/* * Copyright (c) 2009, 2010, 2011, 2012 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto/ofproto-provider.h" #include #include "autopath.h" #include "bond.h" #include "bundle.h" #include "byte-order.h" #include "connmgr.h" #include "coverage.h" #include "cfm.h" #include "dpif.h" #include "dynamic-string.h" #include "fail-open.h" #include "hmapx.h" #include "lacp.h" #include "learn.h" #include "mac-learning.h" #include "multipath.h" #include "netdev.h" #include "netlink.h" #include "nx-match.h" #include "odp-util.h" #include "ofp-util.h" #include "ofpbuf.h" #include "ofp-print.h" #include "ofproto-dpif-sflow.h" #include "poll-loop.h" #include "timer.h" #include "unaligned.h" #include "unixctl.h" #include "vlan-bitmap.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(ofproto_dpif); COVERAGE_DEFINE(ofproto_dpif_ctlr_action); COVERAGE_DEFINE(ofproto_dpif_expired); COVERAGE_DEFINE(ofproto_dpif_no_packet_in); COVERAGE_DEFINE(ofproto_dpif_xlate); COVERAGE_DEFINE(facet_changed_rule); COVERAGE_DEFINE(facet_invalidated); COVERAGE_DEFINE(facet_revalidate); COVERAGE_DEFINE(facet_unexpected); /* Maximum depth of flow table recursion (due to resubmit actions) in a * flow translation. */ #define MAX_RESUBMIT_RECURSION 32 /* Number of implemented OpenFlow tables. */ enum { N_TABLES = 255 }; BUILD_ASSERT_DECL(N_TABLES >= 1 && N_TABLES <= 255); struct ofport_dpif; struct ofproto_dpif; struct rule_dpif { struct rule up; long long int used; /* Time last used; time created if not used. */ /* These statistics: * * - Do include packets and bytes from facets that have been deleted or * whose own statistics have been folded into the rule. * * - Do include packets and bytes sent "by hand" that were accounted to * the rule without any facet being involved (this is a rare corner * case in rule_execute()). * * - Do not include packet or bytes that can be obtained from any facet's * packet_count or byte_count member or that can be obtained from the * datapath by, e.g., dpif_flow_get() for any subfacet. */ uint64_t packet_count; /* Number of packets received. */ uint64_t byte_count; /* Number of bytes received. */ tag_type tag; /* Caches rule_calculate_tag() result. */ struct list facets; /* List of "struct facet"s. */ }; static struct rule_dpif *rule_dpif_cast(const struct rule *rule) { return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL; } static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *, const struct flow *, uint8_t table); static void flow_push_stats(const struct rule_dpif *, const struct flow *, uint64_t packets, uint64_t bytes, long long int used); static tag_type rule_calculate_tag(const struct flow *, const struct flow_wildcards *, uint32_t basis); static void rule_invalidate(const struct rule_dpif *); #define MAX_MIRRORS 32 typedef uint32_t mirror_mask_t; #define MIRROR_MASK_C(X) UINT32_C(X) BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS); struct ofmirror { struct ofproto_dpif *ofproto; /* Owning ofproto. */ size_t idx; /* In ofproto's "mirrors" array. */ void *aux; /* Key supplied by ofproto's client. */ char *name; /* Identifier for log messages. */ /* Selection criteria. */ struct hmapx srcs; /* Contains "struct ofbundle *"s. */ struct hmapx dsts; /* Contains "struct ofbundle *"s. */ unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */ /* Output (exactly one of out == NULL and out_vlan == -1 is true). */ struct ofbundle *out; /* Output port or NULL. */ int out_vlan; /* Output VLAN or -1. */ mirror_mask_t dup_mirrors; /* Bitmap of mirrors with the same output. */ /* Counters. */ int64_t packet_count; /* Number of packets sent. */ int64_t byte_count; /* Number of bytes sent. */ }; static void mirror_destroy(struct ofmirror *); static void update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors, uint64_t packets, uint64_t bytes); struct ofbundle { struct ofproto_dpif *ofproto; /* Owning ofproto. */ struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */ void *aux; /* Key supplied by ofproto's client. */ char *name; /* Identifier for log messages. */ /* Configuration. */ struct list ports; /* Contains "struct ofport"s. */ enum port_vlan_mode vlan_mode; /* VLAN mode */ int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */ unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1. * NULL if all VLANs are trunked. */ struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */ struct bond *bond; /* Nonnull iff more than one port. */ bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */ /* Status. */ bool floodable; /* True if no port has OFPPC_NO_FLOOD set. */ /* Port mirroring info. */ mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */ mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */ mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */ }; static void bundle_remove(struct ofport *); static void bundle_update(struct ofbundle *); static void bundle_destroy(struct ofbundle *); static void bundle_del_port(struct ofport_dpif *); static void bundle_run(struct ofbundle *); static void bundle_wait(struct ofbundle *); static struct ofbundle *lookup_input_bundle(struct ofproto_dpif *, uint16_t in_port, bool warn); /* A controller may use OFPP_NONE as the ingress port to indicate that * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for * when an input bundle is needed for validation (e.g., mirroring or * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have * any 'port' structs, so care must be taken when dealing with it. */ static struct ofbundle ofpp_none_bundle = { .name = "OFPP_NONE", .vlan_mode = PORT_VLAN_TRUNK }; static void stp_run(struct ofproto_dpif *ofproto); static void stp_wait(struct ofproto_dpif *ofproto); static int set_stp_port(struct ofport *, const struct ofproto_port_stp_settings *); static bool ofbundle_includes_vlan(const struct ofbundle *, uint16_t vlan); struct action_xlate_ctx { /* action_xlate_ctx_init() initializes these members. */ /* The ofproto. */ struct ofproto_dpif *ofproto; /* Flow to which the OpenFlow actions apply. xlate_actions() will modify * this flow when actions change header fields. */ struct flow flow; /* The packet corresponding to 'flow', or a null pointer if we are * revalidating without a packet to refer to. */ const struct ofpbuf *packet; /* Should OFPP_NORMAL update the MAC learning table? We want to update it * if we are actually processing a packet, or if we are accounting for * packets that the datapath has processed, but not if we are just * revalidating. */ bool may_learn_macs; /* Should "learn" actions update the flow table? We want to update it if * we are actually processing a packet, or in most cases if we are * accounting for packets that the datapath has processed, but not if we * are just revalidating. */ bool may_flow_mod; /* Cookie of the currently matching rule, or 0. */ ovs_be64 cookie; /* If nonnull, called just before executing a resubmit action. * * This is normally null so the client has to set it manually after * calling action_xlate_ctx_init(). */ void (*resubmit_hook)(struct action_xlate_ctx *, struct rule_dpif *); /* xlate_actions() initializes and uses these members. The client might want * to look at them after it returns. */ struct ofpbuf *odp_actions; /* Datapath actions. */ tag_type tags; /* Tags associated with actions. */ bool may_set_up_flow; /* True ordinarily; false if the actions must * be reassessed for every packet. */ bool has_learn; /* Actions include NXAST_LEARN? */ bool has_normal; /* Actions output to OFPP_NORMAL? */ uint16_t nf_output_iface; /* Output interface index for NetFlow. */ mirror_mask_t mirrors; /* Bitmap of associated mirrors. */ /* xlate_actions() initializes and uses these members, but the client has no * reason to look at them. */ int recurse; /* Recursion level, via xlate_table_action. */ struct flow base_flow; /* Flow at the last commit. */ uint32_t orig_skb_priority; /* Priority when packet arrived. */ uint8_t table_id; /* OpenFlow table ID where flow was found. */ uint32_t sflow_n_outputs; /* Number of output ports. */ uint16_t sflow_odp_port; /* Output port for composing sFlow action. */ uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */ bool exit; /* No further actions should be processed. */ }; static void action_xlate_ctx_init(struct action_xlate_ctx *, struct ofproto_dpif *, const struct flow *, ovs_be16 initial_tci, ovs_be64 cookie, const struct ofpbuf *); static struct ofpbuf *xlate_actions(struct action_xlate_ctx *, const union ofp_action *in, size_t n_in); /* An exact-match instantiation of an OpenFlow flow. * * A facet associates a "struct flow", which represents the Open vSwitch * userspace idea of an exact-match flow, with one or more subfacets. Each * subfacet tracks the datapath's idea of the exact-match flow equivalent to * the facet. When the kernel module (or other dpif implementation) and Open * vSwitch userspace agree on the definition of a flow key, there is exactly * one subfacet per facet. If the dpif implementation supports more-specific * flow matching than userspace, however, a facet can have more than one * subfacet, each of which corresponds to some distinction in flow that * userspace simply doesn't understand. * * Flow expiration works in terms of subfacets, so a facet must have at least * one subfacet or it will never expire, leaking memory. */ struct facet { /* Owners. */ struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */ struct list list_node; /* In owning rule's 'facets' list. */ struct rule_dpif *rule; /* Owning rule. */ /* Owned data. */ struct list subfacets; long long int used; /* Time last used; time created if not used. */ /* Key. */ struct flow flow; /* These statistics: * * - Do include packets and bytes sent "by hand", e.g. with * dpif_execute(). * * - Do include packets and bytes that were obtained from the datapath * when a subfacet's statistics were reset (e.g. dpif_flow_put() with * DPIF_FP_ZERO_STATS). * * - Do not include packets or bytes that can be obtained from the * datapath for any existing subfacet. */ uint64_t packet_count; /* Number of packets received. */ uint64_t byte_count; /* Number of bytes received. */ /* Resubmit statistics. */ uint64_t prev_packet_count; /* Number of packets from last stats push. */ uint64_t prev_byte_count; /* Number of bytes from last stats push. */ long long int prev_used; /* Used time from last stats push. */ /* Accounting. */ uint64_t accounted_bytes; /* Bytes processed by facet_account(). */ struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */ /* Properties of datapath actions. * * Every subfacet has its own actions because actions can differ slightly * between splintered and non-splintered subfacets due to the VLAN tag * being initially different (present vs. absent). All of them have these * properties in common so we just store one copy of them here. */ bool may_install; /* Reassess actions for every packet? */ bool has_learn; /* Actions include NXAST_LEARN? */ bool has_normal; /* Actions output to OFPP_NORMAL? */ tag_type tags; /* Tags that would require revalidation. */ mirror_mask_t mirrors; /* Bitmap of dependent mirrors. */ }; static struct facet *facet_create(struct rule_dpif *, const struct flow *); static void facet_remove(struct ofproto_dpif *, struct facet *); static void facet_free(struct facet *); static struct facet *facet_find(struct ofproto_dpif *, const struct flow *); static struct facet *facet_lookup_valid(struct ofproto_dpif *, const struct flow *); static bool facet_revalidate(struct ofproto_dpif *, struct facet *); static void facet_flush_stats(struct ofproto_dpif *, struct facet *); static void facet_update_time(struct ofproto_dpif *, struct facet *, long long int used); static void facet_reset_counters(struct facet *); static void facet_push_stats(struct facet *); static void facet_account(struct ofproto_dpif *, struct facet *, bool may_flow_mod); static bool facet_is_controller_flow(struct facet *); /* A dpif flow and actions associated with a facet. * * See also the large comment on struct facet. */ struct subfacet { /* Owners. */ struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */ struct list list_node; /* In struct facet's 'facets' list. */ struct facet *facet; /* Owning facet. */ /* Key. * * To save memory in the common case, 'key' is NULL if 'key_fitness' is * ODP_FIT_PERFECT, that is, odp_flow_key_from_flow() can accurately * regenerate the ODP flow key from ->facet->flow. */ enum odp_key_fitness key_fitness; struct nlattr *key; int key_len; long long int used; /* Time last used; time created if not used. */ uint64_t dp_packet_count; /* Last known packet count in the datapath. */ uint64_t dp_byte_count; /* Last known byte count in the datapath. */ /* Datapath actions. * * These should be essentially identical for every subfacet in a facet, but * may differ in trivial ways due to VLAN splinters. */ size_t actions_len; /* Number of bytes in actions[]. */ struct nlattr *actions; /* Datapath actions. */ bool installed; /* Installed in datapath? */ /* This value is normally the same as ->facet->flow.vlan_tci. Only VLAN * splinters can cause it to differ. This value should be removed when * the VLAN splinters feature is no longer needed. */ ovs_be16 initial_tci; /* Initial VLAN TCI value. */ }; static struct subfacet *subfacet_create(struct ofproto_dpif *, struct facet *, enum odp_key_fitness, const struct nlattr *key, size_t key_len, ovs_be16 initial_tci); static struct subfacet *subfacet_find(struct ofproto_dpif *, const struct nlattr *key, size_t key_len); static void subfacet_destroy(struct ofproto_dpif *, struct subfacet *); static void subfacet_destroy__(struct ofproto_dpif *, struct subfacet *); static void subfacet_reset_dp_stats(struct subfacet *, struct dpif_flow_stats *); static void subfacet_update_time(struct ofproto_dpif *, struct subfacet *, long long int used); static void subfacet_update_stats(struct ofproto_dpif *, struct subfacet *, const struct dpif_flow_stats *); static void subfacet_make_actions(struct ofproto_dpif *, struct subfacet *, const struct ofpbuf *packet); static int subfacet_install(struct ofproto_dpif *, struct subfacet *, const struct nlattr *actions, size_t actions_len, struct dpif_flow_stats *); static void subfacet_uninstall(struct ofproto_dpif *, struct subfacet *); struct ofport_dpif { struct ofport up; uint32_t odp_port; struct ofbundle *bundle; /* Bundle that contains this port, if any. */ struct list bundle_node; /* In struct ofbundle's "ports" list. */ struct cfm *cfm; /* Connectivity Fault Management, if any. */ tag_type tag; /* Tag associated with this port. */ uint32_t bond_stable_id; /* stable_id to use as bond slave, or 0. */ bool may_enable; /* May be enabled in bonds. */ /* Spanning tree. */ struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */ enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */ long long int stp_state_entered; struct hmap priorities; /* Map of attached 'priority_to_dscp's. */ /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.) * * This is deprecated. It is only for compatibility with broken device * drivers in old versions of Linux that do not properly support VLANs when * VLAN devices are not used. When broken device drivers are no longer in * widespread use, we will delete these interfaces. */ uint16_t realdev_ofp_port; int vlandev_vid; }; /* Node in 'ofport_dpif''s 'priorities' map. Used to maintain a map from * 'priority' (the datapath's term for QoS queue) to the dscp bits which all * traffic egressing the 'ofport' with that priority should be marked with. */ struct priority_to_dscp { struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'priorities' map. */ uint32_t priority; /* Priority of this queue (see struct flow). */ uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */ }; /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.) * * This is deprecated. It is only for compatibility with broken device drivers * in old versions of Linux that do not properly support VLANs when VLAN * devices are not used. When broken device drivers are no longer in * widespread use, we will delete these interfaces. */ struct vlan_splinter { struct hmap_node realdev_vid_node; struct hmap_node vlandev_node; uint16_t realdev_ofp_port; uint16_t vlandev_ofp_port; int vid; }; static uint32_t vsp_realdev_to_vlandev(const struct ofproto_dpif *, uint32_t realdev, ovs_be16 vlan_tci); static uint16_t vsp_vlandev_to_realdev(const struct ofproto_dpif *, uint16_t vlandev, int *vid); static void vsp_remove(struct ofport_dpif *); static void vsp_add(struct ofport_dpif *, uint16_t realdev_ofp_port, int vid); static struct ofport_dpif * ofport_dpif_cast(const struct ofport *ofport) { assert(ofport->ofproto->ofproto_class == &ofproto_dpif_class); return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL; } static void port_run(struct ofport_dpif *); static void port_wait(struct ofport_dpif *); static int set_cfm(struct ofport *, const struct cfm_settings *); static void ofport_clear_priorities(struct ofport_dpif *); struct dpif_completion { struct list list_node; struct ofoperation *op; }; /* Extra information about a classifier table. * Currently used just for optimized flow revalidation. */ struct table_dpif { /* If either of these is nonnull, then this table has a form that allows * flows to be tagged to avoid revalidating most flows for the most common * kinds of flow table changes. */ struct cls_table *catchall_table; /* Table that wildcards all fields. */ struct cls_table *other_table; /* Table with any other wildcard set. */ uint32_t basis; /* Keeps each table's tags separate. */ }; struct ofproto_dpif { struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */ struct ofproto up; struct dpif *dpif; int max_ports; /* Statistics. */ uint64_t n_matches; /* Bridging. */ struct netflow *netflow; struct dpif_sflow *sflow; struct hmap bundles; /* Contains "struct ofbundle"s. */ struct mac_learning *ml; struct ofmirror *mirrors[MAX_MIRRORS]; bool has_bonded_bundles; /* Expiration. */ struct timer next_expiration; /* Facets. */ struct hmap facets; struct hmap subfacets; /* Revalidation. */ struct table_dpif tables[N_TABLES]; bool need_revalidate; struct tag_set revalidate_set; /* Support for debugging async flow mods. */ struct list completions; bool has_bundle_action; /* True when the first bundle action appears. */ struct netdev_stats stats; /* To account packets generated and consumed in * userspace. */ /* Spanning tree. */ struct stp *stp; long long int stp_last_tick; /* VLAN splinters. */ struct hmap realdev_vid_map; /* (realdev,vid) -> vlandev. */ struct hmap vlandev_map; /* vlandev -> (realdev,vid). */ }; /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only * for debugging the asynchronous flow_mod implementation.) */ static bool clogged; /* All existing ofproto_dpif instances, indexed by ->up.name. */ static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs); static void ofproto_dpif_unixctl_init(void); static struct ofproto_dpif * ofproto_dpif_cast(const struct ofproto *ofproto) { assert(ofproto->ofproto_class == &ofproto_dpif_class); return CONTAINER_OF(ofproto, struct ofproto_dpif, up); } static struct ofport_dpif *get_ofp_port(struct ofproto_dpif *, uint16_t ofp_port); static struct ofport_dpif *get_odp_port(struct ofproto_dpif *, uint32_t odp_port); /* Packet processing. */ static void update_learning_table(struct ofproto_dpif *, const struct flow *, int vlan, struct ofbundle *); /* Upcalls. */ #define FLOW_MISS_MAX_BATCH 50 static int handle_upcalls(struct ofproto_dpif *, unsigned int max_batch); /* Flow expiration. */ static int expire(struct ofproto_dpif *); /* NetFlow. */ static void send_netflow_active_timeouts(struct ofproto_dpif *); /* Utilities. */ static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet); static size_t compose_sflow_action(const struct ofproto_dpif *, struct ofpbuf *odp_actions, const struct flow *, uint32_t odp_port); static void add_mirror_actions(struct action_xlate_ctx *ctx, const struct flow *flow); /* Global variables. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); /* Factory functions. */ static void enumerate_types(struct sset *types) { dp_enumerate_types(types); } static int enumerate_names(const char *type, struct sset *names) { return dp_enumerate_names(type, names); } static int del(const char *type, const char *name) { struct dpif *dpif; int error; error = dpif_open(name, type, &dpif); if (!error) { error = dpif_delete(dpif); dpif_close(dpif); } return error; } /* Basic life-cycle. */ static struct ofproto * alloc(void) { struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto); return &ofproto->up; } static void dealloc(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); free(ofproto); } static int construct(struct ofproto *ofproto_, int *n_tablesp) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); const char *name = ofproto->up.name; int error; int i; error = dpif_create_and_open(name, ofproto->up.type, &ofproto->dpif); if (error) { VLOG_ERR("failed to open datapath %s: %s", name, strerror(error)); return error; } ofproto->max_ports = dpif_get_max_ports(ofproto->dpif); ofproto->n_matches = 0; dpif_flow_flush(ofproto->dpif); dpif_recv_purge(ofproto->dpif); error = dpif_recv_set_mask(ofproto->dpif, ((1u << DPIF_UC_MISS) | (1u << DPIF_UC_ACTION))); if (error) { VLOG_ERR("failed to listen on datapath %s: %s", name, strerror(error)); dpif_close(ofproto->dpif); return error; } ofproto->netflow = NULL; ofproto->sflow = NULL; ofproto->stp = NULL; hmap_init(&ofproto->bundles); ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME); for (i = 0; i < MAX_MIRRORS; i++) { ofproto->mirrors[i] = NULL; } ofproto->has_bonded_bundles = false; timer_set_duration(&ofproto->next_expiration, 1000); hmap_init(&ofproto->facets); hmap_init(&ofproto->subfacets); for (i = 0; i < N_TABLES; i++) { struct table_dpif *table = &ofproto->tables[i]; table->catchall_table = NULL; table->other_table = NULL; table->basis = random_uint32(); } ofproto->need_revalidate = false; tag_set_init(&ofproto->revalidate_set); list_init(&ofproto->completions); ofproto_dpif_unixctl_init(); ofproto->has_bundle_action = false; hmap_init(&ofproto->vlandev_map); hmap_init(&ofproto->realdev_vid_map); hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node, hash_string(ofproto->up.name, 0)); *n_tablesp = N_TABLES; memset(&ofproto->stats, 0, sizeof ofproto->stats); return 0; } static void complete_operations(struct ofproto_dpif *ofproto) { struct dpif_completion *c, *next; LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) { ofoperation_complete(c->op, 0); list_remove(&c->list_node); free(c); } } static void destruct(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct rule_dpif *rule, *next_rule; struct classifier *table; int i; hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node); complete_operations(ofproto); OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) { struct cls_cursor cursor; cls_cursor_init(&cursor, table, NULL); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) { ofproto_rule_destroy(&rule->up); } } for (i = 0; i < MAX_MIRRORS; i++) { mirror_destroy(ofproto->mirrors[i]); } netflow_destroy(ofproto->netflow); dpif_sflow_destroy(ofproto->sflow); hmap_destroy(&ofproto->bundles); mac_learning_destroy(ofproto->ml); hmap_destroy(&ofproto->facets); hmap_destroy(&ofproto->subfacets); hmap_destroy(&ofproto->vlandev_map); hmap_destroy(&ofproto->realdev_vid_map); dpif_close(ofproto->dpif); } static int run_fast(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); unsigned int work; /* Handle one or more batches of upcalls, until there's nothing left to do * or until we do a fixed total amount of work. * * We do work in batches because it can be much cheaper to set up a number * of flows and fire off their patches all at once. We do multiple batches * because in some cases handling a packet can cause another packet to be * queued almost immediately as part of the return flow. Both * optimizations can make major improvements on some benchmarks and * presumably for real traffic as well. */ work = 0; while (work < FLOW_MISS_MAX_BATCH) { int retval = handle_upcalls(ofproto, FLOW_MISS_MAX_BATCH - work); if (retval <= 0) { return -retval; } work += retval; } return 0; } static int run(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofport_dpif *ofport; struct ofbundle *bundle; int error; if (!clogged) { complete_operations(ofproto); } dpif_run(ofproto->dpif); error = run_fast(ofproto_); if (error) { return error; } if (timer_expired(&ofproto->next_expiration)) { int delay = expire(ofproto); timer_set_duration(&ofproto->next_expiration, delay); } if (ofproto->netflow) { if (netflow_run(ofproto->netflow)) { send_netflow_active_timeouts(ofproto); } } if (ofproto->sflow) { dpif_sflow_run(ofproto->sflow); } HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { port_run(ofport); } HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { bundle_run(bundle); } stp_run(ofproto); mac_learning_run(ofproto->ml, &ofproto->revalidate_set); /* Now revalidate if there's anything to do. */ if (ofproto->need_revalidate || !tag_set_is_empty(&ofproto->revalidate_set)) { struct tag_set revalidate_set = ofproto->revalidate_set; bool revalidate_all = ofproto->need_revalidate; struct facet *facet, *next; /* Clear the revalidation flags. */ tag_set_init(&ofproto->revalidate_set); ofproto->need_revalidate = false; HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &ofproto->facets) { if (revalidate_all || tag_set_intersects(&revalidate_set, facet->tags)) { facet_revalidate(ofproto, facet); } } } return 0; } static void wait(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofport_dpif *ofport; struct ofbundle *bundle; if (!clogged && !list_is_empty(&ofproto->completions)) { poll_immediate_wake(); } dpif_wait(ofproto->dpif); dpif_recv_wait(ofproto->dpif); if (ofproto->sflow) { dpif_sflow_wait(ofproto->sflow); } if (!tag_set_is_empty(&ofproto->revalidate_set)) { poll_immediate_wake(); } HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { port_wait(ofport); } HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { bundle_wait(bundle); } if (ofproto->netflow) { netflow_wait(ofproto->netflow); } mac_learning_wait(ofproto->ml); stp_wait(ofproto); if (ofproto->need_revalidate) { /* Shouldn't happen, but if it does just go around again. */ VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()"); poll_immediate_wake(); } else { timer_wait(&ofproto->next_expiration); } } static void flush(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct facet *facet, *next_facet; HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) { /* Mark the facet as not installed so that facet_remove() doesn't * bother trying to uninstall it. There is no point in uninstalling it * individually since we are about to blow away all the facets with * dpif_flow_flush(). */ struct subfacet *subfacet; LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { subfacet->installed = false; subfacet->dp_packet_count = 0; subfacet->dp_byte_count = 0; } facet_remove(ofproto, facet); } dpif_flow_flush(ofproto->dpif); } static void get_features(struct ofproto *ofproto_ OVS_UNUSED, bool *arp_match_ip, uint32_t *actions) { *arp_match_ip = true; *actions = ((1u << OFPAT_OUTPUT) | (1u << OFPAT_SET_VLAN_VID) | (1u << OFPAT_SET_VLAN_PCP) | (1u << OFPAT_STRIP_VLAN) | (1u << OFPAT_SET_DL_SRC) | (1u << OFPAT_SET_DL_DST) | (1u << OFPAT_SET_NW_SRC) | (1u << OFPAT_SET_NW_DST) | (1u << OFPAT_SET_NW_TOS) | (1u << OFPAT_SET_TP_SRC) | (1u << OFPAT_SET_TP_DST) | (1u << OFPAT_ENQUEUE)); } static void get_tables(struct ofproto *ofproto_, struct ofp_table_stats *ots) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct dpif_dp_stats s; strcpy(ots->name, "classifier"); dpif_get_dp_stats(ofproto->dpif, &s); put_32aligned_be64(&ots->lookup_count, htonll(s.n_hit + s.n_missed)); put_32aligned_be64(&ots->matched_count, htonll(s.n_hit + ofproto->n_matches)); } static struct ofport * port_alloc(void) { struct ofport_dpif *port = xmalloc(sizeof *port); return &port->up; } static void port_dealloc(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); free(port); } static int port_construct(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); ofproto->need_revalidate = true; port->odp_port = ofp_port_to_odp_port(port->up.ofp_port); port->bundle = NULL; port->cfm = NULL; port->tag = tag_create_random(); port->may_enable = true; port->stp_port = NULL; port->stp_state = STP_DISABLED; hmap_init(&port->priorities); port->realdev_ofp_port = 0; port->vlandev_vid = 0; if (ofproto->sflow) { dpif_sflow_add_port(ofproto->sflow, port_); } return 0; } static void port_destruct(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); ofproto->need_revalidate = true; bundle_remove(port_); set_cfm(port_, NULL); if (ofproto->sflow) { dpif_sflow_del_port(ofproto->sflow, port->odp_port); } ofport_clear_priorities(port); hmap_destroy(&port->priorities); } static void port_modified(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); if (port->bundle && port->bundle->bond) { bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev); } } static void port_reconfigured(struct ofport *port_, ovs_be32 old_config) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); ovs_be32 changed = old_config ^ port->up.opp.config; if (changed & htonl(OFPPC_NO_RECV | OFPPC_NO_RECV_STP | OFPPC_NO_FWD | OFPPC_NO_FLOOD)) { ofproto->need_revalidate = true; if (changed & htonl(OFPPC_NO_FLOOD) && port->bundle) { bundle_update(port->bundle); } } } static int set_sflow(struct ofproto *ofproto_, const struct ofproto_sflow_options *sflow_options) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct dpif_sflow *ds = ofproto->sflow; if (sflow_options) { if (!ds) { struct ofport_dpif *ofport; ds = ofproto->sflow = dpif_sflow_create(ofproto->dpif); HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { dpif_sflow_add_port(ds, &ofport->up); } ofproto->need_revalidate = true; } dpif_sflow_set_options(ds, sflow_options); } else { if (ds) { dpif_sflow_destroy(ds); ofproto->need_revalidate = true; ofproto->sflow = NULL; } } return 0; } static int set_cfm(struct ofport *ofport_, const struct cfm_settings *s) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); int error; if (!s) { error = 0; } else { if (!ofport->cfm) { struct ofproto_dpif *ofproto; ofproto = ofproto_dpif_cast(ofport->up.ofproto); ofproto->need_revalidate = true; ofport->cfm = cfm_create(netdev_get_name(ofport->up.netdev)); } if (cfm_configure(ofport->cfm, s)) { return 0; } error = EINVAL; } cfm_destroy(ofport->cfm); ofport->cfm = NULL; return error; } static int get_cfm_fault(const struct ofport *ofport_) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); return ofport->cfm ? cfm_get_fault(ofport->cfm) : -1; } static int get_cfm_remote_mpids(const struct ofport *ofport_, const uint64_t **rmps, size_t *n_rmps) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); if (ofport->cfm) { cfm_get_remote_mpids(ofport->cfm, rmps, n_rmps); return 0; } else { return -1; } } /* Spanning Tree. */ static void send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_) { struct ofproto_dpif *ofproto = ofproto_; struct stp_port *sp = stp_get_port(ofproto->stp, port_num); struct ofport_dpif *ofport; ofport = stp_port_get_aux(sp); if (!ofport) { VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d", ofproto->up.name, port_num); } else { struct eth_header *eth = pkt->l2; netdev_get_etheraddr(ofport->up.netdev, eth->eth_src); if (eth_addr_is_zero(eth->eth_src)) { VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d " "with unknown MAC", ofproto->up.name, port_num); } else { send_packet(ofport, pkt); } } ofpbuf_delete(pkt); } /* Configures STP on 'ofproto_' using the settings defined in 's'. */ static int set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); /* Only revalidate flows if the configuration changed. */ if (!s != !ofproto->stp) { ofproto->need_revalidate = true; } if (s) { if (!ofproto->stp) { ofproto->stp = stp_create(ofproto_->name, s->system_id, send_bpdu_cb, ofproto); ofproto->stp_last_tick = time_msec(); } stp_set_bridge_id(ofproto->stp, s->system_id); stp_set_bridge_priority(ofproto->stp, s->priority); stp_set_hello_time(ofproto->stp, s->hello_time); stp_set_max_age(ofproto->stp, s->max_age); stp_set_forward_delay(ofproto->stp, s->fwd_delay); } else { struct ofport *ofport; HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) { set_stp_port(ofport, NULL); } stp_destroy(ofproto->stp); ofproto->stp = NULL; } return 0; } static int get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (ofproto->stp) { s->enabled = true; s->bridge_id = stp_get_bridge_id(ofproto->stp); s->designated_root = stp_get_designated_root(ofproto->stp); s->root_path_cost = stp_get_root_path_cost(ofproto->stp); } else { s->enabled = false; } return 0; } static void update_stp_port_state(struct ofport_dpif *ofport) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); enum stp_state state; /* Figure out new state. */ state = ofport->stp_port ? stp_port_get_state(ofport->stp_port) : STP_DISABLED; /* Update state. */ if (ofport->stp_state != state) { ovs_be32 of_state; bool fwd_change; VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s", netdev_get_name(ofport->up.netdev), stp_state_name(ofport->stp_state), stp_state_name(state)); if (stp_learn_in_state(ofport->stp_state) != stp_learn_in_state(state)) { /* xxx Learning action flows should also be flushed. */ mac_learning_flush(ofproto->ml); } fwd_change = stp_forward_in_state(ofport->stp_state) != stp_forward_in_state(state); ofproto->need_revalidate = true; ofport->stp_state = state; ofport->stp_state_entered = time_msec(); if (fwd_change && ofport->bundle) { bundle_update(ofport->bundle); } /* Update the STP state bits in the OpenFlow port description. */ of_state = (ofport->up.opp.state & htonl(~OFPPS_STP_MASK)) | htonl(state == STP_LISTENING ? OFPPS_STP_LISTEN : state == STP_LEARNING ? OFPPS_STP_LEARN : state == STP_FORWARDING ? OFPPS_STP_FORWARD : state == STP_BLOCKING ? OFPPS_STP_BLOCK : 0); ofproto_port_set_state(&ofport->up, of_state); } } /* Configures STP on 'ofport_' using the settings defined in 's'. The * caller is responsible for assigning STP port numbers and ensuring * there are no duplicates. */ static int set_stp_port(struct ofport *ofport_, const struct ofproto_port_stp_settings *s) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); struct stp_port *sp = ofport->stp_port; if (!s || !s->enable) { if (sp) { ofport->stp_port = NULL; stp_port_disable(sp); update_stp_port_state(ofport); } return 0; } else if (sp && stp_port_no(sp) != s->port_num && ofport == stp_port_get_aux(sp)) { /* The port-id changed, so disable the old one if it's not * already in use by another port. */ stp_port_disable(sp); } sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num); stp_port_enable(sp); stp_port_set_aux(sp, ofport); stp_port_set_priority(sp, s->priority); stp_port_set_path_cost(sp, s->path_cost); update_stp_port_state(ofport); return 0; } static int get_stp_port_status(struct ofport *ofport_, struct ofproto_port_stp_status *s) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); struct stp_port *sp = ofport->stp_port; if (!ofproto->stp || !sp) { s->enabled = false; return 0; } s->enabled = true; s->port_id = stp_port_get_id(sp); s->state = stp_port_get_state(sp); s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000; s->role = stp_port_get_role(sp); stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count); return 0; } static void stp_run(struct ofproto_dpif *ofproto) { if (ofproto->stp) { long long int now = time_msec(); long long int elapsed = now - ofproto->stp_last_tick; struct stp_port *sp; if (elapsed > 0) { stp_tick(ofproto->stp, MIN(INT_MAX, elapsed)); ofproto->stp_last_tick = now; } while (stp_get_changed_port(ofproto->stp, &sp)) { struct ofport_dpif *ofport = stp_port_get_aux(sp); if (ofport) { update_stp_port_state(ofport); } } } } static void stp_wait(struct ofproto_dpif *ofproto) { if (ofproto->stp) { poll_timer_wait(1000); } } /* Returns true if STP should process 'flow'. */ static bool stp_should_process_flow(const struct flow *flow) { return eth_addr_equals(flow->dl_dst, eth_addr_stp); } static void stp_process_packet(const struct ofport_dpif *ofport, const struct ofpbuf *packet) { struct ofpbuf payload = *packet; struct eth_header *eth = payload.data; struct stp_port *sp = ofport->stp_port; /* Sink packets on ports that have STP disabled when the bridge has * STP enabled. */ if (!sp || stp_port_get_state(sp) == STP_DISABLED) { return; } /* Trim off padding on payload. */ if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) { payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN; } if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) { stp_received_bpdu(sp, payload.data, payload.size); } } static struct priority_to_dscp * get_priority(const struct ofport_dpif *ofport, uint32_t priority) { struct priority_to_dscp *pdscp; uint32_t hash; hash = hash_int(priority, 0); HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &ofport->priorities) { if (pdscp->priority == priority) { return pdscp; } } return NULL; } static void ofport_clear_priorities(struct ofport_dpif *ofport) { struct priority_to_dscp *pdscp, *next; HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &ofport->priorities) { hmap_remove(&ofport->priorities, &pdscp->hmap_node); free(pdscp); } } static int set_queues(struct ofport *ofport_, const struct ofproto_port_queue *qdscp_list, size_t n_qdscp) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); struct hmap new = HMAP_INITIALIZER(&new); size_t i; for (i = 0; i < n_qdscp; i++) { struct priority_to_dscp *pdscp; uint32_t priority; uint8_t dscp; dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK; if (dpif_queue_to_priority(ofproto->dpif, qdscp_list[i].queue, &priority)) { continue; } pdscp = get_priority(ofport, priority); if (pdscp) { hmap_remove(&ofport->priorities, &pdscp->hmap_node); } else { pdscp = xmalloc(sizeof *pdscp); pdscp->priority = priority; pdscp->dscp = dscp; ofproto->need_revalidate = true; } if (pdscp->dscp != dscp) { pdscp->dscp = dscp; ofproto->need_revalidate = true; } hmap_insert(&new, &pdscp->hmap_node, hash_int(pdscp->priority, 0)); } if (!hmap_is_empty(&ofport->priorities)) { ofport_clear_priorities(ofport); ofproto->need_revalidate = true; } hmap_swap(&new, &ofport->priorities); hmap_destroy(&new); return 0; } /* Bundles. */ /* Expires all MAC learning entries associated with 'bundle' and forces its * ofproto to revalidate every flow. * * Normally MAC learning entries are removed only from the ofproto associated * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries * are removed from every ofproto. When patch ports and SLB bonds are in use * and a VM migration happens and the gratuitous ARPs are somehow lost, this * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate * with the host from which it migrated. */ static void bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos) { struct ofproto_dpif *ofproto = bundle->ofproto; struct mac_learning *ml = ofproto->ml; struct mac_entry *mac, *next_mac; ofproto->need_revalidate = true; LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) { if (mac->port.p == bundle) { if (all_ofprotos) { struct ofproto_dpif *o; HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) { if (o != ofproto) { struct mac_entry *e; e = mac_learning_lookup(o->ml, mac->mac, mac->vlan, NULL); if (e) { tag_set_add(&o->revalidate_set, e->tag); mac_learning_expire(o->ml, e); } } } } mac_learning_expire(ml, mac); } } } static struct ofbundle * bundle_lookup(const struct ofproto_dpif *ofproto, void *aux) { struct ofbundle *bundle; HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0), &ofproto->bundles) { if (bundle->aux == aux) { return bundle; } } return NULL; } /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the * ones that are found to 'bundles'. */ static void bundle_lookup_multiple(struct ofproto_dpif *ofproto, void **auxes, size_t n_auxes, struct hmapx *bundles) { size_t i; hmapx_init(bundles); for (i = 0; i < n_auxes; i++) { struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]); if (bundle) { hmapx_add(bundles, bundle); } } } static void bundle_update(struct ofbundle *bundle) { struct ofport_dpif *port; bundle->floodable = true; LIST_FOR_EACH (port, bundle_node, &bundle->ports) { if (port->up.opp.config & htonl(OFPPC_NO_FLOOD)) { bundle->floodable = false; break; } } } static void bundle_del_port(struct ofport_dpif *port) { struct ofbundle *bundle = port->bundle; bundle->ofproto->need_revalidate = true; list_remove(&port->bundle_node); port->bundle = NULL; if (bundle->lacp) { lacp_slave_unregister(bundle->lacp, port); } if (bundle->bond) { bond_slave_unregister(bundle->bond, port); } bundle_update(bundle); } static bool bundle_add_port(struct ofbundle *bundle, uint32_t ofp_port, struct lacp_slave_settings *lacp, uint32_t bond_stable_id) { struct ofport_dpif *port; port = get_ofp_port(bundle->ofproto, ofp_port); if (!port) { return false; } if (port->bundle != bundle) { bundle->ofproto->need_revalidate = true; if (port->bundle) { bundle_del_port(port); } port->bundle = bundle; list_push_back(&bundle->ports, &port->bundle_node); if (port->up.opp.config & htonl(OFPPC_NO_FLOOD)) { bundle->floodable = false; } } if (lacp) { port->bundle->ofproto->need_revalidate = true; lacp_slave_register(bundle->lacp, port, lacp); } port->bond_stable_id = bond_stable_id; return true; } static void bundle_destroy(struct ofbundle *bundle) { struct ofproto_dpif *ofproto; struct ofport_dpif *port, *next_port; int i; if (!bundle) { return; } ofproto = bundle->ofproto; for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *m = ofproto->mirrors[i]; if (m) { if (m->out == bundle) { mirror_destroy(m); } else if (hmapx_find_and_delete(&m->srcs, bundle) || hmapx_find_and_delete(&m->dsts, bundle)) { ofproto->need_revalidate = true; } } } LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) { bundle_del_port(port); } bundle_flush_macs(bundle, true); hmap_remove(&ofproto->bundles, &bundle->hmap_node); free(bundle->name); free(bundle->trunks); lacp_destroy(bundle->lacp); bond_destroy(bundle->bond); free(bundle); } static int bundle_set(struct ofproto *ofproto_, void *aux, const struct ofproto_bundle_settings *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); bool need_flush = false; struct ofport_dpif *port; struct ofbundle *bundle; unsigned long *trunks; int vlan; size_t i; bool ok; if (!s) { bundle_destroy(bundle_lookup(ofproto, aux)); return 0; } assert(s->n_slaves == 1 || s->bond != NULL); assert((s->lacp != NULL) == (s->lacp_slaves != NULL)); bundle = bundle_lookup(ofproto, aux); if (!bundle) { bundle = xmalloc(sizeof *bundle); bundle->ofproto = ofproto; hmap_insert(&ofproto->bundles, &bundle->hmap_node, hash_pointer(aux, 0)); bundle->aux = aux; bundle->name = NULL; list_init(&bundle->ports); bundle->vlan_mode = PORT_VLAN_TRUNK; bundle->vlan = -1; bundle->trunks = NULL; bundle->use_priority_tags = s->use_priority_tags; bundle->lacp = NULL; bundle->bond = NULL; bundle->floodable = true; bundle->src_mirrors = 0; bundle->dst_mirrors = 0; bundle->mirror_out = 0; } if (!bundle->name || strcmp(s->name, bundle->name)) { free(bundle->name); bundle->name = xstrdup(s->name); } /* LACP. */ if (s->lacp) { if (!bundle->lacp) { ofproto->need_revalidate = true; bundle->lacp = lacp_create(); } lacp_configure(bundle->lacp, s->lacp); } else { lacp_destroy(bundle->lacp); bundle->lacp = NULL; } /* Update set of ports. */ ok = true; for (i = 0; i < s->n_slaves; i++) { if (!bundle_add_port(bundle, s->slaves[i], s->lacp ? &s->lacp_slaves[i] : NULL, s->bond_stable_ids ? s->bond_stable_ids[i] : 0)) { ok = false; } } if (!ok || list_size(&bundle->ports) != s->n_slaves) { struct ofport_dpif *next_port; LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) { for (i = 0; i < s->n_slaves; i++) { if (s->slaves[i] == port->up.ofp_port) { goto found; } } bundle_del_port(port); found: ; } } assert(list_size(&bundle->ports) <= s->n_slaves); if (list_is_empty(&bundle->ports)) { bundle_destroy(bundle); return EINVAL; } /* Set VLAN tagging mode */ if (s->vlan_mode != bundle->vlan_mode || s->use_priority_tags != bundle->use_priority_tags) { bundle->vlan_mode = s->vlan_mode; bundle->use_priority_tags = s->use_priority_tags; need_flush = true; } /* Set VLAN tag. */ vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan : 0); if (vlan != bundle->vlan) { bundle->vlan = vlan; need_flush = true; } /* Get trunked VLANs. */ switch (s->vlan_mode) { case PORT_VLAN_ACCESS: trunks = NULL; break; case PORT_VLAN_TRUNK: trunks = (unsigned long *) s->trunks; break; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: if (vlan != 0 && (!s->trunks || !bitmap_is_set(s->trunks, vlan) || bitmap_is_set(s->trunks, 0))) { /* Force trunking the native VLAN and prohibit trunking VLAN 0. */ if (s->trunks) { trunks = bitmap_clone(s->trunks, 4096); } else { trunks = bitmap_allocate1(4096); } bitmap_set1(trunks, vlan); bitmap_set0(trunks, 0); } else { trunks = (unsigned long *) s->trunks; } break; default: NOT_REACHED(); } if (!vlan_bitmap_equal(trunks, bundle->trunks)) { free(bundle->trunks); if (trunks == s->trunks) { bundle->trunks = vlan_bitmap_clone(trunks); } else { bundle->trunks = trunks; trunks = NULL; } need_flush = true; } if (trunks != s->trunks) { free(trunks); } /* Bonding. */ if (!list_is_short(&bundle->ports)) { bundle->ofproto->has_bonded_bundles = true; if (bundle->bond) { if (bond_reconfigure(bundle->bond, s->bond)) { ofproto->need_revalidate = true; } } else { bundle->bond = bond_create(s->bond); ofproto->need_revalidate = true; } LIST_FOR_EACH (port, bundle_node, &bundle->ports) { bond_slave_register(bundle->bond, port, port->bond_stable_id, port->up.netdev); } } else { bond_destroy(bundle->bond); bundle->bond = NULL; } /* If we changed something that would affect MAC learning, un-learn * everything on this port and force flow revalidation. */ if (need_flush) { bundle_flush_macs(bundle, false); } return 0; } static void bundle_remove(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofbundle *bundle = port->bundle; if (bundle) { bundle_del_port(port); if (list_is_empty(&bundle->ports)) { bundle_destroy(bundle); } else if (list_is_short(&bundle->ports)) { bond_destroy(bundle->bond); bundle->bond = NULL; } } } static void send_pdu_cb(void *port_, const void *pdu, size_t pdu_size) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10); struct ofport_dpif *port = port_; uint8_t ea[ETH_ADDR_LEN]; int error; error = netdev_get_etheraddr(port->up.netdev, ea); if (!error) { struct ofpbuf packet; void *packet_pdu; ofpbuf_init(&packet, 0); packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP, pdu_size); memcpy(packet_pdu, pdu, pdu_size); send_packet(port, &packet); ofpbuf_uninit(&packet); } else { VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface " "%s (%s)", port->bundle->name, netdev_get_name(port->up.netdev), strerror(error)); } } static void bundle_send_learning_packets(struct ofbundle *bundle) { struct ofproto_dpif *ofproto = bundle->ofproto; int error, n_packets, n_errors; struct mac_entry *e; error = n_packets = n_errors = 0; LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) { if (e->port.p != bundle) { struct ofpbuf *learning_packet; struct ofport_dpif *port; void *port_void; int ret; /* The assignment to "port" is unnecessary but makes "grep"ing for * struct ofport_dpif more effective. */ learning_packet = bond_compose_learning_packet(bundle->bond, e->mac, e->vlan, &port_void); port = port_void; ret = send_packet(port, learning_packet); ofpbuf_delete(learning_packet); if (ret) { error = ret; n_errors++; } n_packets++; } } if (n_errors) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning " "packets, last error was: %s", bundle->name, n_errors, n_packets, strerror(error)); } else { VLOG_DBG("bond %s: sent %d gratuitous learning packets", bundle->name, n_packets); } } static void bundle_run(struct ofbundle *bundle) { if (bundle->lacp) { lacp_run(bundle->lacp, send_pdu_cb); } if (bundle->bond) { struct ofport_dpif *port; LIST_FOR_EACH (port, bundle_node, &bundle->ports) { bond_slave_set_may_enable(bundle->bond, port, port->may_enable); } bond_run(bundle->bond, &bundle->ofproto->revalidate_set, lacp_negotiated(bundle->lacp)); if (bond_should_send_learning_packets(bundle->bond)) { bundle_send_learning_packets(bundle); } } } static void bundle_wait(struct ofbundle *bundle) { if (bundle->lacp) { lacp_wait(bundle->lacp); } if (bundle->bond) { bond_wait(bundle->bond); } } /* Mirrors. */ static int mirror_scan(struct ofproto_dpif *ofproto) { int idx; for (idx = 0; idx < MAX_MIRRORS; idx++) { if (!ofproto->mirrors[idx]) { return idx; } } return -1; } static struct ofmirror * mirror_lookup(struct ofproto_dpif *ofproto, void *aux) { int i; for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *mirror = ofproto->mirrors[i]; if (mirror && mirror->aux == aux) { return mirror; } } return NULL; } /* Update the 'dup_mirrors' member of each of the ofmirrors in 'ofproto'. */ static void mirror_update_dups(struct ofproto_dpif *ofproto) { int i; for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *m = ofproto->mirrors[i]; if (m) { m->dup_mirrors = MIRROR_MASK_C(1) << i; } } for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *m1 = ofproto->mirrors[i]; int j; if (!m1) { continue; } for (j = i + 1; j < MAX_MIRRORS; j++) { struct ofmirror *m2 = ofproto->mirrors[j]; if (m2 && m1->out == m2->out && m1->out_vlan == m2->out_vlan) { m1->dup_mirrors |= MIRROR_MASK_C(1) << j; m2->dup_mirrors |= m1->dup_mirrors; } } } } static int mirror_set(struct ofproto *ofproto_, void *aux, const struct ofproto_mirror_settings *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); mirror_mask_t mirror_bit; struct ofbundle *bundle; struct ofmirror *mirror; struct ofbundle *out; struct hmapx srcs; /* Contains "struct ofbundle *"s. */ struct hmapx dsts; /* Contains "struct ofbundle *"s. */ int out_vlan; mirror = mirror_lookup(ofproto, aux); if (!s) { mirror_destroy(mirror); return 0; } if (!mirror) { int idx; idx = mirror_scan(ofproto); if (idx < 0) { VLOG_WARN("bridge %s: maximum of %d port mirrors reached, " "cannot create %s", ofproto->up.name, MAX_MIRRORS, s->name); return EFBIG; } mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror); mirror->ofproto = ofproto; mirror->idx = idx; mirror->aux = aux; mirror->out_vlan = -1; mirror->name = NULL; } if (!mirror->name || strcmp(s->name, mirror->name)) { free(mirror->name); mirror->name = xstrdup(s->name); } /* Get the new configuration. */ if (s->out_bundle) { out = bundle_lookup(ofproto, s->out_bundle); if (!out) { mirror_destroy(mirror); return EINVAL; } out_vlan = -1; } else { out = NULL; out_vlan = s->out_vlan; } bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs); bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts); /* If the configuration has not changed, do nothing. */ if (hmapx_equals(&srcs, &mirror->srcs) && hmapx_equals(&dsts, &mirror->dsts) && vlan_bitmap_equal(mirror->vlans, s->src_vlans) && mirror->out == out && mirror->out_vlan == out_vlan) { hmapx_destroy(&srcs); hmapx_destroy(&dsts); return 0; } hmapx_swap(&srcs, &mirror->srcs); hmapx_destroy(&srcs); hmapx_swap(&dsts, &mirror->dsts); hmapx_destroy(&dsts); free(mirror->vlans); mirror->vlans = vlan_bitmap_clone(s->src_vlans); mirror->out = out; mirror->out_vlan = out_vlan; /* Update bundles. */ mirror_bit = MIRROR_MASK_C(1) << mirror->idx; HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) { if (hmapx_contains(&mirror->srcs, bundle)) { bundle->src_mirrors |= mirror_bit; } else { bundle->src_mirrors &= ~mirror_bit; } if (hmapx_contains(&mirror->dsts, bundle)) { bundle->dst_mirrors |= mirror_bit; } else { bundle->dst_mirrors &= ~mirror_bit; } if (mirror->out == bundle) { bundle->mirror_out |= mirror_bit; } else { bundle->mirror_out &= ~mirror_bit; } } ofproto->need_revalidate = true; mac_learning_flush(ofproto->ml); mirror_update_dups(ofproto); return 0; } static void mirror_destroy(struct ofmirror *mirror) { struct ofproto_dpif *ofproto; mirror_mask_t mirror_bit; struct ofbundle *bundle; if (!mirror) { return; } ofproto = mirror->ofproto; ofproto->need_revalidate = true; mac_learning_flush(ofproto->ml); mirror_bit = MIRROR_MASK_C(1) << mirror->idx; HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { bundle->src_mirrors &= ~mirror_bit; bundle->dst_mirrors &= ~mirror_bit; bundle->mirror_out &= ~mirror_bit; } hmapx_destroy(&mirror->srcs); hmapx_destroy(&mirror->dsts); free(mirror->vlans); ofproto->mirrors[mirror->idx] = NULL; free(mirror->name); free(mirror); mirror_update_dups(ofproto); } static int mirror_get_stats(struct ofproto *ofproto_, void *aux, uint64_t *packets, uint64_t *bytes) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofmirror *mirror = mirror_lookup(ofproto, aux); if (!mirror) { *packets = *bytes = UINT64_MAX; return 0; } *packets = mirror->packet_count; *bytes = mirror->byte_count; return 0; } static int set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) { ofproto->need_revalidate = true; mac_learning_flush(ofproto->ml); } return 0; } static bool is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofbundle *bundle = bundle_lookup(ofproto, aux); return bundle && bundle->mirror_out != 0; } static void forward_bpdu_changed(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); /* Revalidate cached flows whenever forward_bpdu option changes. */ ofproto->need_revalidate = true; } static void set_mac_idle_time(struct ofproto *ofproto_, unsigned int idle_time) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); mac_learning_set_idle_time(ofproto->ml, idle_time); } /* Ports. */ static struct ofport_dpif * get_ofp_port(struct ofproto_dpif *ofproto, uint16_t ofp_port) { struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port); return ofport ? ofport_dpif_cast(ofport) : NULL; } static struct ofport_dpif * get_odp_port(struct ofproto_dpif *ofproto, uint32_t odp_port) { return get_ofp_port(ofproto, odp_port_to_ofp_port(odp_port)); } static void ofproto_port_from_dpif_port(struct ofproto_port *ofproto_port, struct dpif_port *dpif_port) { ofproto_port->name = dpif_port->name; ofproto_port->type = dpif_port->type; ofproto_port->ofp_port = odp_port_to_ofp_port(dpif_port->port_no); } static void port_run(struct ofport_dpif *ofport) { bool enable = netdev_get_carrier(ofport->up.netdev); if (ofport->cfm) { cfm_run(ofport->cfm); if (cfm_should_send_ccm(ofport->cfm)) { struct ofpbuf packet; ofpbuf_init(&packet, 0); cfm_compose_ccm(ofport->cfm, &packet, ofport->up.opp.hw_addr); send_packet(ofport, &packet); ofpbuf_uninit(&packet); } enable = enable && !cfm_get_fault(ofport->cfm) && cfm_get_opup(ofport->cfm); } if (ofport->bundle) { enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport); } if (ofport->may_enable != enable) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); if (ofproto->has_bundle_action) { ofproto->need_revalidate = true; } } ofport->may_enable = enable; } static void port_wait(struct ofport_dpif *ofport) { if (ofport->cfm) { cfm_wait(ofport->cfm); } } static int port_query_by_name(const struct ofproto *ofproto_, const char *devname, struct ofproto_port *ofproto_port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct dpif_port dpif_port; int error; error = dpif_port_query_by_name(ofproto->dpif, devname, &dpif_port); if (!error) { ofproto_port_from_dpif_port(ofproto_port, &dpif_port); } return error; } static int port_add(struct ofproto *ofproto_, struct netdev *netdev, uint16_t *ofp_portp) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); uint16_t odp_port; int error; error = dpif_port_add(ofproto->dpif, netdev, &odp_port); if (!error) { *ofp_portp = odp_port_to_ofp_port(odp_port); } return error; } static int port_del(struct ofproto *ofproto_, uint16_t ofp_port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); int error; error = dpif_port_del(ofproto->dpif, ofp_port_to_odp_port(ofp_port)); if (!error) { struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port); if (ofport) { /* The caller is going to close ofport->up.netdev. If this is a * bonded port, then the bond is using that netdev, so remove it * from the bond. The client will need to reconfigure everything * after deleting ports, so then the slave will get re-added. */ bundle_remove(&ofport->up); } } return error; } static int port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); int error; error = netdev_get_stats(ofport->up.netdev, stats); if (!error && ofport->odp_port == OVSP_LOCAL) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); /* ofproto->stats.tx_packets represents packets that we created * internally and sent to some port (e.g. packets sent with * send_packet()). Account for them as if they had come from * OFPP_LOCAL and got forwarded. */ if (stats->rx_packets != UINT64_MAX) { stats->rx_packets += ofproto->stats.tx_packets; } if (stats->rx_bytes != UINT64_MAX) { stats->rx_bytes += ofproto->stats.tx_bytes; } /* ofproto->stats.rx_packets represents packets that were received on * some port and we processed internally and dropped (e.g. STP). * Account fro them as if they had been forwarded to OFPP_LOCAL. */ if (stats->tx_packets != UINT64_MAX) { stats->tx_packets += ofproto->stats.rx_packets; } if (stats->tx_bytes != UINT64_MAX) { stats->tx_bytes += ofproto->stats.rx_bytes; } } return error; } /* Account packets for LOCAL port. */ static void ofproto_update_local_port_stats(const struct ofproto *ofproto_, size_t tx_size, size_t rx_size) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (rx_size) { ofproto->stats.rx_packets++; ofproto->stats.rx_bytes += rx_size; } if (tx_size) { ofproto->stats.tx_packets++; ofproto->stats.tx_bytes += tx_size; } } struct port_dump_state { struct dpif_port_dump dump; bool done; }; static int port_dump_start(const struct ofproto *ofproto_, void **statep) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct port_dump_state *state; *statep = state = xmalloc(sizeof *state); dpif_port_dump_start(&state->dump, ofproto->dpif); state->done = false; return 0; } static int port_dump_next(const struct ofproto *ofproto_ OVS_UNUSED, void *state_, struct ofproto_port *port) { struct port_dump_state *state = state_; struct dpif_port dpif_port; if (dpif_port_dump_next(&state->dump, &dpif_port)) { ofproto_port_from_dpif_port(port, &dpif_port); return 0; } else { int error = dpif_port_dump_done(&state->dump); state->done = true; return error ? error : EOF; } } static int port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_) { struct port_dump_state *state = state_; if (!state->done) { dpif_port_dump_done(&state->dump); } free(state); return 0; } static int port_poll(const struct ofproto *ofproto_, char **devnamep) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); return dpif_port_poll(ofproto->dpif, devnamep); } static void port_poll_wait(const struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); dpif_port_poll_wait(ofproto->dpif); } static int port_is_lacp_current(const struct ofport *ofport_) { const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); return (ofport->bundle && ofport->bundle->lacp ? lacp_slave_is_current(ofport->bundle->lacp, ofport) : -1); } /* Upcall handling. */ /* Flow miss batching. * * Some dpifs implement operations faster when you hand them off in a batch. * To allow batching, "struct flow_miss" queues the dpif-related work needed * for a given flow. Each "struct flow_miss" corresponds to sending one or * more packets, plus possibly installing the flow in the dpif. * * So far we only batch the operations that affect flow setup time the most. * It's possible to batch more than that, but the benefit might be minimal. */ struct flow_miss { struct hmap_node hmap_node; struct flow flow; enum odp_key_fitness key_fitness; const struct nlattr *key; size_t key_len; ovs_be16 initial_tci; struct list packets; }; struct flow_miss_op { union dpif_op dpif_op; struct subfacet *subfacet; }; /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_NO_MATCH to each * OpenFlow controller as necessary according to their individual * configurations. */ static void send_packet_in_miss(struct ofproto_dpif *ofproto, struct ofpbuf *packet, const struct flow *flow) { struct ofputil_packet_in pin; pin.packet = packet->data; pin.packet_len = packet->size; pin.total_len = packet->size; pin.reason = OFPR_NO_MATCH; pin.table_id = 0; pin.cookie = 0; pin.buffer_id = 0; /* not yet known */ pin.send_len = 0; /* not used for flow table misses */ flow_get_metadata(flow, &pin.fmd); /* Registers aren't meaningful on a miss. */ memset(pin.fmd.reg_masks, 0, sizeof pin.fmd.reg_masks); connmgr_send_packet_in(ofproto->up.connmgr, &pin, flow); } static bool process_special(struct ofproto_dpif *ofproto, const struct flow *flow, const struct ofpbuf *packet) { struct ofport_dpif *ofport = get_ofp_port(ofproto, flow->in_port); if (!ofport) { return false; } if (ofport->cfm && cfm_should_process_flow(ofport->cfm, flow)) { if (packet) { cfm_process_heartbeat(ofport->cfm, packet); } return true; } else if (ofport->bundle && ofport->bundle->lacp && flow->dl_type == htons(ETH_TYPE_LACP)) { if (packet) { lacp_process_packet(ofport->bundle->lacp, ofport, packet); } return true; } else if (ofproto->stp && stp_should_process_flow(flow)) { if (packet) { stp_process_packet(ofport, packet); } return true; } return false; } static struct flow_miss * flow_miss_create(struct hmap *todo, const struct flow *flow, enum odp_key_fitness key_fitness, const struct nlattr *key, size_t key_len, ovs_be16 initial_tci) { uint32_t hash = flow_hash(flow, 0); struct flow_miss *miss; HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) { if (flow_equal(&miss->flow, flow)) { return miss; } } miss = xmalloc(sizeof *miss); hmap_insert(todo, &miss->hmap_node, hash); miss->flow = *flow; miss->key_fitness = key_fitness; miss->key = key; miss->key_len = key_len; miss->initial_tci = initial_tci; list_init(&miss->packets); return miss; } static void handle_flow_miss(struct ofproto_dpif *ofproto, struct flow_miss *miss, struct flow_miss_op *ops, size_t *n_ops) { const struct flow *flow = &miss->flow; struct ofpbuf *packet, *next_packet; struct subfacet *subfacet; struct facet *facet; facet = facet_lookup_valid(ofproto, flow); if (!facet) { struct rule_dpif *rule; rule = rule_dpif_lookup(ofproto, flow, 0); if (!rule) { /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */ struct ofport_dpif *port = get_ofp_port(ofproto, flow->in_port); if (port) { if (port->up.opp.config & htonl(OFPPC_NO_PACKET_IN)) { COVERAGE_INC(ofproto_dpif_no_packet_in); /* XXX install 'drop' flow entry */ return; } } else { VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, flow->in_port); } LIST_FOR_EACH (packet, list_node, &miss->packets) { send_packet_in_miss(ofproto, packet, flow); } return; } facet = facet_create(rule, flow); } subfacet = subfacet_create(ofproto, facet, miss->key_fitness, miss->key, miss->key_len, miss->initial_tci); LIST_FOR_EACH_SAFE (packet, next_packet, list_node, &miss->packets) { struct dpif_flow_stats stats; struct flow_miss_op *op; struct dpif_execute *execute; ofproto->n_matches++; if (facet->rule->up.cr.priority == FAIL_OPEN_PRIORITY) { /* * Extra-special case for fail-open mode. * * We are in fail-open mode and the packet matched the fail-open * rule, but we are connected to a controller too. We should send * the packet up to the controller in the hope that it will try to * set up a flow and thereby allow us to exit fail-open. * * See the top-level comment in fail-open.c for more information. */ send_packet_in_miss(ofproto, packet, flow); } if (!facet->may_install || !subfacet->actions) { subfacet_make_actions(ofproto, subfacet, packet); } dpif_flow_stats_extract(&facet->flow, packet, &stats); subfacet_update_stats(ofproto, subfacet, &stats); if (flow->vlan_tci != subfacet->initial_tci) { /* This packet was received on a VLAN splinter port. We added * a VLAN to the packet to make the packet resemble the flow, * but the actions were composed assuming that the packet * contained no VLAN. So, we must remove the VLAN header from * the packet before trying to execute the actions. */ eth_pop_vlan(packet); } op = &ops[(*n_ops)++]; execute = &op->dpif_op.execute; op->subfacet = subfacet; execute->type = DPIF_OP_EXECUTE; execute->key = miss->key; execute->key_len = miss->key_len; execute->actions = (facet->may_install ? subfacet->actions : xmemdup(subfacet->actions, subfacet->actions_len)); execute->actions_len = subfacet->actions_len; execute->packet = packet; } if (facet->may_install && subfacet->key_fitness != ODP_FIT_TOO_LITTLE) { struct flow_miss_op *op = &ops[(*n_ops)++]; struct dpif_flow_put *put = &op->dpif_op.flow_put; op->subfacet = subfacet; put->type = DPIF_OP_FLOW_PUT; put->flags = DPIF_FP_CREATE | DPIF_FP_MODIFY; put->key = miss->key; put->key_len = miss->key_len; put->actions = subfacet->actions; put->actions_len = subfacet->actions_len; put->stats = NULL; } } /* Like odp_flow_key_to_flow(), this function converts the 'key_len' bytes of * OVS_KEY_ATTR_* attributes in 'key' to a flow structure in 'flow' and returns * an ODP_FIT_* value that indicates how well 'key' fits our expectations for * what a flow key should contain. * * This function also includes some logic to help make VLAN splinters * transparent to the rest of the upcall processing logic. In particular, if * the extracted in_port is a VLAN splinter port, it replaces flow->in_port by * the "real" port, sets flow->vlan_tci correctly for the VLAN of the VLAN * splinter port, and pushes a VLAN header onto 'packet' (if it is nonnull). * * Sets '*initial_tci' to the VLAN TCI with which the packet was really * received, that is, the actual VLAN TCI extracted by odp_flow_key_to_flow(). * (This differs from the value returned in flow->vlan_tci only for packets * received on VLAN splinters.) */ static enum odp_key_fitness ofproto_dpif_extract_flow_key(const struct ofproto_dpif *ofproto, const struct nlattr *key, size_t key_len, struct flow *flow, ovs_be16 *initial_tci, struct ofpbuf *packet) { enum odp_key_fitness fitness; uint16_t realdev; int vid; fitness = odp_flow_key_to_flow(key, key_len, flow); if (fitness == ODP_FIT_ERROR) { return fitness; } *initial_tci = flow->vlan_tci; realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port, &vid); if (realdev) { /* Cause the flow to be processed as if it came in on the real device * with the VLAN device's VLAN ID. */ flow->in_port = realdev; flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI); if (packet) { /* Make the packet resemble the flow, so that it gets sent to an * OpenFlow controller properly, so that it looks correct for * sFlow, and so that flow_extract() will get the correct vlan_tci * if it is called on 'packet'. * * The allocated space inside 'packet' probably also contains * 'key', that is, both 'packet' and 'key' are probably part of a * struct dpif_upcall (see the large comment on that structure * definition), so pushing data on 'packet' is in general not a * good idea since it could overwrite 'key' or free it as a side * effect. However, it's OK in this special case because we know * that 'packet' is inside a Netlink attribute: pushing 4 bytes * will just overwrite the 4-byte "struct nlattr", which is fine * since we don't need that header anymore. */ eth_push_vlan(packet, flow->vlan_tci); } /* Let the caller know that we can't reproduce 'key' from 'flow'. */ if (fitness == ODP_FIT_PERFECT) { fitness = ODP_FIT_TOO_MUCH; } } return fitness; } static void handle_miss_upcalls(struct ofproto_dpif *ofproto, struct dpif_upcall *upcalls, size_t n_upcalls) { struct dpif_upcall *upcall; struct flow_miss *miss, *next_miss; struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH * 2]; union dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH * 2]; struct hmap todo; size_t n_ops; size_t i; if (!n_upcalls) { return; } /* Construct the to-do list. * * This just amounts to extracting the flow from each packet and sticking * the packets that have the same flow in the same "flow_miss" structure so * that we can process them together. */ hmap_init(&todo); for (upcall = upcalls; upcall < &upcalls[n_upcalls]; upcall++) { enum odp_key_fitness fitness; struct flow_miss *miss; ovs_be16 initial_tci; struct flow flow; /* Obtain metadata and check userspace/kernel agreement on flow match, * then set 'flow''s header pointers. */ fitness = ofproto_dpif_extract_flow_key(ofproto, upcall->key, upcall->key_len, &flow, &initial_tci, upcall->packet); if (fitness == ODP_FIT_ERROR) { ofpbuf_delete(upcall->packet); continue; } flow_extract(upcall->packet, flow.skb_priority, flow.tun_id, flow.in_port, &flow); /* Handle 802.1ag, LACP, and STP specially. */ if (process_special(ofproto, &flow, upcall->packet)) { ofproto_update_local_port_stats(&ofproto->up, 0, upcall->packet->size); ofpbuf_delete(upcall->packet); ofproto->n_matches++; continue; } /* Add other packets to a to-do list. */ miss = flow_miss_create(&todo, &flow, fitness, upcall->key, upcall->key_len, initial_tci); list_push_back(&miss->packets, &upcall->packet->list_node); } /* Process each element in the to-do list, constructing the set of * operations to batch. */ n_ops = 0; HMAP_FOR_EACH (miss, hmap_node, &todo) { handle_flow_miss(ofproto, miss, flow_miss_ops, &n_ops); } assert(n_ops <= ARRAY_SIZE(flow_miss_ops)); /* Execute batch. */ for (i = 0; i < n_ops; i++) { dpif_ops[i] = &flow_miss_ops[i].dpif_op; } dpif_operate(ofproto->dpif, dpif_ops, n_ops); /* Free memory and update facets. */ for (i = 0; i < n_ops; i++) { struct flow_miss_op *op = &flow_miss_ops[i]; struct dpif_execute *execute; struct dpif_flow_put *put; switch (op->dpif_op.type) { case DPIF_OP_EXECUTE: execute = &op->dpif_op.execute; if (op->subfacet->actions != execute->actions) { free((struct nlattr *) execute->actions); } break; case DPIF_OP_FLOW_PUT: put = &op->dpif_op.flow_put; if (!put->error) { op->subfacet->installed = true; } break; } } HMAP_FOR_EACH_SAFE (miss, next_miss, hmap_node, &todo) { ofpbuf_list_delete(&miss->packets); hmap_remove(&todo, &miss->hmap_node); free(miss); } hmap_destroy(&todo); } static void handle_userspace_upcall(struct ofproto_dpif *ofproto, struct dpif_upcall *upcall) { struct user_action_cookie cookie; enum odp_key_fitness fitness; ovs_be16 initial_tci; struct flow flow; memcpy(&cookie, &upcall->userdata, sizeof(cookie)); fitness = ofproto_dpif_extract_flow_key(ofproto, upcall->key, upcall->key_len, &flow, &initial_tci, upcall->packet); if (fitness == ODP_FIT_ERROR) { ofpbuf_delete(upcall->packet); return; } if (cookie.type == USER_ACTION_COOKIE_SFLOW) { if (ofproto->sflow) { dpif_sflow_received(ofproto->sflow, upcall->packet, &flow, &cookie); } } else { VLOG_WARN_RL(&rl, "invalid user cookie : 0x%"PRIx64, upcall->userdata); } ofpbuf_delete(upcall->packet); } static int handle_upcalls(struct ofproto_dpif *ofproto, unsigned int max_batch) { struct dpif_upcall misses[FLOW_MISS_MAX_BATCH]; int n_misses; int i; assert (max_batch <= FLOW_MISS_MAX_BATCH); n_misses = 0; for (i = 0; i < max_batch; i++) { struct dpif_upcall *upcall = &misses[n_misses]; int error; error = dpif_recv(ofproto->dpif, upcall); if (error) { break; } switch (upcall->type) { case DPIF_UC_ACTION: handle_userspace_upcall(ofproto, upcall); break; case DPIF_UC_MISS: /* Handle it later. */ n_misses++; break; case DPIF_N_UC_TYPES: default: VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type); break; } } handle_miss_upcalls(ofproto, misses, n_misses); return i; } /* Flow expiration. */ static int subfacet_max_idle(const struct ofproto_dpif *); static void update_stats(struct ofproto_dpif *); static void rule_expire(struct rule_dpif *); static void expire_subfacets(struct ofproto_dpif *, int dp_max_idle); /* This function is called periodically by run(). Its job is to collect * updates for the flows that have been installed into the datapath, most * importantly when they last were used, and then use that information to * expire flows that have not been used recently. * * Returns the number of milliseconds after which it should be called again. */ static int expire(struct ofproto_dpif *ofproto) { struct rule_dpif *rule, *next_rule; struct classifier *table; int dp_max_idle; /* Update stats for each flow in the datapath. */ update_stats(ofproto); /* Expire subfacets that have been idle too long. */ dp_max_idle = subfacet_max_idle(ofproto); expire_subfacets(ofproto, dp_max_idle); /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */ OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) { struct cls_cursor cursor; cls_cursor_init(&cursor, table, NULL); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) { rule_expire(rule); } } /* All outstanding data in existing flows has been accounted, so it's a * good time to do bond rebalancing. */ if (ofproto->has_bonded_bundles) { struct ofbundle *bundle; HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { if (bundle->bond) { bond_rebalance(bundle->bond, &ofproto->revalidate_set); } } } return MIN(dp_max_idle, 1000); } /* Update 'packet_count', 'byte_count', and 'used' members of installed facets. * * This function also pushes statistics updates to rules which each facet * resubmits into. Generally these statistics will be accurate. However, if a * facet changes the rule it resubmits into at some time in between * update_stats() runs, it is possible that statistics accrued to the * old rule will be incorrectly attributed to the new rule. This could be * avoided by calling update_stats() whenever rules are created or * deleted. However, the performance impact of making so many calls to the * datapath do not justify the benefit of having perfectly accurate statistics. */ static void update_stats(struct ofproto_dpif *p) { const struct dpif_flow_stats *stats; struct dpif_flow_dump dump; const struct nlattr *key; size_t key_len; dpif_flow_dump_start(&dump, p->dpif); while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) { struct subfacet *subfacet; subfacet = subfacet_find(p, key, key_len); if (subfacet && subfacet->installed) { struct facet *facet = subfacet->facet; if (stats->n_packets >= subfacet->dp_packet_count) { uint64_t extra = stats->n_packets - subfacet->dp_packet_count; facet->packet_count += extra; } else { VLOG_WARN_RL(&rl, "unexpected packet count from the datapath"); } if (stats->n_bytes >= subfacet->dp_byte_count) { facet->byte_count += stats->n_bytes - subfacet->dp_byte_count; } else { VLOG_WARN_RL(&rl, "unexpected byte count from datapath"); } subfacet->dp_packet_count = stats->n_packets; subfacet->dp_byte_count = stats->n_bytes; subfacet_update_time(p, subfacet, stats->used); facet_account(p, facet, true); facet_push_stats(facet); } else { if (!VLOG_DROP_WARN(&rl)) { struct ds s; ds_init(&s); odp_flow_key_format(key, key_len, &s); VLOG_WARN("unexpected flow from datapath %s", ds_cstr(&s)); ds_destroy(&s); } COVERAGE_INC(facet_unexpected); /* There's a flow in the datapath that we know nothing about, or a * flow that shouldn't be installed but was anyway. Delete it. */ dpif_flow_del(p->dpif, key, key_len, NULL); } } dpif_flow_dump_done(&dump); } /* Calculates and returns the number of milliseconds of idle time after which * subfacets should expire from the datapath. When a subfacet expires, we fold * its statistics into its facet, and when a facet's last subfacet expires, we * fold its statistic into its rule. */ static int subfacet_max_idle(const struct ofproto_dpif *ofproto) { /* * Idle time histogram. * * Most of the time a switch has a relatively small number of subfacets. * When this is the case we might as well keep statistics for all of them * in userspace and to cache them in the kernel datapath for performance as * well. * * As the number of subfacets increases, the memory required to maintain * statistics about them in userspace and in the kernel becomes * significant. However, with a large number of subfacets it is likely * that only a few of them are "heavy hitters" that consume a large amount * of bandwidth. At this point, only heavy hitters are worth caching in * the kernel and maintaining in userspaces; other subfacets we can * discard. * * The technique used to compute the idle time is to build a histogram with * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet * that is installed in the kernel gets dropped in the appropriate bucket. * After the histogram has been built, we compute the cutoff so that only * the most-recently-used 1% of subfacets (but at least * ofproto->up.flow_eviction_threshold flows) are kept cached. At least * the most-recently-used bucket of subfacets is kept, so actually an * arbitrary number of subfacets can be kept in any given expiration run * (though the next run will delete most of those unless they receive * additional data). * * This requires a second pass through the subfacets, in addition to the * pass made by update_stats(), because the former function never looks at * uninstallable subfacets. */ enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) }; enum { N_BUCKETS = 5000 / BUCKET_WIDTH }; int buckets[N_BUCKETS] = { 0 }; int total, subtotal, bucket; struct subfacet *subfacet; long long int now; int i; total = hmap_count(&ofproto->subfacets); if (total <= ofproto->up.flow_eviction_threshold) { return N_BUCKETS * BUCKET_WIDTH; } /* Build histogram. */ now = time_msec(); HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) { long long int idle = now - subfacet->used; int bucket = (idle <= 0 ? 0 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1 : (unsigned int) idle / BUCKET_WIDTH); buckets[bucket]++; } /* Find the first bucket whose flows should be expired. */ subtotal = bucket = 0; do { subtotal += buckets[bucket++]; } while (bucket < N_BUCKETS && subtotal < MAX(ofproto->up.flow_eviction_threshold, total / 100)); if (VLOG_IS_DBG_ENABLED()) { struct ds s; ds_init(&s); ds_put_cstr(&s, "keep"); for (i = 0; i < N_BUCKETS; i++) { if (i == bucket) { ds_put_cstr(&s, ", drop"); } if (buckets[i]) { ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]); } } VLOG_INFO("%s: %s (msec:count)", ofproto->up.name, ds_cstr(&s)); ds_destroy(&s); } return bucket * BUCKET_WIDTH; } static void expire_subfacets(struct ofproto_dpif *ofproto, int dp_max_idle) { long long int cutoff = time_msec() - dp_max_idle; struct subfacet *subfacet, *next_subfacet; HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node, &ofproto->subfacets) { if (subfacet->used < cutoff) { subfacet_destroy(ofproto, subfacet); } } } /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules, * then delete it entirely. */ static void rule_expire(struct rule_dpif *rule) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct facet *facet, *next_facet; long long int now; uint8_t reason; /* Has 'rule' expired? */ now = time_msec(); if (rule->up.hard_timeout && now > rule->up.modified + rule->up.hard_timeout * 1000) { reason = OFPRR_HARD_TIMEOUT; } else if (rule->up.idle_timeout && list_is_empty(&rule->facets) && now > rule->used + rule->up.idle_timeout * 1000) { reason = OFPRR_IDLE_TIMEOUT; } else { return; } COVERAGE_INC(ofproto_dpif_expired); /* Update stats. (This is a no-op if the rule expired due to an idle * timeout, because that only happens when the rule has no facets left.) */ LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) { facet_remove(ofproto, facet); } /* Get rid of the rule. */ ofproto_rule_expire(&rule->up, reason); } /* Facets. */ /* Creates and returns a new facet owned by 'rule', given a 'flow'. * * The caller must already have determined that no facet with an identical * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in * the ofproto's classifier table. * * The facet will initially have no subfacets. The caller should create (at * least) one subfacet with subfacet_create(). */ static struct facet * facet_create(struct rule_dpif *rule, const struct flow *flow) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct facet *facet; facet = xzalloc(sizeof *facet); facet->used = time_msec(); hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0)); list_push_back(&rule->facets, &facet->list_node); facet->rule = rule; facet->flow = *flow; list_init(&facet->subfacets); netflow_flow_init(&facet->nf_flow); netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used); return facet; } static void facet_free(struct facet *facet) { free(facet); } /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on * 'packet', which arrived on 'in_port'. * * Takes ownership of 'packet'. */ static bool execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow, const struct nlattr *odp_actions, size_t actions_len, struct ofpbuf *packet) { struct odputil_keybuf keybuf; struct ofpbuf key; int error; ofpbuf_use_stack(&key, &keybuf, sizeof keybuf); odp_flow_key_from_flow(&key, flow); error = dpif_execute(ofproto->dpif, key.data, key.size, odp_actions, actions_len, packet); ofpbuf_delete(packet); return !error; } /* Remove 'facet' from 'ofproto' and free up the associated memory: * * - If 'facet' was installed in the datapath, uninstalls it and updates its * rule's statistics, via subfacet_uninstall(). * * - Removes 'facet' from its rule and from ofproto->facets. */ static void facet_remove(struct ofproto_dpif *ofproto, struct facet *facet) { struct subfacet *subfacet, *next_subfacet; assert(!list_is_empty(&facet->subfacets)); /* First uninstall all of the subfacets to get final statistics. */ LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { subfacet_uninstall(ofproto, subfacet); } /* Flush the final stats to the rule. * * This might require us to have at least one subfacet around so that we * can use its actions for accounting in facet_account(), which is why we * have uninstalled but not yet destroyed the subfacets. */ facet_flush_stats(ofproto, facet); /* Now we're really all done so destroy everything. */ LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node, &facet->subfacets) { subfacet_destroy__(ofproto, subfacet); } hmap_remove(&ofproto->facets, &facet->hmap_node); list_remove(&facet->list_node); facet_free(facet); } static void facet_account(struct ofproto_dpif *ofproto, struct facet *facet, bool may_flow_mod) { uint64_t n_bytes; struct subfacet *subfacet; const struct nlattr *a; unsigned int left; ovs_be16 vlan_tci; if (facet->byte_count <= facet->accounted_bytes) { return; } n_bytes = facet->byte_count - facet->accounted_bytes; facet->accounted_bytes = facet->byte_count; /* Feed information from the active flows back into the learning table to * ensure that table is always in sync with what is actually flowing * through the datapath. */ if (facet->has_learn || facet->has_normal) { struct action_xlate_ctx ctx; action_xlate_ctx_init(&ctx, ofproto, &facet->flow, facet->flow.vlan_tci, facet->rule->up.flow_cookie, NULL); ctx.may_learn_macs = true; ctx.may_flow_mod = may_flow_mod; ofpbuf_delete(xlate_actions(&ctx, facet->rule->up.actions, facet->rule->up.n_actions)); } if (!facet->has_normal || !ofproto->has_bonded_bundles) { return; } /* This loop feeds byte counters to bond_account() for rebalancing to use * as a basis. We also need to track the actual VLAN on which the packet * is going to be sent to ensure that it matches the one passed to * bond_choose_output_slave(). (Otherwise, we will account to the wrong * hash bucket.) * * We use the actions from an arbitrary subfacet because they should all * be equally valid for our purpose. */ subfacet = CONTAINER_OF(list_front(&facet->subfacets), struct subfacet, list_node); vlan_tci = facet->flow.vlan_tci; NL_ATTR_FOR_EACH_UNSAFE (a, left, subfacet->actions, subfacet->actions_len) { const struct ovs_action_push_vlan *vlan; struct ofport_dpif *port; switch (nl_attr_type(a)) { case OVS_ACTION_ATTR_OUTPUT: port = get_odp_port(ofproto, nl_attr_get_u32(a)); if (port && port->bundle && port->bundle->bond) { bond_account(port->bundle->bond, &facet->flow, vlan_tci_to_vid(vlan_tci), n_bytes); } break; case OVS_ACTION_ATTR_POP_VLAN: vlan_tci = htons(0); break; case OVS_ACTION_ATTR_PUSH_VLAN: vlan = nl_attr_get(a); vlan_tci = vlan->vlan_tci; break; } } } /* Returns true if the only action for 'facet' is to send to the controller. * (We don't report NetFlow expiration messages for such facets because they * are just part of the control logic for the network, not real traffic). */ static bool facet_is_controller_flow(struct facet *facet) { return (facet && facet->rule->up.n_actions == 1 && action_outputs_to_port(&facet->rule->up.actions[0], htons(OFPP_CONTROLLER))); } /* Folds all of 'facet''s statistics into its rule. Also updates the * accounting ofhook and emits a NetFlow expiration if appropriate. All of * 'facet''s statistics in the datapath should have been zeroed and folded into * its packet and byte counts before this function is called. */ static void facet_flush_stats(struct ofproto_dpif *ofproto, struct facet *facet) { struct subfacet *subfacet; LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { assert(!subfacet->dp_byte_count); assert(!subfacet->dp_packet_count); } facet_push_stats(facet); facet_account(ofproto, facet, false); if (ofproto->netflow && !facet_is_controller_flow(facet)) { struct ofexpired expired; expired.flow = facet->flow; expired.packet_count = facet->packet_count; expired.byte_count = facet->byte_count; expired.used = facet->used; netflow_expire(ofproto->netflow, &facet->nf_flow, &expired); } facet->rule->packet_count += facet->packet_count; facet->rule->byte_count += facet->byte_count; /* Reset counters to prevent double counting if 'facet' ever gets * reinstalled. */ facet_reset_counters(facet); netflow_flow_clear(&facet->nf_flow); } /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'. * Returns it if found, otherwise a null pointer. * * The returned facet might need revalidation; use facet_lookup_valid() * instead if that is important. */ static struct facet * facet_find(struct ofproto_dpif *ofproto, const struct flow *flow) { struct facet *facet; HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0), &ofproto->facets) { if (flow_equal(flow, &facet->flow)) { return facet; } } return NULL; } /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'. * Returns it if found, otherwise a null pointer. * * The returned facet is guaranteed to be valid. */ static struct facet * facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow) { struct facet *facet = facet_find(ofproto, flow); /* The facet we found might not be valid, since we could be in need of * revalidation. If it is not valid, don't return it. */ if (facet && (ofproto->need_revalidate || tag_set_intersects(&ofproto->revalidate_set, facet->tags)) && !facet_revalidate(ofproto, facet)) { COVERAGE_INC(facet_invalidated); return NULL; } return facet; } /* Re-searches 'ofproto''s classifier for a rule matching 'facet': * * - If the rule found is different from 'facet''s current rule, moves * 'facet' to the new rule and recompiles its actions. * * - If the rule found is the same as 'facet''s current rule, leaves 'facet' * where it is and recompiles its actions anyway. * * - If there is none, destroys 'facet'. * * Returns true if 'facet' still exists, false if it has been destroyed. */ static bool facet_revalidate(struct ofproto_dpif *ofproto, struct facet *facet) { struct actions { struct nlattr *odp_actions; size_t actions_len; }; struct actions *new_actions; struct action_xlate_ctx ctx; struct rule_dpif *new_rule; struct subfacet *subfacet; bool actions_changed; int i; COVERAGE_INC(facet_revalidate); /* Determine the new rule. */ new_rule = rule_dpif_lookup(ofproto, &facet->flow, 0); if (!new_rule) { /* No new rule, so delete the facet. */ facet_remove(ofproto, facet); return false; } /* Calculate new datapath actions. * * We do not modify any 'facet' state yet, because we might need to, e.g., * emit a NetFlow expiration and, if so, we need to have the old state * around to properly compose it. */ /* If the datapath actions changed or the installability changed, * then we need to talk to the datapath. */ i = 0; new_actions = NULL; memset(&ctx, 0, sizeof ctx); LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { struct ofpbuf *odp_actions; bool should_install; action_xlate_ctx_init(&ctx, ofproto, &facet->flow, subfacet->initial_tci, new_rule->up.flow_cookie, NULL); odp_actions = xlate_actions(&ctx, new_rule->up.actions, new_rule->up.n_actions); actions_changed = (subfacet->actions_len != odp_actions->size || memcmp(subfacet->actions, odp_actions->data, subfacet->actions_len)); should_install = (ctx.may_set_up_flow && subfacet->key_fitness != ODP_FIT_TOO_LITTLE); if (actions_changed || should_install != subfacet->installed) { if (should_install) { struct dpif_flow_stats stats; subfacet_install(ofproto, subfacet, odp_actions->data, odp_actions->size, &stats); subfacet_update_stats(ofproto, subfacet, &stats); } else { subfacet_uninstall(ofproto, subfacet); } if (!new_actions) { new_actions = xcalloc(list_size(&facet->subfacets), sizeof *new_actions); } new_actions[i].odp_actions = xmemdup(odp_actions->data, odp_actions->size); new_actions[i].actions_len = odp_actions->size; } ofpbuf_delete(odp_actions); i++; } if (new_actions) { facet_flush_stats(ofproto, facet); } /* Update 'facet' now that we've taken care of all the old state. */ facet->tags = ctx.tags; facet->nf_flow.output_iface = ctx.nf_output_iface; facet->may_install = ctx.may_set_up_flow; facet->has_learn = ctx.has_learn; facet->has_normal = ctx.has_normal; facet->mirrors = ctx.mirrors; if (new_actions) { i = 0; LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { if (new_actions[i].odp_actions) { free(subfacet->actions); subfacet->actions = new_actions[i].odp_actions; subfacet->actions_len = new_actions[i].actions_len; } i++; } free(new_actions); } if (facet->rule != new_rule) { COVERAGE_INC(facet_changed_rule); list_remove(&facet->list_node); list_push_back(&new_rule->facets, &facet->list_node); facet->rule = new_rule; facet->used = new_rule->up.created; facet->prev_used = facet->used; } return true; } /* Updates 'facet''s used time. Caller is responsible for calling * facet_push_stats() to update the flows which 'facet' resubmits into. */ static void facet_update_time(struct ofproto_dpif *ofproto, struct facet *facet, long long int used) { if (used > facet->used) { facet->used = used; if (used > facet->rule->used) { facet->rule->used = used; } netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used); } } static void facet_reset_counters(struct facet *facet) { facet->packet_count = 0; facet->byte_count = 0; facet->prev_packet_count = 0; facet->prev_byte_count = 0; facet->accounted_bytes = 0; } static void facet_push_stats(struct facet *facet) { uint64_t new_packets, new_bytes; assert(facet->packet_count >= facet->prev_packet_count); assert(facet->byte_count >= facet->prev_byte_count); assert(facet->used >= facet->prev_used); new_packets = facet->packet_count - facet->prev_packet_count; new_bytes = facet->byte_count - facet->prev_byte_count; if (new_packets || new_bytes || facet->used > facet->prev_used) { facet->prev_packet_count = facet->packet_count; facet->prev_byte_count = facet->byte_count; facet->prev_used = facet->used; flow_push_stats(facet->rule, &facet->flow, new_packets, new_bytes, facet->used); update_mirror_stats(ofproto_dpif_cast(facet->rule->up.ofproto), facet->mirrors, new_packets, new_bytes); } } struct ofproto_push { struct action_xlate_ctx ctx; uint64_t packets; uint64_t bytes; long long int used; }; static void push_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule) { struct ofproto_push *push = CONTAINER_OF(ctx, struct ofproto_push, ctx); if (rule) { rule->packet_count += push->packets; rule->byte_count += push->bytes; rule->used = MAX(push->used, rule->used); } } /* Pushes flow statistics to the rules which 'flow' resubmits into given * 'rule''s actions and mirrors. */ static void flow_push_stats(const struct rule_dpif *rule, const struct flow *flow, uint64_t packets, uint64_t bytes, long long int used) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct ofproto_push push; push.packets = packets; push.bytes = bytes; push.used = used; action_xlate_ctx_init(&push.ctx, ofproto, flow, flow->vlan_tci, rule->up.flow_cookie, NULL); push.ctx.resubmit_hook = push_resubmit; ofpbuf_delete(xlate_actions(&push.ctx, rule->up.actions, rule->up.n_actions)); } /* Subfacets. */ static struct subfacet * subfacet_find__(struct ofproto_dpif *ofproto, const struct nlattr *key, size_t key_len, uint32_t key_hash, const struct flow *flow) { struct subfacet *subfacet; HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash, &ofproto->subfacets) { if (subfacet->key ? (subfacet->key_len == key_len && !memcmp(key, subfacet->key, key_len)) : flow_equal(flow, &subfacet->facet->flow)) { return subfacet; } } return NULL; } /* Searches 'facet' (within 'ofproto') for a subfacet with the specified * 'key_fitness', 'key', and 'key_len'. Returns the existing subfacet if * there is one, otherwise creates and returns a new subfacet. * * If the returned subfacet is new, then subfacet->actions will be NULL, in * which case the caller must populate the actions with * subfacet_make_actions(). */ static struct subfacet * subfacet_create(struct ofproto_dpif *ofproto, struct facet *facet, enum odp_key_fitness key_fitness, const struct nlattr *key, size_t key_len, ovs_be16 initial_tci) { uint32_t key_hash = odp_flow_key_hash(key, key_len); struct subfacet *subfacet; subfacet = subfacet_find__(ofproto, key, key_len, key_hash, &facet->flow); if (subfacet) { if (subfacet->facet == facet) { return subfacet; } /* This shouldn't happen. */ VLOG_ERR_RL(&rl, "subfacet with wrong facet"); subfacet_destroy(ofproto, subfacet); } subfacet = xzalloc(sizeof *subfacet); hmap_insert(&ofproto->subfacets, &subfacet->hmap_node, key_hash); list_push_back(&facet->subfacets, &subfacet->list_node); subfacet->facet = facet; subfacet->used = time_msec(); subfacet->key_fitness = key_fitness; if (key_fitness != ODP_FIT_PERFECT) { subfacet->key = xmemdup(key, key_len); subfacet->key_len = key_len; } subfacet->installed = false; subfacet->initial_tci = initial_tci; return subfacet; } /* Searches 'ofproto' for a subfacet with the given 'key', 'key_len', and * 'flow'. Returns the subfacet if one exists, otherwise NULL. */ static struct subfacet * subfacet_find(struct ofproto_dpif *ofproto, const struct nlattr *key, size_t key_len) { uint32_t key_hash = odp_flow_key_hash(key, key_len); enum odp_key_fitness fitness; struct flow flow; fitness = odp_flow_key_to_flow(key, key_len, &flow); if (fitness == ODP_FIT_ERROR) { return NULL; } return subfacet_find__(ofproto, key, key_len, key_hash, &flow); } /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from * its facet within 'ofproto', and frees it. */ static void subfacet_destroy__(struct ofproto_dpif *ofproto, struct subfacet *subfacet) { subfacet_uninstall(ofproto, subfacet); hmap_remove(&ofproto->subfacets, &subfacet->hmap_node); list_remove(&subfacet->list_node); free(subfacet->key); free(subfacet->actions); free(subfacet); } /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the * last remaining subfacet in its facet destroys the facet too. */ static void subfacet_destroy(struct ofproto_dpif *ofproto, struct subfacet *subfacet) { struct facet *facet = subfacet->facet; if (list_is_singleton(&facet->subfacets)) { /* facet_remove() needs at least one subfacet (it will remove it). */ facet_remove(ofproto, facet); } else { subfacet_destroy__(ofproto, subfacet); } } /* Initializes 'key' with the sequence of OVS_KEY_ATTR_* Netlink attributes * that can be used to refer to 'subfacet'. The caller must provide 'keybuf' * for use as temporary storage. */ static void subfacet_get_key(struct subfacet *subfacet, struct odputil_keybuf *keybuf, struct ofpbuf *key) { if (!subfacet->key) { ofpbuf_use_stack(key, keybuf, sizeof *keybuf); odp_flow_key_from_flow(key, &subfacet->facet->flow); } else { ofpbuf_use_const(key, subfacet->key, subfacet->key_len); } } /* Composes the datapath actions for 'subfacet' based on its rule's actions. */ static void subfacet_make_actions(struct ofproto_dpif *p, struct subfacet *subfacet, const struct ofpbuf *packet) { struct facet *facet = subfacet->facet; const struct rule_dpif *rule = facet->rule; struct ofpbuf *odp_actions; struct action_xlate_ctx ctx; action_xlate_ctx_init(&ctx, p, &facet->flow, subfacet->initial_tci, rule->up.flow_cookie, packet); odp_actions = xlate_actions(&ctx, rule->up.actions, rule->up.n_actions); facet->tags = ctx.tags; facet->may_install = ctx.may_set_up_flow; facet->has_learn = ctx.has_learn; facet->has_normal = ctx.has_normal; facet->nf_flow.output_iface = ctx.nf_output_iface; facet->mirrors = ctx.mirrors; if (subfacet->actions_len != odp_actions->size || memcmp(subfacet->actions, odp_actions->data, odp_actions->size)) { free(subfacet->actions); subfacet->actions_len = odp_actions->size; subfacet->actions = xmemdup(odp_actions->data, odp_actions->size); } ofpbuf_delete(odp_actions); } /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len' * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters * in the datapath will be zeroed and 'stats' will be updated with traffic new * since 'subfacet' was last updated. * * Returns 0 if successful, otherwise a positive errno value. */ static int subfacet_install(struct ofproto_dpif *ofproto, struct subfacet *subfacet, const struct nlattr *actions, size_t actions_len, struct dpif_flow_stats *stats) { struct odputil_keybuf keybuf; enum dpif_flow_put_flags flags; struct ofpbuf key; int ret; flags = DPIF_FP_CREATE | DPIF_FP_MODIFY; if (stats) { flags |= DPIF_FP_ZERO_STATS; } subfacet_get_key(subfacet, &keybuf, &key); ret = dpif_flow_put(ofproto->dpif, flags, key.data, key.size, actions, actions_len, stats); if (stats) { subfacet_reset_dp_stats(subfacet, stats); } return ret; } /* If 'subfacet' is installed in the datapath, uninstalls it. */ static void subfacet_uninstall(struct ofproto_dpif *p, struct subfacet *subfacet) { if (subfacet->installed) { struct odputil_keybuf keybuf; struct dpif_flow_stats stats; struct ofpbuf key; int error; subfacet_get_key(subfacet, &keybuf, &key); error = dpif_flow_del(p->dpif, key.data, key.size, &stats); subfacet_reset_dp_stats(subfacet, &stats); if (!error) { subfacet_update_stats(p, subfacet, &stats); } subfacet->installed = false; } else { assert(subfacet->dp_packet_count == 0); assert(subfacet->dp_byte_count == 0); } } /* Resets 'subfacet''s datapath statistics counters. This should be called * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is * non-null, it should contain the statistics returned by dpif when 'subfacet' * was reset in the datapath. 'stats' will be modified to include only * statistics new since 'subfacet' was last updated. */ static void subfacet_reset_dp_stats(struct subfacet *subfacet, struct dpif_flow_stats *stats) { if (stats && subfacet->dp_packet_count <= stats->n_packets && subfacet->dp_byte_count <= stats->n_bytes) { stats->n_packets -= subfacet->dp_packet_count; stats->n_bytes -= subfacet->dp_byte_count; } subfacet->dp_packet_count = 0; subfacet->dp_byte_count = 0; } /* Updates 'subfacet''s used time. The caller is responsible for calling * facet_push_stats() to update the flows which 'subfacet' resubmits into. */ static void subfacet_update_time(struct ofproto_dpif *ofproto, struct subfacet *subfacet, long long int used) { if (used > subfacet->used) { subfacet->used = used; facet_update_time(ofproto, subfacet->facet, used); } } /* Folds the statistics from 'stats' into the counters in 'subfacet'. * * Because of the meaning of a subfacet's counters, it only makes sense to do * this if 'stats' are not tracked in the datapath, that is, if 'stats' * represents a packet that was sent by hand or if it represents statistics * that have been cleared out of the datapath. */ static void subfacet_update_stats(struct ofproto_dpif *ofproto, struct subfacet *subfacet, const struct dpif_flow_stats *stats) { if (stats->n_packets || stats->used > subfacet->used) { struct facet *facet = subfacet->facet; subfacet_update_time(ofproto, subfacet, stats->used); facet->packet_count += stats->n_packets; facet->byte_count += stats->n_bytes; facet_push_stats(facet); netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags); } } /* Rules. */ static struct rule_dpif * rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow, uint8_t table_id) { struct cls_rule *cls_rule; struct classifier *cls; if (table_id >= N_TABLES) { return NULL; } cls = &ofproto->up.tables[table_id]; if (flow->nw_frag & FLOW_NW_FRAG_ANY && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) { /* For OFPC_NORMAL frag_handling, we must pretend that transport ports * are unavailable. */ struct flow ofpc_normal_flow = *flow; ofpc_normal_flow.tp_src = htons(0); ofpc_normal_flow.tp_dst = htons(0); cls_rule = classifier_lookup(cls, &ofpc_normal_flow); } else { cls_rule = classifier_lookup(cls, flow); } return rule_dpif_cast(rule_from_cls_rule(cls_rule)); } static void complete_operation(struct rule_dpif *rule) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); rule_invalidate(rule); if (clogged) { struct dpif_completion *c = xmalloc(sizeof *c); c->op = rule->up.pending; list_push_back(&ofproto->completions, &c->list_node); } else { ofoperation_complete(rule->up.pending, 0); } } static struct rule * rule_alloc(void) { struct rule_dpif *rule = xmalloc(sizeof *rule); return &rule->up; } static void rule_dealloc(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); free(rule); } static int rule_construct(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct rule_dpif *victim; uint8_t table_id; int error; error = validate_actions(rule->up.actions, rule->up.n_actions, &rule->up.cr.flow, ofproto->max_ports); if (error) { return error; } rule->used = rule->up.created; rule->packet_count = 0; rule->byte_count = 0; victim = rule_dpif_cast(ofoperation_get_victim(rule->up.pending)); if (victim && !list_is_empty(&victim->facets)) { struct facet *facet; rule->facets = victim->facets; list_moved(&rule->facets); LIST_FOR_EACH (facet, list_node, &rule->facets) { /* XXX: We're only clearing our local counters here. It's possible * that quite a few packets are unaccounted for in the datapath * statistics. These will be accounted to the new rule instead of * cleared as required. This could be fixed by clearing out the * datapath statistics for this facet, but currently it doesn't * seem worth it. */ facet_reset_counters(facet); facet->rule = rule; } } else { /* Must avoid list_moved() in this case. */ list_init(&rule->facets); } table_id = rule->up.table_id; rule->tag = (victim ? victim->tag : table_id == 0 ? 0 : rule_calculate_tag(&rule->up.cr.flow, &rule->up.cr.wc, ofproto->tables[table_id].basis)); complete_operation(rule); return 0; } static void rule_destruct(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct facet *facet, *next_facet; LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) { facet_revalidate(ofproto, facet); } complete_operation(rule); } static void rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct facet *facet; /* Start from historical data for 'rule' itself that are no longer tracked * in facets. This counts, for example, facets that have expired. */ *packets = rule->packet_count; *bytes = rule->byte_count; /* Add any statistics that are tracked by facets. This includes * statistical data recently updated by ofproto_update_stats() as well as * stats for packets that were executed "by hand" via dpif_execute(). */ LIST_FOR_EACH (facet, list_node, &rule->facets) { *packets += facet->packet_count; *bytes += facet->byte_count; } } static int rule_execute(struct rule *rule_, const struct flow *flow, struct ofpbuf *packet) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct action_xlate_ctx ctx; struct ofpbuf *odp_actions; size_t size; action_xlate_ctx_init(&ctx, ofproto, flow, flow->vlan_tci, rule->up.flow_cookie, packet); odp_actions = xlate_actions(&ctx, rule->up.actions, rule->up.n_actions); size = packet->size; if (execute_odp_actions(ofproto, flow, odp_actions->data, odp_actions->size, packet)) { rule->used = time_msec(); rule->packet_count++; rule->byte_count += size; flow_push_stats(rule, flow, 1, size, rule->used); } ofpbuf_delete(odp_actions); return 0; } static void rule_modify_actions(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); int error; error = validate_actions(rule->up.actions, rule->up.n_actions, &rule->up.cr.flow, ofproto->max_ports); if (error) { ofoperation_complete(rule->up.pending, error); return; } complete_operation(rule); } /* Sends 'packet' out 'ofport'. * May modify 'packet'. * Returns 0 if successful, otherwise a positive errno value. */ static int send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet) { const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); struct ofpbuf key, odp_actions; struct odputil_keybuf keybuf; uint16_t odp_port; struct flow flow; int error; flow_extract((struct ofpbuf *) packet, 0, 0, 0, &flow); odp_port = vsp_realdev_to_vlandev(ofproto, ofport->odp_port, flow.vlan_tci); if (odp_port != ofport->odp_port) { eth_pop_vlan(packet); flow.vlan_tci = htons(0); } ofpbuf_use_stack(&key, &keybuf, sizeof keybuf); odp_flow_key_from_flow(&key, &flow); ofpbuf_init(&odp_actions, 32); compose_sflow_action(ofproto, &odp_actions, &flow, odp_port); nl_msg_put_u32(&odp_actions, OVS_ACTION_ATTR_OUTPUT, odp_port); error = dpif_execute(ofproto->dpif, key.data, key.size, odp_actions.data, odp_actions.size, packet); ofpbuf_uninit(&odp_actions); if (error) { VLOG_WARN_RL(&rl, "%s: failed to send packet on port %"PRIu32" (%s)", ofproto->up.name, odp_port, strerror(error)); } ofproto_update_local_port_stats(ofport->up.ofproto, packet->size, 0); return error; } /* OpenFlow to datapath action translation. */ static void do_xlate_actions(const union ofp_action *in, size_t n_in, struct action_xlate_ctx *ctx); static void xlate_normal(struct action_xlate_ctx *); static size_t put_userspace_action(const struct ofproto_dpif *ofproto, struct ofpbuf *odp_actions, const struct flow *flow, const struct user_action_cookie *cookie) { uint32_t pid; pid = dpif_port_get_pid(ofproto->dpif, ofp_port_to_odp_port(flow->in_port)); return odp_put_userspace_action(pid, cookie, odp_actions); } /* Compose SAMPLE action for sFlow. */ static size_t compose_sflow_action(const struct ofproto_dpif *ofproto, struct ofpbuf *odp_actions, const struct flow *flow, uint32_t odp_port) { uint32_t port_ifindex; uint32_t probability; struct user_action_cookie cookie; size_t sample_offset, actions_offset; int cookie_offset, n_output; if (!ofproto->sflow || flow->in_port == OFPP_NONE) { return 0; } if (odp_port == OVSP_NONE) { port_ifindex = 0; n_output = 0; } else { port_ifindex = dpif_sflow_odp_port_to_ifindex(ofproto->sflow, odp_port); n_output = 1; } sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE); /* Number of packets out of UINT_MAX to sample. */ probability = dpif_sflow_get_probability(ofproto->sflow); nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability); actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS); cookie.type = USER_ACTION_COOKIE_SFLOW; cookie.data = port_ifindex; cookie.n_output = n_output; cookie.vlan_tci = 0; cookie_offset = put_userspace_action(ofproto, odp_actions, flow, &cookie); nl_msg_end_nested(odp_actions, actions_offset); nl_msg_end_nested(odp_actions, sample_offset); return cookie_offset; } /* SAMPLE action must be first action in any given list of actions. * At this point we do not have all information required to build it. So try to * build sample action as complete as possible. */ static void add_sflow_action(struct action_xlate_ctx *ctx) { ctx->user_cookie_offset = compose_sflow_action(ctx->ofproto, ctx->odp_actions, &ctx->flow, OVSP_NONE); ctx->sflow_odp_port = 0; ctx->sflow_n_outputs = 0; } /* Fix SAMPLE action according to data collected while composing ODP actions. * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested * USERSPACE action's user-cookie which is required for sflow. */ static void fix_sflow_action(struct action_xlate_ctx *ctx) { const struct flow *base = &ctx->base_flow; struct user_action_cookie *cookie; if (!ctx->user_cookie_offset) { return; } cookie = ofpbuf_at(ctx->odp_actions, ctx->user_cookie_offset, sizeof(*cookie)); assert(cookie != NULL); assert(cookie->type == USER_ACTION_COOKIE_SFLOW); if (ctx->sflow_n_outputs) { cookie->data = dpif_sflow_odp_port_to_ifindex(ctx->ofproto->sflow, ctx->sflow_odp_port); } if (ctx->sflow_n_outputs >= 255) { cookie->n_output = 255; } else { cookie->n_output = ctx->sflow_n_outputs; } cookie->vlan_tci = base->vlan_tci; } static void compose_output_action__(struct action_xlate_ctx *ctx, uint16_t ofp_port, bool check_stp) { const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port); uint16_t odp_port = ofp_port_to_odp_port(ofp_port); ovs_be16 flow_vlan_tci = ctx->flow.vlan_tci; uint8_t flow_nw_tos = ctx->flow.nw_tos; uint16_t out_port; if (ofport) { struct priority_to_dscp *pdscp; if (ofport->up.opp.config & htonl(OFPPC_NO_FWD) || (check_stp && !stp_forward_in_state(ofport->stp_state))) { return; } pdscp = get_priority(ofport, ctx->flow.skb_priority); if (pdscp) { ctx->flow.nw_tos &= ~IP_DSCP_MASK; ctx->flow.nw_tos |= pdscp->dscp; } } else { /* We may not have an ofport record for this port, but it doesn't hurt * to allow forwarding to it anyhow. Maybe such a port will appear * later and we're pre-populating the flow table. */ } out_port = vsp_realdev_to_vlandev(ctx->ofproto, odp_port, ctx->flow.vlan_tci); if (out_port != odp_port) { ctx->flow.vlan_tci = htons(0); } commit_odp_actions(&ctx->flow, &ctx->base_flow, ctx->odp_actions); nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port); ctx->sflow_odp_port = odp_port; ctx->sflow_n_outputs++; ctx->nf_output_iface = ofp_port; ctx->flow.vlan_tci = flow_vlan_tci; ctx->flow.nw_tos = flow_nw_tos; } static void compose_output_action(struct action_xlate_ctx *ctx, uint16_t ofp_port) { compose_output_action__(ctx, ofp_port, true); } static void xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port, uint8_t table_id) { if (ctx->recurse < MAX_RESUBMIT_RECURSION) { struct ofproto_dpif *ofproto = ctx->ofproto; struct rule_dpif *rule; uint16_t old_in_port; uint8_t old_table_id; old_table_id = ctx->table_id; ctx->table_id = table_id; /* Look up a flow with 'in_port' as the input port. */ old_in_port = ctx->flow.in_port; ctx->flow.in_port = in_port; rule = rule_dpif_lookup(ofproto, &ctx->flow, table_id); /* Tag the flow. */ if (table_id > 0 && table_id < N_TABLES) { struct table_dpif *table = &ofproto->tables[table_id]; if (table->other_table) { ctx->tags |= (rule && rule->tag ? rule->tag : rule_calculate_tag(&ctx->flow, &table->other_table->wc, table->basis)); } } /* Restore the original input port. Otherwise OFPP_NORMAL and * OFPP_IN_PORT will have surprising behavior. */ ctx->flow.in_port = old_in_port; if (ctx->resubmit_hook) { ctx->resubmit_hook(ctx, rule); } if (rule) { ovs_be64 old_cookie = ctx->cookie; ctx->recurse++; ctx->cookie = rule->up.flow_cookie; do_xlate_actions(rule->up.actions, rule->up.n_actions, ctx); ctx->cookie = old_cookie; ctx->recurse--; } ctx->table_id = old_table_id; } else { static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_ERR_RL(&recurse_rl, "resubmit actions recursed over %d times", MAX_RESUBMIT_RECURSION); } } static void xlate_resubmit_table(struct action_xlate_ctx *ctx, const struct nx_action_resubmit *nar) { uint16_t in_port; uint8_t table_id; in_port = (nar->in_port == htons(OFPP_IN_PORT) ? ctx->flow.in_port : ntohs(nar->in_port)); table_id = nar->table == 255 ? ctx->table_id : nar->table; xlate_table_action(ctx, in_port, table_id); } static void flood_packets(struct action_xlate_ctx *ctx, bool all) { struct ofport_dpif *ofport; HMAP_FOR_EACH (ofport, up.hmap_node, &ctx->ofproto->up.ports) { uint16_t ofp_port = ofport->up.ofp_port; if (ofp_port == ctx->flow.in_port) { continue; } if (all) { compose_output_action__(ctx, ofp_port, false); } else if (!(ofport->up.opp.config & htonl(OFPPC_NO_FLOOD))) { compose_output_action(ctx, ofp_port); } } ctx->nf_output_iface = NF_OUT_FLOOD; } static void execute_controller_action(struct action_xlate_ctx *ctx, int len) { struct ofputil_packet_in pin; struct ofpbuf *packet; ctx->may_set_up_flow = false; if (!ctx->packet) { return; } packet = ofpbuf_clone(ctx->packet); if (packet->l2 && packet->l3) { struct eth_header *eh; eth_pop_vlan(packet); eh = packet->l2; assert(eh->eth_type == ctx->flow.dl_type); memcpy(eh->eth_src, ctx->flow.dl_src, sizeof eh->eth_src); memcpy(eh->eth_dst, ctx->flow.dl_dst, sizeof eh->eth_dst); if (ctx->flow.vlan_tci & htons(VLAN_CFI)) { eth_push_vlan(packet, ctx->flow.vlan_tci); } if (packet->l4) { if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) { packet_set_ipv4(packet, ctx->flow.nw_src, ctx->flow.nw_dst, ctx->flow.nw_tos, ctx->flow.nw_ttl); } if (packet->l7) { if (ctx->flow.nw_proto == IPPROTO_TCP) { packet_set_tcp_port(packet, ctx->flow.tp_src, ctx->flow.tp_dst); } else if (ctx->flow.nw_proto == IPPROTO_UDP) { packet_set_udp_port(packet, ctx->flow.tp_src, ctx->flow.tp_dst); } } } } pin.packet = packet->data; pin.packet_len = packet->size; pin.reason = OFPR_ACTION; pin.table_id = ctx->table_id; pin.cookie = ctx->cookie; pin.buffer_id = 0; pin.send_len = len; pin.total_len = packet->size; flow_get_metadata(&ctx->flow, &pin.fmd); connmgr_send_packet_in(ctx->ofproto->up.connmgr, &pin, &ctx->flow); ofpbuf_delete(packet); } static void xlate_output_action__(struct action_xlate_ctx *ctx, uint16_t port, uint16_t max_len) { uint16_t prev_nf_output_iface = ctx->nf_output_iface; ctx->nf_output_iface = NF_OUT_DROP; switch (port) { case OFPP_IN_PORT: compose_output_action(ctx, ctx->flow.in_port); break; case OFPP_TABLE: xlate_table_action(ctx, ctx->flow.in_port, ctx->table_id); break; case OFPP_NORMAL: xlate_normal(ctx); break; case OFPP_FLOOD: flood_packets(ctx, false); break; case OFPP_ALL: flood_packets(ctx, true); break; case OFPP_CONTROLLER: execute_controller_action(ctx, max_len); break; case OFPP_NONE: break; case OFPP_LOCAL: default: if (port != ctx->flow.in_port) { compose_output_action(ctx, port); } break; } if (prev_nf_output_iface == NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_FLOOD; } else if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = prev_nf_output_iface; } else if (prev_nf_output_iface != NF_OUT_DROP && ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_output_reg_action(struct action_xlate_ctx *ctx, const struct nx_action_output_reg *naor) { uint64_t ofp_port; ofp_port = nxm_read_field_bits(naor->src, naor->ofs_nbits, &ctx->flow); if (ofp_port <= UINT16_MAX) { xlate_output_action__(ctx, ofp_port, ntohs(naor->max_len)); } } static void xlate_output_action(struct action_xlate_ctx *ctx, const struct ofp_action_output *oao) { xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len)); } static void xlate_enqueue_action(struct action_xlate_ctx *ctx, const struct ofp_action_enqueue *oae) { uint16_t ofp_port; uint32_t flow_priority, priority; int error; error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id), &priority); if (error) { /* Fall back to ordinary output action. */ xlate_output_action__(ctx, ntohs(oae->port), 0); return; } /* Figure out datapath output port. */ ofp_port = ntohs(oae->port); if (ofp_port == OFPP_IN_PORT) { ofp_port = ctx->flow.in_port; } else if (ofp_port == ctx->flow.in_port) { return; } /* Add datapath actions. */ flow_priority = ctx->flow.skb_priority; ctx->flow.skb_priority = priority; compose_output_action(ctx, ofp_port); ctx->flow.skb_priority = flow_priority; /* Update NetFlow output port. */ if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = ofp_port; } else if (ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_set_queue_action(struct action_xlate_ctx *ctx, const struct nx_action_set_queue *nasq) { uint32_t priority; int error; error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id), &priority); if (error) { /* Couldn't translate queue to a priority, so ignore. A warning * has already been logged. */ return; } ctx->flow.skb_priority = priority; } struct xlate_reg_state { ovs_be16 vlan_tci; ovs_be64 tun_id; }; static void xlate_autopath(struct action_xlate_ctx *ctx, const struct nx_action_autopath *naa) { uint16_t ofp_port = ntohl(naa->id); struct ofport_dpif *port = get_ofp_port(ctx->ofproto, ofp_port); if (!port || !port->bundle) { ofp_port = OFPP_NONE; } else if (port->bundle->bond) { /* Autopath does not support VLAN hashing. */ struct ofport_dpif *slave = bond_choose_output_slave( port->bundle->bond, &ctx->flow, 0, &ctx->tags); if (slave) { ofp_port = slave->up.ofp_port; } } autopath_execute(naa, &ctx->flow, ofp_port); } static bool slave_enabled_cb(uint16_t ofp_port, void *ofproto_) { struct ofproto_dpif *ofproto = ofproto_; struct ofport_dpif *port; switch (ofp_port) { case OFPP_IN_PORT: case OFPP_TABLE: case OFPP_NORMAL: case OFPP_FLOOD: case OFPP_ALL: case OFPP_NONE: return true; case OFPP_CONTROLLER: /* Not supported by the bundle action. */ return false; default: port = get_ofp_port(ofproto, ofp_port); return port ? port->may_enable : false; } } static void xlate_learn_action(struct action_xlate_ctx *ctx, const struct nx_action_learn *learn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 1); struct ofputil_flow_mod fm; int error; learn_execute(learn, &ctx->flow, &fm); error = ofproto_flow_mod(&ctx->ofproto->up, &fm); if (error && !VLOG_DROP_WARN(&rl)) { char *msg = ofputil_error_to_string(error); VLOG_WARN("learning action failed to modify flow table (%s)", msg); free(msg); } free(fm.actions); } static bool may_receive(const struct ofport_dpif *port, struct action_xlate_ctx *ctx) { if (port->up.opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp) ? htonl(OFPPC_NO_RECV_STP) : htonl(OFPPC_NO_RECV))) { return false; } /* Only drop packets here if both forwarding and learning are * disabled. If just learning is enabled, we need to have * OFPP_NORMAL and the learning action have a look at the packet * before we can drop it. */ if (!stp_forward_in_state(port->stp_state) && !stp_learn_in_state(port->stp_state)) { return false; } return true; } static void do_xlate_actions(const union ofp_action *in, size_t n_in, struct action_xlate_ctx *ctx) { const struct ofport_dpif *port; const union ofp_action *ia; size_t left; port = get_ofp_port(ctx->ofproto, ctx->flow.in_port); if (port && !may_receive(port, ctx)) { /* Drop this flow. */ return; } OFPUTIL_ACTION_FOR_EACH_UNSAFE (ia, left, in, n_in) { const struct ofp_action_dl_addr *oada; const struct nx_action_resubmit *nar; const struct nx_action_set_tunnel *nast; const struct nx_action_set_queue *nasq; const struct nx_action_multipath *nam; const struct nx_action_autopath *naa; const struct nx_action_bundle *nab; const struct nx_action_output_reg *naor; enum ofputil_action_code code; ovs_be64 tun_id; if (ctx->exit) { break; } code = ofputil_decode_action_unsafe(ia); switch (code) { case OFPUTIL_OFPAT_OUTPUT: xlate_output_action(ctx, &ia->output); break; case OFPUTIL_OFPAT_SET_VLAN_VID: ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK); ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI); break; case OFPUTIL_OFPAT_SET_VLAN_PCP: ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK); ctx->flow.vlan_tci |= htons( (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI); break; case OFPUTIL_OFPAT_STRIP_VLAN: ctx->flow.vlan_tci = htons(0); break; case OFPUTIL_OFPAT_SET_DL_SRC: oada = ((struct ofp_action_dl_addr *) ia); memcpy(ctx->flow.dl_src, oada->dl_addr, ETH_ADDR_LEN); break; case OFPUTIL_OFPAT_SET_DL_DST: oada = ((struct ofp_action_dl_addr *) ia); memcpy(ctx->flow.dl_dst, oada->dl_addr, ETH_ADDR_LEN); break; case OFPUTIL_OFPAT_SET_NW_SRC: ctx->flow.nw_src = ia->nw_addr.nw_addr; break; case OFPUTIL_OFPAT_SET_NW_DST: ctx->flow.nw_dst = ia->nw_addr.nw_addr; break; case OFPUTIL_OFPAT_SET_NW_TOS: /* OpenFlow 1.0 only supports IPv4. */ if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) { ctx->flow.nw_tos &= ~IP_DSCP_MASK; ctx->flow.nw_tos |= ia->nw_tos.nw_tos & IP_DSCP_MASK; } break; case OFPUTIL_OFPAT_SET_TP_SRC: ctx->flow.tp_src = ia->tp_port.tp_port; break; case OFPUTIL_OFPAT_SET_TP_DST: ctx->flow.tp_dst = ia->tp_port.tp_port; break; case OFPUTIL_OFPAT_ENQUEUE: xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia); break; case OFPUTIL_NXAST_RESUBMIT: nar = (const struct nx_action_resubmit *) ia; xlate_table_action(ctx, ntohs(nar->in_port), ctx->table_id); break; case OFPUTIL_NXAST_RESUBMIT_TABLE: xlate_resubmit_table(ctx, (const struct nx_action_resubmit *) ia); break; case OFPUTIL_NXAST_SET_TUNNEL: nast = (const struct nx_action_set_tunnel *) ia; tun_id = htonll(ntohl(nast->tun_id)); ctx->flow.tun_id = tun_id; break; case OFPUTIL_NXAST_SET_QUEUE: nasq = (const struct nx_action_set_queue *) ia; xlate_set_queue_action(ctx, nasq); break; case OFPUTIL_NXAST_POP_QUEUE: ctx->flow.skb_priority = ctx->orig_skb_priority; break; case OFPUTIL_NXAST_REG_MOVE: nxm_execute_reg_move((const struct nx_action_reg_move *) ia, &ctx->flow); break; case OFPUTIL_NXAST_REG_LOAD: nxm_execute_reg_load((const struct nx_action_reg_load *) ia, &ctx->flow); break; case OFPUTIL_NXAST_NOTE: /* Nothing to do. */ break; case OFPUTIL_NXAST_SET_TUNNEL64: tun_id = ((const struct nx_action_set_tunnel64 *) ia)->tun_id; ctx->flow.tun_id = tun_id; break; case OFPUTIL_NXAST_MULTIPATH: nam = (const struct nx_action_multipath *) ia; multipath_execute(nam, &ctx->flow); break; case OFPUTIL_NXAST_AUTOPATH: naa = (const struct nx_action_autopath *) ia; xlate_autopath(ctx, naa); break; case OFPUTIL_NXAST_BUNDLE: ctx->ofproto->has_bundle_action = true; nab = (const struct nx_action_bundle *) ia; xlate_output_action__(ctx, bundle_execute(nab, &ctx->flow, slave_enabled_cb, ctx->ofproto), 0); break; case OFPUTIL_NXAST_BUNDLE_LOAD: ctx->ofproto->has_bundle_action = true; nab = (const struct nx_action_bundle *) ia; bundle_execute_load(nab, &ctx->flow, slave_enabled_cb, ctx->ofproto); break; case OFPUTIL_NXAST_OUTPUT_REG: naor = (const struct nx_action_output_reg *) ia; xlate_output_reg_action(ctx, naor); break; case OFPUTIL_NXAST_LEARN: ctx->has_learn = true; if (ctx->may_flow_mod) { xlate_learn_action(ctx, (const struct nx_action_learn *) ia); } break; case OFPUTIL_NXAST_EXIT: ctx->exit = true; break; } } /* We've let OFPP_NORMAL and the learning action look at the packet, * so drop it now if forwarding is disabled. */ if (port && !stp_forward_in_state(port->stp_state)) { ofpbuf_clear(ctx->odp_actions); add_sflow_action(ctx); } } static void action_xlate_ctx_init(struct action_xlate_ctx *ctx, struct ofproto_dpif *ofproto, const struct flow *flow, ovs_be16 initial_tci, ovs_be64 cookie, const struct ofpbuf *packet) { ctx->ofproto = ofproto; ctx->flow = *flow; ctx->base_flow = ctx->flow; ctx->base_flow.tun_id = 0; ctx->base_flow.vlan_tci = initial_tci; ctx->cookie = cookie; ctx->packet = packet; ctx->may_learn_macs = packet != NULL; ctx->may_flow_mod = packet != NULL; ctx->resubmit_hook = NULL; } static struct ofpbuf * xlate_actions(struct action_xlate_ctx *ctx, const union ofp_action *in, size_t n_in) { struct flow orig_flow = ctx->flow; COVERAGE_INC(ofproto_dpif_xlate); ctx->odp_actions = ofpbuf_new(512); ofpbuf_reserve(ctx->odp_actions, NL_A_U32_SIZE); ctx->tags = 0; ctx->may_set_up_flow = true; ctx->has_learn = false; ctx->has_normal = false; ctx->nf_output_iface = NF_OUT_DROP; ctx->mirrors = 0; ctx->recurse = 0; ctx->orig_skb_priority = ctx->flow.skb_priority; ctx->table_id = 0; ctx->exit = false; if (ctx->flow.nw_frag & FLOW_NW_FRAG_ANY) { switch (ctx->ofproto->up.frag_handling) { case OFPC_FRAG_NORMAL: /* We must pretend that transport ports are unavailable. */ ctx->flow.tp_src = ctx->base_flow.tp_src = htons(0); ctx->flow.tp_dst = ctx->base_flow.tp_dst = htons(0); break; case OFPC_FRAG_DROP: return ctx->odp_actions; case OFPC_FRAG_REASM: NOT_REACHED(); case OFPC_FRAG_NX_MATCH: /* Nothing to do. */ break; } } if (process_special(ctx->ofproto, &ctx->flow, ctx->packet)) { ctx->may_set_up_flow = false; return ctx->odp_actions; } else { add_sflow_action(ctx); do_xlate_actions(in, n_in, ctx); if (!connmgr_may_set_up_flow(ctx->ofproto->up.connmgr, &ctx->flow, ctx->odp_actions->data, ctx->odp_actions->size)) { ctx->may_set_up_flow = false; if (ctx->packet && connmgr_msg_in_hook(ctx->ofproto->up.connmgr, &ctx->flow, ctx->packet)) { compose_output_action(ctx, OFPP_LOCAL); } } add_mirror_actions(ctx, &orig_flow); fix_sflow_action(ctx); } return ctx->odp_actions; } /* OFPP_NORMAL implementation. */ static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *); /* Given 'vid', the VID obtained from the 802.1Q header that was received as * part of a packet (specify 0 if there was no 802.1Q header), and 'in_bundle', * the bundle on which the packet was received, returns the VLAN to which the * packet belongs. * * Both 'vid' and the return value are in the range 0...4095. */ static uint16_t input_vid_to_vlan(const struct ofbundle *in_bundle, uint16_t vid) { switch (in_bundle->vlan_mode) { case PORT_VLAN_ACCESS: return in_bundle->vlan; break; case PORT_VLAN_TRUNK: return vid; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: return vid ? vid : in_bundle->vlan; default: NOT_REACHED(); } } /* Checks whether a packet with the given 'vid' may ingress on 'in_bundle'. * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs * a warning. * * 'vid' should be the VID obtained from the 802.1Q header that was received as * part of a packet (specify 0 if there was no 802.1Q header), in the range * 0...4095. */ static bool input_vid_is_valid(uint16_t vid, struct ofbundle *in_bundle, bool warn) { /* Allow any VID on the OFPP_NONE port. */ if (in_bundle == &ofpp_none_bundle) { return true; } switch (in_bundle->vlan_mode) { case PORT_VLAN_ACCESS: if (vid) { if (warn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged " "packet received on port %s configured as VLAN " "%"PRIu16" access port", in_bundle->ofproto->up.name, vid, in_bundle->name, in_bundle->vlan); } return false; } return true; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: if (!vid) { /* Port must always carry its native VLAN. */ return true; } /* Fall through. */ case PORT_VLAN_TRUNK: if (!ofbundle_includes_vlan(in_bundle, vid)) { if (warn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" packet " "received on port %s not configured for trunking " "VLAN %"PRIu16, in_bundle->ofproto->up.name, vid, in_bundle->name, vid); } return false; } return true; default: NOT_REACHED(); } } /* Given 'vlan', the VLAN that a packet belongs to, and * 'out_bundle', a bundle on which the packet is to be output, returns the VID * that should be included in the 802.1Q header. (If the return value is 0, * then the 802.1Q header should only be included in the packet if there is a * nonzero PCP.) * * Both 'vlan' and the return value are in the range 0...4095. */ static uint16_t output_vlan_to_vid(const struct ofbundle *out_bundle, uint16_t vlan) { switch (out_bundle->vlan_mode) { case PORT_VLAN_ACCESS: return 0; case PORT_VLAN_TRUNK: case PORT_VLAN_NATIVE_TAGGED: return vlan; case PORT_VLAN_NATIVE_UNTAGGED: return vlan == out_bundle->vlan ? 0 : vlan; default: NOT_REACHED(); } } static void output_normal(struct action_xlate_ctx *ctx, const struct ofbundle *out_bundle, uint16_t vlan) { struct ofport_dpif *port; uint16_t vid; ovs_be16 tci, old_tci; vid = output_vlan_to_vid(out_bundle, vlan); if (!out_bundle->bond) { port = ofbundle_get_a_port(out_bundle); } else { port = bond_choose_output_slave(out_bundle->bond, &ctx->flow, vid, &ctx->tags); if (!port) { /* No slaves enabled, so drop packet. */ return; } } old_tci = ctx->flow.vlan_tci; tci = htons(vid); if (tci || out_bundle->use_priority_tags) { tci |= ctx->flow.vlan_tci & htons(VLAN_PCP_MASK); if (tci) { tci |= htons(VLAN_CFI); } } ctx->flow.vlan_tci = tci; compose_output_action(ctx, port->up.ofp_port); ctx->flow.vlan_tci = old_tci; } static int mirror_mask_ffs(mirror_mask_t mask) { BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask)); return ffs(mask); } static bool ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan) { return (bundle->vlan_mode != PORT_VLAN_ACCESS && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan))); } static bool ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan) { return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan); } /* Returns an arbitrary interface within 'bundle'. */ static struct ofport_dpif * ofbundle_get_a_port(const struct ofbundle *bundle) { return CONTAINER_OF(list_front(&bundle->ports), struct ofport_dpif, bundle_node); } static bool vlan_is_mirrored(const struct ofmirror *m, int vlan) { return !m->vlans || bitmap_is_set(m->vlans, vlan); } /* Returns true if a packet with Ethernet destination MAC 'dst' may be mirrored * to a VLAN. In general most packets may be mirrored but we want to drop * protocols that may confuse switches. */ static bool eth_dst_may_rspan(const uint8_t dst[ETH_ADDR_LEN]) { /* If you change this function's behavior, please update corresponding * documentation in vswitch.xml at the same time. */ if (dst[0] != 0x01) { /* All the currently banned MACs happen to start with 01 currently, so * this is a quick way to eliminate most of the good ones. */ } else { if (eth_addr_is_reserved(dst)) { /* Drop STP, IEEE pause frames, and other reserved protocols * (01-80-c2-00-00-0x). */ return false; } if (dst[0] == 0x01 && dst[1] == 0x00 && dst[2] == 0x0c) { /* Cisco OUI. */ if ((dst[3] & 0xfe) == 0xcc && (dst[4] & 0xfe) == 0xcc && (dst[5] & 0xfe) == 0xcc) { /* Drop the following protocols plus others following the same pattern: CDP, VTP, DTP, PAgP (01-00-0c-cc-cc-cc) Spanning Tree PVSTP+ (01-00-0c-cc-cc-cd) STP Uplink Fast (01-00-0c-cd-cd-cd) */ return false; } if (!(dst[3] | dst[4] | dst[5])) { /* Drop Inter Switch Link packets (01-00-0c-00-00-00). */ return false; } } } return true; } static void add_mirror_actions(struct action_xlate_ctx *ctx, const struct flow *orig_flow) { struct ofproto_dpif *ofproto = ctx->ofproto; mirror_mask_t mirrors; struct ofbundle *in_bundle; uint16_t vlan; uint16_t vid; const struct nlattr *a; size_t left; in_bundle = lookup_input_bundle(ctx->ofproto, orig_flow->in_port, ctx->packet != NULL); if (!in_bundle) { return; } mirrors = in_bundle->src_mirrors; /* Drop frames on bundles reserved for mirroring. */ if (in_bundle->mirror_out) { if (ctx->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port " "%s, which is reserved exclusively for mirroring", ctx->ofproto->up.name, in_bundle->name); } return; } /* Check VLAN. */ vid = vlan_tci_to_vid(orig_flow->vlan_tci); if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) { return; } vlan = input_vid_to_vlan(in_bundle, vid); /* Look at the output ports to check for destination selections. */ NL_ATTR_FOR_EACH (a, left, ctx->odp_actions->data, ctx->odp_actions->size) { enum ovs_action_attr type = nl_attr_type(a); struct ofport_dpif *ofport; if (type != OVS_ACTION_ATTR_OUTPUT) { continue; } ofport = get_odp_port(ofproto, nl_attr_get_u32(a)); if (ofport && ofport->bundle) { mirrors |= ofport->bundle->dst_mirrors; } } if (!mirrors) { return; } /* Restore the original packet before adding the mirror actions. */ ctx->flow = *orig_flow; while (mirrors) { struct ofmirror *m; m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1]; if (!vlan_is_mirrored(m, vlan)) { mirrors &= mirrors - 1; continue; } mirrors &= ~m->dup_mirrors; ctx->mirrors |= m->dup_mirrors; if (m->out) { output_normal(ctx, m->out, vlan); } else if (eth_dst_may_rspan(orig_flow->dl_dst) && vlan != m->out_vlan) { struct ofbundle *bundle; HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { if (ofbundle_includes_vlan(bundle, m->out_vlan) && !bundle->mirror_out) { output_normal(ctx, bundle, m->out_vlan); } } } } } static void update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors, uint64_t packets, uint64_t bytes) { if (!mirrors) { return; } for (; mirrors; mirrors &= mirrors - 1) { struct ofmirror *m; m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1]; if (!m) { /* In normal circumstances 'm' will not be NULL. However, * if mirrors are reconfigured, we can temporarily get out * of sync in facet_revalidate(). We could "correct" the * mirror list before reaching here, but doing that would * not properly account the traffic stats we've currently * accumulated for previous mirror configuration. */ continue; } m->packet_count += packets; m->byte_count += bytes; } } /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to * indicate this; newer upstream kernels use gratuitous ARP requests. */ static bool is_gratuitous_arp(const struct flow *flow) { return (flow->dl_type == htons(ETH_TYPE_ARP) && eth_addr_is_broadcast(flow->dl_dst) && (flow->nw_proto == ARP_OP_REPLY || (flow->nw_proto == ARP_OP_REQUEST && flow->nw_src == flow->nw_dst))); } static void update_learning_table(struct ofproto_dpif *ofproto, const struct flow *flow, int vlan, struct ofbundle *in_bundle) { struct mac_entry *mac; /* Don't learn the OFPP_NONE port. */ if (in_bundle == &ofpp_none_bundle) { return; } if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) { return; } mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan); if (is_gratuitous_arp(flow)) { /* We don't want to learn from gratuitous ARP packets that are * reflected back over bond slaves so we lock the learning table. */ if (!in_bundle->bond) { mac_entry_set_grat_arp_lock(mac); } else if (mac_entry_is_grat_arp_locked(mac)) { return; } } if (mac_entry_is_new(mac) || mac->port.p != in_bundle) { /* The log messages here could actually be useful in debugging, * so keep the rate limit relatively high. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300); VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is " "on port %s in VLAN %d", ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src), in_bundle->name, vlan); mac->port.p = in_bundle; tag_set_add(&ofproto->revalidate_set, mac_learning_changed(ofproto->ml, mac)); } } static struct ofbundle * lookup_input_bundle(struct ofproto_dpif *ofproto, uint16_t in_port, bool warn) { struct ofport_dpif *ofport; /* Special-case OFPP_NONE, which a controller may use as the ingress * port for traffic that it is sourcing. */ if (in_port == OFPP_NONE) { return &ofpp_none_bundle; } /* Find the port and bundle for the received packet. */ ofport = get_ofp_port(ofproto, in_port); if (ofport && ofport->bundle) { return ofport->bundle; } /* Odd. A few possible reasons here: * * - We deleted a port but there are still a few packets queued up * from it. * * - Someone externally added a port (e.g. "ovs-dpctl add-if") that * we don't know about. * * - The ofproto client didn't configure the port as part of a bundle. */ if (warn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown " "port %"PRIu16, ofproto->up.name, in_port); } return NULL; } /* Determines whether packets in 'flow' within 'ofproto' should be forwarded or * dropped. Returns true if they may be forwarded, false if they should be * dropped. * * 'in_port' must be the ofport_dpif that corresponds to flow->in_port. * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull). * * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as * checked by input_vid_is_valid(). * * May also add tags to '*tags', although the current implementation only does * so in one special case. */ static bool is_admissible(struct ofproto_dpif *ofproto, const struct flow *flow, struct ofport_dpif *in_port, uint16_t vlan, tag_type *tags) { struct ofbundle *in_bundle = in_port->bundle; /* Drop frames for reserved multicast addresses * only if forward_bpdu option is absent. */ if (eth_addr_is_reserved(flow->dl_dst) && !ofproto->up.forward_bpdu) { return false; } if (in_bundle->bond) { struct mac_entry *mac; switch (bond_check_admissibility(in_bundle->bond, in_port, flow->dl_dst, tags)) { case BV_ACCEPT: break; case BV_DROP: return false; case BV_DROP_IF_MOVED: mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL); if (mac && mac->port.p != in_bundle && (!is_gratuitous_arp(flow) || mac_entry_is_grat_arp_locked(mac))) { return false; } break; } } return true; } static void xlate_normal(struct action_xlate_ctx *ctx) { struct ofport_dpif *in_port; struct ofbundle *in_bundle; struct mac_entry *mac; uint16_t vlan; uint16_t vid; ctx->has_normal = true; in_bundle = lookup_input_bundle(ctx->ofproto, ctx->flow.in_port, ctx->packet != NULL); if (!in_bundle) { return; } /* We know 'in_port' exists unless it is "ofpp_none_bundle", * since lookup_input_bundle() succeeded. */ in_port = get_ofp_port(ctx->ofproto, ctx->flow.in_port); /* Drop malformed frames. */ if (ctx->flow.dl_type == htons(ETH_TYPE_VLAN) && !(ctx->flow.vlan_tci & htons(VLAN_CFI))) { if (ctx->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial " "VLAN tag received on port %s", ctx->ofproto->up.name, in_bundle->name); } return; } /* Drop frames on bundles reserved for mirroring. */ if (in_bundle->mirror_out) { if (ctx->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port " "%s, which is reserved exclusively for mirroring", ctx->ofproto->up.name, in_bundle->name); } return; } /* Check VLAN. */ vid = vlan_tci_to_vid(ctx->flow.vlan_tci); if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) { return; } vlan = input_vid_to_vlan(in_bundle, vid); /* Check other admissibility requirements. */ if (in_port && !is_admissible(ctx->ofproto, &ctx->flow, in_port, vlan, &ctx->tags)) { return; } /* Learn source MAC. */ if (ctx->may_learn_macs) { update_learning_table(ctx->ofproto, &ctx->flow, vlan, in_bundle); } /* Determine output bundle. */ mac = mac_learning_lookup(ctx->ofproto->ml, ctx->flow.dl_dst, vlan, &ctx->tags); if (mac) { if (mac->port.p != in_bundle) { output_normal(ctx, mac->port.p, vlan); } } else { struct ofbundle *bundle; HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) { if (bundle != in_bundle && ofbundle_includes_vlan(bundle, vlan) && bundle->floodable && !bundle->mirror_out) { output_normal(ctx, bundle, vlan); } } ctx->nf_output_iface = NF_OUT_FLOOD; } } /* Optimized flow revalidation. * * It's a difficult problem, in general, to tell which facets need to have * their actions recalculated whenever the OpenFlow flow table changes. We * don't try to solve that general problem: for most kinds of OpenFlow flow * table changes, we recalculate the actions for every facet. This is * relatively expensive, but it's good enough if the OpenFlow flow table * doesn't change very often. * * However, we can expect one particular kind of OpenFlow flow table change to * happen frequently: changes caused by MAC learning. To avoid wasting a lot * of CPU on revalidating every facet whenever MAC learning modifies the flow * table, we add a special case that applies to flow tables in which every rule * has the same form (that is, the same wildcards), except that the table is * also allowed to have a single "catch-all" flow that matches all packets. We * optimize this case by tagging all of the facets that resubmit into the table * and invalidating the same tag whenever a flow changes in that table. The * end result is that we revalidate just the facets that need it (and sometimes * a few more, but not all of the facets or even all of the facets that * resubmit to the table modified by MAC learning). */ /* Calculates the tag to use for 'flow' and wildcards 'wc' when it is inserted * into an OpenFlow table with the given 'basis'. */ static tag_type rule_calculate_tag(const struct flow *flow, const struct flow_wildcards *wc, uint32_t secret) { if (flow_wildcards_is_catchall(wc)) { return 0; } else { struct flow tag_flow = *flow; flow_zero_wildcards(&tag_flow, wc); return tag_create_deterministic(flow_hash(&tag_flow, secret)); } } /* Following a change to OpenFlow table 'table_id' in 'ofproto', update the * taggability of that table. * * This function must be called after *each* change to a flow table. If you * skip calling it on some changes then the pointer comparisons at the end can * be invalid if you get unlucky. For example, if a flow removal causes a * cls_table to be destroyed and then a flow insertion causes a cls_table with * different wildcards to be created with the same address, then this function * will incorrectly skip revalidation. */ static void table_update_taggable(struct ofproto_dpif *ofproto, uint8_t table_id) { struct table_dpif *table = &ofproto->tables[table_id]; const struct classifier *cls = &ofproto->up.tables[table_id]; struct cls_table *catchall, *other; struct cls_table *t; catchall = other = NULL; switch (hmap_count(&cls->tables)) { case 0: /* We could tag this OpenFlow table but it would make the logic a * little harder and it's a corner case that doesn't seem worth it * yet. */ break; case 1: case 2: HMAP_FOR_EACH (t, hmap_node, &cls->tables) { if (cls_table_is_catchall(t)) { catchall = t; } else if (!other) { other = t; } else { /* Indicate that we can't tag this by setting both tables to * NULL. (We know that 'catchall' is already NULL.) */ other = NULL; } } break; default: /* Can't tag this table. */ break; } if (table->catchall_table != catchall || table->other_table != other) { table->catchall_table = catchall; table->other_table = other; ofproto->need_revalidate = true; } } /* Given 'rule' that has changed in some way (either it is a rule being * inserted, a rule being deleted, or a rule whose actions are being * modified), marks facets for revalidation to ensure that packets will be * forwarded correctly according to the new state of the flow table. * * This function must be called after *each* change to a flow table. See * the comment on table_update_taggable() for more information. */ static void rule_invalidate(const struct rule_dpif *rule) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); table_update_taggable(ofproto, rule->up.table_id); if (!ofproto->need_revalidate) { struct table_dpif *table = &ofproto->tables[rule->up.table_id]; if (table->other_table && rule->tag) { tag_set_add(&ofproto->revalidate_set, rule->tag); } else { ofproto->need_revalidate = true; } } } static bool set_frag_handling(struct ofproto *ofproto_, enum ofp_config_flags frag_handling) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (frag_handling != OFPC_FRAG_REASM) { ofproto->need_revalidate = true; return true; } else { return false; } } static int packet_out(struct ofproto *ofproto_, struct ofpbuf *packet, const struct flow *flow, const union ofp_action *ofp_actions, size_t n_ofp_actions) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); int error; if (flow->in_port >= ofproto->max_ports && flow->in_port < OFPP_MAX) { return ofp_mkerr_nicira(OFPET_BAD_REQUEST, NXBRC_BAD_IN_PORT); } error = validate_actions(ofp_actions, n_ofp_actions, flow, ofproto->max_ports); if (!error) { struct odputil_keybuf keybuf; struct ofpbuf *odp_actions; struct ofproto_push push; struct ofpbuf key; ofpbuf_use_stack(&key, &keybuf, sizeof keybuf); odp_flow_key_from_flow(&key, flow); action_xlate_ctx_init(&push.ctx, ofproto, flow, flow->vlan_tci, 0, packet); /* Ensure that resubmits in 'ofp_actions' get accounted to their * matching rules. */ push.packets = 1; push.bytes = packet->size; push.used = time_msec(); push.ctx.resubmit_hook = push_resubmit; odp_actions = xlate_actions(&push.ctx, ofp_actions, n_ofp_actions); dpif_execute(ofproto->dpif, key.data, key.size, odp_actions->data, odp_actions->size, packet); ofpbuf_delete(odp_actions); } return error; } /* NetFlow. */ static int set_netflow(struct ofproto *ofproto_, const struct netflow_options *netflow_options) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (netflow_options) { if (!ofproto->netflow) { ofproto->netflow = netflow_create(); } return netflow_set_options(ofproto->netflow, netflow_options); } else { netflow_destroy(ofproto->netflow); ofproto->netflow = NULL; return 0; } } static void get_netflow_ids(const struct ofproto *ofproto_, uint8_t *engine_type, uint8_t *engine_id) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); dpif_get_netflow_ids(ofproto->dpif, engine_type, engine_id); } static void send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet) { if (!facet_is_controller_flow(facet) && netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) { struct subfacet *subfacet; struct ofexpired expired; LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { if (subfacet->installed) { struct dpif_flow_stats stats; subfacet_install(ofproto, subfacet, subfacet->actions, subfacet->actions_len, &stats); subfacet_update_stats(ofproto, subfacet, &stats); } } expired.flow = facet->flow; expired.packet_count = facet->packet_count; expired.byte_count = facet->byte_count; expired.used = facet->used; netflow_expire(ofproto->netflow, &facet->nf_flow, &expired); } } static void send_netflow_active_timeouts(struct ofproto_dpif *ofproto) { struct facet *facet; HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) { send_active_timeout(ofproto, facet); } } static struct ofproto_dpif * ofproto_dpif_lookup(const char *name) { struct ofproto_dpif *ofproto; HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node, hash_string(name, 0), &all_ofproto_dpifs) { if (!strcmp(ofproto->up.name, name)) { return ofproto; } } return NULL; } static void ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc, const char *argv[], void *aux OVS_UNUSED) { struct ofproto_dpif *ofproto; if (argc > 1) { ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply(conn, 501, "no such bridge"); return; } mac_learning_flush(ofproto->ml); ofproto->need_revalidate = true; } else { HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { mac_learning_flush(ofproto->ml); ofproto->need_revalidate = true; } } unixctl_command_reply(conn, 200, "table successfully flushed"); } static void ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; const struct ofproto_dpif *ofproto; const struct mac_entry *e; ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply(conn, 501, "no such bridge"); return; } ds_put_cstr(&ds, " port VLAN MAC Age\n"); LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) { struct ofbundle *bundle = e->port.p; ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n", ofbundle_get_a_port(bundle)->odp_port, e->vlan, ETH_ADDR_ARGS(e->mac), mac_entry_age(ofproto->ml, e)); } unixctl_command_reply(conn, 200, ds_cstr(&ds)); ds_destroy(&ds); } struct ofproto_trace { struct action_xlate_ctx ctx; struct flow flow; struct ds *result; }; static void trace_format_rule(struct ds *result, uint8_t table_id, int level, const struct rule_dpif *rule) { ds_put_char_multiple(result, '\t', level); if (!rule) { ds_put_cstr(result, "No match\n"); return; } ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ", table_id, ntohll(rule->up.flow_cookie)); cls_rule_format(&rule->up.cr, result); ds_put_char(result, '\n'); ds_put_char_multiple(result, '\t', level); ds_put_cstr(result, "OpenFlow "); ofp_print_actions(result, rule->up.actions, rule->up.n_actions); ds_put_char(result, '\n'); } static void trace_format_flow(struct ds *result, int level, const char *title, struct ofproto_trace *trace) { ds_put_char_multiple(result, '\t', level); ds_put_format(result, "%s: ", title); if (flow_equal(&trace->ctx.flow, &trace->flow)) { ds_put_cstr(result, "unchanged"); } else { flow_format(result, &trace->ctx.flow); trace->flow = trace->ctx.flow; } ds_put_char(result, '\n'); } static void trace_format_regs(struct ds *result, int level, const char *title, struct ofproto_trace *trace) { size_t i; ds_put_char_multiple(result, '\t', level); ds_put_format(result, "%s:", title); for (i = 0; i < FLOW_N_REGS; i++) { ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]); } ds_put_char(result, '\n'); } static void trace_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule) { struct ofproto_trace *trace = CONTAINER_OF(ctx, struct ofproto_trace, ctx); struct ds *result = trace->result; ds_put_char(result, '\n'); trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace); trace_format_regs(result, ctx->recurse + 1, "Resubmitted regs", trace); trace_format_rule(result, ctx->table_id, ctx->recurse + 1, rule); } static void ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[], void *aux OVS_UNUSED) { const char *dpname = argv[1]; struct ofproto_dpif *ofproto; struct ofpbuf odp_key; struct ofpbuf *packet; struct rule_dpif *rule; ovs_be16 initial_tci; struct ds result; struct flow flow; char *s; packet = NULL; ofpbuf_init(&odp_key, 0); ds_init(&result); ofproto = ofproto_dpif_lookup(dpname); if (!ofproto) { unixctl_command_reply(conn, 501, "Unknown ofproto (use ofproto/list " "for help)"); goto exit; } if (argc == 3 || (argc == 4 && !strcmp(argv[3], "-generate"))) { /* ofproto/trace dpname flow [-generate] */ const char *flow_s = argv[2]; const char *generate_s = argv[3]; int error; /* Convert string to datapath key. */ ofpbuf_init(&odp_key, 0); error = odp_flow_key_from_string(flow_s, NULL, &odp_key); if (error) { unixctl_command_reply(conn, 501, "Bad flow syntax"); goto exit; } /* Convert odp_key to flow. */ error = ofproto_dpif_extract_flow_key(ofproto, odp_key.data, odp_key.size, &flow, &initial_tci, NULL); if (error == ODP_FIT_ERROR) { unixctl_command_reply(conn, 501, "Invalid flow"); goto exit; } /* Generate a packet, if requested. */ if (generate_s) { packet = ofpbuf_new(0); flow_compose(packet, &flow); } } else if (argc == 6) { /* ofproto/trace dpname priority tun_id in_port packet */ const char *priority_s = argv[2]; const char *tun_id_s = argv[3]; const char *in_port_s = argv[4]; const char *packet_s = argv[5]; uint16_t in_port = ofp_port_to_odp_port(atoi(in_port_s)); ovs_be64 tun_id = htonll(strtoull(tun_id_s, NULL, 0)); uint32_t priority = atoi(priority_s); const char *msg; msg = eth_from_hex(packet_s, &packet); if (msg) { unixctl_command_reply(conn, 501, msg); goto exit; } ds_put_cstr(&result, "Packet: "); s = ofp_packet_to_string(packet->data, packet->size); ds_put_cstr(&result, s); free(s); flow_extract(packet, priority, tun_id, in_port, &flow); initial_tci = flow.vlan_tci; } else { unixctl_command_reply(conn, 501, "Bad command syntax"); goto exit; } ds_put_cstr(&result, "Flow: "); flow_format(&result, &flow); ds_put_char(&result, '\n'); rule = rule_dpif_lookup(ofproto, &flow, 0); trace_format_rule(&result, 0, 0, rule); if (rule) { struct ofproto_trace trace; struct ofpbuf *odp_actions; trace.result = &result; trace.flow = flow; action_xlate_ctx_init(&trace.ctx, ofproto, &flow, initial_tci, rule->up.flow_cookie, packet); trace.ctx.resubmit_hook = trace_resubmit; odp_actions = xlate_actions(&trace.ctx, rule->up.actions, rule->up.n_actions); ds_put_char(&result, '\n'); trace_format_flow(&result, 0, "Final flow", &trace); ds_put_cstr(&result, "Datapath actions: "); format_odp_actions(&result, odp_actions->data, odp_actions->size); ofpbuf_delete(odp_actions); if (!trace.ctx.may_set_up_flow) { if (packet) { ds_put_cstr(&result, "\nThis flow is not cachable."); } else { ds_put_cstr(&result, "\nThe datapath actions are incomplete--" "for complete actions, please supply a packet."); } } } unixctl_command_reply(conn, 200, ds_cstr(&result)); exit: ds_destroy(&result); ofpbuf_delete(packet); ofpbuf_uninit(&odp_key); } static void ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { clogged = true; unixctl_command_reply(conn, 200, NULL); } static void ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { clogged = false; unixctl_command_reply(conn, 200, NULL); } static void ofproto_dpif_unixctl_init(void) { static bool registered; if (registered) { return; } registered = true; unixctl_command_register( "ofproto/trace", "bridge {tun_id in_port packet | odp_flow [-generate]}", 2, 5, ofproto_unixctl_trace, NULL); unixctl_command_register("fdb/flush", "[bridge]", 0, 1, ofproto_unixctl_fdb_flush, NULL); unixctl_command_register("fdb/show", "bridge", 1, 1, ofproto_unixctl_fdb_show, NULL); unixctl_command_register("ofproto/clog", "", 0, 0, ofproto_dpif_clog, NULL); unixctl_command_register("ofproto/unclog", "", 0, 0, ofproto_dpif_unclog, NULL); } /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.) * * This is deprecated. It is only for compatibility with broken device drivers * in old versions of Linux that do not properly support VLANs when VLAN * devices are not used. When broken device drivers are no longer in * widespread use, we will delete these interfaces. */ static int set_realdev(struct ofport *ofport_, uint16_t realdev_ofp_port, int vid) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto); struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); if (realdev_ofp_port == ofport->realdev_ofp_port && vid == ofport->vlandev_vid) { return 0; } ofproto->need_revalidate = true; if (ofport->realdev_ofp_port) { vsp_remove(ofport); } if (realdev_ofp_port && ofport->bundle) { /* vlandevs are enslaved to their realdevs, so they are not allowed to * themselves be part of a bundle. */ bundle_set(ofport->up.ofproto, ofport->bundle, NULL); } ofport->realdev_ofp_port = realdev_ofp_port; ofport->vlandev_vid = vid; if (realdev_ofp_port) { vsp_add(ofport, realdev_ofp_port, vid); } return 0; } static uint32_t hash_realdev_vid(uint16_t realdev_ofp_port, int vid) { return hash_2words(realdev_ofp_port, vid); } static uint32_t vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto, uint32_t realdev_odp_port, ovs_be16 vlan_tci) { if (!hmap_is_empty(&ofproto->realdev_vid_map)) { uint16_t realdev_ofp_port = odp_port_to_ofp_port(realdev_odp_port); int vid = vlan_tci_to_vid(vlan_tci); const struct vlan_splinter *vsp; HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node, hash_realdev_vid(realdev_ofp_port, vid), &ofproto->realdev_vid_map) { if (vsp->realdev_ofp_port == realdev_ofp_port && vsp->vid == vid) { return ofp_port_to_odp_port(vsp->vlandev_ofp_port); } } } return realdev_odp_port; } static struct vlan_splinter * vlandev_find(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port) { struct vlan_splinter *vsp; HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node, hash_int(vlandev_ofp_port, 0), &ofproto->vlandev_map) { if (vsp->vlandev_ofp_port == vlandev_ofp_port) { return vsp; } } return NULL; } static uint16_t vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port, int *vid) { if (!hmap_is_empty(&ofproto->vlandev_map)) { const struct vlan_splinter *vsp; vsp = vlandev_find(ofproto, vlandev_ofp_port); if (vsp) { if (vid) { *vid = vsp->vid; } return vsp->realdev_ofp_port; } } return 0; } static void vsp_remove(struct ofport_dpif *port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); struct vlan_splinter *vsp; vsp = vlandev_find(ofproto, port->up.ofp_port); if (vsp) { hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node); hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node); free(vsp); port->realdev_ofp_port = 0; } else { VLOG_ERR("missing vlan device record"); } } static void vsp_add(struct ofport_dpif *port, uint16_t realdev_ofp_port, int vid) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL) && (vsp_realdev_to_vlandev(ofproto, realdev_ofp_port, htons(vid)) == realdev_ofp_port)) { struct vlan_splinter *vsp; vsp = xmalloc(sizeof *vsp); hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node, hash_int(port->up.ofp_port, 0)); hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node, hash_realdev_vid(realdev_ofp_port, vid)); vsp->realdev_ofp_port = realdev_ofp_port; vsp->vlandev_ofp_port = port->up.ofp_port; vsp->vid = vid; port->realdev_ofp_port = realdev_ofp_port; } else { VLOG_ERR("duplicate vlan device record"); } } const struct ofproto_class ofproto_dpif_class = { enumerate_types, enumerate_names, del, alloc, construct, destruct, dealloc, run, run_fast, wait, flush, get_features, get_tables, port_alloc, port_construct, port_destruct, port_dealloc, port_modified, port_reconfigured, port_query_by_name, port_add, port_del, port_get_stats, port_dump_start, port_dump_next, port_dump_done, port_poll, port_poll_wait, port_is_lacp_current, NULL, /* rule_choose_table */ rule_alloc, rule_construct, rule_destruct, rule_dealloc, rule_get_stats, rule_execute, rule_modify_actions, set_frag_handling, packet_out, set_netflow, get_netflow_ids, set_sflow, set_cfm, get_cfm_fault, get_cfm_remote_mpids, set_stp, get_stp_status, set_stp_port, get_stp_port_status, set_queues, bundle_set, bundle_remove, mirror_set, mirror_get_stats, set_flood_vlans, is_mirror_output_bundle, forward_bpdu_changed, set_mac_idle_time, set_realdev, };