/* * Copyright (c) 2009, 2010, 2011 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto/private.h" #include #include "autopath.h" #include "bond.h" #include "byte-order.h" #include "connmgr.h" #include "coverage.h" #include "cfm.h" #include "dpif.h" #include "dynamic-string.h" #include "fail-open.h" #include "hmapx.h" #include "lacp.h" #include "mac-learning.h" #include "multipath.h" #include "netdev.h" #include "netlink.h" #include "nx-match.h" #include "odp-util.h" #include "ofp-util.h" #include "ofpbuf.h" #include "ofp-print.h" #include "ofproto-sflow.h" #include "poll-loop.h" #include "timer.h" #include "unaligned.h" #include "unixctl.h" #include "vlan-bitmap.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(ofproto_dpif); COVERAGE_DEFINE(ofproto_dpif_ctlr_action); COVERAGE_DEFINE(ofproto_dpif_expired); COVERAGE_DEFINE(ofproto_dpif_no_packet_in); COVERAGE_DEFINE(ofproto_dpif_xlate); COVERAGE_DEFINE(facet_changed_rule); COVERAGE_DEFINE(facet_invalidated); COVERAGE_DEFINE(facet_revalidate); COVERAGE_DEFINE(facet_unexpected); /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a * flow translation. */ #define MAX_RESUBMIT_RECURSION 16 struct ofport_dpif; struct ofproto_dpif; struct rule_dpif { struct rule up; long long int used; /* Time last used; time created if not used. */ /* These statistics: * * - Do include packets and bytes from facets that have been deleted or * whose own statistics have been folded into the rule. * * - Do include packets and bytes sent "by hand" that were accounted to * the rule without any facet being involved (this is a rare corner * case in rule_execute()). * * - Do not include packet or bytes that can be obtained from any facet's * packet_count or byte_count member or that can be obtained from the * datapath by, e.g., dpif_flow_get() for any facet. */ uint64_t packet_count; /* Number of packets received. */ uint64_t byte_count; /* Number of bytes received. */ struct list facets; /* List of "struct facet"s. */ }; static struct rule_dpif *rule_dpif_cast(const struct rule *rule) { return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL; } static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow); #define MAX_MIRRORS 32 typedef uint32_t mirror_mask_t; #define MIRROR_MASK_C(X) UINT32_C(X) BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS); struct ofmirror { struct ofproto_dpif *ofproto; /* Owning ofproto. */ size_t idx; /* In ofproto's "mirrors" array. */ void *aux; /* Key supplied by ofproto's client. */ char *name; /* Identifier for log messages. */ /* Selection criteria. */ struct hmapx srcs; /* Contains "struct ofbundle *"s. */ struct hmapx dsts; /* Contains "struct ofbundle *"s. */ unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */ /* Output (mutually exclusive). */ struct ofbundle *out; /* Output port or NULL. */ int out_vlan; /* Output VLAN or -1. */ }; static void mirror_destroy(struct ofmirror *); /* A group of one or more OpenFlow ports. */ #define OFBUNDLE_FLOOD ((struct ofbundle *) 1) struct ofbundle { struct ofproto_dpif *ofproto; /* Owning ofproto. */ struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */ void *aux; /* Key supplied by ofproto's client. */ char *name; /* Identifier for log messages. */ /* Configuration. */ struct list ports; /* Contains "struct ofport"s. */ int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */ unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1. * NULL if all VLANs are trunked. */ struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */ struct bond *bond; /* Nonnull iff more than one port. */ /* Status. */ bool floodable; /* True if no port has OFPPC_NO_FLOOD set. */ /* Port mirroring info. */ mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */ mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */ mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */ }; static void bundle_remove(struct ofport *); static void bundle_destroy(struct ofbundle *); static void bundle_del_port(struct ofport_dpif *); static void bundle_run(struct ofbundle *); static void bundle_wait(struct ofbundle *); struct action_xlate_ctx { /* action_xlate_ctx_init() initializes these members. */ /* The ofproto. */ struct ofproto_dpif *ofproto; /* Flow to which the OpenFlow actions apply. xlate_actions() will modify * this flow when actions change header fields. */ struct flow flow; /* The packet corresponding to 'flow', or a null pointer if we are * revalidating without a packet to refer to. */ const struct ofpbuf *packet; /* If nonnull, called just before executing a resubmit action. * * This is normally null so the client has to set it manually after * calling action_xlate_ctx_init(). */ void (*resubmit_hook)(struct action_xlate_ctx *, struct rule_dpif *); /* xlate_actions() initializes and uses these members. The client might want * to look at them after it returns. */ struct ofpbuf *odp_actions; /* Datapath actions. */ tag_type tags; /* Tags associated with OFPP_NORMAL actions. */ bool may_set_up_flow; /* True ordinarily; false if the actions must * be reassessed for every packet. */ uint16_t nf_output_iface; /* Output interface index for NetFlow. */ /* xlate_actions() initializes and uses these members, but the client has no * reason to look at them. */ int recurse; /* Recursion level, via xlate_table_action. */ int last_pop_priority; /* Offset in 'odp_actions' just past most * recent ODP_ACTION_ATTR_SET_PRIORITY. */ }; static void action_xlate_ctx_init(struct action_xlate_ctx *, struct ofproto_dpif *, const struct flow *, const struct ofpbuf *); static struct ofpbuf *xlate_actions(struct action_xlate_ctx *, const union ofp_action *in, size_t n_in); /* An exact-match instantiation of an OpenFlow flow. */ struct facet { long long int used; /* Time last used; time created if not used. */ /* These statistics: * * - Do include packets and bytes sent "by hand", e.g. with * dpif_execute(). * * - Do include packets and bytes that were obtained from the datapath * when a flow was deleted (e.g. dpif_flow_del()) or when its * statistics were reset (e.g. dpif_flow_put() with * DPIF_FP_ZERO_STATS). * * - Do not include any packets or bytes that can currently be obtained * from the datapath by, e.g., dpif_flow_get(). */ uint64_t packet_count; /* Number of packets received. */ uint64_t byte_count; /* Number of bytes received. */ uint64_t dp_packet_count; /* Last known packet count in the datapath. */ uint64_t dp_byte_count; /* Last known byte count in the datapath. */ uint64_t rs_packet_count; /* Packets pushed to resubmit children. */ uint64_t rs_byte_count; /* Bytes pushed to resubmit children. */ long long int rs_used; /* Used time pushed to resubmit children. */ /* Number of bytes passed to account_cb. This may include bytes that can * currently obtained from the datapath (thus, it can be greater than * byte_count). */ uint64_t accounted_bytes; struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */ struct list list_node; /* In owning rule's 'facets' list. */ struct rule_dpif *rule; /* Owning rule. */ struct flow flow; /* Exact-match flow. */ bool installed; /* Installed in datapath? */ bool may_install; /* True ordinarily; false if actions must * be reassessed for every packet. */ size_t actions_len; /* Number of bytes in actions[]. */ struct nlattr *actions; /* Datapath actions. */ tag_type tags; /* Tags. */ struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */ }; static struct facet *facet_create(struct rule_dpif *, const struct flow *, const struct ofpbuf *packet); static void facet_remove(struct ofproto_dpif *, struct facet *); static void facet_free(struct facet *); static struct facet *facet_find(struct ofproto_dpif *, const struct flow *); static struct facet *facet_lookup_valid(struct ofproto_dpif *, const struct flow *); static bool facet_revalidate(struct ofproto_dpif *, struct facet *); static void facet_execute(struct ofproto_dpif *, struct facet *, struct ofpbuf *packet); static int facet_put__(struct ofproto_dpif *, struct facet *, const struct nlattr *actions, size_t actions_len, struct dpif_flow_stats *); static void facet_install(struct ofproto_dpif *, struct facet *, bool zero_stats); static void facet_uninstall(struct ofproto_dpif *, struct facet *); static void facet_flush_stats(struct ofproto_dpif *, struct facet *); static void facet_make_actions(struct ofproto_dpif *, struct facet *, const struct ofpbuf *packet); static void facet_update_time(struct ofproto_dpif *, struct facet *, long long int used); static void facet_update_stats(struct ofproto_dpif *, struct facet *, const struct dpif_flow_stats *); static void facet_push_stats(struct facet *); static void facet_account(struct ofproto_dpif *, struct facet *, uint64_t extra_bytes); static bool facet_is_controller_flow(struct facet *); static void flow_push_stats(const struct rule_dpif *, struct flow *, uint64_t packets, uint64_t bytes, long long int used); struct ofport_dpif { struct ofport up; uint32_t odp_port; struct ofbundle *bundle; /* Bundle that contains this port, if any. */ struct list bundle_node; /* In struct ofbundle's "ports" list. */ struct cfm *cfm; /* Connectivity Fault Management, if any. */ tag_type tag; /* Tag associated with this port. */ uint32_t bond_stable_id; /* stable_id to use as bond slave, or 0. */ }; static struct ofport_dpif * ofport_dpif_cast(const struct ofport *ofport) { assert(ofport->ofproto->ofproto_class == &ofproto_dpif_class); return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL; } static void port_run(struct ofport_dpif *); static void port_wait(struct ofport_dpif *); static int set_cfm(struct ofport *, const struct cfm *, const uint16_t *remote_mps, size_t n_remote_mps); struct ofproto_dpif { struct ofproto up; struct dpif *dpif; int max_ports; /* Statistics. */ uint64_t n_matches; /* Bridging. */ struct netflow *netflow; struct ofproto_sflow *sflow; struct hmap bundles; /* Contains "struct ofbundle"s. */ struct mac_learning *ml; struct ofmirror *mirrors[MAX_MIRRORS]; bool has_bonded_bundles; /* Expiration. */ struct timer next_expiration; /* Facets. */ struct hmap facets; bool need_revalidate; struct tag_set revalidate_set; }; static void ofproto_dpif_unixctl_init(void); static struct ofproto_dpif * ofproto_dpif_cast(const struct ofproto *ofproto) { assert(ofproto->ofproto_class == &ofproto_dpif_class); return CONTAINER_OF(ofproto, struct ofproto_dpif, up); } static struct ofport_dpif *get_ofp_port(struct ofproto_dpif *, uint16_t ofp_port); static struct ofport_dpif *get_odp_port(struct ofproto_dpif *, uint32_t odp_port); /* Packet processing. */ static void update_learning_table(struct ofproto_dpif *, const struct flow *, int vlan, struct ofbundle *); static bool is_admissible(struct ofproto_dpif *, const struct flow *, bool have_packet, tag_type *, int *vlanp, struct ofbundle **in_bundlep); static void handle_upcall(struct ofproto_dpif *, struct dpif_upcall *); /* Flow expiration. */ static int expire(struct ofproto_dpif *); /* Utilities. */ static int send_packet(struct ofproto_dpif *, uint32_t odp_port, const struct ofpbuf *packet); /* Global variables. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); /* Factory functions. */ static void enumerate_types(struct sset *types) { dp_enumerate_types(types); } static int enumerate_names(const char *type, struct sset *names) { return dp_enumerate_names(type, names); } static int del(const char *type, const char *name) { struct dpif *dpif; int error; error = dpif_open(name, type, &dpif); if (!error) { error = dpif_delete(dpif); dpif_close(dpif); } return error; } /* Basic life-cycle. */ static struct ofproto * alloc(void) { struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto); return &ofproto->up; } static void dealloc(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); free(ofproto); } static int construct(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); const char *name = ofproto->up.name; int error; int i; error = dpif_create_and_open(name, ofproto->up.type, &ofproto->dpif); if (error) { VLOG_ERR("failed to open datapath %s: %s", name, strerror(error)); return error; } ofproto->max_ports = dpif_get_max_ports(ofproto->dpif); ofproto->n_matches = 0; error = dpif_recv_set_mask(ofproto->dpif, ((1u << DPIF_UC_MISS) | (1u << DPIF_UC_ACTION) | (1u << DPIF_UC_SAMPLE))); if (error) { VLOG_ERR("failed to listen on datapath %s: %s", name, strerror(error)); dpif_close(ofproto->dpif); return error; } dpif_flow_flush(ofproto->dpif); dpif_recv_purge(ofproto->dpif); ofproto->netflow = NULL; ofproto->sflow = NULL; hmap_init(&ofproto->bundles); ofproto->ml = mac_learning_create(); for (i = 0; i < MAX_MIRRORS; i++) { ofproto->mirrors[i] = NULL; } ofproto->has_bonded_bundles = false; timer_set_duration(&ofproto->next_expiration, 1000); hmap_init(&ofproto->facets); ofproto->need_revalidate = false; tag_set_init(&ofproto->revalidate_set); ofproto->up.tables = xmalloc(sizeof *ofproto->up.tables); classifier_init(&ofproto->up.tables[0]); ofproto->up.n_tables = 1; ofproto_dpif_unixctl_init(); return 0; } static void destruct(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); int i; for (i = 0; i < MAX_MIRRORS; i++) { mirror_destroy(ofproto->mirrors[i]); } netflow_destroy(ofproto->netflow); ofproto_sflow_destroy(ofproto->sflow); hmap_destroy(&ofproto->bundles); mac_learning_destroy(ofproto->ml); hmap_destroy(&ofproto->facets); dpif_close(ofproto->dpif); } static int run(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofport_dpif *ofport; struct ofbundle *bundle; int i; dpif_run(ofproto->dpif); for (i = 0; i < 50; i++) { struct dpif_upcall packet; int error; error = dpif_recv(ofproto->dpif, &packet); if (error) { if (error == ENODEV) { /* Datapath destroyed. */ return error; } break; } handle_upcall(ofproto, &packet); } if (timer_expired(&ofproto->next_expiration)) { int delay = expire(ofproto); timer_set_duration(&ofproto->next_expiration, delay); } if (ofproto->netflow) { netflow_run(ofproto->netflow); } if (ofproto->sflow) { ofproto_sflow_run(ofproto->sflow); } HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { port_run(ofport); } HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { bundle_run(bundle); } /* Now revalidate if there's anything to do. */ if (ofproto->need_revalidate || !tag_set_is_empty(&ofproto->revalidate_set)) { struct tag_set revalidate_set = ofproto->revalidate_set; bool revalidate_all = ofproto->need_revalidate; struct facet *facet, *next; /* Clear the revalidation flags. */ tag_set_init(&ofproto->revalidate_set); ofproto->need_revalidate = false; HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &ofproto->facets) { if (revalidate_all || tag_set_intersects(&revalidate_set, facet->tags)) { facet_revalidate(ofproto, facet); } } } return 0; } static void wait(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofport_dpif *ofport; struct ofbundle *bundle; dpif_wait(ofproto->dpif); dpif_recv_wait(ofproto->dpif); if (ofproto->sflow) { ofproto_sflow_wait(ofproto->sflow); } if (!tag_set_is_empty(&ofproto->revalidate_set)) { poll_immediate_wake(); } HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { port_wait(ofport); } HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { bundle_wait(bundle); } if (ofproto->need_revalidate) { /* Shouldn't happen, but if it does just go around again. */ VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()"); poll_immediate_wake(); } else { timer_wait(&ofproto->next_expiration); } } static void flush(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct facet *facet, *next_facet; HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) { /* Mark the facet as not installed so that facet_remove() doesn't * bother trying to uninstall it. There is no point in uninstalling it * individually since we are about to blow away all the facets with * dpif_flow_flush(). */ facet->installed = false; facet->dp_packet_count = 0; facet->dp_byte_count = 0; facet_remove(ofproto, facet); } dpif_flow_flush(ofproto->dpif); } static void get_features(struct ofproto *ofproto_ OVS_UNUSED, bool *arp_match_ip, uint32_t *actions) { *arp_match_ip = true; *actions = ((1u << OFPAT_OUTPUT) | (1u << OFPAT_SET_VLAN_VID) | (1u << OFPAT_SET_VLAN_PCP) | (1u << OFPAT_STRIP_VLAN) | (1u << OFPAT_SET_DL_SRC) | (1u << OFPAT_SET_DL_DST) | (1u << OFPAT_SET_NW_SRC) | (1u << OFPAT_SET_NW_DST) | (1u << OFPAT_SET_NW_TOS) | (1u << OFPAT_SET_TP_SRC) | (1u << OFPAT_SET_TP_DST) | (1u << OFPAT_ENQUEUE)); } static void get_tables(struct ofproto *ofproto_, struct ofp_table_stats *ots) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct odp_stats s; strcpy(ots->name, "classifier"); dpif_get_dp_stats(ofproto->dpif, &s); put_32aligned_be64(&ots->lookup_count, htonll(s.n_hit + s.n_missed)); put_32aligned_be64(&ots->matched_count, htonll(s.n_hit + ofproto->n_matches)); } static int set_netflow(struct ofproto *ofproto_, const struct netflow_options *netflow_options) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (netflow_options) { if (!ofproto->netflow) { ofproto->netflow = netflow_create(); } return netflow_set_options(ofproto->netflow, netflow_options); } else { netflow_destroy(ofproto->netflow); ofproto->netflow = NULL; return 0; } } static struct ofport * port_alloc(void) { struct ofport_dpif *port = xmalloc(sizeof *port); return &port->up; } static void port_dealloc(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); free(port); } static int port_construct(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); port->odp_port = ofp_port_to_odp_port(port->up.ofp_port); port->bundle = NULL; port->cfm = NULL; port->tag = tag_create_random(); if (ofproto->sflow) { ofproto_sflow_add_port(ofproto->sflow, port->odp_port, netdev_get_name(port->up.netdev)); } return 0; } static void port_destruct(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); bundle_remove(port_); set_cfm(port_, NULL, NULL, 0); if (ofproto->sflow) { ofproto_sflow_del_port(ofproto->sflow, port->odp_port); } } static void port_modified(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); if (port->bundle && port->bundle->bond) { bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev); } } static void port_reconfigured(struct ofport *port_, ovs_be32 old_config) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); ovs_be32 changed = old_config ^ port->up.opp.config; if (changed & htonl(OFPPC_NO_RECV | OFPPC_NO_RECV_STP | OFPPC_NO_FWD | OFPPC_NO_FLOOD)) { ofproto->need_revalidate = true; } } static int set_sflow(struct ofproto *ofproto_, const struct ofproto_sflow_options *sflow_options) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofproto_sflow *os = ofproto->sflow; if (sflow_options) { if (!os) { struct ofport_dpif *ofport; os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif); HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { ofproto_sflow_add_port(os, ofport->odp_port, netdev_get_name(ofport->up.netdev)); } } ofproto_sflow_set_options(os, sflow_options); } else { ofproto_sflow_destroy(os); ofproto->sflow = NULL; } return 0; } static int set_cfm(struct ofport *ofport_, const struct cfm *cfm, const uint16_t *remote_mps, size_t n_remote_mps) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); int error; if (!cfm) { error = 0; } else { if (!ofport->cfm) { ofport->cfm = cfm_create(); } ofport->cfm->mpid = cfm->mpid; ofport->cfm->interval = cfm->interval; memcpy(ofport->cfm->maid, cfm->maid, CCM_MAID_LEN); cfm_update_remote_mps(ofport->cfm, remote_mps, n_remote_mps); if (cfm_configure(ofport->cfm)) { return 0; } error = EINVAL; } cfm_destroy(ofport->cfm); ofport->cfm = NULL; return error; } static int get_cfm(struct ofport *ofport_, const struct cfm **cfmp) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); *cfmp = ofport->cfm; return 0; } /* Bundles. */ /* Expires all MAC learning entries associated with 'port' and forces ofproto * to revalidate every flow. */ static void bundle_flush_macs(struct ofbundle *bundle) { struct ofproto_dpif *ofproto = bundle->ofproto; struct mac_learning *ml = ofproto->ml; struct mac_entry *mac, *next_mac; ofproto->need_revalidate = true; LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) { if (mac->port.p == bundle) { mac_learning_expire(ml, mac); } } } static struct ofbundle * bundle_lookup(const struct ofproto_dpif *ofproto, void *aux) { struct ofbundle *bundle; HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0), &ofproto->bundles) { if (bundle->aux == aux) { return bundle; } } return NULL; } /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the * ones that are found to 'bundles'. */ static void bundle_lookup_multiple(struct ofproto_dpif *ofproto, void **auxes, size_t n_auxes, struct hmapx *bundles) { size_t i; hmapx_init(bundles); for (i = 0; i < n_auxes; i++) { struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]); if (bundle) { hmapx_add(bundles, bundle); } } } static void bundle_del_port(struct ofport_dpif *port) { struct ofbundle *bundle = port->bundle; bundle->ofproto->need_revalidate = true; list_remove(&port->bundle_node); port->bundle = NULL; if (bundle->lacp) { lacp_slave_unregister(bundle->lacp, port); } if (bundle->bond) { bond_slave_unregister(bundle->bond, port); } bundle->floodable = true; LIST_FOR_EACH (port, bundle_node, &bundle->ports) { if (port->up.opp.config & htonl(OFPPC_NO_FLOOD)) { bundle->floodable = false; } } } static bool bundle_add_port(struct ofbundle *bundle, uint32_t ofp_port, struct lacp_slave_settings *lacp, uint32_t bond_stable_id) { struct ofport_dpif *port; port = get_ofp_port(bundle->ofproto, ofp_port); if (!port) { return false; } if (port->bundle != bundle) { bundle->ofproto->need_revalidate = true; if (port->bundle) { bundle_del_port(port); } port->bundle = bundle; list_push_back(&bundle->ports, &port->bundle_node); if (port->up.opp.config & htonl(OFPPC_NO_FLOOD)) { bundle->floodable = false; } } if (lacp) { lacp_slave_register(bundle->lacp, port, lacp); } port->bond_stable_id = bond_stable_id; return true; } static void bundle_destroy(struct ofbundle *bundle) { struct ofproto_dpif *ofproto; struct ofport_dpif *port, *next_port; int i; if (!bundle) { return; } ofproto = bundle->ofproto; for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *m = ofproto->mirrors[i]; if (m) { if (m->out == bundle) { mirror_destroy(m); } else if (hmapx_find_and_delete(&m->srcs, bundle) || hmapx_find_and_delete(&m->dsts, bundle)) { ofproto->need_revalidate = true; } } } LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) { bundle_del_port(port); } bundle_flush_macs(bundle); hmap_remove(&ofproto->bundles, &bundle->hmap_node); free(bundle->name); free(bundle->trunks); lacp_destroy(bundle->lacp); bond_destroy(bundle->bond); free(bundle); } static int bundle_set(struct ofproto *ofproto_, void *aux, const struct ofproto_bundle_settings *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); bool need_flush = false; const unsigned long *trunks; struct ofport_dpif *port; struct ofbundle *bundle; size_t i; bool ok; if (!s) { bundle_destroy(bundle_lookup(ofproto, aux)); return 0; } assert(s->n_slaves == 1 || s->bond != NULL); assert((s->lacp != NULL) == (s->lacp_slaves != NULL)); bundle = bundle_lookup(ofproto, aux); if (!bundle) { bundle = xmalloc(sizeof *bundle); bundle->ofproto = ofproto; hmap_insert(&ofproto->bundles, &bundle->hmap_node, hash_pointer(aux, 0)); bundle->aux = aux; bundle->name = NULL; list_init(&bundle->ports); bundle->vlan = -1; bundle->trunks = NULL; bundle->lacp = NULL; bundle->bond = NULL; bundle->floodable = true; bundle->src_mirrors = 0; bundle->dst_mirrors = 0; bundle->mirror_out = 0; } if (!bundle->name || strcmp(s->name, bundle->name)) { free(bundle->name); bundle->name = xstrdup(s->name); } /* LACP. */ if (s->lacp) { if (!bundle->lacp) { bundle->lacp = lacp_create(); } lacp_configure(bundle->lacp, s->lacp); } else { lacp_destroy(bundle->lacp); bundle->lacp = NULL; } /* Update set of ports. */ ok = true; for (i = 0; i < s->n_slaves; i++) { if (!bundle_add_port(bundle, s->slaves[i], s->lacp ? &s->lacp_slaves[i] : NULL, s->bond_stable_ids ? s->bond_stable_ids[i] : 0)) { ok = false; } } if (!ok || list_size(&bundle->ports) != s->n_slaves) { struct ofport_dpif *next_port; LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) { for (i = 0; i < s->n_slaves; i++) { if (s->slaves[i] == port->up.ofp_port) { goto found; } } bundle_del_port(port); found: ; } } assert(list_size(&bundle->ports) <= s->n_slaves); if (list_is_empty(&bundle->ports)) { bundle_destroy(bundle); return EINVAL; } /* Set VLAN tag. */ if (s->vlan != bundle->vlan) { bundle->vlan = s->vlan; need_flush = true; } /* Get trunked VLANs. */ trunks = s->vlan == -1 ? NULL : s->trunks; if (!vlan_bitmap_equal(trunks, bundle->trunks)) { free(bundle->trunks); bundle->trunks = vlan_bitmap_clone(trunks); need_flush = true; } /* Bonding. */ if (!list_is_short(&bundle->ports)) { bundle->ofproto->has_bonded_bundles = true; if (bundle->bond) { if (bond_reconfigure(bundle->bond, s->bond)) { ofproto->need_revalidate = true; } } else { bundle->bond = bond_create(s->bond); ofproto->need_revalidate = true; } LIST_FOR_EACH (port, bundle_node, &bundle->ports) { bond_slave_register(bundle->bond, port, port->bond_stable_id, port->up.netdev); } } else { bond_destroy(bundle->bond); bundle->bond = NULL; } /* If we changed something that would affect MAC learning, un-learn * everything on this port and force flow revalidation. */ if (need_flush) { bundle_flush_macs(bundle); } return 0; } static void bundle_remove(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofbundle *bundle = port->bundle; if (bundle) { bundle_del_port(port); if (list_is_empty(&bundle->ports)) { bundle_destroy(bundle); } else if (list_is_short(&bundle->ports)) { bond_destroy(bundle->bond); bundle->bond = NULL; } } } static void send_pdu_cb(void *port_, const struct lacp_pdu *pdu) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10); struct ofport_dpif *port = port_; uint8_t ea[ETH_ADDR_LEN]; int error; error = netdev_get_etheraddr(port->up.netdev, ea); if (!error) { struct lacp_pdu *packet_pdu; struct ofpbuf packet; ofpbuf_init(&packet, 0); packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP, sizeof *packet_pdu); *packet_pdu = *pdu; error = netdev_send(port->up.netdev, &packet); if (error) { VLOG_WARN_RL(&rl, "port %s: sending LACP PDU on iface %s failed " "(%s)", port->bundle->name, netdev_get_name(port->up.netdev), strerror(error)); } ofpbuf_uninit(&packet); } else { VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface " "%s (%s)", port->bundle->name, netdev_get_name(port->up.netdev), strerror(error)); } } static void bundle_send_learning_packets(struct ofbundle *bundle) { struct ofproto_dpif *ofproto = bundle->ofproto; int error, n_packets, n_errors; struct mac_entry *e; error = n_packets = n_errors = 0; LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) { if (e->port.p != bundle) { int ret = bond_send_learning_packet(bundle->bond, e->mac, e->vlan); if (ret) { error = ret; n_errors++; } n_packets++; } } if (n_errors) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning " "packets, last error was: %s", bundle->name, n_errors, n_packets, strerror(error)); } else { VLOG_DBG("bond %s: sent %d gratuitous learning packets", bundle->name, n_packets); } } static void bundle_run(struct ofbundle *bundle) { if (bundle->lacp) { lacp_run(bundle->lacp, send_pdu_cb); } if (bundle->bond) { struct ofport_dpif *port; LIST_FOR_EACH (port, bundle_node, &bundle->ports) { bool may_enable = lacp_slave_may_enable(bundle->lacp, port); bond_slave_set_lacp_may_enable(bundle->bond, port, may_enable); } bond_run(bundle->bond, &bundle->ofproto->revalidate_set, lacp_negotiated(bundle->lacp)); if (bond_should_send_learning_packets(bundle->bond)) { bundle_send_learning_packets(bundle); } } } static void bundle_wait(struct ofbundle *bundle) { if (bundle->lacp) { lacp_wait(bundle->lacp); } if (bundle->bond) { bond_wait(bundle->bond); } } /* Mirrors. */ static int mirror_scan(struct ofproto_dpif *ofproto) { int idx; for (idx = 0; idx < MAX_MIRRORS; idx++) { if (!ofproto->mirrors[idx]) { return idx; } } return -1; } static struct ofmirror * mirror_lookup(struct ofproto_dpif *ofproto, void *aux) { int i; for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *mirror = ofproto->mirrors[i]; if (mirror && mirror->aux == aux) { return mirror; } } return NULL; } static int mirror_set(struct ofproto *ofproto_, void *aux, const struct ofproto_mirror_settings *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); mirror_mask_t mirror_bit; struct ofbundle *bundle; struct ofmirror *mirror; struct ofbundle *out; struct hmapx srcs; /* Contains "struct ofbundle *"s. */ struct hmapx dsts; /* Contains "struct ofbundle *"s. */ int out_vlan; mirror = mirror_lookup(ofproto, aux); if (!s) { mirror_destroy(mirror); return 0; } if (!mirror) { int idx; idx = mirror_scan(ofproto); if (idx < 0) { VLOG_WARN("bridge %s: maximum of %d port mirrors reached, " "cannot create %s", ofproto->up.name, MAX_MIRRORS, s->name); return EFBIG; } mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror); mirror->ofproto = ofproto; mirror->idx = idx; mirror->out_vlan = -1; mirror->name = NULL; } if (!mirror->name || strcmp(s->name, mirror->name)) { free(mirror->name); mirror->name = xstrdup(s->name); } /* Get the new configuration. */ if (s->out_bundle) { out = bundle_lookup(ofproto, s->out_bundle); if (!out) { mirror_destroy(mirror); return EINVAL; } out_vlan = -1; } else { out = NULL; out_vlan = s->out_vlan; } bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs); bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts); /* If the configuration has not changed, do nothing. */ if (hmapx_equals(&srcs, &mirror->srcs) && hmapx_equals(&dsts, &mirror->dsts) && vlan_bitmap_equal(mirror->vlans, s->src_vlans) && mirror->out == out && mirror->out_vlan == out_vlan) { hmapx_destroy(&srcs); hmapx_destroy(&dsts); return 0; } hmapx_swap(&srcs, &mirror->srcs); hmapx_destroy(&srcs); hmapx_swap(&dsts, &mirror->dsts); hmapx_destroy(&dsts); free(mirror->vlans); mirror->vlans = vlan_bitmap_clone(s->src_vlans); mirror->out = out; mirror->out_vlan = out_vlan; /* Update bundles. */ mirror_bit = MIRROR_MASK_C(1) << mirror->idx; HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) { if (hmapx_contains(&mirror->srcs, bundle)) { bundle->src_mirrors |= mirror_bit; } else { bundle->src_mirrors &= ~mirror_bit; } if (hmapx_contains(&mirror->dsts, bundle)) { bundle->dst_mirrors |= mirror_bit; } else { bundle->dst_mirrors &= ~mirror_bit; } if (mirror->out == bundle) { bundle->mirror_out |= mirror_bit; } else { bundle->mirror_out &= ~mirror_bit; } } ofproto->need_revalidate = true; mac_learning_flush(ofproto->ml); return 0; } static void mirror_destroy(struct ofmirror *mirror) { struct ofproto_dpif *ofproto; mirror_mask_t mirror_bit; struct ofbundle *bundle; if (!mirror) { return; } ofproto = mirror->ofproto; ofproto->need_revalidate = true; mac_learning_flush(ofproto->ml); mirror_bit = MIRROR_MASK_C(1) << mirror->idx; HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { bundle->src_mirrors &= ~mirror_bit; bundle->dst_mirrors &= ~mirror_bit; bundle->mirror_out &= ~mirror_bit; } hmapx_destroy(&mirror->srcs); hmapx_destroy(&mirror->dsts); free(mirror->vlans); ofproto->mirrors[mirror->idx] = NULL; free(mirror->name); free(mirror); } static int set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) { ofproto->need_revalidate = true; mac_learning_flush(ofproto->ml); } return 0; } static bool is_mirror_output_bundle(struct ofproto *ofproto_, void *aux) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofbundle *bundle = bundle_lookup(ofproto, aux); return bundle && bundle->mirror_out != 0; } /* Ports. */ static struct ofport_dpif * get_ofp_port(struct ofproto_dpif *ofproto, uint16_t ofp_port) { struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port); return ofport ? ofport_dpif_cast(ofport) : NULL; } static struct ofport_dpif * get_odp_port(struct ofproto_dpif *ofproto, uint32_t odp_port) { return get_ofp_port(ofproto, odp_port_to_ofp_port(odp_port)); } static void ofproto_port_from_dpif_port(struct ofproto_port *ofproto_port, struct dpif_port *dpif_port) { ofproto_port->name = dpif_port->name; ofproto_port->type = dpif_port->type; ofproto_port->ofp_port = odp_port_to_ofp_port(dpif_port->port_no); } static void port_run(struct ofport_dpif *ofport) { if (ofport->cfm) { cfm_run(ofport->cfm); if (cfm_should_send_ccm(ofport->cfm)) { struct ofpbuf packet; struct ccm *ccm; ofpbuf_init(&packet, 0); ccm = eth_compose(&packet, eth_addr_ccm, ofport->up.opp.hw_addr, ETH_TYPE_CFM, sizeof *ccm); cfm_compose_ccm(ofport->cfm, ccm); send_packet(ofproto_dpif_cast(ofport->up.ofproto), ofport->odp_port, &packet); ofpbuf_uninit(&packet); } } } static void port_wait(struct ofport_dpif *ofport) { if (ofport->cfm) { cfm_wait(ofport->cfm); } } static int port_query_by_name(const struct ofproto *ofproto_, const char *devname, struct ofproto_port *ofproto_port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct dpif_port dpif_port; int error; error = dpif_port_query_by_name(ofproto->dpif, devname, &dpif_port); if (!error) { ofproto_port_from_dpif_port(ofproto_port, &dpif_port); } return error; } static int port_add(struct ofproto *ofproto_, struct netdev *netdev, uint16_t *ofp_portp) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); uint16_t odp_port; int error; error = dpif_port_add(ofproto->dpif, netdev, &odp_port); if (!error) { *ofp_portp = odp_port_to_ofp_port(odp_port); } return error; } static int port_del(struct ofproto *ofproto_, uint16_t ofp_port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); int error; error = dpif_port_del(ofproto->dpif, ofp_port_to_odp_port(ofp_port)); if (!error) { struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port); if (ofport) { /* The caller is going to close ofport->up.netdev. If this is a * bonded port, then the bond is using that netdev, so remove it * from the bond. The client will need to reconfigure everything * after deleting ports, so then the slave will get re-added. */ bundle_remove(&ofport->up); } } return error; } struct port_dump_state { struct dpif_port_dump dump; bool done; }; static int port_dump_start(const struct ofproto *ofproto_, void **statep) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct port_dump_state *state; *statep = state = xmalloc(sizeof *state); dpif_port_dump_start(&state->dump, ofproto->dpif); state->done = false; return 0; } static int port_dump_next(const struct ofproto *ofproto_ OVS_UNUSED, void *state_, struct ofproto_port *port) { struct port_dump_state *state = state_; struct dpif_port dpif_port; if (dpif_port_dump_next(&state->dump, &dpif_port)) { ofproto_port_from_dpif_port(port, &dpif_port); return 0; } else { int error = dpif_port_dump_done(&state->dump); state->done = true; return error ? error : EOF; } } static int port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_) { struct port_dump_state *state = state_; if (!state->done) { dpif_port_dump_done(&state->dump); } free(state); return 0; } static int port_poll(const struct ofproto *ofproto_, char **devnamep) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); return dpif_port_poll(ofproto->dpif, devnamep); } static void port_poll_wait(const struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); dpif_port_poll_wait(ofproto->dpif); } static int port_is_lacp_current(const struct ofport *ofport_) { const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); return (ofport->bundle && ofport->bundle->lacp ? lacp_slave_is_current(ofport->bundle->lacp, ofport) : -1); } /* Upcall handling. */ /* Given 'upcall', of type DPIF_UC_ACTION or DPIF_UC_MISS, sends an * OFPT_PACKET_IN message to each OpenFlow controller as necessary according to * their individual configurations. * * If 'clone' is true, the caller retains ownership of 'upcall->packet'. * Otherwise, ownership is transferred to this function. */ static void send_packet_in(struct ofproto_dpif *ofproto, struct dpif_upcall *upcall, const struct flow *flow, bool clone) { struct ofputil_packet_in pin; pin.packet = upcall->packet; pin.in_port = flow->in_port; pin.reason = upcall->type == DPIF_UC_MISS ? OFPR_NO_MATCH : OFPR_ACTION; pin.buffer_id = 0; /* not yet known */ pin.send_len = upcall->userdata; connmgr_send_packet_in(ofproto->up.connmgr, &pin, flow, clone ? NULL : upcall->packet); } static bool process_special(struct ofproto_dpif *ofproto, const struct flow *flow, const struct ofpbuf *packet) { if (cfm_should_process_flow(flow)) { struct ofport_dpif *ofport = get_ofp_port(ofproto, flow->in_port); if (ofport && ofport->cfm) { cfm_process_heartbeat(ofport->cfm, packet); } return true; } else if (flow->dl_type == htons(ETH_TYPE_LACP)) { struct ofport_dpif *port = get_ofp_port(ofproto, flow->in_port); if (port && port->bundle && port->bundle->lacp) { const struct lacp_pdu *pdu = parse_lacp_packet(packet); if (pdu) { lacp_process_pdu(port->bundle->lacp, port, pdu); } return true; } } return false; } static void handle_miss_upcall(struct ofproto_dpif *ofproto, struct dpif_upcall *upcall) { struct facet *facet; struct flow flow; /* Obtain in_port and tun_id, at least. */ odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow); /* Set header pointers in 'flow'. */ flow_extract(upcall->packet, flow.tun_id, flow.in_port, &flow); /* Handle 802.1ag and LACP. */ if (process_special(ofproto, &flow, upcall->packet)) { ofpbuf_delete(upcall->packet); ofproto->n_matches++; return; } /* Check with in-band control to see if this packet should be sent * to the local port regardless of the flow table. */ if (connmgr_msg_in_hook(ofproto->up.connmgr, &flow, upcall->packet)) { send_packet(ofproto, OFPP_LOCAL, upcall->packet); } facet = facet_lookup_valid(ofproto, &flow); if (!facet) { struct rule_dpif *rule = rule_dpif_lookup(ofproto, &flow); if (!rule) { /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */ struct ofport_dpif *port = get_ofp_port(ofproto, flow.in_port); if (port) { if (port->up.opp.config & htonl(OFPPC_NO_PACKET_IN)) { COVERAGE_INC(ofproto_dpif_no_packet_in); /* XXX install 'drop' flow entry */ ofpbuf_delete(upcall->packet); return; } } else { VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, flow.in_port); } send_packet_in(ofproto, upcall, &flow, false); return; } facet = facet_create(rule, &flow, upcall->packet); } else if (!facet->may_install) { /* The facet is not installable, that is, we need to process every * packet, so process the current packet's actions into 'facet'. */ facet_make_actions(ofproto, facet, upcall->packet); } if (facet->rule->up.cr.priority == FAIL_OPEN_PRIORITY) { /* * Extra-special case for fail-open mode. * * We are in fail-open mode and the packet matched the fail-open rule, * but we are connected to a controller too. We should send the packet * up to the controller in the hope that it will try to set up a flow * and thereby allow us to exit fail-open. * * See the top-level comment in fail-open.c for more information. */ send_packet_in(ofproto, upcall, &flow, true); } facet_execute(ofproto, facet, upcall->packet); facet_install(ofproto, facet, false); ofproto->n_matches++; } static void handle_upcall(struct ofproto_dpif *ofproto, struct dpif_upcall *upcall) { struct flow flow; switch (upcall->type) { case DPIF_UC_ACTION: COVERAGE_INC(ofproto_dpif_ctlr_action); odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow); send_packet_in(ofproto, upcall, &flow, false); break; case DPIF_UC_SAMPLE: if (ofproto->sflow) { odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow); ofproto_sflow_received(ofproto->sflow, upcall, &flow); } ofpbuf_delete(upcall->packet); break; case DPIF_UC_MISS: handle_miss_upcall(ofproto, upcall); break; case DPIF_N_UC_TYPES: default: VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type); break; } } /* Flow expiration. */ static int facet_max_idle(const struct ofproto_dpif *); static void update_stats(struct ofproto_dpif *); static void rule_expire(struct rule_dpif *); static void expire_facets(struct ofproto_dpif *, int dp_max_idle); /* This function is called periodically by run(). Its job is to collect * updates for the flows that have been installed into the datapath, most * importantly when they last were used, and then use that information to * expire flows that have not been used recently. * * Returns the number of milliseconds after which it should be called again. */ static int expire(struct ofproto_dpif *ofproto) { struct rule_dpif *rule, *next_rule; struct cls_cursor cursor; int dp_max_idle; /* Update stats for each flow in the datapath. */ update_stats(ofproto); /* Expire facets that have been idle too long. */ dp_max_idle = facet_max_idle(ofproto); expire_facets(ofproto, dp_max_idle); /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */ cls_cursor_init(&cursor, &ofproto->up.tables[0], NULL); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) { rule_expire(rule); } /* All outstanding data in existing flows has been accounted, so it's a * good time to do bond rebalancing. */ if (ofproto->has_bonded_bundles) { struct ofbundle *bundle; HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { if (bundle->bond) { bond_rebalance(bundle->bond, &ofproto->revalidate_set); } } } return MIN(dp_max_idle, 1000); } /* Update 'packet_count', 'byte_count', and 'used' members of installed facets. * * This function also pushes statistics updates to rules which each facet * resubmits into. Generally these statistics will be accurate. However, if a * facet changes the rule it resubmits into at some time in between * update_stats() runs, it is possible that statistics accrued to the * old rule will be incorrectly attributed to the new rule. This could be * avoided by calling update_stats() whenever rules are created or * deleted. However, the performance impact of making so many calls to the * datapath do not justify the benefit of having perfectly accurate statistics. */ static void update_stats(struct ofproto_dpif *p) { const struct dpif_flow_stats *stats; struct dpif_flow_dump dump; const struct nlattr *key; size_t key_len; dpif_flow_dump_start(&dump, p->dpif); while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) { struct facet *facet; struct flow flow; if (odp_flow_key_to_flow(key, key_len, &flow)) { struct ds s; ds_init(&s); odp_flow_key_format(key, key_len, &s); VLOG_WARN_RL(&rl, "failed to convert ODP flow key to flow: %s", ds_cstr(&s)); ds_destroy(&s); continue; } facet = facet_find(p, &flow); if (facet && facet->installed) { if (stats->n_packets >= facet->dp_packet_count) { uint64_t extra = stats->n_packets - facet->dp_packet_count; facet->packet_count += extra; } else { VLOG_WARN_RL(&rl, "unexpected packet count from the datapath"); } if (stats->n_bytes >= facet->dp_byte_count) { facet->byte_count += stats->n_bytes - facet->dp_byte_count; } else { VLOG_WARN_RL(&rl, "unexpected byte count from datapath"); } facet->dp_packet_count = stats->n_packets; facet->dp_byte_count = stats->n_bytes; facet_update_time(p, facet, stats->used); facet_account(p, facet, stats->n_bytes); facet_push_stats(facet); } else { /* There's a flow in the datapath that we know nothing about. * Delete it. */ COVERAGE_INC(facet_unexpected); dpif_flow_del(p->dpif, key, key_len, NULL); } } dpif_flow_dump_done(&dump); } /* Calculates and returns the number of milliseconds of idle time after which * facets should expire from the datapath and we should fold their statistics * into their parent rules in userspace. */ static int facet_max_idle(const struct ofproto_dpif *ofproto) { /* * Idle time histogram. * * Most of the time a switch has a relatively small number of facets. When * this is the case we might as well keep statistics for all of them in * userspace and to cache them in the kernel datapath for performance as * well. * * As the number of facets increases, the memory required to maintain * statistics about them in userspace and in the kernel becomes * significant. However, with a large number of facets it is likely that * only a few of them are "heavy hitters" that consume a large amount of * bandwidth. At this point, only heavy hitters are worth caching in the * kernel and maintaining in userspaces; other facets we can discard. * * The technique used to compute the idle time is to build a histogram with * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each facet * that is installed in the kernel gets dropped in the appropriate bucket. * After the histogram has been built, we compute the cutoff so that only * the most-recently-used 1% of facets (but at least 1000 flows) are kept * cached. At least the most-recently-used bucket of facets is kept, so * actually an arbitrary number of facets can be kept in any given * expiration run (though the next run will delete most of those unless * they receive additional data). * * This requires a second pass through the facets, in addition to the pass * made by update_stats(), because the former function never looks * at uninstallable facets. */ enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) }; enum { N_BUCKETS = 5000 / BUCKET_WIDTH }; int buckets[N_BUCKETS] = { 0 }; struct facet *facet; int total, bucket; long long int now; int i; total = hmap_count(&ofproto->facets); if (total <= 1000) { return N_BUCKETS * BUCKET_WIDTH; } /* Build histogram. */ now = time_msec(); HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) { long long int idle = now - facet->used; int bucket = (idle <= 0 ? 0 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1 : (unsigned int) idle / BUCKET_WIDTH); buckets[bucket]++; } /* Find the first bucket whose flows should be expired. */ for (bucket = 0; bucket < N_BUCKETS; bucket++) { if (buckets[bucket]) { int subtotal = 0; do { subtotal += buckets[bucket++]; } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100)); break; } } if (VLOG_IS_DBG_ENABLED()) { struct ds s; ds_init(&s); ds_put_cstr(&s, "keep"); for (i = 0; i < N_BUCKETS; i++) { if (i == bucket) { ds_put_cstr(&s, ", drop"); } if (buckets[i]) { ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]); } } VLOG_INFO("%s: %s (msec:count)", ofproto->up.name, ds_cstr(&s)); ds_destroy(&s); } return bucket * BUCKET_WIDTH; } static void facet_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet) { if (ofproto->netflow && !facet_is_controller_flow(facet) && netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) { struct ofexpired expired; if (facet->installed) { struct dpif_flow_stats stats; facet_put__(ofproto, facet, facet->actions, facet->actions_len, &stats); facet_update_stats(ofproto, facet, &stats); } expired.flow = facet->flow; expired.packet_count = facet->packet_count; expired.byte_count = facet->byte_count; expired.used = facet->used; netflow_expire(ofproto->netflow, &facet->nf_flow, &expired); } } static void expire_facets(struct ofproto_dpif *ofproto, int dp_max_idle) { long long int cutoff = time_msec() - dp_max_idle; struct facet *facet, *next_facet; HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) { facet_active_timeout(ofproto, facet); if (facet->used < cutoff) { facet_remove(ofproto, facet); } } } /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules, * then delete it entirely. */ static void rule_expire(struct rule_dpif *rule) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct facet *facet, *next_facet; long long int now; uint8_t reason; /* Has 'rule' expired? */ now = time_msec(); if (rule->up.hard_timeout && now > rule->up.created + rule->up.hard_timeout * 1000) { reason = OFPRR_HARD_TIMEOUT; } else if (rule->up.idle_timeout && list_is_empty(&rule->facets) && now > rule->used + rule->up.idle_timeout * 1000) { reason = OFPRR_IDLE_TIMEOUT; } else { return; } COVERAGE_INC(ofproto_dpif_expired); /* Update stats. (This is a no-op if the rule expired due to an idle * timeout, because that only happens when the rule has no facets left.) */ LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) { facet_remove(ofproto, facet); } /* Get rid of the rule. */ ofproto_rule_expire(&rule->up, reason); } /* Facets. */ /* Creates and returns a new facet owned by 'rule', given a 'flow' and an * example 'packet' within that flow. * * The caller must already have determined that no facet with an identical * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in * the ofproto's classifier table. */ static struct facet * facet_create(struct rule_dpif *rule, const struct flow *flow, const struct ofpbuf *packet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct facet *facet; facet = xzalloc(sizeof *facet); facet->used = time_msec(); hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0)); list_push_back(&rule->facets, &facet->list_node); facet->rule = rule; facet->flow = *flow; netflow_flow_init(&facet->nf_flow); netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used); facet_make_actions(ofproto, facet, packet); return facet; } static void facet_free(struct facet *facet) { free(facet->actions); free(facet); } /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on * 'packet', which arrived on 'in_port'. * * Takes ownership of 'packet'. */ static bool execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow, const struct nlattr *odp_actions, size_t actions_len, struct ofpbuf *packet) { if (actions_len == NLA_ALIGN(NLA_HDRLEN + sizeof(uint64_t)) && odp_actions->nla_type == ODP_ACTION_ATTR_CONTROLLER) { /* As an optimization, avoid a round-trip from userspace to kernel to * userspace. This also avoids possibly filling up kernel packet * buffers along the way. */ struct dpif_upcall upcall; upcall.type = DPIF_UC_ACTION; upcall.packet = packet; upcall.key = NULL; upcall.key_len = 0; upcall.userdata = nl_attr_get_u64(odp_actions); upcall.sample_pool = 0; upcall.actions = NULL; upcall.actions_len = 0; send_packet_in(ofproto, &upcall, flow, false); return true; } else { int error; error = dpif_execute(ofproto->dpif, odp_actions, actions_len, packet); ofpbuf_delete(packet); return !error; } } /* Executes the actions indicated by 'facet' on 'packet' and credits 'facet''s * statistics appropriately. 'packet' must have at least sizeof(struct * ofp_packet_in) bytes of headroom. * * For correct results, 'packet' must actually be in 'facet''s flow; that is, * applying flow_extract() to 'packet' would yield the same flow as * 'facet->flow'. * * 'facet' must have accurately composed ODP actions; that is, it must not be * in need of revalidation. * * Takes ownership of 'packet'. */ static void facet_execute(struct ofproto_dpif *ofproto, struct facet *facet, struct ofpbuf *packet) { struct dpif_flow_stats stats; assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in)); flow_extract_stats(&facet->flow, packet, &stats); stats.used = time_msec(); if (execute_odp_actions(ofproto, &facet->flow, facet->actions, facet->actions_len, packet)) { facet_update_stats(ofproto, facet, &stats); } } /* Remove 'facet' from 'ofproto' and free up the associated memory: * * - If 'facet' was installed in the datapath, uninstalls it and updates its * rule's statistics, via facet_uninstall(). * * - Removes 'facet' from its rule and from ofproto->facets. */ static void facet_remove(struct ofproto_dpif *ofproto, struct facet *facet) { facet_uninstall(ofproto, facet); facet_flush_stats(ofproto, facet); hmap_remove(&ofproto->facets, &facet->hmap_node); list_remove(&facet->list_node); facet_free(facet); } /* Composes the ODP actions for 'facet' based on its rule's actions. */ static void facet_make_actions(struct ofproto_dpif *p, struct facet *facet, const struct ofpbuf *packet) { const struct rule_dpif *rule = facet->rule; struct ofpbuf *odp_actions; struct action_xlate_ctx ctx; action_xlate_ctx_init(&ctx, p, &facet->flow, packet); odp_actions = xlate_actions(&ctx, rule->up.actions, rule->up.n_actions); facet->tags = ctx.tags; facet->may_install = ctx.may_set_up_flow; facet->nf_flow.output_iface = ctx.nf_output_iface; if (facet->actions_len != odp_actions->size || memcmp(facet->actions, odp_actions->data, odp_actions->size)) { free(facet->actions); facet->actions_len = odp_actions->size; facet->actions = xmemdup(odp_actions->data, odp_actions->size); } ofpbuf_delete(odp_actions); } static int facet_put__(struct ofproto_dpif *ofproto, struct facet *facet, const struct nlattr *actions, size_t actions_len, struct dpif_flow_stats *stats) { struct odputil_keybuf keybuf; enum dpif_flow_put_flags flags; struct ofpbuf key; flags = DPIF_FP_CREATE | DPIF_FP_MODIFY; if (stats) { flags |= DPIF_FP_ZERO_STATS; facet->dp_packet_count = 0; facet->dp_byte_count = 0; } ofpbuf_use_stack(&key, &keybuf, sizeof keybuf); odp_flow_key_from_flow(&key, &facet->flow); return dpif_flow_put(ofproto->dpif, flags, key.data, key.size, actions, actions_len, stats); } /* If 'facet' is installable, inserts or re-inserts it into 'p''s datapath. If * 'zero_stats' is true, clears any existing statistics from the datapath for * 'facet'. */ static void facet_install(struct ofproto_dpif *p, struct facet *facet, bool zero_stats) { struct dpif_flow_stats stats; if (facet->may_install && !facet_put__(p, facet, facet->actions, facet->actions_len, zero_stats ? &stats : NULL)) { facet->installed = true; } } static void facet_account(struct ofproto_dpif *ofproto, struct facet *facet, uint64_t extra_bytes) { uint64_t total_bytes, n_bytes; struct ofbundle *in_bundle; const struct nlattr *a; tag_type dummy = 0; unsigned int left; int vlan; total_bytes = facet->byte_count + extra_bytes; if (total_bytes <= facet->accounted_bytes) { return; } n_bytes = total_bytes - facet->accounted_bytes; facet->accounted_bytes = total_bytes; /* Test that 'tags' is nonzero to ensure that only flows that include an * OFPP_NORMAL action are used for learning and bond slave rebalancing. * This works because OFPP_NORMAL always sets a nonzero tag value. * * Feed information from the active flows back into the learning table to * ensure that table is always in sync with what is actually flowing * through the datapath. */ if (!facet->tags || !is_admissible(ofproto, &facet->flow, false, &dummy, &vlan, &in_bundle)) { return; } update_learning_table(ofproto, &facet->flow, vlan, in_bundle); if (!ofproto->has_bonded_bundles) { return; } NL_ATTR_FOR_EACH_UNSAFE (a, left, facet->actions, facet->actions_len) { if (nl_attr_type(a) == ODP_ACTION_ATTR_OUTPUT) { struct ofport_dpif *port; port = get_odp_port(ofproto, nl_attr_get_u32(a)); if (port && port->bundle && port->bundle->bond) { bond_account(port->bundle->bond, &facet->flow, vlan, n_bytes); } } } } /* If 'rule' is installed in the datapath, uninstalls it. */ static void facet_uninstall(struct ofproto_dpif *p, struct facet *facet) { if (facet->installed) { struct odputil_keybuf keybuf; struct dpif_flow_stats stats; struct ofpbuf key; ofpbuf_use_stack(&key, &keybuf, sizeof keybuf); odp_flow_key_from_flow(&key, &facet->flow); if (!dpif_flow_del(p->dpif, key.data, key.size, &stats)) { facet_update_stats(p, facet, &stats); } facet->installed = false; facet->dp_packet_count = 0; facet->dp_byte_count = 0; } else { assert(facet->dp_packet_count == 0); assert(facet->dp_byte_count == 0); } } /* Returns true if the only action for 'facet' is to send to the controller. * (We don't report NetFlow expiration messages for such facets because they * are just part of the control logic for the network, not real traffic). */ static bool facet_is_controller_flow(struct facet *facet) { return (facet && facet->rule->up.n_actions == 1 && action_outputs_to_port(&facet->rule->up.actions[0], htons(OFPP_CONTROLLER))); } /* Folds all of 'facet''s statistics into its rule. Also updates the * accounting ofhook and emits a NetFlow expiration if appropriate. All of * 'facet''s statistics in the datapath should have been zeroed and folded into * its packet and byte counts before this function is called. */ static void facet_flush_stats(struct ofproto_dpif *ofproto, struct facet *facet) { assert(!facet->dp_byte_count); assert(!facet->dp_packet_count); facet_push_stats(facet); facet_account(ofproto, facet, 0); if (ofproto->netflow && !facet_is_controller_flow(facet)) { struct ofexpired expired; expired.flow = facet->flow; expired.packet_count = facet->packet_count; expired.byte_count = facet->byte_count; expired.used = facet->used; netflow_expire(ofproto->netflow, &facet->nf_flow, &expired); } facet->rule->packet_count += facet->packet_count; facet->rule->byte_count += facet->byte_count; /* Reset counters to prevent double counting if 'facet' ever gets * reinstalled. */ facet->packet_count = 0; facet->byte_count = 0; facet->rs_packet_count = 0; facet->rs_byte_count = 0; facet->accounted_bytes = 0; netflow_flow_clear(&facet->nf_flow); } /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'. * Returns it if found, otherwise a null pointer. * * The returned facet might need revalidation; use facet_lookup_valid() * instead if that is important. */ static struct facet * facet_find(struct ofproto_dpif *ofproto, const struct flow *flow) { struct facet *facet; HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0), &ofproto->facets) { if (flow_equal(flow, &facet->flow)) { return facet; } } return NULL; } /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'. * Returns it if found, otherwise a null pointer. * * The returned facet is guaranteed to be valid. */ static struct facet * facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow) { struct facet *facet = facet_find(ofproto, flow); /* The facet we found might not be valid, since we could be in need of * revalidation. If it is not valid, don't return it. */ if (facet && ofproto->need_revalidate && !facet_revalidate(ofproto, facet)) { COVERAGE_INC(facet_invalidated); return NULL; } return facet; } /* Re-searches 'ofproto''s classifier for a rule matching 'facet': * * - If the rule found is different from 'facet''s current rule, moves * 'facet' to the new rule and recompiles its actions. * * - If the rule found is the same as 'facet''s current rule, leaves 'facet' * where it is and recompiles its actions anyway. * * - If there is none, destroys 'facet'. * * Returns true if 'facet' still exists, false if it has been destroyed. */ static bool facet_revalidate(struct ofproto_dpif *ofproto, struct facet *facet) { struct action_xlate_ctx ctx; struct ofpbuf *odp_actions; struct rule_dpif *new_rule; bool actions_changed; COVERAGE_INC(facet_revalidate); /* Determine the new rule. */ new_rule = rule_dpif_lookup(ofproto, &facet->flow); if (!new_rule) { /* No new rule, so delete the facet. */ facet_remove(ofproto, facet); return false; } /* Calculate new ODP actions. * * We do not modify any 'facet' state yet, because we might need to, e.g., * emit a NetFlow expiration and, if so, we need to have the old state * around to properly compose it. */ action_xlate_ctx_init(&ctx, ofproto, &facet->flow, NULL); odp_actions = xlate_actions(&ctx, new_rule->up.actions, new_rule->up.n_actions); actions_changed = (facet->actions_len != odp_actions->size || memcmp(facet->actions, odp_actions->data, facet->actions_len)); /* If the ODP actions changed or the installability changed, then we need * to talk to the datapath. */ if (actions_changed || ctx.may_set_up_flow != facet->installed) { if (ctx.may_set_up_flow) { struct dpif_flow_stats stats; facet_put__(ofproto, facet, odp_actions->data, odp_actions->size, &stats); facet_update_stats(ofproto, facet, &stats); } else { facet_uninstall(ofproto, facet); } /* The datapath flow is gone or has zeroed stats, so push stats out of * 'facet' into 'rule'. */ facet_flush_stats(ofproto, facet); } /* Update 'facet' now that we've taken care of all the old state. */ facet->tags = ctx.tags; facet->nf_flow.output_iface = ctx.nf_output_iface; facet->may_install = ctx.may_set_up_flow; if (actions_changed) { free(facet->actions); facet->actions_len = odp_actions->size; facet->actions = xmemdup(odp_actions->data, odp_actions->size); } if (facet->rule != new_rule) { COVERAGE_INC(facet_changed_rule); list_remove(&facet->list_node); list_push_back(&new_rule->facets, &facet->list_node); facet->rule = new_rule; facet->used = new_rule->up.created; facet->rs_used = facet->used; } ofpbuf_delete(odp_actions); return true; } /* Updates 'facet''s used time. Caller is responsible for calling * facet_push_stats() to update the flows which 'facet' resubmits into. */ static void facet_update_time(struct ofproto_dpif *ofproto, struct facet *facet, long long int used) { if (used > facet->used) { facet->used = used; if (used > facet->rule->used) { facet->rule->used = used; } netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used); } } /* Folds the statistics from 'stats' into the counters in 'facet'. * * Because of the meaning of a facet's counters, it only makes sense to do this * if 'stats' are not tracked in the datapath, that is, if 'stats' represents a * packet that was sent by hand or if it represents statistics that have been * cleared out of the datapath. */ static void facet_update_stats(struct ofproto_dpif *ofproto, struct facet *facet, const struct dpif_flow_stats *stats) { if (stats->n_packets || stats->used > facet->used) { facet_update_time(ofproto, facet, stats->used); facet->packet_count += stats->n_packets; facet->byte_count += stats->n_bytes; facet_push_stats(facet); netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags); } } static void facet_push_stats(struct facet *facet) { uint64_t rs_packets, rs_bytes; assert(facet->packet_count >= facet->rs_packet_count); assert(facet->byte_count >= facet->rs_byte_count); assert(facet->used >= facet->rs_used); rs_packets = facet->packet_count - facet->rs_packet_count; rs_bytes = facet->byte_count - facet->rs_byte_count; if (rs_packets || rs_bytes || facet->used > facet->rs_used) { facet->rs_packet_count = facet->packet_count; facet->rs_byte_count = facet->byte_count; facet->rs_used = facet->used; flow_push_stats(facet->rule, &facet->flow, rs_packets, rs_bytes, facet->used); } } struct ofproto_push { struct action_xlate_ctx ctx; uint64_t packets; uint64_t bytes; long long int used; }; static void push_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule) { struct ofproto_push *push = CONTAINER_OF(ctx, struct ofproto_push, ctx); if (rule) { rule->packet_count += push->packets; rule->byte_count += push->bytes; rule->used = MAX(push->used, rule->used); } } /* Pushes flow statistics to the rules which 'flow' resubmits into given * 'rule''s actions. */ static void flow_push_stats(const struct rule_dpif *rule, struct flow *flow, uint64_t packets, uint64_t bytes, long long int used) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct ofproto_push push; push.packets = packets; push.bytes = bytes; push.used = used; action_xlate_ctx_init(&push.ctx, ofproto, flow, NULL); push.ctx.resubmit_hook = push_resubmit; ofpbuf_delete(xlate_actions(&push.ctx, rule->up.actions, rule->up.n_actions)); } /* Rules. */ static struct rule_dpif * rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow) { return rule_dpif_cast(rule_from_cls_rule( classifier_lookup(&ofproto->up.tables[0], flow))); } static struct rule * rule_alloc(void) { struct rule_dpif *rule = xmalloc(sizeof *rule); return &rule->up; } static void rule_dealloc(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); free(rule); } static int rule_construct(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct rule_dpif *old_rule; int error; error = validate_actions(rule->up.actions, rule->up.n_actions, &rule->up.cr.flow, ofproto->max_ports); if (error) { return error; } old_rule = rule_dpif_cast(rule_from_cls_rule(classifier_find_rule_exactly( &ofproto->up.tables[0], &rule->up.cr))); if (old_rule) { ofproto_rule_destroy(&old_rule->up); } rule->used = rule->up.created; rule->packet_count = 0; rule->byte_count = 0; list_init(&rule->facets); classifier_insert(&ofproto->up.tables[0], &rule->up.cr); ofproto->need_revalidate = true; return 0; } static void rule_destruct(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct facet *facet, *next_facet; classifier_remove(&ofproto->up.tables[0], &rule->up.cr); LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) { facet_revalidate(ofproto, facet); } ofproto->need_revalidate = true; } static void rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct facet *facet; /* Start from historical data for 'rule' itself that are no longer tracked * in facets. This counts, for example, facets that have expired. */ *packets = rule->packet_count; *bytes = rule->byte_count; /* Add any statistics that are tracked by facets. This includes * statistical data recently updated by ofproto_update_stats() as well as * stats for packets that were executed "by hand" via dpif_execute(). */ LIST_FOR_EACH (facet, list_node, &rule->facets) { *packets += facet->packet_count; *bytes += facet->byte_count; } } static int rule_execute(struct rule *rule_, struct flow *flow, struct ofpbuf *packet) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct action_xlate_ctx ctx; struct ofpbuf *odp_actions; struct facet *facet; size_t size; /* First look for a related facet. If we find one, account it to that. */ facet = facet_lookup_valid(ofproto, flow); if (facet && facet->rule == rule) { facet_execute(ofproto, facet, packet); return 0; } /* Otherwise, if 'rule' is in fact the correct rule for 'packet', then * create a new facet for it and use that. */ if (rule_dpif_lookup(ofproto, flow) == rule) { facet = facet_create(rule, flow, packet); facet_execute(ofproto, facet, packet); facet_install(ofproto, facet, true); return 0; } /* We can't account anything to a facet. If we were to try, then that * facet would have a non-matching rule, busting our invariants. */ action_xlate_ctx_init(&ctx, ofproto, flow, packet); odp_actions = xlate_actions(&ctx, rule->up.actions, rule->up.n_actions); size = packet->size; if (execute_odp_actions(ofproto, flow, odp_actions->data, odp_actions->size, packet)) { rule->used = time_msec(); rule->packet_count++; rule->byte_count += size; flow_push_stats(rule, flow, 1, size, rule->used); } ofpbuf_delete(odp_actions); return 0; } static int rule_modify_actions(struct rule *rule_, const union ofp_action *actions, size_t n_actions) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); int error; error = validate_actions(actions, n_actions, &rule->up.cr.flow, ofproto->max_ports); if (!error) { ofproto->need_revalidate = true; } return error; } /* Sends 'packet' out of port 'odp_port' within 'p'. * Returns 0 if successful, otherwise a positive errno value. */ static int send_packet(struct ofproto_dpif *ofproto, uint32_t odp_port, const struct ofpbuf *packet) { struct ofpbuf odp_actions; int error; ofpbuf_init(&odp_actions, 32); nl_msg_put_u32(&odp_actions, ODP_ACTION_ATTR_OUTPUT, odp_port); error = dpif_execute(ofproto->dpif, odp_actions.data, odp_actions.size, packet); ofpbuf_uninit(&odp_actions); if (error) { VLOG_WARN_RL(&rl, "%s: failed to send packet on port %"PRIu32" (%s)", ofproto->up.name, odp_port, strerror(error)); } return error; } /* OpenFlow to ODP action translation. */ static void do_xlate_actions(const union ofp_action *in, size_t n_in, struct action_xlate_ctx *ctx); static bool xlate_normal(struct action_xlate_ctx *); static void add_output_action(struct action_xlate_ctx *ctx, uint16_t ofp_port) { const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port); uint16_t odp_port = ofp_port_to_odp_port(ofp_port); if (ofport) { if (ofport->up.opp.config & htonl(OFPPC_NO_FWD)) { /* Forwarding disabled on port. */ return; } } else { /* * We don't have an ofport record for this port, but it doesn't hurt to * allow forwarding to it anyhow. Maybe such a port will appear later * and we're pre-populating the flow table. */ } nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_OUTPUT, odp_port); ctx->nf_output_iface = ofp_port; } static void xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port) { if (ctx->recurse < MAX_RESUBMIT_RECURSION) { struct rule_dpif *rule; uint16_t old_in_port; /* Look up a flow with 'in_port' as the input port. Then restore the * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will * have surprising behavior). */ old_in_port = ctx->flow.in_port; ctx->flow.in_port = in_port; rule = rule_dpif_lookup(ctx->ofproto, &ctx->flow); ctx->flow.in_port = old_in_port; if (ctx->resubmit_hook) { ctx->resubmit_hook(ctx, rule); } if (rule) { ctx->recurse++; do_xlate_actions(rule->up.actions, rule->up.n_actions, ctx); ctx->recurse--; } } else { static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times", MAX_RESUBMIT_RECURSION); } } static void flood_packets(struct ofproto_dpif *ofproto, uint16_t ofp_in_port, ovs_be32 mask, uint16_t *nf_output_iface, struct ofpbuf *odp_actions) { struct ofport_dpif *ofport; HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { uint16_t ofp_port = ofport->up.ofp_port; if (ofp_port != ofp_in_port && !(ofport->up.opp.config & mask)) { nl_msg_put_u32(odp_actions, ODP_ACTION_ATTR_OUTPUT, ofport->odp_port); } } *nf_output_iface = NF_OUT_FLOOD; } static void xlate_output_action__(struct action_xlate_ctx *ctx, uint16_t port, uint16_t max_len) { uint16_t prev_nf_output_iface = ctx->nf_output_iface; ctx->nf_output_iface = NF_OUT_DROP; switch (port) { case OFPP_IN_PORT: add_output_action(ctx, ctx->flow.in_port); break; case OFPP_TABLE: xlate_table_action(ctx, ctx->flow.in_port); break; case OFPP_NORMAL: xlate_normal(ctx); break; case OFPP_FLOOD: flood_packets(ctx->ofproto, ctx->flow.in_port, htonl(OFPPC_NO_FLOOD), &ctx->nf_output_iface, ctx->odp_actions); break; case OFPP_ALL: flood_packets(ctx->ofproto, ctx->flow.in_port, htonl(0), &ctx->nf_output_iface, ctx->odp_actions); break; case OFPP_CONTROLLER: nl_msg_put_u64(ctx->odp_actions, ODP_ACTION_ATTR_CONTROLLER, max_len); break; case OFPP_LOCAL: add_output_action(ctx, OFPP_LOCAL); break; default: if (port != ctx->flow.in_port) { add_output_action(ctx, port); } break; } if (prev_nf_output_iface == NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_FLOOD; } else if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = prev_nf_output_iface; } else if (prev_nf_output_iface != NF_OUT_DROP && ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_output_action(struct action_xlate_ctx *ctx, const struct ofp_action_output *oao) { xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len)); } /* If the final ODP action in 'ctx' is "pop priority", drop it, as an * optimization, because we're going to add another action that sets the * priority immediately after, or because there are no actions following the * pop. */ static void remove_pop_action(struct action_xlate_ctx *ctx) { if (ctx->odp_actions->size == ctx->last_pop_priority) { ctx->odp_actions->size -= NLA_ALIGN(NLA_HDRLEN); ctx->last_pop_priority = -1; } } static void add_pop_action(struct action_xlate_ctx *ctx) { if (ctx->odp_actions->size != ctx->last_pop_priority) { nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_POP_PRIORITY); ctx->last_pop_priority = ctx->odp_actions->size; } } static void xlate_enqueue_action(struct action_xlate_ctx *ctx, const struct ofp_action_enqueue *oae) { uint16_t ofp_port, odp_port; uint32_t priority; int error; error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id), &priority); if (error) { /* Fall back to ordinary output action. */ xlate_output_action__(ctx, ntohs(oae->port), 0); return; } /* Figure out ODP output port. */ ofp_port = ntohs(oae->port); if (ofp_port == OFPP_IN_PORT) { ofp_port = ctx->flow.in_port; } odp_port = ofp_port_to_odp_port(ofp_port); /* Add ODP actions. */ remove_pop_action(ctx); nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority); add_output_action(ctx, odp_port); add_pop_action(ctx); /* Update NetFlow output port. */ if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = odp_port; } else if (ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_set_queue_action(struct action_xlate_ctx *ctx, const struct nx_action_set_queue *nasq) { uint32_t priority; int error; error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id), &priority); if (error) { /* Couldn't translate queue to a priority, so ignore. A warning * has already been logged. */ return; } remove_pop_action(ctx); nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority); } static void xlate_set_dl_tci(struct action_xlate_ctx *ctx) { ovs_be16 tci = ctx->flow.vlan_tci; if (!(tci & htons(VLAN_CFI))) { nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_STRIP_VLAN); } else { nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_TCI, tci & ~htons(VLAN_CFI)); } } struct xlate_reg_state { ovs_be16 vlan_tci; ovs_be64 tun_id; }; static void save_reg_state(const struct action_xlate_ctx *ctx, struct xlate_reg_state *state) { state->vlan_tci = ctx->flow.vlan_tci; state->tun_id = ctx->flow.tun_id; } static void update_reg_state(struct action_xlate_ctx *ctx, const struct xlate_reg_state *state) { if (ctx->flow.vlan_tci != state->vlan_tci) { xlate_set_dl_tci(ctx); } if (ctx->flow.tun_id != state->tun_id) { nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, ctx->flow.tun_id); } } static void xlate_autopath(struct action_xlate_ctx *ctx, const struct nx_action_autopath *naa) { uint16_t ofp_port = ntohl(naa->id); struct ofport_dpif *port = get_ofp_port(ctx->ofproto, ofp_port); if (!port || !port->bundle) { ofp_port = OFPP_NONE; } else if (port->bundle->bond) { /* Autopath does not support VLAN hashing. */ struct ofport_dpif *slave = bond_choose_output_slave( port->bundle->bond, &ctx->flow, OFP_VLAN_NONE, &ctx->tags); if (slave) { ofp_port = slave->up.ofp_port; } } autopath_execute(naa, &ctx->flow, ofp_port); } static void xlate_nicira_action(struct action_xlate_ctx *ctx, const struct nx_action_header *nah) { const struct nx_action_resubmit *nar; const struct nx_action_set_tunnel *nast; const struct nx_action_set_queue *nasq; const struct nx_action_multipath *nam; const struct nx_action_autopath *naa; enum nx_action_subtype subtype = ntohs(nah->subtype); struct xlate_reg_state state; ovs_be64 tun_id; assert(nah->vendor == htonl(NX_VENDOR_ID)); switch (subtype) { case NXAST_RESUBMIT: nar = (const struct nx_action_resubmit *) nah; xlate_table_action(ctx, ntohs(nar->in_port)); break; case NXAST_SET_TUNNEL: nast = (const struct nx_action_set_tunnel *) nah; tun_id = htonll(ntohl(nast->tun_id)); nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id); ctx->flow.tun_id = tun_id; break; case NXAST_DROP_SPOOFED_ARP: if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) { nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_DROP_SPOOFED_ARP); } break; case NXAST_SET_QUEUE: nasq = (const struct nx_action_set_queue *) nah; xlate_set_queue_action(ctx, nasq); break; case NXAST_POP_QUEUE: add_pop_action(ctx); break; case NXAST_REG_MOVE: save_reg_state(ctx, &state); nxm_execute_reg_move((const struct nx_action_reg_move *) nah, &ctx->flow); update_reg_state(ctx, &state); break; case NXAST_REG_LOAD: save_reg_state(ctx, &state); nxm_execute_reg_load((const struct nx_action_reg_load *) nah, &ctx->flow); update_reg_state(ctx, &state); break; case NXAST_NOTE: /* Nothing to do. */ break; case NXAST_SET_TUNNEL64: tun_id = ((const struct nx_action_set_tunnel64 *) nah)->tun_id; nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id); ctx->flow.tun_id = tun_id; break; case NXAST_MULTIPATH: nam = (const struct nx_action_multipath *) nah; multipath_execute(nam, &ctx->flow); break; case NXAST_AUTOPATH: naa = (const struct nx_action_autopath *) nah; xlate_autopath(ctx, naa); break; /* If you add a new action here that modifies flow data, don't forget to * update the flow key in ctx->flow at the same time. */ case NXAST_SNAT__OBSOLETE: default: VLOG_DBG_RL(&rl, "unknown Nicira action type %d", (int) subtype); break; } } static void do_xlate_actions(const union ofp_action *in, size_t n_in, struct action_xlate_ctx *ctx) { const struct ofport_dpif *port; struct actions_iterator iter; const union ofp_action *ia; port = get_ofp_port(ctx->ofproto, ctx->flow.in_port); if (port && port->up.opp.config & htonl(OFPPC_NO_RECV | OFPPC_NO_RECV_STP) && port->up.opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp) ? htonl(OFPPC_NO_RECV_STP) : htonl(OFPPC_NO_RECV))) { /* Drop this flow. */ return; } for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) { enum ofp_action_type type = ntohs(ia->type); const struct ofp_action_dl_addr *oada; switch (type) { case OFPAT_OUTPUT: xlate_output_action(ctx, &ia->output); break; case OFPAT_SET_VLAN_VID: ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK); ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI); xlate_set_dl_tci(ctx); break; case OFPAT_SET_VLAN_PCP: ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK); ctx->flow.vlan_tci |= htons( (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI); xlate_set_dl_tci(ctx); break; case OFPAT_STRIP_VLAN: ctx->flow.vlan_tci = htons(0); xlate_set_dl_tci(ctx); break; case OFPAT_SET_DL_SRC: oada = ((struct ofp_action_dl_addr *) ia); nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_SRC, oada->dl_addr, ETH_ADDR_LEN); memcpy(ctx->flow.dl_src, oada->dl_addr, ETH_ADDR_LEN); break; case OFPAT_SET_DL_DST: oada = ((struct ofp_action_dl_addr *) ia); nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_DST, oada->dl_addr, ETH_ADDR_LEN); memcpy(ctx->flow.dl_dst, oada->dl_addr, ETH_ADDR_LEN); break; case OFPAT_SET_NW_SRC: nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_SRC, ia->nw_addr.nw_addr); ctx->flow.nw_src = ia->nw_addr.nw_addr; break; case OFPAT_SET_NW_DST: nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_DST, ia->nw_addr.nw_addr); ctx->flow.nw_dst = ia->nw_addr.nw_addr; break; case OFPAT_SET_NW_TOS: nl_msg_put_u8(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_TOS, ia->nw_tos.nw_tos); ctx->flow.nw_tos = ia->nw_tos.nw_tos; break; case OFPAT_SET_TP_SRC: nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_SRC, ia->tp_port.tp_port); ctx->flow.tp_src = ia->tp_port.tp_port; break; case OFPAT_SET_TP_DST: nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_DST, ia->tp_port.tp_port); ctx->flow.tp_dst = ia->tp_port.tp_port; break; case OFPAT_VENDOR: xlate_nicira_action(ctx, (const struct nx_action_header *) ia); break; case OFPAT_ENQUEUE: xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia); break; default: VLOG_DBG_RL(&rl, "unknown action type %d", (int) type); break; } } } static void action_xlate_ctx_init(struct action_xlate_ctx *ctx, struct ofproto_dpif *ofproto, const struct flow *flow, const struct ofpbuf *packet) { ctx->ofproto = ofproto; ctx->flow = *flow; ctx->packet = packet; ctx->resubmit_hook = NULL; } static struct ofpbuf * xlate_actions(struct action_xlate_ctx *ctx, const union ofp_action *in, size_t n_in) { COVERAGE_INC(ofproto_dpif_xlate); ctx->odp_actions = ofpbuf_new(512); ctx->tags = 0; ctx->may_set_up_flow = true; ctx->nf_output_iface = NF_OUT_DROP; ctx->recurse = 0; ctx->last_pop_priority = -1; if (process_special(ctx->ofproto, &ctx->flow, ctx->packet)) { ctx->may_set_up_flow = false; } else { do_xlate_actions(in, n_in, ctx); } remove_pop_action(ctx); /* Check with in-band control to see if we're allowed to set up this * flow. */ if (!connmgr_may_set_up_flow(ctx->ofproto->up.connmgr, &ctx->flow, ctx->odp_actions->data, ctx->odp_actions->size)) { ctx->may_set_up_flow = false; } return ctx->odp_actions; } /* OFPP_NORMAL implementation. */ struct dst { struct ofport_dpif *port; uint16_t vlan; }; struct dst_set { struct dst builtin[32]; struct dst *dsts; size_t n, allocated; }; static void dst_set_init(struct dst_set *); static void dst_set_add(struct dst_set *, const struct dst *); static void dst_set_free(struct dst_set *); static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *); static bool set_dst(struct action_xlate_ctx *ctx, struct dst *dst, const struct ofbundle *in_bundle, const struct ofbundle *out_bundle) { dst->vlan = (out_bundle->vlan >= 0 ? OFP_VLAN_NONE : in_bundle->vlan >= 0 ? in_bundle->vlan : ctx->flow.vlan_tci == 0 ? OFP_VLAN_NONE : vlan_tci_to_vid(ctx->flow.vlan_tci)); dst->port = (!out_bundle->bond ? ofbundle_get_a_port(out_bundle) : bond_choose_output_slave(out_bundle->bond, &ctx->flow, dst->vlan, &ctx->tags)); return dst->port != NULL; } static int mirror_mask_ffs(mirror_mask_t mask) { BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask)); return ffs(mask); } static void dst_set_init(struct dst_set *set) { set->dsts = set->builtin; set->n = 0; set->allocated = ARRAY_SIZE(set->builtin); } static void dst_set_add(struct dst_set *set, const struct dst *dst) { if (set->n >= set->allocated) { size_t new_allocated; struct dst *new_dsts; new_allocated = set->allocated * 2; new_dsts = xmalloc(new_allocated * sizeof *new_dsts); memcpy(new_dsts, set->dsts, set->n * sizeof *new_dsts); dst_set_free(set); set->dsts = new_dsts; set->allocated = new_allocated; } set->dsts[set->n++] = *dst; } static void dst_set_free(struct dst_set *set) { if (set->dsts != set->builtin) { free(set->dsts); } } static bool dst_is_duplicate(const struct dst_set *set, const struct dst *test) { size_t i; for (i = 0; i < set->n; i++) { if (set->dsts[i].vlan == test->vlan && set->dsts[i].port == test->port) { return true; } } return false; } static bool ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan) { return bundle->vlan < 0 && vlan_bitmap_contains(bundle->trunks, vlan); } static bool ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan) { return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan); } /* Returns an arbitrary interface within 'bundle'. */ static struct ofport_dpif * ofbundle_get_a_port(const struct ofbundle *bundle) { return CONTAINER_OF(list_front(&bundle->ports), struct ofport_dpif, bundle_node); } static void compose_dsts(struct action_xlate_ctx *ctx, uint16_t vlan, const struct ofbundle *in_bundle, const struct ofbundle *out_bundle, struct dst_set *set) { struct dst dst; if (out_bundle == OFBUNDLE_FLOOD) { struct ofbundle *bundle; HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) { if (bundle != in_bundle && ofbundle_includes_vlan(bundle, vlan) && bundle->floodable && !bundle->mirror_out && set_dst(ctx, &dst, in_bundle, bundle)) { dst_set_add(set, &dst); } } ctx->nf_output_iface = NF_OUT_FLOOD; } else if (out_bundle && set_dst(ctx, &dst, in_bundle, out_bundle)) { dst_set_add(set, &dst); ctx->nf_output_iface = dst.port->odp_port; } } static bool vlan_is_mirrored(const struct ofmirror *m, int vlan) { return vlan_bitmap_contains(m->vlans, vlan); } static void compose_mirror_dsts(struct action_xlate_ctx *ctx, uint16_t vlan, const struct ofbundle *in_bundle, struct dst_set *set) { struct ofproto_dpif *ofproto = ctx->ofproto; mirror_mask_t mirrors; int flow_vlan; size_t i; mirrors = in_bundle->src_mirrors; for (i = 0; i < set->n; i++) { mirrors |= set->dsts[i].port->bundle->dst_mirrors; } if (!mirrors) { return; } flow_vlan = vlan_tci_to_vid(ctx->flow.vlan_tci); if (flow_vlan == 0) { flow_vlan = OFP_VLAN_NONE; } while (mirrors) { struct ofmirror *m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1]; if (vlan_is_mirrored(m, vlan)) { struct dst dst; if (m->out) { if (set_dst(ctx, &dst, in_bundle, m->out) && !dst_is_duplicate(set, &dst)) { dst_set_add(set, &dst); } } else { struct ofbundle *bundle; HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { if (ofbundle_includes_vlan(bundle, m->out_vlan) && set_dst(ctx, &dst, in_bundle, bundle)) { if (bundle->vlan < 0) { dst.vlan = m->out_vlan; } if (dst_is_duplicate(set, &dst)) { continue; } /* Use the vlan tag on the original flow instead of * the one passed in the vlan parameter. This ensures * that we compare the vlan from before any implicit * tagging tags place. This is necessary because * dst->vlan is the final vlan, after removing implicit * tags. */ if (bundle == in_bundle && dst.vlan == flow_vlan) { /* Don't send out input port on same VLAN. */ continue; } dst_set_add(set, &dst); } } } } mirrors &= mirrors - 1; } } static void compose_actions(struct action_xlate_ctx *ctx, uint16_t vlan, const struct ofbundle *in_bundle, const struct ofbundle *out_bundle) { uint16_t initial_vlan, cur_vlan; const struct dst *dst; struct dst_set set; dst_set_init(&set); compose_dsts(ctx, vlan, in_bundle, out_bundle, &set); compose_mirror_dsts(ctx, vlan, in_bundle, &set); /* Output all the packets we can without having to change the VLAN. */ initial_vlan = vlan_tci_to_vid(ctx->flow.vlan_tci); if (initial_vlan == 0) { initial_vlan = OFP_VLAN_NONE; } for (dst = set.dsts; dst < &set.dsts[set.n]; dst++) { if (dst->vlan != initial_vlan) { continue; } nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_OUTPUT, dst->port->odp_port); } /* Then output the rest. */ cur_vlan = initial_vlan; for (dst = set.dsts; dst < &set.dsts[set.n]; dst++) { if (dst->vlan == initial_vlan) { continue; } if (dst->vlan != cur_vlan) { if (dst->vlan == OFP_VLAN_NONE) { nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_STRIP_VLAN); } else { ovs_be16 tci; tci = htons(dst->vlan & VLAN_VID_MASK); tci |= ctx->flow.vlan_tci & htons(VLAN_PCP_MASK); nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_TCI, tci); } cur_vlan = dst->vlan; } nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_OUTPUT, dst->port->odp_port); } dst_set_free(&set); } /* Returns the effective vlan of a packet, taking into account both the * 802.1Q header and implicitly tagged ports. A value of 0 indicates that * the packet is untagged and -1 indicates it has an invalid header and * should be dropped. */ static int flow_get_vlan(struct ofproto_dpif *ofproto, const struct flow *flow, struct ofbundle *in_bundle, bool have_packet) { int vlan = vlan_tci_to_vid(flow->vlan_tci); if (in_bundle->vlan >= 0) { if (vlan) { if (have_packet) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %d tagged " "packet received on port %s configured with " "implicit VLAN %"PRIu16, ofproto->up.name, vlan, in_bundle->name, in_bundle->vlan); } return -1; } vlan = in_bundle->vlan; } else { if (!ofbundle_includes_vlan(in_bundle, vlan)) { if (have_packet) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %d tagged " "packet received on port %s not configured for " "trunking VLAN %d", ofproto->up.name, vlan, in_bundle->name, vlan); } return -1; } } return vlan; } /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to * indicate this; newer upstream kernels use gratuitous ARP requests. */ static bool is_gratuitous_arp(const struct flow *flow) { return (flow->dl_type == htons(ETH_TYPE_ARP) && eth_addr_is_broadcast(flow->dl_dst) && (flow->nw_proto == ARP_OP_REPLY || (flow->nw_proto == ARP_OP_REQUEST && flow->nw_src == flow->nw_dst))); } static void update_learning_table(struct ofproto_dpif *ofproto, const struct flow *flow, int vlan, struct ofbundle *in_bundle) { struct mac_entry *mac; if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) { return; } mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan); if (is_gratuitous_arp(flow)) { /* We don't want to learn from gratuitous ARP packets that are * reflected back over bond slaves so we lock the learning table. */ if (!in_bundle->bond) { mac_entry_set_grat_arp_lock(mac); } else if (mac_entry_is_grat_arp_locked(mac)) { return; } } if (mac_entry_is_new(mac) || mac->port.p != in_bundle) { /* The log messages here could actually be useful in debugging, * so keep the rate limit relatively high. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300); VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is " "on port %s in VLAN %d", ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src), in_bundle->name, vlan); mac->port.p = in_bundle; tag_set_add(&ofproto->revalidate_set, mac_learning_changed(ofproto->ml, mac)); } } /* Determines whether packets in 'flow' within 'br' should be forwarded or * dropped. Returns true if they may be forwarded, false if they should be * dropped. * * If 'have_packet' is true, it indicates that the caller is processing a * received packet. If 'have_packet' is false, then the caller is just * revalidating an existing flow because configuration has changed. Either * way, 'have_packet' only affects logging (there is no point in logging errors * during revalidation). * * Sets '*in_portp' to the input port. This will be a null pointer if * flow->in_port does not designate a known input port (in which case * is_admissible() returns false). * * When returning true, sets '*vlanp' to the effective VLAN of the input * packet, as returned by flow_get_vlan(). * * May also add tags to '*tags', although the current implementation only does * so in one special case. */ static bool is_admissible(struct ofproto_dpif *ofproto, const struct flow *flow, bool have_packet, tag_type *tags, int *vlanp, struct ofbundle **in_bundlep) { struct ofport_dpif *in_port; struct ofbundle *in_bundle; int vlan; /* Find the port and bundle for the received packet. */ in_port = get_ofp_port(ofproto, flow->in_port); *in_bundlep = in_bundle = in_port ? in_port->bundle : NULL; if (!in_port || !in_bundle) { /* No interface? Something fishy... */ if (have_packet) { /* Odd. A few possible reasons here: * * - We deleted a port but there are still a few packets queued up * from it. * * - Someone externally added a port (e.g. "ovs-dpctl add-if") that * we don't know about. * * - Packet arrived on the local port but the local port is not * part of a bundle. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown " "port %"PRIu16, ofproto->up.name, flow->in_port); } return false; } *vlanp = vlan = flow_get_vlan(ofproto, flow, in_bundle, have_packet); if (vlan < 0) { return false; } /* Drop frames for reserved multicast addresses. */ if (eth_addr_is_reserved(flow->dl_dst)) { return false; } /* Drop frames on bundles reserved for mirroring. */ if (in_bundle->mirror_out) { if (have_packet) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port " "%s, which is reserved exclusively for mirroring", ofproto->up.name, in_bundle->name); } return false; } if (in_bundle->bond) { struct mac_entry *mac; switch (bond_check_admissibility(in_bundle->bond, in_port, flow->dl_dst, tags)) { case BV_ACCEPT: break; case BV_DROP: return false; case BV_DROP_IF_MOVED: mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL); if (mac && mac->port.p != in_bundle && (!is_gratuitous_arp(flow) || mac_entry_is_grat_arp_locked(mac))) { return false; } break; } } return true; } /* If the composed actions may be applied to any packet in the given 'flow', * returns true. Otherwise, the actions should only be applied to 'packet', or * not at all, if 'packet' was NULL. */ static bool xlate_normal(struct action_xlate_ctx *ctx) { struct ofbundle *in_bundle; struct ofbundle *out_bundle; struct mac_entry *mac; int vlan; /* Check whether we should drop packets in this flow. */ if (!is_admissible(ctx->ofproto, &ctx->flow, ctx->packet != NULL, &ctx->tags, &vlan, &in_bundle)) { out_bundle = NULL; goto done; } /* Learn source MAC (but don't try to learn from revalidation). */ if (ctx->packet) { update_learning_table(ctx->ofproto, &ctx->flow, vlan, in_bundle); } /* Determine output bundle. */ mac = mac_learning_lookup(ctx->ofproto->ml, ctx->flow.dl_dst, vlan, &ctx->tags); if (mac) { out_bundle = mac->port.p; } else if (!ctx->packet && !eth_addr_is_multicast(ctx->flow.dl_dst)) { /* If we are revalidating but don't have a learning entry then eject * the flow. Installing a flow that floods packets opens up a window * of time where we could learn from a packet reflected on a bond and * blackhole packets before the learning table is updated to reflect * the correct port. */ return false; } else { out_bundle = OFBUNDLE_FLOOD; } /* Don't send packets out their input bundles. */ if (in_bundle == out_bundle) { out_bundle = NULL; } done: if (in_bundle) { compose_actions(ctx, vlan, in_bundle, out_bundle); } return true; } static bool get_drop_frags(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); bool drop_frags; dpif_get_drop_frags(ofproto->dpif, &drop_frags); return drop_frags; } static void set_drop_frags(struct ofproto *ofproto_, bool drop_frags) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); dpif_set_drop_frags(ofproto->dpif, drop_frags); } static int packet_out(struct ofproto *ofproto_, struct ofpbuf *packet, const struct flow *flow, const union ofp_action *ofp_actions, size_t n_ofp_actions) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); int error; error = validate_actions(ofp_actions, n_ofp_actions, flow, ofproto->max_ports); if (!error) { struct action_xlate_ctx ctx; struct ofpbuf *odp_actions; action_xlate_ctx_init(&ctx, ofproto, flow, packet); odp_actions = xlate_actions(&ctx, ofp_actions, n_ofp_actions); dpif_execute(ofproto->dpif, odp_actions->data, odp_actions->size, packet); ofpbuf_delete(odp_actions); } return error; } static void get_netflow_ids(const struct ofproto *ofproto_, uint8_t *engine_type, uint8_t *engine_id) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); dpif_get_netflow_ids(ofproto->dpif, engine_type, engine_id); } static struct ofproto_dpif * ofproto_dpif_lookup(const char *name) { struct ofproto *ofproto = ofproto_lookup(name); return (ofproto && ofproto->ofproto_class == &ofproto_dpif_class ? ofproto_dpif_cast(ofproto) : NULL); } static void ofproto_unixctl_fdb_show(struct unixctl_conn *conn, const char *args, void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; const struct ofproto_dpif *ofproto; const struct mac_entry *e; ofproto = ofproto_dpif_lookup(args); if (!ofproto) { unixctl_command_reply(conn, 501, "no such bridge"); return; } ds_put_cstr(&ds, " port VLAN MAC Age\n"); LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) { struct ofbundle *bundle = e->port.p; ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n", ofbundle_get_a_port(bundle)->odp_port, e->vlan, ETH_ADDR_ARGS(e->mac), mac_entry_age(e)); } unixctl_command_reply(conn, 200, ds_cstr(&ds)); ds_destroy(&ds); } struct ofproto_trace { struct action_xlate_ctx ctx; struct flow flow; struct ds *result; }; static void trace_format_rule(struct ds *result, int level, const struct rule *rule) { ds_put_char_multiple(result, '\t', level); if (!rule) { ds_put_cstr(result, "No match\n"); return; } ds_put_format(result, "Rule: cookie=%#"PRIx64" ", ntohll(rule->flow_cookie)); cls_rule_format(&rule->cr, result); ds_put_char(result, '\n'); ds_put_char_multiple(result, '\t', level); ds_put_cstr(result, "OpenFlow "); ofp_print_actions(result, (const struct ofp_action_header *) rule->actions, rule->n_actions * sizeof *rule->actions); ds_put_char(result, '\n'); } static void trace_format_flow(struct ds *result, int level, const char *title, struct ofproto_trace *trace) { ds_put_char_multiple(result, '\t', level); ds_put_format(result, "%s: ", title); if (flow_equal(&trace->ctx.flow, &trace->flow)) { ds_put_cstr(result, "unchanged"); } else { flow_format(result, &trace->ctx.flow); trace->flow = trace->ctx.flow; } ds_put_char(result, '\n'); } static void trace_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule) { struct ofproto_trace *trace = CONTAINER_OF(ctx, struct ofproto_trace, ctx); struct ds *result = trace->result; ds_put_char(result, '\n'); trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace); trace_format_rule(result, ctx->recurse + 1, &rule->up); } static void ofproto_unixctl_trace(struct unixctl_conn *conn, const char *args_, void *aux OVS_UNUSED) { char *dpname, *in_port_s, *tun_id_s, *packet_s; char *args = xstrdup(args_); char *save_ptr = NULL; struct ofproto_dpif *ofproto; struct ofpbuf packet; struct rule_dpif *rule; struct ds result; struct flow flow; uint16_t in_port; ovs_be64 tun_id; char *s; ofpbuf_init(&packet, strlen(args) / 2); ds_init(&result); dpname = strtok_r(args, " ", &save_ptr); tun_id_s = strtok_r(NULL, " ", &save_ptr); in_port_s = strtok_r(NULL, " ", &save_ptr); packet_s = strtok_r(NULL, "", &save_ptr); /* Get entire rest of line. */ if (!dpname || !in_port_s || !packet_s) { unixctl_command_reply(conn, 501, "Bad command syntax"); goto exit; } ofproto = ofproto_dpif_lookup(dpname); if (!ofproto) { unixctl_command_reply(conn, 501, "Unknown ofproto (use ofproto/list " "for help)"); goto exit; } tun_id = htonll(strtoull(tun_id_s, NULL, 0)); in_port = ofp_port_to_odp_port(atoi(in_port_s)); packet_s = ofpbuf_put_hex(&packet, packet_s, NULL); packet_s += strspn(packet_s, " "); if (*packet_s != '\0') { unixctl_command_reply(conn, 501, "Trailing garbage in command"); goto exit; } if (packet.size < ETH_HEADER_LEN) { unixctl_command_reply(conn, 501, "Packet data too short for Ethernet"); goto exit; } ds_put_cstr(&result, "Packet: "); s = ofp_packet_to_string(packet.data, packet.size, packet.size); ds_put_cstr(&result, s); free(s); flow_extract(&packet, tun_id, in_port, &flow); ds_put_cstr(&result, "Flow: "); flow_format(&result, &flow); ds_put_char(&result, '\n'); rule = rule_dpif_lookup(ofproto, &flow); trace_format_rule(&result, 0, &rule->up); if (rule) { struct ofproto_trace trace; struct ofpbuf *odp_actions; trace.result = &result; trace.flow = flow; action_xlate_ctx_init(&trace.ctx, ofproto, &flow, &packet); trace.ctx.resubmit_hook = trace_resubmit; odp_actions = xlate_actions(&trace.ctx, rule->up.actions, rule->up.n_actions); ds_put_char(&result, '\n'); trace_format_flow(&result, 0, "Final flow", &trace); ds_put_cstr(&result, "Datapath actions: "); format_odp_actions(&result, odp_actions->data, odp_actions->size); ofpbuf_delete(odp_actions); } unixctl_command_reply(conn, 200, ds_cstr(&result)); exit: ds_destroy(&result); ofpbuf_uninit(&packet); free(args); } static void ofproto_dpif_unixctl_init(void) { static bool registered; if (registered) { return; } registered = true; unixctl_command_register("ofproto/trace", ofproto_unixctl_trace, NULL); unixctl_command_register("fdb/show", ofproto_unixctl_fdb_show, NULL); } const struct ofproto_class ofproto_dpif_class = { enumerate_types, enumerate_names, del, alloc, construct, destruct, dealloc, run, wait, flush, get_features, get_tables, port_alloc, port_construct, port_destruct, port_dealloc, port_modified, port_reconfigured, port_query_by_name, port_add, port_del, port_dump_start, port_dump_next, port_dump_done, port_poll, port_poll_wait, port_is_lacp_current, rule_alloc, rule_construct, rule_destruct, rule_dealloc, rule_get_stats, rule_execute, rule_modify_actions, get_drop_frags, set_drop_frags, packet_out, set_netflow, get_netflow_ids, set_sflow, set_cfm, get_cfm, bundle_set, bundle_remove, mirror_set, set_flood_vlans, is_mirror_output_bundle, };