struct facet *facet) { if (facet) { const struct rule *rule = &facet->rule->up; const struct ofpact *ofpacts = rule->ofpacts; size_t ofpacts_len = rule->ofpacts_len; if (ofpacts_len > 0 && ofpacts->type == OFPACT_CONTROLLER && ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len)) { return true; } } return false; } /* Folds all of 'facet''s statistics into its rule. Also updates the * accounting ofhook and emits a NetFlow expiration if appropriate. All of * 'facet''s statistics in the datapath should have been zeroed and folded into * its packet and byte counts before this function is called. */ static void facet_flush_stats(struct facet *facet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); struct subfacet *subfacet; LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { ovs_assert(!subfacet->dp_byte_count); ovs_assert(!subfacet->dp_packet_count); } facet_push_stats(facet, false); if (facet->accounted_bytes < facet->byte_count) { facet_account(facet); facet->accounted_bytes = facet->byte_count; } if (ofproto->netflow && !facet_is_controller_flow(facet)) { struct ofexpired expired; expired.flow = facet->flow; expired.packet_count = facet->packet_count; expired.byte_count = facet->byte_count; expired.used = facet->used; netflow_expire(ofproto->netflow, &facet->nf_flow, &expired); } /* Reset counters to prevent double counting if 'facet' ever gets * reinstalled. */ facet_reset_counters(facet); netflow_flow_clear(&facet->nf_flow); facet->tcp_flags = 0; } /* Searches 'ofproto''s table of facets for one which would be responsible for * 'flow'. Returns it if found, otherwise a null pointer. * * The returned facet might need revalidation; use facet_lookup_valid() * instead if that is important. */ static struct facet * facet_find(struct ofproto_dpif *ofproto, const struct flow *flow) { struct cls_rule *cr = classifier_lookup(&ofproto->facets, flow, NULL); return cr ? CONTAINER_OF(cr, struct facet, cr) : NULL; } /* Searches 'ofproto''s table of facets for one capable that covers * 'flow'. Returns it if found, otherwise a null pointer. * * The returned facet is guaranteed to be valid. */ static struct facet * facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow) { struct facet *facet; facet = facet_find(ofproto, flow); if (facet && (ofproto->backer->need_revalidate || tag_set_intersects(&ofproto->backer->revalidate_set, facet->xout.tags)) && !facet_revalidate(facet)) { return NULL; } return facet; } static bool facet_check_consistency(struct facet *facet) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15); struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); struct xlate_out xout; struct xlate_in xin; struct rule_dpif *rule; bool ok; /* Check the rule for consistency. */ rule = rule_dpif_lookup(ofproto, &facet->flow, NULL); if (rule != facet->rule) { if (!VLOG_DROP_WARN(&rl)) { struct ds s = DS_EMPTY_INITIALIZER; flow_format(&s, &facet->flow); ds_put_format(&s, ": facet associated with wrong rule (was " "table=%"PRIu8",", facet->rule->up.table_id); cls_rule_format(&facet->rule->up.cr, &s); ds_put_format(&s, ") (should have been table=%"PRIu8",", rule->up.table_id); cls_rule_format(&rule->up.cr, &s); ds_put_char(&s, ')'); VLOG_WARN("%s", ds_cstr(&s)); ds_destroy(&s); } return false; } /* Check the datapath actions for consistency. */ xlate_in_init(&xin, ofproto, &facet->flow, rule, 0, NULL); xlate_actions(&xin, &xout); ok = ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions) && facet->xout.slow == xout.slow; if (!ok && !VLOG_DROP_WARN(&rl)) { struct ds s = DS_EMPTY_INITIALIZER; flow_format(&s, &facet->flow); ds_put_cstr(&s, ": inconsistency in facet"); if (!ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)) { ds_put_cstr(&s, " (actions were: "); format_odp_actions(&s, facet->xout.odp_actions.data, facet->xout.odp_actions.size); ds_put_cstr(&s, ") (correct actions: "); format_odp_actions(&s, xout.odp_actions.data, xout.odp_actions.size); ds_put_char(&s, ')'); } if (facet->xout.slow != xout.slow) { ds_put_format(&s, " slow path incorrect. should be %d", xout.slow); } VLOG_WARN("%s", ds_cstr(&s)); ds_destroy(&s); } xlate_out_uninit(&xout); return ok; } /* Re-searches the classifier for 'facet': * * - If the rule found is different from 'facet''s current rule, moves * 'facet' to the new rule and recompiles its actions. * * - If the rule found is the same as 'facet''s current rule, leaves 'facet' * where it is and recompiles its actions anyway. * * - If any of 'facet''s subfacets correspond to a new flow according to * ofproto_receive(), 'facet' is removed. * * Returns true if 'facet' is still valid. False if 'facet' was removed. */ static bool facet_revalidate(struct facet *facet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); struct rule_dpif *new_rule; struct subfacet *subfacet; struct flow_wildcards wc; struct xlate_out xout; struct xlate_in xin; COVERAGE_INC(facet_revalidate); /* Check that child subfacets still correspond to this facet. Tunnel * configuration changes could cause a subfacet's OpenFlow in_port to * change. */ LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { struct ofproto_dpif *recv_ofproto; struct flow recv_flow; int error; error = ofproto_receive(ofproto->backer, NULL, subfacet->key, subfacet->key_len, &recv_flow, NULL, &recv_ofproto, NULL); if (error || recv_ofproto != ofproto || facet != facet_find(ofproto, &recv_flow)) { facet_remove(facet); return false; } } flow_wildcards_init_catchall(&wc); new_rule = rule_dpif_lookup(ofproto, &facet->flow, &wc); /* Calculate new datapath actions. * * We do not modify any 'facet' state yet, because we might need to, e.g., * emit a NetFlow expiration and, if so, we need to have the old state * around to properly compose it. */ xlate_in_init(&xin, ofproto, &facet->flow, new_rule, 0, NULL); xlate_actions(&xin, &xout); flow_wildcards_or(&xout.wc, &xout.wc, &wc); /* A facet's slow path reason should only change under dramatic * circumstances. Rather than try to update everything, it's simpler to * remove the facet and start over. * * More importantly, if a facet's wildcards change, it will be relatively * difficult to figure out if its subfacets still belong to it, and if not * which facet they may belong to. Again, to avoid the complexity, we * simply give up instead. */ if (facet->xout.slow != xout.slow || memcmp(&facet->xout.wc, &xout.wc, sizeof xout.wc)) { facet_remove(facet); xlate_out_uninit(&xout); return false; } if (!ofpbuf_equal(&facet->xout.odp_actions, &xout.odp_actions)) { LIST_FOR_EACH(subfacet, list_node, &facet->subfacets) { if (subfacet->path == SF_FAST_PATH) { struct dpif_flow_stats stats; subfacet_install(subfacet, &xout.odp_actions, &stats); subfacet_update_stats(subfacet, &stats); } } facet_flush_stats(facet); ofpbuf_clear(&facet->xout.odp_actions); ofpbuf_put(&facet->xout.odp_actions, xout.odp_actions.data, xout.odp_actions.size); } /* Update 'facet' now that we've taken care of all the old state. */ facet->xout.tags = xout.tags; facet->xout.slow = xout.slow; facet->xout.has_learn = xout.has_learn; facet->xout.has_normal = xout.has_normal; facet->xout.has_fin_timeout = xout.has_fin_timeout; facet->xout.nf_output_iface = xout.nf_output_iface; facet->xout.mirrors = xout.mirrors; facet->nf_flow.output_iface = facet->xout.nf_output_iface; if (facet->rule != new_rule) { COVERAGE_INC(facet_changed_rule); list_remove(&facet->list_node); list_push_back(&new_rule->facets, &facet->list_node); facet->rule = new_rule; facet->used = new_rule->up.created; facet->prev_used = facet->used; } xlate_out_uninit(&xout); return true; } static void facet_reset_counters(struct facet *facet) { facet->packet_count = 0; facet->byte_count = 0; facet->prev_packet_count = 0; facet->prev_byte_count = 0; facet->accounted_bytes = 0; } static void facet_push_stats(struct facet *facet, bool may_learn) { struct dpif_flow_stats stats; ovs_assert(facet->packet_count >= facet->prev_packet_count); ovs_assert(facet->byte_count >= facet->prev_byte_count); ovs_assert(facet->used >= facet->prev_used); stats.n_packets = facet->packet_count - facet->prev_packet_count; stats.n_bytes = facet->byte_count - facet->prev_byte_count; stats.used = facet->used; stats.tcp_flags = facet->tcp_flags; if (may_learn || stats.n_packets || facet->used > facet->prev_used) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); struct ofport_dpif *in_port; struct xlate_in xin; facet->prev_packet_count = facet->packet_count; facet->prev_byte_count = facet->byte_count; facet->prev_used = facet->used; in_port = get_ofp_port(ofproto, facet->flow.in_port.ofp_port); if (in_port && in_port->is_tunnel) { netdev_vport_inc_rx(in_port->up.netdev, &stats); } rule_credit_stats(facet->rule, &stats); netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used); netflow_flow_update_flags(&facet->nf_flow, facet->tcp_flags); update_mirror_stats(ofproto, facet->xout.mirrors, stats.n_packets, stats.n_bytes); xlate_in_init(&xin, ofproto, &facet->flow, facet->rule, stats.tcp_flags, NULL); xin.resubmit_stats = &stats; xin.may_learn = may_learn; xlate_actions_for_side_effects(&xin); } } static void push_all_stats__(bool run_fast) { static long long int rl = LLONG_MIN; struct ofproto_dpif *ofproto; if (time_msec() < rl) { return; } HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { struct cls_cursor cursor; struct facet *facet; cls_cursor_init(&cursor, &ofproto->facets, NULL); CLS_CURSOR_FOR_EACH (facet, cr, &cursor) { facet_push_stats(facet, false); if (run_fast) { run_fast_rl(); } } } rl = time_msec() + 100; } static void push_all_stats(void) { push_all_stats__(true); } void rule_credit_stats(struct rule_dpif *rule, const struct dpif_flow_stats *stats) { rule->packet_count += stats->n_packets; rule->byte_count += stats->n_bytes; ofproto_rule_update_used(&rule->up, stats->used); } /* Subfacets. */ static struct subfacet * subfacet_find(struct dpif_backer *backer, const struct nlattr *key, size_t key_len, uint32_t key_hash) { struct subfacet *subfacet; HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash, &backer->subfacets) { if (subfacet->key_len == key_len && !memcmp(key, subfacet->key, key_len)) { return subfacet; } } return NULL; } /* Searches 'facet' (within 'ofproto') for a subfacet with the specified * 'key_fitness', 'key', and 'key_len' members in 'miss'. Returns the * existing subfacet if there is one, otherwise creates and returns a * new subfacet. */ static struct subfacet * subfacet_create(struct facet *facet, struct flow_miss *miss, long long int now) { struct dpif_backer *backer = miss->ofproto->backer; enum odp_key_fitness key_fitness = miss->key_fitness; const struct nlattr *key = miss->key; size_t key_len = miss->key_len; uint32_t key_hash; struct subfacet *subfacet; key_hash = odp_flow_key_hash(key, key_len); if (list_is_empty(&facet->subfacets)) { subfacet = &facet->one_subfacet; } else { subfacet = subfacet_find(backer, key, key_len, key_hash); if (subfacet) { if (subfacet->facet == facet) { return subfacet; } /* This shouldn't happen. */ VLOG_ERR_RL(&rl, "subfacet with wrong facet"); subfacet_destroy(subfacet); } subfacet = xmalloc(sizeof *subfacet); } hmap_insert(&backer->subfacets, &subfacet->hmap_node, key_hash); list_push_back(&facet->subfacets, &subfacet->list_node); subfacet->facet = facet; subfacet->key_fitness = key_fitness; subfacet->key = xmemdup(key, key_len); subfacet->key_len = key_len; subfacet->used = now; subfacet->created = now; subfacet->dp_packet_count = 0; subfacet->dp_byte_count = 0; subfacet->path = SF_NOT_INSTALLED; subfacet->backer = backer; backer->subfacet_add_count++; return subfacet; } /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from * its facet within 'ofproto', and frees it. */ static void subfacet_destroy__(struct subfacet *subfacet) { struct facet *facet = subfacet->facet; struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); /* Update ofproto stats before uninstall the subfacet. */ ofproto->backer->subfacet_del_count++; subfacet_uninstall(subfacet); hmap_remove(&subfacet->backer->subfacets, &subfacet->hmap_node); list_remove(&subfacet->list_node); free(subfacet->key); if (subfacet != &facet->one_subfacet) { free(subfacet); } } /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the * last remaining subfacet in its facet destroys the facet too. */ static void subfacet_destroy(struct subfacet *subfacet) { struct facet *facet = subfacet->facet; if (list_is_singleton(&facet->subfacets)) { /* facet_remove() needs at least one subfacet (it will remove it). */ facet_remove(facet); } else { subfacet_destroy__(subfacet); } } static void subfacet_destroy_batch(struct dpif_backer *backer, struct subfacet **subfacets, int n) { struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH]; struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH]; struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH]; int i; for (i = 0; i < n; i++) { ops[i].type = DPIF_OP_FLOW_DEL; ops[i].u.flow_del.key = subfacets[i]->key; ops[i].u.flow_del.key_len = subfacets[i]->key_len; ops[i].u.flow_del.stats = &stats[i]; opsp[i] = &ops[i]; } dpif_operate(backer->dpif, opsp, n); for (i = 0; i < n; i++) { subfacet_reset_dp_stats(subfacets[i], &stats[i]); subfacets[i]->path = SF_NOT_INSTALLED; subfacet_destroy(subfacets[i]); run_fast_rl(); } } /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len' * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters * in the datapath will be zeroed and 'stats' will be updated with traffic new * since 'subfacet' was last updated. * * Returns 0 if successful, otherwise a positive errno value. */ static int subfacet_install(struct subfacet *subfacet, const struct ofpbuf *odp_actions, struct dpif_flow_stats *stats) { struct facet *facet = subfacet->facet; struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); enum subfacet_path path = facet->xout.slow ? SF_SLOW_PATH : SF_FAST_PATH; const struct nlattr *actions = odp_actions->data; size_t actions_len = odp_actions->size; struct odputil_keybuf maskbuf; struct ofpbuf mask; uint64_t slow_path_stub[128 / 8]; enum dpif_flow_put_flags flags; int ret; flags = DPIF_FP_CREATE | DPIF_FP_MODIFY; if (stats) { flags |= DPIF_FP_ZERO_STATS; } if (path == SF_SLOW_PATH) { compose_slow_path(ofproto, &facet->flow, facet->xout.slow, slow_path_stub, sizeof slow_path_stub, &actions, &actions_len); } ofpbuf_use_stack(&mask, &maskbuf, sizeof maskbuf); if (enable_megaflows) { odp_flow_key_from_mask(&mask, &facet->xout.wc.masks, &facet->flow, UINT32_MAX); } ret = dpif_flow_put(subfacet->backer->dpif, flags, subfacet->key, subfacet->key_len, mask.data, mask.size, actions, actions_len, stats); if (stats) { subfacet_reset_dp_stats(subfacet, stats); } if (ret) { COVERAGE_INC(subfacet_install_fail); } else { subfacet->path = path; } return ret; } /* If 'subfacet' is installed in the datapath, uninstalls it. */ static void subfacet_uninstall(struct subfacet *subfacet) { if (subfacet->path != SF_NOT_INSTALLED) { struct rule_dpif *rule = subfacet->facet->rule; struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct dpif_flow_stats stats; int error; error = dpif_flow_del(ofproto->backer->dpif, subfacet->key, subfacet->key_len, &stats); subfacet_reset_dp_stats(subfacet, &stats); if (!error) { subfacet_update_stats(subfacet, &stats); } subfacet->path = SF_NOT_INSTALLED; } else { ovs_assert(subfacet->dp_packet_count == 0); ovs_assert(subfacet->dp_byte_count == 0); } } /* Resets 'subfacet''s datapath statistics counters. This should be called * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is * non-null, it should contain the statistics returned by dpif when 'subfacet' * was reset in the datapath. 'stats' will be modified to include only * statistics new since 'subfacet' was last updated. */ static void subfacet_reset_dp_stats(struct subfacet *subfacet, struct dpif_flow_stats *stats) { if (stats && subfacet->dp_packet_count <= stats->n_packets && subfacet->dp_byte_count <= stats->n_bytes) { stats->n_packets -= subfacet->dp_packet_count; stats->n_bytes -= subfacet->dp_byte_count; } subfacet->dp_packet_count = 0; subfacet->dp_byte_count = 0; } /* Folds the statistics from 'stats' into the counters in 'subfacet'. * * Because of the meaning of a subfacet's counters, it only makes sense to do * this if 'stats' are not tracked in the datapath, that is, if 'stats' * represents a packet that was sent by hand or if it represents statistics * that have been cleared out of the datapath. */ static void subfacet_update_stats(struct subfacet *subfacet, const struct dpif_flow_stats *stats) { if (stats->n_packets || stats->used > subfacet->used) { struct facet *facet = subfacet->facet; subfacet->used = MAX(subfacet->used, stats->used); facet->used = MAX(facet->used, stats->used); facet->packet_count += stats->n_packets; facet->byte_count += stats->n_bytes; facet->tcp_flags |= stats->tcp_flags; } } /* Rules. */ /* Lookup 'flow' in 'ofproto''s classifier. If 'wc' is non-null, sets * the fields that were relevant as part of the lookup. */ static struct rule_dpif * rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow, struct flow_wildcards *wc) { struct rule_dpif *rule; rule = rule_dpif_lookup_in_table(ofproto, flow, wc, 0); if (rule) { return rule; } return rule_dpif_miss_rule(ofproto, flow); } struct rule_dpif * rule_dpif_lookup_in_table(struct ofproto_dpif *ofproto, const struct flow *flow, struct flow_wildcards *wc, uint8_t table_id) { struct cls_rule *cls_rule; struct classifier *cls; bool frag; if (table_id >= N_TABLES) { return NULL; } if (wc) { memset(&wc->masks.dl_type, 0xff, sizeof wc->masks.dl_type); wc->masks.nw_frag |= FLOW_NW_FRAG_MASK; } cls = &ofproto->up.tables[table_id].cls; frag = (flow->nw_frag & FLOW_NW_FRAG_ANY) != 0; if (frag && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) { /* We must pretend that transport ports are unavailable. */ struct flow ofpc_normal_flow = *flow; ofpc_normal_flow.tp_src = htons(0); ofpc_normal_flow.tp_dst = htons(0); cls_rule = classifier_lookup(cls, &ofpc_normal_flow, wc); } else if (frag && ofproto->up.frag_handling == OFPC_FRAG_DROP) { cls_rule = &ofproto->drop_frags_rule->up.cr; if (wc) { flow_wildcards_init_exact(wc); } } else { cls_rule = classifier_lookup(cls, flow, wc); } return rule_dpif_cast(rule_from_cls_rule(cls_rule)); } struct rule_dpif * rule_dpif_miss_rule(struct ofproto_dpif *ofproto, const struct flow *flow) { struct ofport_dpif *port; port = get_ofp_port(ofproto, flow->in_port.ofp_port); if (!port) { VLOG_WARN_RL(&rl, "packet-in on unknown OpenFlow port %"PRIu16, flow->in_port.ofp_port); return ofproto->miss_rule; } if (port->up.pp.config & OFPUTIL_PC_NO_PACKET_IN) { return ofproto->no_packet_in_rule; } return ofproto->miss_rule; } static void complete_operation(struct rule_dpif *rule) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); rule_invalidate(rule); if (clogged) { struct dpif_completion *c = xmalloc(sizeof *c); c->op = rule->up.pending; list_push_back(&ofproto->completions, &c->list_node); } else { ofoperation_complete(rule->up.pending, 0); } } static struct rule * rule_alloc(void) { struct rule_dpif *rule = xmalloc(sizeof *rule); return &rule->up; } static void rule_dealloc(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); free(rule); } static enum ofperr rule_construct(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct rule_dpif *victim; uint8_t table_id; rule->packet_count = 0; rule->byte_count = 0; victim = rule_dpif_cast(ofoperation_get_victim(rule->up.pending)); if (victim && !list_is_empty(&victim->facets)) { struct facet *facet; rule->facets = victim->facets; list_moved(&rule->facets); LIST_FOR_EACH (facet, list_node, &rule->facets) { /* XXX: We're only clearing our local counters here. It's possible * that quite a few packets are unaccounted for in the datapath * statistics. These will be accounted to the new rule instead of * cleared as required. This could be fixed by clearing out the * datapath statistics for this facet, but currently it doesn't * seem worth it. */ facet_reset_counters(facet); facet->rule = rule; } } else { /* Must avoid list_moved() in this case. */ list_init(&rule->facets); } table_id = rule->up.table_id; if (victim) { rule->tag = victim->tag; } else if (table_id == 0) { rule->tag = 0; } else { struct flow flow; miniflow_expand(&rule->up.cr.match.flow, &flow); rule->tag = rule_calculate_tag(&flow, &rule->up.cr.match.mask, ofproto->tables[table_id].basis); } complete_operation(rule); return 0; } static void rule_destruct(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct facet *facet, *next_facet; LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) { facet_revalidate(facet); } complete_operation(rule); } static void rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes) { struct rule_dpif *rule = rule_dpif_cast(rule_); /* push_all_stats() can handle flow misses which, when using the learn * action, can cause rules to be added and deleted. This can corrupt our * caller's datastructures which assume that rule_get_stats() doesn't have * an impact on the flow table. To be safe, we disable miss handling. */ push_all_stats__(false); /* Start from historical data for 'rule' itself that are no longer tracked * in facets. This counts, for example, facets that have expired. */ *packets = rule->packet_count; *bytes = rule->byte_count; } static void rule_dpif_execute(struct rule_dpif *rule, const struct flow *flow, struct ofpbuf *packet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct dpif_flow_stats stats; struct xlate_out xout; struct xlate_in xin; dpif_flow_stats_extract(flow, packet, time_msec(), &stats); rule_credit_stats(rule, &stats); xlate_in_init(&xin, ofproto, flow, rule, stats.tcp_flags, packet); xin.resubmit_stats = &stats; xlate_actions(&xin, &xout); execute_odp_actions(ofproto, flow, xout.odp_actions.data, xout.odp_actions.size, packet); xlate_out_uninit(&xout); } static enum ofperr rule_execute(struct rule *rule, const struct flow *flow, struct ofpbuf *packet) { rule_dpif_execute(rule_dpif_cast(rule), flow, packet); ofpbuf_delete(packet); return 0; } static void rule_modify_actions(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); complete_operation(rule); } /* Sends 'packet' out 'ofport'. * May modify 'packet'. * Returns 0 if successful, otherwise a positive errno value. */ static int send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); uint64_t odp_actions_stub[1024 / 8]; struct ofpbuf key, odp_actions; struct dpif_flow_stats stats; struct odputil_keybuf keybuf; struct ofpact_output output; struct xlate_out xout; struct xlate_in xin; struct flow flow; union flow_in_port in_port_; int error; ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub); ofpbuf_use_stack(&key, &keybuf, sizeof keybuf); /* Use OFPP_NONE as the in_port to avoid special packet processing. */ in_port_.ofp_port = OFPP_NONE; flow_extract(packet, 0, 0, NULL, &in_port_, &flow); odp_flow_key_from_flow(&key, &flow, ofp_port_to_odp_port(ofproto, OFPP_LOCAL)); dpif_flow_stats_extract(&flow, packet, time_msec(), &stats); ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output); output.port = ofport->up.ofp_port; output.max_len = 0; xlate_in_init(&xin, ofproto, &flow, NULL, 0, packet); xin.ofpacts_len = sizeof output; xin.ofpacts = &output.ofpact; xin.resubmit_stats = &stats; xlate_actions(&xin, &xout); error = dpif_execute(ofproto->backer->dpif, key.data, key.size, xout.odp_actions.data, xout.odp_actions.size, packet); xlate_out_uninit(&xout); if (error) { VLOG_WARN_RL(&rl, "%s: failed to send packet on port %s (%s)", ofproto->up.name, netdev_get_name(ofport->up.netdev), ovs_strerror(error)); } ofproto->stats.tx_packets++; ofproto->stats.tx_bytes += packet->size; return error; } /* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'. * The action will state 'slow' as the reason that the action is in the slow * path. (This is purely informational: it allows a human viewing "ovs-dpctl * dump-flows" output to see why a flow is in the slow path.) * * The 'stub_size' bytes in 'stub' will be used to store the action. * 'stub_size' must be large enough for the action. * * The action and its size will be stored in '*actionsp' and '*actions_lenp', * respectively. */ static void compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow, enum slow_path_reason slow, uint64_t *stub, size_t stub_size, const struct nlattr **actionsp, size_t *actions_lenp) { union user_action_cookie cookie; struct ofpbuf buf; cookie.type = USER_ACTION_COOKIE_SLOW_PATH; cookie.slow_path.unused = 0; cookie.slow_path.reason = slow; ofpbuf_use_stack(&buf, stub, stub_size); if (slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)) { uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif, ODPP_NONE); odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, &buf); } else { put_userspace_action(ofproto, &buf, flow, &cookie, sizeof cookie.slow_path); } *actionsp = buf.data; *actions_lenp = buf.size; } size_t put_userspace_action(const struct ofproto_dpif *ofproto, struct ofpbuf *odp_actions, const struct flow *flow, const union user_action_cookie *cookie, const size_t cookie_size) { uint32_t pid; pid = dpif_port_get_pid(ofproto->backer->dpif, ofp_port_to_odp_port(ofproto, flow->in_port.ofp_port)); return odp_put_userspace_action(pid, cookie, cookie_size, odp_actions); } static void update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors, uint64_t packets, uint64_t bytes) { if (!mirrors) { return; } for (; mirrors; mirrors = zero_rightmost_1bit(mirrors)) { struct ofmirror *m; m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1]; if (!m) { /* In normal circumstances 'm' will not be NULL. However, * if mirrors are reconfigured, we can temporarily get out * of sync in facet_revalidate(). We could "correct" the * mirror list before reaching here, but doing that would * not properly account the traffic stats we've currently * accumulated for previous mirror configuration. */ continue; } m->packet_count += packets; m->byte_count += bytes; } } tag_type calculate_flow_tag(struct ofproto_dpif *ofproto, const struct flow *flow, uint8_t table_id, struct rule_dpif *rule) { if (table_id > 0 && table_id < N_TABLES) { struct table_dpif *table = &ofproto->tables[table_id]; if (table->other_table) { return (rule && rule->tag ? rule->tag : rule_calculate_tag(flow, &table->other_table->mask, table->basis)); } } return 0; } /* Optimized flow revalidation. * * It's a difficult problem, in general, to tell which facets need to have * their actions recalculated whenever the OpenFlow flow table changes. We * don't try to solve that general problem: for most kinds of OpenFlow flow * table changes, we recalculate the actions for every facet. This is * relatively expensive, but it's good enough if the OpenFlow flow table * doesn't change very often. * * However, we can expect one particular kind of OpenFlow flow table change to * happen frequently: changes caused by MAC learning. To avoid wasting a lot * of CPU on revalidating every facet whenever MAC learning modifies the flow * table, we add a special case that applies to flow tables in which every rule * has the same form (that is, the same wildcards), except that the table is * also allowed to have a single "catch-all" flow that matches all packets. We * optimize this case by tagging all of the facets that resubmit into the table * and invalidating the same tag whenever a flow changes in that table. The * end result is that we revalidate just the facets that need it (and sometimes * a few more, but not all of the facets or even all of the facets that * resubmit to the table modified by MAC learning). */ /* Calculates the tag to use for 'flow' and mask 'mask' when it is inserted * into an OpenFlow table with the given 'basis'. */ tag_type rule_calculate_tag(const struct flow *flow, const struct minimask *mask, uint32_t secret) { if (minimask_is_catchall(mask)) { return 0; } else { uint32_t hash = flow_hash_in_minimask(flow, mask, secret); return tag_create_deterministic(hash); } } /* Following a change to OpenFlow table 'table_id' in 'ofproto', update the * taggability of that table. * * This function must be called after *each* change to a flow table. If you * skip calling it on some changes then the pointer comparisons at the end can * be invalid if you get unlucky. For example, if a flow removal causes a * cls_table to be destroyed and then a flow insertion causes a cls_table with * different wildcards to be created with the same address, then this function * will incorrectly skip revalidation. */ static void table_update_taggable(struct ofproto_dpif *ofproto, uint8_t table_id) { struct table_dpif *table = &ofproto->tables[table_id]; const struct oftable *oftable = &ofproto->up.tables[table_id]; struct cls_table *catchall, *other; struct cls_table *t; catchall = other = NULL; switch (hmap_count(&oftable->cls.tables)) { case 0: /* We could tag this OpenFlow table but it would make the logic a * little harder and it's a corner case that doesn't seem worth it * yet. */ break; case 1: case 2: HMAP_FOR_EACH (t, hmap_node, &oftable->cls.tables) { if (cls_table_is_catchall(t)) { catchall = t; } else if (!other) { other = t; } else { /* Indicate that we can't tag this by setting both tables to * NULL. (We know that 'catchall' is already NULL.) */ other = NULL; } } break; default: /* Can't tag this table. */ break; } if (table->catchall_table != catchall || table->other_table != other) { table->catchall_table = catchall; table->other_table = other; ofproto->backer->need_revalidate = REV_FLOW_TABLE; } } /* Given 'rule' that has changed in some way (either it is a rule being * inserted, a rule being deleted, or a rule whose actions are being * modified), marks facets for revalidation to ensure that packets will be * forwarded correctly according to the new state of the flow table. * * This function must be called after *each* change to a flow table. See * the comment on table_update_taggable() for more information. */ static void rule_invalidate(const struct rule_dpif *rule) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); table_update_taggable(ofproto, rule->up.table_id); if (!ofproto->backer->need_revalidate) { struct table_dpif *table = &ofproto->tables[rule->up.table_id]; if (table->other_table && rule->tag) { tag_set_add(&ofproto->backer->revalidate_set, rule->tag); } else { ofproto->backer->need_revalidate = REV_FLOW_TABLE; } } } static bool set_frag_handling(struct ofproto *ofproto_, enum ofp_config_flags frag_handling) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (frag_handling != OFPC_FRAG_REASM) { ofproto->backer->need_revalidate = REV_RECONFIGURE; return true; } else { return false; } } static enum ofperr packet_out(struct ofproto *ofproto_, struct ofpbuf *packet, const struct flow *flow, const struct ofpact *ofpacts, size_t ofpacts_len) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct odputil_keybuf keybuf; struct dpif_flow_stats stats; struct xlate_out xout; struct xlate_in xin; struct ofpbuf key; ofpbuf_use_stack(&key, &keybuf, sizeof keybuf); odp_flow_key_from_flow(&key, flow, ofp_port_to_odp_port(ofproto, flow->in_port.ofp_port)); dpif_flow_stats_extract(flow, packet, time_msec(), &stats); xlate_in_init(&xin, ofproto, flow, NULL, stats.tcp_flags, packet); xin.resubmit_stats = &stats; xin.ofpacts_len = ofpacts_len; xin.ofpacts = ofpacts; xlate_actions(&xin, &xout); dpif_execute(ofproto->backer->dpif, key.data, key.size, xout.odp_actions.data, xout.odp_actions.size, packet); xlate_out_uninit(&xout); return 0; } /* NetFlow. */ static int set_netflow(struct ofproto *ofproto_, const struct netflow_options *netflow_options) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (netflow_options) { if (!ofproto->netflow) { ofproto->netflow = netflow_create(); ofproto->backer->need_revalidate = REV_RECONFIGURE; } return netflow_set_options(ofproto->netflow, netflow_options); } else if (ofproto->netflow) { ofproto->backer->need_revalidate = REV_RECONFIGURE; netflow_destroy(ofproto->netflow); ofproto->netflow = NULL; } return 0; } static void get_netflow_ids(const struct ofproto *ofproto_, uint8_t *engine_type, uint8_t *engine_id) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id); } static void send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet) { if (!facet_is_controller_flow(facet) && netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) { struct subfacet *subfacet; struct ofexpired expired; LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { if (subfacet->path == SF_FAST_PATH) { struct dpif_flow_stats stats; subfacet_install(subfacet, &facet->xout.odp_actions, &stats); subfacet_update_stats(subfacet, &stats); } } expired.flow = facet->flow; expired.packet_count = facet->packet_count; expired.byte_count = facet->byte_count; expired.used = facet->used; netflow_expire(ofproto->netflow, &facet->nf_flow, &expired); } } static void send_netflow_active_timeouts(struct ofproto_dpif *ofproto) { struct cls_cursor cursor; struct facet *facet; cls_cursor_init(&cursor, &ofproto->facets, NULL); CLS_CURSOR_FOR_EACH (facet, cr, &cursor) { send_active_timeout(ofproto, facet); } } static struct ofproto_dpif * ofproto_dpif_lookup(const char *name) { struct ofproto_dpif *ofproto; HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node, hash_string(name, 0), &all_ofproto_dpifs) { if (!strcmp(ofproto->up.name, name)) { return ofproto; } } return NULL; } static void ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc, const char *argv[], void *aux OVS_UNUSED) { struct ofproto_dpif *ofproto; if (argc > 1) { ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply_error(conn, "no such bridge"); return; } mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); } else { HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); } } unixctl_command_reply(conn, "table successfully flushed"); } static void ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; const struct ofproto_dpif *ofproto; const struct mac_entry *e; ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply_error(conn, "no such bridge"); return; } ds_put_cstr(&ds, " port VLAN MAC Age\n"); LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) { struct ofbundle *bundle = e->port.p; char name[OFP_MAX_PORT_NAME_LEN]; ofputil_port_to_string(ofbundle_get_a_port(bundle)->up.ofp_port, name, sizeof name); ds_put_format(&ds, "%5s %4d "ETH_ADDR_FMT" %3d\n", name, e->vlan, ETH_ADDR_ARGS(e->mac), mac_entry_age(ofproto->ml, e)); } unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } struct trace_ctx { struct xlate_out xout; struct xlate_in xin; struct flow flow; struct ds *result; }; static void trace_format_rule(struct ds *result, int level, const struct rule_dpif *rule) { ds_put_char_multiple(result, '\t', level); if (!rule) { ds_put_cstr(result, "No match\n"); return; } ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ", rule ? rule->up.table_id : 0, ntohll(rule->up.flow_cookie)); cls_rule_format(&rule->up.cr, result); ds_put_char(result, '\n'); ds_put_char_multiple(result, '\t', level); ds_put_cstr(result, "OpenFlow "); ofpacts_format(rule->up.ofpacts, rule->up.ofpacts_len, result); ds_put_char(result, '\n'); } static void trace_format_flow(struct ds *result, int level, const char *title, struct trace_ctx *trace) { ds_put_char_multiple(result, '\t', level); ds_put_format(result, "%s: ", title); if (flow_equal(&trace->xin.flow, &trace->flow)) { ds_put_cstr(result, "unchanged"); } else { flow_format(result, &trace->xin.flow); trace->flow = trace->xin.flow; } ds_put_char(result, '\n'); } static void trace_format_regs(struct ds *result, int level, const char *title, struct trace_ctx *trace) { size_t i; ds_put_char_multiple(result, '\t', level); ds_put_format(result, "%s:", title); for (i = 0; i < FLOW_N_REGS; i++) { ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]); } ds_put_char(result, '\n'); } static void trace_format_odp(struct ds *result, int level, const char *title, struct trace_ctx *trace) { struct ofpbuf *odp_actions = &trace->xout.odp_actions; ds_put_char_multiple(result, '\t', level); ds_put_format(result, "%s: ", title); format_odp_actions(result, odp_actions->data, odp_actions->size); ds_put_char(result, '\n'); } static void trace_resubmit(struct xlate_in *xin, struct rule_dpif *rule, int recurse) { struct trace_ctx *trace = CONTAINER_OF(xin, struct trace_ctx, xin); struct ds *result = trace->result; ds_put_char(result, '\n'); trace_format_flow(result, recurse + 1, "Resubmitted flow", trace); trace_format_regs(result, recurse + 1, "Resubmitted regs", trace); trace_format_odp(result, recurse + 1, "Resubmitted odp", trace); trace_format_rule(result, recurse + 1, rule); } static void trace_report(struct xlate_in *xin, const char *s, int recurse) { struct trace_ctx *trace = CONTAINER_OF(xin, struct trace_ctx, xin); struct ds *result = trace->result; ds_put_char_multiple(result, '\t', recurse); ds_put_cstr(result, s); ds_put_char(result, '\n'); } static void ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[], void *aux OVS_UNUSED) { const struct dpif_backer *backer; struct ofproto_dpif *ofproto; struct ofpbuf odp_key, odp_mask; struct ofpbuf *packet; struct ds result; struct flow flow; char *s; packet = NULL; backer = NULL; ds_init(&result); ofpbuf_init(&odp_key, 0); ofpbuf_init(&odp_mask, 0); /* Handle "-generate" or a hex string as the last argument. */ if (!strcmp(argv[argc - 1], "-generate")) { packet = ofpbuf_new(0); argc--; } else { const char *error = eth_from_hex(argv[argc - 1], &packet); if (!error) { argc--; } else if (argc == 4) { /* The 3-argument form must end in "-generate' or a hex string. */ unixctl_command_reply_error(conn, error); goto exit; } } /* Parse the flow and determine whether a datapath or * bridge is specified. If function odp_flow_key_from_string() * returns 0, the flow is a odp_flow. If function * parse_ofp_exact_flow() returns 0, the flow is a br_flow. */ if (!odp_flow_from_string(argv[argc - 1], NULL, &odp_key, &odp_mask)) { /* If the odp_flow is the second argument, * the datapath name is the first argument. */ if (argc == 3) { const char *dp_type; if (!strncmp(argv[1], "ovs-", 4)) { dp_type = argv[1] + 4; } else { dp_type = argv[1]; } backer = shash_find_data(&all_dpif_backers, dp_type); if (!backer) { unixctl_command_reply_error(conn, "Cannot find datapath " "of this name"); goto exit; } } else { /* No datapath name specified, so there should be only one * datapath. */ struct shash_node *node; if (shash_count(&all_dpif_backers) != 1) { unixctl_command_reply_error(conn, "Must specify datapath " "name, there is more than one type of datapath"); goto exit; } node = shash_first(&all_dpif_backers); backer = node->data; } /* Extract the ofproto_dpif object from the ofproto_receive() * function. */ if (ofproto_receive(backer, NULL, odp_key.data, odp_key.size, &flow, NULL, &ofproto, NULL)) { unixctl_command_reply_error(conn, "Invalid datapath flow"); goto exit; } ds_put_format(&result, "Bridge: %s\n", ofproto->up.name); } else if (!parse_ofp_exact_flow(&flow, argv[argc - 1])) { if (argc != 3) { unixctl_command_reply_error(conn, "Must specify bridge name"); goto exit; } ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply_error(conn, "Unknown bridge name"); goto exit; } } else { unixctl_command_reply_error(conn, "Bad flow syntax"); goto exit; } /* Generate a packet, if requested. */ if (packet) { if (!packet->size) { flow_compose(packet, &flow); } else { union flow_in_port in_port_; in_port_ = flow.in_port; ds_put_cstr(&result, "Packet: "); s = ofp_packet_to_string(packet->data, packet->size); ds_put_cstr(&result, s); free(s); /* Use the metadata from the flow and the packet argument * to reconstruct the flow. */ flow_extract(packet, flow.skb_priority, flow.skb_mark, NULL, &in_port_, &flow); } } ofproto_trace(ofproto, &flow, packet, &result); unixctl_command_reply(conn, ds_cstr(&result)); exit: ds_destroy(&result); ofpbuf_delete(packet); ofpbuf_uninit(&odp_key); ofpbuf_uninit(&odp_mask); } void ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow, const struct ofpbuf *packet, struct ds *ds) { struct rule_dpif *rule; ds_put_cstr(ds, "Flow: "); flow_format(ds, flow); ds_put_char(ds, '\n'); rule = rule_dpif_lookup(ofproto, flow, NULL); trace_format_rule(ds, 0, rule); if (rule == ofproto->miss_rule) { ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n"); } else if (rule == ofproto->no_packet_in_rule) { ds_put_cstr(ds, "\nNo match, packets dropped because " "OFPPC_NO_PACKET_IN is set on in_port.\n"); } else if (rule == ofproto->drop_frags_rule) { ds_put_cstr(ds, "\nPackets dropped because they are IP fragments " "and the fragment handling mode is \"drop\".\n"); } if (rule) { uint64_t odp_actions_stub[1024 / 8]; struct ofpbuf odp_actions; struct trace_ctx trace; struct match match; uint8_t tcp_flags; tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0; trace.result = ds; trace.flow = *flow; ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub); xlate_in_init(&trace.xin, ofproto, flow, rule, tcp_flags, packet); trace.xin.resubmit_hook = trace_resubmit; trace.xin.report_hook = trace_report; xlate_actions(&trace.xin, &trace.xout); ds_put_char(ds, '\n'); trace_format_flow(ds, 0, "Final flow", &trace); match_init(&match, flow, &trace.xout.wc); ds_put_cstr(ds, "Relevant fields: "); match_format(&match, ds, OFP_DEFAULT_PRIORITY); ds_put_char(ds, '\n'); ds_put_cstr(ds, "Datapath actions: "); format_odp_actions(ds, trace.xout.odp_actions.data, trace.xout.odp_actions.size); if (trace.xout.slow) { ds_put_cstr(ds, "\nThis flow is handled by the userspace " "slow path because it:"); switch (trace.xout.slow) { case SLOW_CFM: ds_put_cstr(ds, "\n\t- Consists of CFM packets."); break; case SLOW_LACP: ds_put_cstr(ds, "\n\t- Consists of LACP packets."); break; case SLOW_STP: ds_put_cstr(ds, "\n\t- Consists of STP packets."); break; case SLOW_BFD: ds_put_cstr(ds, "\n\t- Consists of BFD packets."); break; case SLOW_CONTROLLER: ds_put_cstr(ds, "\n\t- Sends \"packet-in\" messages " "to the OpenFlow controller."); break; case __SLOW_MAX: NOT_REACHED(); } } xlate_out_uninit(&trace.xout); } } static void ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { clogged = true; unixctl_command_reply(conn, NULL); } static void ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { clogged = false; unixctl_command_reply(conn, NULL); } /* Runs a self-check of flow translations in 'ofproto'. Appends a message to * 'reply' describing the results. */ static void ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply) { struct cls_cursor cursor; struct facet *facet; int errors; errors = 0; cls_cursor_init(&cursor, &ofproto->facets, NULL); CLS_CURSOR_FOR_EACH (facet, cr, &cursor) { if (!facet_check_consistency(facet)) { errors++; } } if (errors) { ofproto->backer->need_revalidate = REV_INCONSISTENCY; } if (errors) { ds_put_format(reply, "%s: self-check failed (%d errors)\n", ofproto->up.name, errors); } else { ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name); } } static void ofproto_dpif_self_check(struct unixctl_conn *conn, int argc, const char *argv[], void *aux OVS_UNUSED) { struct ds reply = DS_EMPTY_INITIALIZER; struct ofproto_dpif *ofproto; if (argc > 1) { ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply_error(conn, "Unknown ofproto (use " "ofproto/list for help)"); return; } ofproto_dpif_self_check__(ofproto, &reply); } else { HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { ofproto_dpif_self_check__(ofproto, &reply); } } unixctl_command_reply(conn, ds_cstr(&reply)); ds_destroy(&reply); } /* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list * of the 'ofproto_shash' nodes. It is the responsibility of the caller * to destroy 'ofproto_shash' and free the returned value. */ static const struct shash_node ** get_ofprotos(struct shash *ofproto_shash) { const struct ofproto_dpif *ofproto; HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name); shash_add_nocopy(ofproto_shash, name, ofproto); } return shash_sort(ofproto_shash); } static void ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; struct shash ofproto_shash; const struct shash_node **sorted_ofprotos; int i; shash_init(&ofproto_shash); sorted_ofprotos = get_ofprotos(&ofproto_shash); for (i = 0; i < shash_count(&ofproto_shash); i++) { const struct shash_node *node = sorted_ofprotos[i]; ds_put_format(&ds, "%s\n", node->name); } shash_destroy(&ofproto_shash); free(sorted_ofprotos); unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } static void show_dp_rates(struct ds *ds, const char *heading, const struct avg_subfacet_rates *rates) { ds_put_format(ds, "%s add rate: %5.3f/min, del rate: %5.3f/min\n", heading, rates->add_rate, rates->del_rate); } static void dpif_show_backer(const struct dpif_backer *backer, struct ds *ds) { const struct shash_node **ofprotos; struct ofproto_dpif *ofproto; struct shash ofproto_shash; uint64_t n_hit, n_missed; long long int minutes; size_t i; n_hit = n_missed = 0; HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { if (ofproto->backer == backer) { n_missed += ofproto->n_missed; n_hit += ofproto->n_hit; } } ds_put_format(ds, "%s: hit:%"PRIu64" missed:%"PRIu64"\n", dpif_name(backer->dpif), n_hit, n_missed); ds_put_format(ds, "\tflows: cur: %zu, avg: %u, max: %u," " life span: %lldms\n", hmap_count(&backer->subfacets), backer->avg_n_subfacet, backer->max_n_subfacet, backer->avg_subfacet_life); minutes = (time_msec() - backer->created) / (1000 * 60); if (minutes >= 60) { show_dp_rates(ds, "\thourly avg:", &backer->hourly); } if (minutes >= 60 * 24) { show_dp_rates(ds, "\tdaily avg:", &backer->daily); } show_dp_rates(ds, "\toverall avg:", &backer->lifetime); shash_init(&ofproto_shash); ofprotos = get_ofprotos(&ofproto_shash); for (i = 0; i < shash_count(&ofproto_shash); i++) { struct ofproto_dpif *ofproto = ofprotos[i]->data; const struct shash_node **ports; size_t j; if (ofproto->backer != backer) { continue; } ds_put_format(ds, "\t%s: hit:%"PRIu64" missed:%"PRIu64"\n", ofproto->up.name, ofproto->n_hit, ofproto->n_missed); ports = shash_sort(&ofproto->up.port_by_name); for (j = 0; j < shash_count(&ofproto->up.port_by_name); j++) { const struct shash_node *node = ports[j]; struct ofport *ofport = node->data; struct smap config; odp_port_t odp_port; ds_put_format(ds, "\t\t%s %u/", netdev_get_name(ofport->netdev), ofport->ofp_port); odp_port = ofp_port_to_odp_port(ofproto, ofport->ofp_port); if (odp_port != ODPP_NONE) { ds_put_format(ds, "%"PRIu32":", odp_port); } else { ds_put_cstr(ds, "none:"); } ds_put_format(ds, " (%s", netdev_get_type(ofport->netdev)); smap_init(&config); if (!netdev_get_config(ofport->netdev, &config)) { const struct smap_node **nodes; size_t i; nodes = smap_sort(&config); for (i = 0; i < smap_count(&config); i++) { const struct smap_node *node = nodes[i]; ds_put_format(ds, "%c %s=%s", i ? ',' : ':', node->key, node->value); } free(nodes); } smap_destroy(&config); ds_put_char(ds, ')'); ds_put_char(ds, '\n'); } free(ports); } shash_destroy(&ofproto_shash); free(ofprotos); } static void ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; const struct shash_node **backers; int i; backers = shash_sort(&all_dpif_backers); for (i = 0; i < shash_count(&all_dpif_backers); i++) { dpif_show_backer(backers[i]->data, &ds); } free(backers); unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } /* Dump the megaflow (facet) cache. This is useful to check the * correctness of flow wildcarding, since the same mechanism is used for * both xlate caching and kernel wildcarding. * * It's important to note that in the output the flow description uses * OpenFlow (OFP) ports, but the actions use datapath (ODP) ports. * * This command is only needed for advanced debugging, so it's not * documented in the man page. */ static void ofproto_unixctl_dpif_dump_megaflows(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; const struct ofproto_dpif *ofproto; long long int now = time_msec(); struct cls_cursor cursor; struct facet *facet; ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply_error(conn, "no such bridge"); return; } cls_cursor_init(&cursor, &ofproto->facets, NULL); CLS_CURSOR_FOR_EACH (facet, cr, &cursor) { cls_rule_format(&facet->cr, &ds); ds_put_cstr(&ds, ", "); ds_put_format(&ds, "n_subfacets:%zu, ", list_size(&facet->subfacets)); ds_put_format(&ds, "used:%.3fs, ", (now - facet->used) / 1000.0); ds_put_cstr(&ds, "Datapath actions: "); if (facet->xout.slow) { uint64_t slow_path_stub[128 / 8]; const struct nlattr *actions; size_t actions_len; compose_slow_path(ofproto, &facet->flow, facet->xout.slow, slow_path_stub, sizeof slow_path_stub, &actions, &actions_len); format_odp_actions(&ds, actions, actions_len); } else { format_odp_actions(&ds, facet->xout.odp_actions.data, facet->xout.odp_actions.size); } ds_put_cstr(&ds, "\n"); } ds_chomp(&ds, '\n'); unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } /* Disable using the megaflows. * * This command is only needed for advanced debugging, so it's not * documented in the man page. */ static void ofproto_unixctl_dpif_disable_megaflows(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { struct ofproto_dpif *ofproto; enable_megaflows = false; HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { flush(&ofproto->up); } unixctl_command_reply(conn, "megaflows disabled"); } /* Re-enable using megaflows. * * This command is only needed for advanced debugging, so it's not * documented in the man page. */ static void ofproto_unixctl_dpif_enable_megaflows(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { struct ofproto_dpif *ofproto; enable_megaflows = true; HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { flush(&ofproto->up); } unixctl_command_reply(conn, "megaflows enabled"); } static void ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; const struct ofproto_dpif *ofproto; struct subfacet *subfacet; ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply_error(conn, "no such bridge"); return; } update_stats(ofproto->backer); HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->backer->subfacets) { struct facet *facet = subfacet->facet; if (ofproto_dpif_cast(facet->rule->up.ofproto) != ofproto) { continue; } odp_flow_key_format(subfacet->key, subfacet->key_len, &ds); ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:", subfacet->dp_packet_count, subfacet->dp_byte_count); if (subfacet->used) { ds_put_format(&ds, "%.3fs", (time_msec() - subfacet->used) / 1000.0); } else { ds_put_format(&ds, "never"); } if (subfacet->facet->tcp_flags) { ds_put_cstr(&ds, ", flags:"); packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags); } ds_put_cstr(&ds, ", actions:"); if (facet->xout.slow) { uint64_t slow_path_stub[128 / 8]; const struct nlattr *actions; size_t actions_len; compose_slow_path(ofproto, &facet->flow, facet->xout.slow, slow_path_stub, sizeof slow_path_stub, &actions, &actions_len); format_odp_actions(&ds, actions, actions_len); } else { format_odp_actions(&ds, facet->xout.odp_actions.data, facet->xout.odp_actions.size); } ds_put_char(&ds, '\n'); } unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } static void ofproto_unixctl_dpif_del_flows(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; struct ofproto_dpif *ofproto; ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply_error(conn, "no such bridge"); return; } flush(&ofproto->up); unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } static void ofproto_dpif_unixctl_init(void) { static bool registered; if (registered) { return; } registered = true; unixctl_command_register( "ofproto/trace", "[dp_name]|bridge odp_flow|br_flow [-generate|packet]", 1, 3, ofproto_unixctl_trace, NULL); unixctl_command_register("fdb/flush", "[bridge]", 0, 1, ofproto_unixctl_fdb_flush, NULL); unixctl_command_register("fdb/show", "bridge", 1, 1, ofproto_unixctl_fdb_show, NULL); unixctl_command_register("ofproto/clog", "", 0, 0, ofproto_dpif_clog, NULL); unixctl_command_register("ofproto/unclog", "", 0, 0, ofproto_dpif_unclog, NULL); unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1, ofproto_dpif_self_check, NULL); unixctl_command_register("dpif/dump-dps", "", 0, 0, ofproto_unixctl_dpif_dump_dps, NULL); unixctl_command_register("dpif/show", "", 0, 0, ofproto_unixctl_dpif_show, NULL); unixctl_command_register("dpif/dump-flows", "bridge", 1, 1, ofproto_unixctl_dpif_dump_flows, NULL); unixctl_command_register("dpif/del-flows", "bridge", 1, 1, ofproto_unixctl_dpif_del_flows, NULL); unixctl_command_register("dpif/dump-megaflows", "bridge", 1, 1, ofproto_unixctl_dpif_dump_megaflows, NULL); unixctl_command_register("dpif/disable-megaflows", "", 0, 0, ofproto_unixctl_dpif_disable_megaflows, NULL); unixctl_command_register("dpif/enable-megaflows", "", 0, 0, ofproto_unixctl_dpif_enable_megaflows, NULL); } /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.) * * This is deprecated. It is only for compatibility with broken device drivers * in old versions of Linux that do not properly support VLANs when VLAN * devices are not used. When broken device drivers are no longer in * widespread use, we will delete these interfaces. */ static int set_realdev(struct ofport *ofport_, ofp_port_t realdev_ofp_port, int vid) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto); struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); if (realdev_ofp_port == ofport->realdev_ofp_port && vid == ofport->vlandev_vid) { return 0; } ofproto->backer->need_revalidate = REV_RECONFIGURE; if (ofport->realdev_ofp_port) { vsp_remove(ofport); } if (realdev_ofp_port && ofport->bundle) { /* vlandevs are enslaved to their realdevs, so they are not allowed to * themselves be part of a bundle. */ bundle_set(ofport->up.ofproto, ofport->bundle, NULL); } ofport->realdev_ofp_port = realdev_ofp_port; ofport->vlandev_vid = vid; if (realdev_ofp_port) { vsp_add(ofport, realdev_ofp_port, vid); } return 0; } static uint32_t hash_realdev_vid(ofp_port_t realdev_ofp_port, int vid) { return hash_2words(ofp_to_u16(realdev_ofp_port), vid); } /* Returns the OFP port number of the Linux VLAN device that corresponds to * 'vlan_tci' on the network device with port number 'realdev_ofp_port' in * 'struct ofport_dpif'. For example, given 'realdev_ofp_port' of eth0 and * 'vlan_tci' 9, it would return the port number of eth0.9. * * Unless VLAN splinters are enabled for port 'realdev_ofp_port', this * function just returns its 'realdev_ofp_port' argument. */ ofp_port_t vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto, ofp_port_t realdev_ofp_port, ovs_be16 vlan_tci) { if (!hmap_is_empty(&ofproto->realdev_vid_map)) { int vid = vlan_tci_to_vid(vlan_tci); const struct vlan_splinter *vsp; HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node, hash_realdev_vid(realdev_ofp_port, vid), &ofproto->realdev_vid_map) { if (vsp->realdev_ofp_port == realdev_ofp_port && vsp->vid == vid) { return vsp->vlandev_ofp_port; } } } return realdev_ofp_port; } static struct vlan_splinter * vlandev_find(const struct ofproto_dpif *ofproto, ofp_port_t vlandev_ofp_port) { struct vlan_splinter *vsp; HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node, hash_ofp_port(vlandev_ofp_port), &ofproto->vlandev_map) { if (vsp->vlandev_ofp_port == vlandev_ofp_port) { return vsp; } } return NULL; } /* Returns the OpenFlow port number of the "real" device underlying the Linux * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the * VLAN VID of the Linux VLAN device in '*vid'. For example, given * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of * eth0 and store 9 in '*vid'. * * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux * VLAN device. Unless VLAN splinters are enabled, this is what this function * always does.*/ static ofp_port_t vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto, ofp_port_t vlandev_ofp_port, int *vid) { if (!hmap_is_empty(&ofproto->vlandev_map)) { const struct vlan_splinter *vsp; vsp = vlandev_find(ofproto, vlandev_ofp_port); if (vsp) { if (vid) { *vid = vsp->vid; } return vsp->realdev_ofp_port; } } return 0; } /* Given 'flow', a flow representing a packet received on 'ofproto', checks * whether 'flow->in_port' represents a Linux VLAN device. If so, changes * 'flow->in_port' to the "real" device backing the VLAN device, sets * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is * always the case unless VLAN splinters are enabled), returns false without * making any changes. */ static bool vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow) { ofp_port_t realdev; int vid; realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port.ofp_port, &vid); if (!realdev) { return false; } /* Cause the flow to be processed as if it came in on the real device with * the VLAN device's VLAN ID. */ flow->in_port.ofp_port = realdev; flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI); return true; } static void vsp_remove(struct ofport_dpif *port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); struct vlan_splinter *vsp; vsp = vlandev_find(ofproto, port->up.ofp_port); if (vsp) { hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node); hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node); free(vsp); port->realdev_ofp_port = 0; } else { VLOG_ERR("missing vlan device record"); } } static void vsp_add(struct ofport_dpif *port, ofp_port_t realdev_ofp_port, int vid) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL) && (vsp_realdev_to_vlandev(ofproto, realdev_ofp_port, htons(vid)) == realdev_ofp_port)) { struct vlan_splinter *vsp; vsp = xmalloc(sizeof *vsp); hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node, hash_ofp_port(port->up.ofp_port)); hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node, hash_realdev_vid(realdev_ofp_port, vid)); vsp->realdev_ofp_port = realdev_ofp_port; vsp->vlandev_ofp_port = port->up.ofp_port; vsp->vid = vid; port->realdev_ofp_port = realdev_ofp_port; } else { VLOG_ERR("duplicate vlan device record"); } } odp_port_t ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, ofp_port_t ofp_port) { const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port); return ofport ? ofport->odp_port : ODPP_NONE; } static struct ofport_dpif * odp_port_to_ofport(const struct dpif_backer *backer, odp_port_t odp_port) { struct ofport_dpif *port; HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node, hash_odp_port(odp_port), &backer->odp_to_ofport_map) { if (port->odp_port == odp_port) { return port; } } return NULL; } static ofp_port_t odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, odp_port_t odp_port) { struct ofport_dpif *port; port = odp_port_to_ofport(ofproto->backer, odp_port); if (port && &ofproto->up == port->up.ofproto) { return port->up.ofp_port; } else { return OFPP_NONE; } } /* Compute exponentially weighted moving average, adding 'new' as the newest, * most heavily weighted element. 'base' designates the rate of decay: after * 'base' further updates, 'new''s weight in the EWMA decays to about 1/e * (about .37). */ static void exp_mavg(double *avg, int base, double new) { *avg = (*avg * (base - 1) + new) / base; } static void update_moving_averages(struct dpif_backer *backer) { const int min_ms = 60 * 1000; /* milliseconds in one minute. */ long long int minutes = (time_msec() - backer->created) / min_ms; if (minutes > 0) { backer->lifetime.add_rate = (double) backer->total_subfacet_add_count / minutes; backer->lifetime.del_rate = (double) backer->total_subfacet_del_count / minutes; } else { backer->lifetime.add_rate = 0.0; backer->lifetime.del_rate = 0.0; } /* Update hourly averages on the minute boundaries. */ if (time_msec() - backer->last_minute >= min_ms) { exp_mavg(&backer->hourly.add_rate, 60, backer->subfacet_add_count); exp_mavg(&backer->hourly.del_rate, 60, backer->subfacet_del_count); /* Update daily averages on the hour boundaries. */ if ((backer->last_minute - backer->created) / min_ms % 60 == 59) { exp_mavg(&backer->daily.add_rate, 24, backer->hourly.add_rate); exp_mavg(&backer->daily.del_rate, 24, backer->hourly.del_rate); } backer->total_subfacet_add_count += backer->subfacet_add_count; backer->total_subfacet_del_count += backer->subfacet_del_count; backer->subfacet_add_count = 0; backer->subfacet_del_count = 0; backer->last_minute += min_ms; } } const struct ofproto_class ofproto_dpif_class = { init, enumerate_types, enumerate_names, del, port_open_type, type_run, type_run_fast, type_wait, alloc, construct, destruct, dealloc, run, run_fast, wait, get_memory_usage, flush, get_features, get_tables, port_alloc, port_construct, port_destruct, port_dealloc, port_modified, port_reconfigured, port_query_by_name, port_add, port_del, port_get_stats, port_dump_start, port_dump_next, port_dump_done, port_poll, port_poll_wait, port_is_lacp_current, NULL, /* rule_choose_table */ rule_alloc, rule_construct, rule_destruct, rule_dealloc, rule_get_stats, rule_execute, rule_modify_actions, set_frag_handling, packet_out, set_netflow, get_netflow_ids, set_sflow, set_ipfix, set_cfm, get_cfm_status, set_bfd, get_bfd_status, set_stp, get_stp_status, set_stp_port, get_stp_port_status, set_queues, bundle_set, bundle_remove, mirror_set, mirror_get_stats, set_flood_vlans, is_mirror_output_bundle, forward_bpdu_changed, set_mac_table_config, set_realdev, NULL, /* meter_get_features */ NULL, /* meter_set */ NULL, /* meter_get */ NULL, /* meter_del */ };