/* * Copyright (c) 2009, 2010 Nicira Networks. * Copyright (c) 2010 Jean Tourrilhes - HP-Labs. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto.h" #include #include #include #include #include #include #include #include "classifier.h" #include "coverage.h" #include "discovery.h" #include "dpif.h" #include "dynamic-string.h" #include "fail-open.h" #include "in-band.h" #include "mac-learning.h" #include "netdev.h" #include "netflow.h" #include "odp-util.h" #include "ofp-print.h" #include "ofp-util.h" #include "ofproto-sflow.h" #include "ofpbuf.h" #include "openflow/nicira-ext.h" #include "openflow/openflow.h" #include "openvswitch/datapath-protocol.h" #include "packets.h" #include "pinsched.h" #include "pktbuf.h" #include "poll-loop.h" #include "port-array.h" #include "rconn.h" #include "shash.h" #include "status.h" #include "stream-ssl.h" #include "svec.h" #include "tag.h" #include "timeval.h" #include "unixctl.h" #include "vconn.h" #include "vlog.h" #include "xtoxll.h" VLOG_DEFINE_THIS_MODULE(ofproto) #include "sflow_api.h" enum { TABLEID_HASH = 0, TABLEID_CLASSIFIER = 1 }; struct ofport { struct netdev *netdev; struct ofp_phy_port opp; /* In host byte order. */ }; static void ofport_free(struct ofport *); static void hton_ofp_phy_port(struct ofp_phy_port *); static int xlate_actions(const union ofp_action *in, size_t n_in, const flow_t *flow, struct ofproto *ofproto, const struct ofpbuf *packet, struct odp_actions *out, tag_type *tags, bool *may_set_up_flow, uint16_t *nf_output_iface); struct rule { struct cls_rule cr; uint64_t flow_cookie; /* Controller-issued identifier. (Kept in network-byte order.) */ uint16_t idle_timeout; /* In seconds from time of last use. */ uint16_t hard_timeout; /* In seconds from time of creation. */ bool send_flow_removed; /* Send a flow removed message? */ long long int used; /* Last-used time (0 if never used). */ long long int created; /* Creation time. */ uint64_t packet_count; /* Number of packets received. */ uint64_t byte_count; /* Number of bytes received. */ uint64_t accounted_bytes; /* Number of bytes passed to account_cb. */ tag_type tags; /* Tags (set only by hooks). */ struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */ /* If 'super' is non-NULL, this rule is a subrule, that is, it is an * exact-match rule (having cr.wc.wildcards of 0) generated from the * wildcard rule 'super'. In this case, 'list' is an element of the * super-rule's list. * * If 'super' is NULL, this rule is a super-rule, and 'list' is the head of * a list of subrules. A super-rule with no wildcards (where * cr.wc.wildcards is 0) will never have any subrules. */ struct rule *super; struct list list; /* OpenFlow actions. * * 'n_actions' is the number of elements in the 'actions' array. A single * action may take up more more than one element's worth of space. * * A subrule has no actions (it uses the super-rule's actions). */ int n_actions; union ofp_action *actions; /* Datapath actions. * * A super-rule with wildcard fields never has ODP actions (since the * datapath only supports exact-match flows). */ bool installed; /* Installed in datapath? */ bool may_install; /* True ordinarily; false if actions must * be reassessed for every packet. */ int n_odp_actions; union odp_action *odp_actions; }; static inline bool rule_is_hidden(const struct rule *rule) { /* Subrules are merely an implementation detail, so hide them from the * controller. */ if (rule->super != NULL) { return true; } /* Rules with priority higher than UINT16_MAX are set up by ofproto itself * (e.g. by in-band control) and are intentionally hidden from the * controller. */ if (rule->cr.priority > UINT16_MAX) { return true; } return false; } static struct rule *rule_create(struct ofproto *, struct rule *super, const union ofp_action *, size_t n_actions, uint16_t idle_timeout, uint16_t hard_timeout, uint64_t flow_cookie, bool send_flow_removed); static void rule_free(struct rule *); static void rule_destroy(struct ofproto *, struct rule *); static struct rule *rule_from_cls_rule(const struct cls_rule *); static void rule_insert(struct ofproto *, struct rule *, struct ofpbuf *packet, uint16_t in_port); static void rule_remove(struct ofproto *, struct rule *); static bool rule_make_actions(struct ofproto *, struct rule *, const struct ofpbuf *packet); static void rule_install(struct ofproto *, struct rule *, struct rule *displaced_rule); static void rule_uninstall(struct ofproto *, struct rule *); static void rule_post_uninstall(struct ofproto *, struct rule *); static void send_flow_removed(struct ofproto *p, struct rule *rule, long long int now, uint8_t reason); /* ofproto supports two kinds of OpenFlow connections: * * - "Primary" connections to ordinary OpenFlow controllers. ofproto * maintains persistent connections to these controllers and by default * sends them asynchronous messages such as packet-ins. * * - "Service" connections, e.g. from ovs-ofctl. When these connections * drop, it is the other side's responsibility to reconnect them if * necessary. ofproto does not send them asynchronous messages by default. * * Currently, active (tcp, ssl, unix) connections are always "primary" * connections and passive (ptcp, pssl, punix) connections are always "service" * connections. There is no inherent reason for this, but it reflects the * common case. */ enum ofconn_type { OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */ OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */ }; /* A listener for incoming OpenFlow "service" connections. */ struct ofservice { struct hmap_node node; /* In struct ofproto's "services" hmap. */ struct pvconn *pvconn; /* OpenFlow connection listener. */ /* These are not used by ofservice directly. They are settings for * accepted "struct ofconn"s from the pvconn. */ int probe_interval; /* Max idle time before probing, in seconds. */ int rate_limit; /* Max packet-in rate in packets per second. */ int burst_limit; /* Limit on accumulating packet credits. */ }; static struct ofservice *ofservice_lookup(struct ofproto *, const char *target); static int ofservice_create(struct ofproto *, const struct ofproto_controller *); static void ofservice_reconfigure(struct ofservice *, const struct ofproto_controller *); static void ofservice_destroy(struct ofproto *, struct ofservice *); /* An OpenFlow connection. */ struct ofconn { struct ofproto *ofproto; /* The ofproto that owns this connection. */ struct list node; /* In struct ofproto's "all_conns" list. */ struct rconn *rconn; /* OpenFlow connection. */ enum ofconn_type type; /* Type. */ /* OFPT_PACKET_IN related data. */ struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */ struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */ struct pktbuf *pktbuf; /* OpenFlow packet buffers. */ int miss_send_len; /* Bytes to send of buffered packets. */ /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow * requests, and the maximum number before we stop reading OpenFlow * requests. */ #define OFCONN_REPLY_MAX 100 struct rconn_packet_counter *reply_counter; /* type == OFCONN_PRIMARY only. */ enum nx_role role; /* Role. */ struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */ struct discovery *discovery; /* Controller discovery object, if enabled. */ struct status_category *ss; /* Switch status category. */ enum ofproto_band band; /* In-band or out-of-band? */ }; /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's * "schedulers" array. Their values are 0 and 1, and their meanings and values * coincide with _ODPL_MISS_NR and _ODPL_ACTION_NR, so this is convenient. In * case anything ever changes, check their values here. */ #define N_SCHEDULERS 2 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0); BUILD_ASSERT_DECL(OFPR_NO_MATCH == _ODPL_MISS_NR); BUILD_ASSERT_DECL(OFPR_ACTION == 1); BUILD_ASSERT_DECL(OFPR_ACTION == _ODPL_ACTION_NR); static struct ofconn *ofconn_create(struct ofproto *, struct rconn *, enum ofconn_type); static void ofconn_destroy(struct ofconn *); static void ofconn_run(struct ofconn *, struct ofproto *); static void ofconn_wait(struct ofconn *); static bool ofconn_receives_async_msgs(const struct ofconn *); static char *ofconn_make_name(const struct ofproto *, const char *target); static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst); static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn, struct rconn_packet_counter *counter); static void send_packet_in(struct ofproto *, struct ofpbuf *odp_msg); static void do_send_packet_in(struct ofpbuf *odp_msg, void *ofconn); struct ofproto { /* Settings. */ uint64_t datapath_id; /* Datapath ID. */ uint64_t fallback_dpid; /* Datapath ID if no better choice found. */ char *mfr_desc; /* Manufacturer. */ char *hw_desc; /* Hardware. */ char *sw_desc; /* Software version. */ char *serial_desc; /* Serial number. */ char *dp_desc; /* Datapath description. */ /* Datapath. */ struct dpif *dpif; struct netdev_monitor *netdev_monitor; struct port_array ports; /* Index is ODP port nr; ofport->opp.port_no is * OFP port nr. */ struct shash port_by_name; uint32_t max_ports; /* Configuration. */ struct switch_status *switch_status; struct fail_open *fail_open; struct netflow *netflow; struct ofproto_sflow *sflow; /* In-band control. */ struct in_band *in_band; long long int next_in_band_update; struct sockaddr_in *extra_in_band_remotes; size_t n_extra_remotes; /* Flow table. */ struct classifier cls; bool need_revalidate; long long int next_expiration; struct tag_set revalidate_set; bool tun_id_from_cookie; /* OpenFlow connections. */ struct hmap controllers; /* Controller "struct ofconn"s. */ struct list all_conns; /* Contains "struct ofconn"s. */ enum ofproto_fail_mode fail_mode; /* OpenFlow listeners. */ struct hmap services; /* Contains "struct ofservice"s. */ struct pvconn **snoops; size_t n_snoops; /* Hooks for ovs-vswitchd. */ const struct ofhooks *ofhooks; void *aux; /* Used by default ofhooks. */ struct mac_learning *ml; }; static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); static const struct ofhooks default_ofhooks; static uint64_t pick_datapath_id(const struct ofproto *); static uint64_t pick_fallback_dpid(void); static void update_used(struct ofproto *); static void update_stats(struct ofproto *, struct rule *, const struct odp_flow_stats *); static void expire_rule(struct cls_rule *, void *ofproto); static void active_timeout(struct ofproto *ofproto, struct rule *rule); static bool revalidate_rule(struct ofproto *p, struct rule *rule); static void revalidate_cb(struct cls_rule *rule_, void *p_); static void handle_odp_msg(struct ofproto *, struct ofpbuf *); static void handle_openflow(struct ofconn *, struct ofproto *, struct ofpbuf *); static void refresh_port_groups(struct ofproto *); static void update_port(struct ofproto *, const char *devname); static int init_ports(struct ofproto *); static void reinit_ports(struct ofproto *); int ofproto_create(const char *datapath, const char *datapath_type, const struct ofhooks *ofhooks, void *aux, struct ofproto **ofprotop) { struct odp_stats stats; struct ofproto *p; struct dpif *dpif; int error; *ofprotop = NULL; /* Connect to datapath and start listening for messages. */ error = dpif_open(datapath, datapath_type, &dpif); if (error) { VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error)); return error; } error = dpif_get_dp_stats(dpif, &stats); if (error) { VLOG_ERR("failed to obtain stats for datapath %s: %s", datapath, strerror(error)); dpif_close(dpif); return error; } error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW); if (error) { VLOG_ERR("failed to listen on datapath %s: %s", datapath, strerror(error)); dpif_close(dpif); return error; } dpif_flow_flush(dpif); dpif_recv_purge(dpif); /* Initialize settings. */ p = xzalloc(sizeof *p); p->fallback_dpid = pick_fallback_dpid(); p->datapath_id = p->fallback_dpid; p->mfr_desc = xstrdup(DEFAULT_MFR_DESC); p->hw_desc = xstrdup(DEFAULT_HW_DESC); p->sw_desc = xstrdup(DEFAULT_SW_DESC); p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC); p->dp_desc = xstrdup(DEFAULT_DP_DESC); /* Initialize datapath. */ p->dpif = dpif; p->netdev_monitor = netdev_monitor_create(); port_array_init(&p->ports); shash_init(&p->port_by_name); p->max_ports = stats.max_ports; /* Initialize submodules. */ p->switch_status = switch_status_create(p); p->in_band = NULL; p->fail_open = NULL; p->netflow = NULL; p->sflow = NULL; /* Initialize flow table. */ classifier_init(&p->cls); p->need_revalidate = false; p->next_expiration = time_msec() + 1000; tag_set_init(&p->revalidate_set); /* Initialize OpenFlow connections. */ list_init(&p->all_conns); hmap_init(&p->controllers); hmap_init(&p->services); p->snoops = NULL; p->n_snoops = 0; /* Initialize hooks. */ if (ofhooks) { p->ofhooks = ofhooks; p->aux = aux; p->ml = NULL; } else { p->ofhooks = &default_ofhooks; p->aux = p; p->ml = mac_learning_create(); } /* Pick final datapath ID. */ p->datapath_id = pick_datapath_id(p); VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id); *ofprotop = p; return 0; } void ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id) { uint64_t old_dpid = p->datapath_id; p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p); if (p->datapath_id != old_dpid) { VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id); /* Force all active connections to reconnect, since there is no way to * notify a controller that the datapath ID has changed. */ ofproto_reconnect_controllers(p); } } static bool is_discovery_controller(const struct ofproto_controller *c) { return !strcmp(c->target, "discover"); } static bool is_in_band_controller(const struct ofproto_controller *c) { return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND; } /* Creates a new controller in 'ofproto'. Some of the settings are initially * drawn from 'c', but update_controller() needs to be called later to finish * the new ofconn's configuration. */ static void add_controller(struct ofproto *ofproto, const struct ofproto_controller *c) { struct discovery *discovery; struct ofconn *ofconn; if (is_discovery_controller(c)) { int error = discovery_create(c->accept_re, c->update_resolv_conf, ofproto->dpif, ofproto->switch_status, &discovery); if (error) { return; } } else { discovery = NULL; } ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY); ofconn->pktbuf = pktbuf_create(); ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN; if (discovery) { ofconn->discovery = discovery; } else { char *name = ofconn_make_name(ofproto, c->target); rconn_connect(ofconn->rconn, c->target, name); free(name); } hmap_insert(&ofproto->controllers, &ofconn->hmap_node, hash_string(c->target, 0)); } /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's * target or turn discovery on or off (these are done by creating new ofconns * and deleting old ones), but it can update the rest of an ofconn's * settings. */ static void update_controller(struct ofconn *ofconn, const struct ofproto_controller *c) { int probe_interval; ofconn->band = (is_in_band_controller(c) ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND); rconn_set_max_backoff(ofconn->rconn, c->max_backoff); probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0; rconn_set_probe_interval(ofconn->rconn, probe_interval); if (ofconn->discovery) { discovery_set_update_resolv_conf(ofconn->discovery, c->update_resolv_conf); discovery_set_accept_controller_re(ofconn->discovery, c->accept_re); } ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit); } static const char * ofconn_get_target(const struct ofconn *ofconn) { return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn); } static struct ofconn * find_controller_by_target(struct ofproto *ofproto, const char *target) { struct ofconn *ofconn; HMAP_FOR_EACH_WITH_HASH (ofconn, struct ofconn, hmap_node, hash_string(target, 0), &ofproto->controllers) { if (!strcmp(ofconn_get_target(ofconn), target)) { return ofconn; } } return NULL; } static void update_in_band_remotes(struct ofproto *ofproto) { const struct ofconn *ofconn; struct sockaddr_in *addrs; size_t max_addrs, n_addrs; bool discovery; size_t i; /* Allocate enough memory for as many remotes as we could possibly have. */ max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers); addrs = xmalloc(max_addrs * sizeof *addrs); n_addrs = 0; /* Add all the remotes. */ discovery = false; HMAP_FOR_EACH (ofconn, struct ofconn, hmap_node, &ofproto->controllers) { struct sockaddr_in *sin = &addrs[n_addrs]; if (ofconn->band == OFPROTO_OUT_OF_BAND) { continue; } sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn); if (sin->sin_addr.s_addr) { sin->sin_port = rconn_get_remote_port(ofconn->rconn); n_addrs++; } if (ofconn->discovery) { discovery = true; } } for (i = 0; i < ofproto->n_extra_remotes; i++) { addrs[n_addrs++] = ofproto->extra_in_band_remotes[i]; } /* Create or update or destroy in-band. * * Ordinarily we only enable in-band if there's at least one remote * address, but discovery needs the in-band rules for DHCP to be installed * even before we know any remote addresses. */ if (n_addrs || discovery) { if (!ofproto->in_band) { in_band_create(ofproto, ofproto->dpif, ofproto->switch_status, &ofproto->in_band); } if (ofproto->in_band) { in_band_set_remotes(ofproto->in_band, addrs, n_addrs); } ofproto->next_in_band_update = time_msec() + 1000; } else { in_band_destroy(ofproto->in_band); ofproto->in_band = NULL; } /* Clean up. */ free(addrs); } static void update_fail_open(struct ofproto *p) { struct ofconn *ofconn; if (!hmap_is_empty(&p->controllers) && p->fail_mode == OFPROTO_FAIL_STANDALONE) { struct rconn **rconns; size_t n; if (!p->fail_open) { p->fail_open = fail_open_create(p, p->switch_status); } n = 0; rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns); HMAP_FOR_EACH (ofconn, struct ofconn, hmap_node, &p->controllers) { rconns[n++] = ofconn->rconn; } fail_open_set_controllers(p->fail_open, rconns, n); /* p->fail_open takes ownership of 'rconns'. */ } else { fail_open_destroy(p->fail_open); p->fail_open = NULL; } } void ofproto_set_controllers(struct ofproto *p, const struct ofproto_controller *controllers, size_t n_controllers) { struct shash new_controllers; struct ofconn *ofconn, *next_ofconn; struct ofservice *ofservice, *next_ofservice; bool ss_exists; size_t i; /* Create newly configured controllers and services. * Create a name to ofproto_controller mapping in 'new_controllers'. */ shash_init(&new_controllers); for (i = 0; i < n_controllers; i++) { const struct ofproto_controller *c = &controllers[i]; if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) { if (!find_controller_by_target(p, c->target)) { add_controller(p, c); } } else if (!pvconn_verify_name(c->target)) { if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) { continue; } } else { VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"", dpif_name(p->dpif), c->target); continue; } shash_add_once(&new_controllers, c->target, &controllers[i]); } /* Delete controllers that are no longer configured. * Update configuration of all now-existing controllers. */ ss_exists = false; HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, hmap_node, &p->controllers) { struct ofproto_controller *c; c = shash_find_data(&new_controllers, ofconn_get_target(ofconn)); if (!c) { ofconn_destroy(ofconn); } else { update_controller(ofconn, c); if (ofconn->ss) { ss_exists = true; } } } /* Delete services that are no longer configured. * Update configuration of all now-existing services. */ HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, struct ofservice, node, &p->services) { struct ofproto_controller *c; c = shash_find_data(&new_controllers, pvconn_get_name(ofservice->pvconn)); if (!c) { ofservice_destroy(p, ofservice); } else { ofservice_reconfigure(ofservice, c); } } shash_destroy(&new_controllers); update_in_band_remotes(p); update_fail_open(p); if (!hmap_is_empty(&p->controllers) && !ss_exists) { ofconn = CONTAINER_OF(hmap_first(&p->controllers), struct ofconn, hmap_node); ofconn->ss = switch_status_register(p->switch_status, "remote", rconn_status_cb, ofconn->rconn); } } void ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode) { p->fail_mode = fail_mode; update_fail_open(p); } /* Drops the connections between 'ofproto' and all of its controllers, forcing * them to reconnect. */ void ofproto_reconnect_controllers(struct ofproto *ofproto) { struct ofconn *ofconn; LIST_FOR_EACH (ofconn, struct ofconn, node, &ofproto->all_conns) { rconn_reconnect(ofconn->rconn); } } static bool any_extras_changed(const struct ofproto *ofproto, const struct sockaddr_in *extras, size_t n) { size_t i; if (n != ofproto->n_extra_remotes) { return true; } for (i = 0; i < n; i++) { const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i]; const struct sockaddr_in *new = &extras[i]; if (old->sin_addr.s_addr != new->sin_addr.s_addr || old->sin_port != new->sin_port) { return true; } } return false; } /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s * in-band control should guarantee access, in the same way that in-band * control guarantees access to OpenFlow controllers. */ void ofproto_set_extra_in_band_remotes(struct ofproto *ofproto, const struct sockaddr_in *extras, size_t n) { if (!any_extras_changed(ofproto, extras, n)) { return; } free(ofproto->extra_in_band_remotes); ofproto->n_extra_remotes = n; ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras); update_in_band_remotes(ofproto); } void ofproto_set_desc(struct ofproto *p, const char *mfr_desc, const char *hw_desc, const char *sw_desc, const char *serial_desc, const char *dp_desc) { struct ofp_desc_stats *ods; if (mfr_desc) { if (strlen(mfr_desc) >= sizeof ods->mfr_desc) { VLOG_WARN("truncating mfr_desc, must be less than %zu characters", sizeof ods->mfr_desc); } free(p->mfr_desc); p->mfr_desc = xstrdup(mfr_desc); } if (hw_desc) { if (strlen(hw_desc) >= sizeof ods->hw_desc) { VLOG_WARN("truncating hw_desc, must be less than %zu characters", sizeof ods->hw_desc); } free(p->hw_desc); p->hw_desc = xstrdup(hw_desc); } if (sw_desc) { if (strlen(sw_desc) >= sizeof ods->sw_desc) { VLOG_WARN("truncating sw_desc, must be less than %zu characters", sizeof ods->sw_desc); } free(p->sw_desc); p->sw_desc = xstrdup(sw_desc); } if (serial_desc) { if (strlen(serial_desc) >= sizeof ods->serial_num) { VLOG_WARN("truncating serial_desc, must be less than %zu " "characters", sizeof ods->serial_num); } free(p->serial_desc); p->serial_desc = xstrdup(serial_desc); } if (dp_desc) { if (strlen(dp_desc) >= sizeof ods->dp_desc) { VLOG_WARN("truncating dp_desc, must be less than %zu characters", sizeof ods->dp_desc); } free(p->dp_desc); p->dp_desc = xstrdup(dp_desc); } } static int set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp, const struct svec *svec) { struct pvconn **pvconns = *pvconnsp; size_t n_pvconns = *n_pvconnsp; int retval = 0; size_t i; for (i = 0; i < n_pvconns; i++) { pvconn_close(pvconns[i]); } free(pvconns); pvconns = xmalloc(svec->n * sizeof *pvconns); n_pvconns = 0; for (i = 0; i < svec->n; i++) { const char *name = svec->names[i]; struct pvconn *pvconn; int error; error = pvconn_open(name, &pvconn); if (!error) { pvconns[n_pvconns++] = pvconn; } else { VLOG_ERR("failed to listen on %s: %s", name, strerror(error)); if (!retval) { retval = error; } } } *pvconnsp = pvconns; *n_pvconnsp = n_pvconns; return retval; } int ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops) { return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops); } int ofproto_set_netflow(struct ofproto *ofproto, const struct netflow_options *nf_options) { if (nf_options && nf_options->collectors.n) { if (!ofproto->netflow) { ofproto->netflow = netflow_create(); } return netflow_set_options(ofproto->netflow, nf_options); } else { netflow_destroy(ofproto->netflow); ofproto->netflow = NULL; return 0; } } void ofproto_set_sflow(struct ofproto *ofproto, const struct ofproto_sflow_options *oso) { struct ofproto_sflow *os = ofproto->sflow; if (oso) { if (!os) { struct ofport *ofport; unsigned int odp_port; os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif); refresh_port_groups(ofproto); PORT_ARRAY_FOR_EACH (ofport, &ofproto->ports, odp_port) { ofproto_sflow_add_port(os, odp_port, netdev_get_name(ofport->netdev)); } } ofproto_sflow_set_options(os, oso); } else { ofproto_sflow_destroy(os); ofproto->sflow = NULL; } } uint64_t ofproto_get_datapath_id(const struct ofproto *ofproto) { return ofproto->datapath_id; } bool ofproto_has_primary_controller(const struct ofproto *ofproto) { return !hmap_is_empty(&ofproto->controllers); } enum ofproto_fail_mode ofproto_get_fail_mode(const struct ofproto *p) { return p->fail_mode; } void ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops) { size_t i; for (i = 0; i < ofproto->n_snoops; i++) { svec_add(snoops, pvconn_get_name(ofproto->snoops[i])); } } void ofproto_destroy(struct ofproto *p) { struct ofservice *ofservice, *next_ofservice; struct ofconn *ofconn, *next_ofconn; struct ofport *ofport; unsigned int port_no; size_t i; if (!p) { return; } /* Destroy fail-open and in-band early, since they touch the classifier. */ fail_open_destroy(p->fail_open); p->fail_open = NULL; in_band_destroy(p->in_band); p->in_band = NULL; free(p->extra_in_band_remotes); ofproto_flush_flows(p); classifier_destroy(&p->cls); LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node, &p->all_conns) { ofconn_destroy(ofconn); } hmap_destroy(&p->controllers); dpif_close(p->dpif); netdev_monitor_destroy(p->netdev_monitor); PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) { ofport_free(ofport); } shash_destroy(&p->port_by_name); switch_status_destroy(p->switch_status); netflow_destroy(p->netflow); ofproto_sflow_destroy(p->sflow); HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, struct ofservice, node, &p->services) { ofservice_destroy(p, ofservice); } hmap_destroy(&p->services); for (i = 0; i < p->n_snoops; i++) { pvconn_close(p->snoops[i]); } free(p->snoops); mac_learning_destroy(p->ml); free(p->mfr_desc); free(p->hw_desc); free(p->sw_desc); free(p->serial_desc); free(p->dp_desc); port_array_destroy(&p->ports); free(p); } int ofproto_run(struct ofproto *p) { /* handle protocol messages coming from the datapath */ int error = ofproto_run1(p); if (!error) { error = ofproto_run2(p, false); } return error; } static void process_port_change(struct ofproto *ofproto, int error, char *devname) { if (error == ENOBUFS) { reinit_ports(ofproto); } else if (!error) { update_port(ofproto, devname); free(devname); } } /* Returns a "preference level" for snooping 'ofconn'. A higher return value * means that 'ofconn' is more interesting for monitoring than a lower return * value. */ static int snoop_preference(const struct ofconn *ofconn) { switch (ofconn->role) { case NX_ROLE_MASTER: return 3; case NX_ROLE_OTHER: return 2; case NX_ROLE_SLAVE: return 1; default: /* Shouldn't happen. */ return 0; } } /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'. * Connects this vconn to a controller. */ static void add_snooper(struct ofproto *ofproto, struct vconn *vconn) { struct ofconn *ofconn, *best; /* Pick a controller for monitoring. */ best = NULL; LIST_FOR_EACH (ofconn, struct ofconn, node, &ofproto->all_conns) { if (ofconn->type == OFCONN_PRIMARY && (!best || snoop_preference(ofconn) > snoop_preference(best))) { best = ofconn; } } if (best) { rconn_add_monitor(best->rconn, vconn); } else { VLOG_INFO_RL(&rl, "no controller connection to snoop"); vconn_close(vconn); } } /* * Calls the netdevice dpif_netdev_recv() callback, * that read a protocol packet from the dpif queue * and handle the message */ int ofproto_run1(struct ofproto *p) { struct ofconn *ofconn, *next_ofconn; struct ofservice *ofservice; char *devname; int error; int i; if (shash_is_empty(&p->port_by_name)) { init_ports(p); } for (i = 0; i < 50; i++) { struct ofpbuf *buf; int error; error = dpif_recv(p->dpif, &buf); if (error) { if (error == ENODEV) { /* Someone destroyed the datapath behind our back. The caller * better destroy us and give up, because we're just going to * spin from here on out. */ static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally", dpif_name(p->dpif)); return ENODEV; } break; } handle_odp_msg(p, buf); } while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) { process_port_change(p, error, devname); } while ((error = netdev_monitor_poll(p->netdev_monitor, &devname)) != EAGAIN) { process_port_change(p, error, devname); } if (p->in_band) { if (time_msec() >= p->next_in_band_update) { update_in_band_remotes(p); } in_band_run(p->in_band); } LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node, &p->all_conns) { ofconn_run(ofconn, p); } /* Fail-open maintenance. Do this after processing the ofconns since * fail-open checks the status of the controller rconn. */ if (p->fail_open) { fail_open_run(p->fail_open); } HMAP_FOR_EACH (ofservice, struct ofservice, node, &p->services) { struct vconn *vconn; int retval; retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn); if (!retval) { struct ofconn *ofconn; struct rconn *rconn; char *name; rconn = rconn_create(ofservice->probe_interval, 0); name = ofconn_make_name(p, vconn_get_name(vconn)); rconn_connect_unreliably(rconn, vconn, name); free(name); ofconn = ofconn_create(p, rconn, OFCONN_SERVICE); ofconn_set_rate_limit(ofconn, ofservice->rate_limit, ofservice->burst_limit); } else if (retval != EAGAIN) { VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval)); } } for (i = 0; i < p->n_snoops; i++) { struct vconn *vconn; int retval; retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn); if (!retval) { add_snooper(p, vconn); } else if (retval != EAGAIN) { VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval)); } } if (time_msec() >= p->next_expiration) { COVERAGE_INC(ofproto_expiration); p->next_expiration = time_msec() + 1000; update_used(p); classifier_for_each(&p->cls, CLS_INC_ALL, expire_rule, p); /* Let the hook know that we're at a stable point: all outstanding data * in existing flows has been accounted to the account_cb. Thus, the * hook can now reasonably do operations that depend on having accurate * flow volume accounting (currently, that's just bond rebalancing). */ if (p->ofhooks->account_checkpoint_cb) { p->ofhooks->account_checkpoint_cb(p->aux); } } if (p->netflow) { netflow_run(p->netflow); } if (p->sflow) { ofproto_sflow_run(p->sflow); } return 0; } struct revalidate_cbdata { struct ofproto *ofproto; bool revalidate_all; /* Revalidate all exact-match rules? */ bool revalidate_subrules; /* Revalidate all exact-match subrules? */ struct tag_set revalidate_set; /* Set of tags to revalidate. */ }; int ofproto_run2(struct ofproto *p, bool revalidate_all) { if (p->need_revalidate || revalidate_all || !tag_set_is_empty(&p->revalidate_set)) { struct revalidate_cbdata cbdata; cbdata.ofproto = p; cbdata.revalidate_all = revalidate_all; cbdata.revalidate_subrules = p->need_revalidate; cbdata.revalidate_set = p->revalidate_set; tag_set_init(&p->revalidate_set); COVERAGE_INC(ofproto_revalidate); classifier_for_each(&p->cls, CLS_INC_EXACT, revalidate_cb, &cbdata); p->need_revalidate = false; } return 0; } void ofproto_wait(struct ofproto *p) { struct ofservice *ofservice; struct ofconn *ofconn; size_t i; dpif_recv_wait(p->dpif); dpif_port_poll_wait(p->dpif); netdev_monitor_poll_wait(p->netdev_monitor); LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) { ofconn_wait(ofconn); } if (p->in_band) { poll_timer_wait_until(p->next_in_band_update); in_band_wait(p->in_band); } if (p->fail_open) { fail_open_wait(p->fail_open); } if (p->sflow) { ofproto_sflow_wait(p->sflow); } if (!tag_set_is_empty(&p->revalidate_set)) { poll_immediate_wake(); } if (p->need_revalidate) { /* Shouldn't happen, but if it does just go around again. */ VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()"); poll_immediate_wake(); } else if (p->next_expiration != LLONG_MAX) { poll_timer_wait_until(p->next_expiration); } HMAP_FOR_EACH (ofservice, struct ofservice, node, &p->services) { pvconn_wait(ofservice->pvconn); } for (i = 0; i < p->n_snoops; i++) { pvconn_wait(p->snoops[i]); } } void ofproto_revalidate(struct ofproto *ofproto, tag_type tag) { tag_set_add(&ofproto->revalidate_set, tag); } struct tag_set * ofproto_get_revalidate_set(struct ofproto *ofproto) { return &ofproto->revalidate_set; } bool ofproto_is_alive(const struct ofproto *p) { return !hmap_is_empty(&p->controllers); } int ofproto_send_packet(struct ofproto *p, const flow_t *flow, const union ofp_action *actions, size_t n_actions, const struct ofpbuf *packet) { struct odp_actions odp_actions; int error; error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions, NULL, NULL, NULL); if (error) { return error; } /* XXX Should we translate the dpif_execute() errno value into an OpenFlow * error code? */ fprintf(stderr, "OFPROTO EXECUTE\n"); dpif_execute(p->dpif, flow->in_port, odp_actions.actions, odp_actions.n_actions, packet); return 0; } void ofproto_add_flow(struct ofproto *p, const flow_t *flow, uint32_t wildcards, unsigned int priority, const union ofp_action *actions, size_t n_actions, int idle_timeout) { struct rule *rule; rule = rule_create(p, NULL, actions, n_actions, idle_timeout >= 0 ? idle_timeout : 5 /* XXX */, 0, 0, false); cls_rule_from_flow(flow, wildcards, priority, &rule->cr); rule_insert(p, rule, NULL, 0); } void ofproto_delete_flow(struct ofproto *ofproto, const flow_t *flow, uint32_t wildcards, unsigned int priority) { struct rule *rule; rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls, flow, wildcards, priority)); if (rule) { rule_remove(ofproto, rule); } } static void destroy_rule(struct cls_rule *rule_, void *ofproto_) { struct rule *rule = rule_from_cls_rule(rule_); struct ofproto *ofproto = ofproto_; /* Mark the flow as not installed, even though it might really be * installed, so that rule_remove() doesn't bother trying to uninstall it. * There is no point in uninstalling it individually since we are about to * blow away all the flows with dpif_flow_flush(). */ rule->installed = false; rule_remove(ofproto, rule); } void ofproto_flush_flows(struct ofproto *ofproto) { COVERAGE_INC(ofproto_flush); classifier_for_each(&ofproto->cls, CLS_INC_ALL, destroy_rule, ofproto); dpif_flow_flush(ofproto->dpif); if (ofproto->in_band) { in_band_flushed(ofproto->in_band); } if (ofproto->fail_open) { fail_open_flushed(ofproto->fail_open); } } static void reinit_ports(struct ofproto *p) { struct svec devnames; struct ofport *ofport; unsigned int port_no; struct odp_port *odp_ports; size_t n_odp_ports; size_t i; svec_init(&devnames); PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) { svec_add (&devnames, (char *) ofport->opp.name); } dpif_port_list(p->dpif, &odp_ports, &n_odp_ports); for (i = 0; i < n_odp_ports; i++) { svec_add (&devnames, odp_ports[i].devname); } free(odp_ports); svec_sort_unique(&devnames); for (i = 0; i < devnames.n; i++) { update_port(p, devnames.names[i]); } svec_destroy(&devnames); } static size_t refresh_port_group(struct ofproto *p, unsigned int group) { uint16_t *ports; size_t n_ports; struct ofport *port; unsigned int port_no; assert(group == DP_GROUP_ALL || group == DP_GROUP_FLOOD); ports = xmalloc(port_array_count(&p->ports) * sizeof *ports); n_ports = 0; PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) { if (group == DP_GROUP_ALL || !(port->opp.config & OFPPC_NO_FLOOD)) { ports[n_ports++] = port_no; } } dpif_port_group_set(p->dpif, group, ports, n_ports); free(ports); return n_ports; } static void refresh_port_groups(struct ofproto *p) { size_t n_flood = refresh_port_group(p, DP_GROUP_FLOOD); size_t n_all = refresh_port_group(p, DP_GROUP_ALL); if (p->sflow) { ofproto_sflow_set_group_sizes(p->sflow, n_flood, n_all); } } static struct ofport * make_ofport(const struct odp_port *odp_port) { struct netdev_options netdev_options; enum netdev_flags flags; struct ofport *ofport; struct netdev *netdev; bool carrier; int error; memset(&netdev_options, 0, sizeof netdev_options); netdev_options.name = odp_port->devname; netdev_options.ethertype = NETDEV_ETH_TYPE_NONE; error = netdev_open(&netdev_options, &netdev); if (error) { VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s " "cannot be opened (%s)", odp_port->devname, odp_port->port, odp_port->devname, strerror(error)); return NULL; } ofport = xmalloc(sizeof *ofport); ofport->netdev = netdev; ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port); netdev_get_etheraddr(netdev, ofport->opp.hw_addr); memcpy(ofport->opp.name, odp_port->devname, MIN(sizeof ofport->opp.name, sizeof odp_port->devname)); ofport->opp.name[sizeof ofport->opp.name - 1] = '\0'; netdev_get_flags(netdev, &flags); ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN; netdev_get_carrier(netdev, &carrier); ofport->opp.state = carrier ? 0 : OFPPS_LINK_DOWN; netdev_get_features(netdev, &ofport->opp.curr, &ofport->opp.advertised, &ofport->opp.supported, &ofport->opp.peer); return ofport; } static bool ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port) { if (port_array_get(&p->ports, odp_port->port)) { VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath", odp_port->port); return true; } else if (shash_find(&p->port_by_name, odp_port->devname)) { VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath", odp_port->devname); return true; } else { return false; } } static int ofport_equal(const struct ofport *a_, const struct ofport *b_) { const struct ofp_phy_port *a = &a_->opp; const struct ofp_phy_port *b = &b_->opp; BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */ return (a->port_no == b->port_no && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr) && !strcmp((char *) a->name, (char *) b->name) && a->state == b->state && a->config == b->config && a->curr == b->curr && a->advertised == b->advertised && a->supported == b->supported && a->peer == b->peer); } static void send_port_status(struct ofproto *p, const struct ofport *ofport, uint8_t reason) { /* XXX Should limit the number of queued port status change messages. */ struct ofconn *ofconn; LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) { struct ofp_port_status *ops; struct ofpbuf *b; if (!ofconn_receives_async_msgs(ofconn)) { continue; } ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b); ops->reason = reason; ops->desc = ofport->opp; hton_ofp_phy_port(&ops->desc); queue_tx(b, ofconn, NULL); } if (p->ofhooks->port_changed_cb) { p->ofhooks->port_changed_cb(reason, &ofport->opp, p->aux); } } static void ofport_install(struct ofproto *p, struct ofport *ofport) { uint16_t odp_port = ofp_port_to_odp_port(ofport->opp.port_no); const char *netdev_name = (const char *) ofport->opp.name; netdev_monitor_add(p->netdev_monitor, ofport->netdev); port_array_set(&p->ports, odp_port, ofport); shash_add(&p->port_by_name, netdev_name, ofport); if (p->sflow) { ofproto_sflow_add_port(p->sflow, odp_port, netdev_name); } } static void ofport_remove(struct ofproto *p, struct ofport *ofport) { uint16_t odp_port = ofp_port_to_odp_port(ofport->opp.port_no); netdev_monitor_remove(p->netdev_monitor, ofport->netdev); port_array_delete(&p->ports, odp_port); shash_delete(&p->port_by_name, shash_find(&p->port_by_name, (char *) ofport->opp.name)); if (p->sflow) { ofproto_sflow_del_port(p->sflow, odp_port); } } static void ofport_free(struct ofport *ofport) { if (ofport) { netdev_close(ofport->netdev); free(ofport); } } static void update_port(struct ofproto *p, const char *devname) { struct odp_port odp_port; struct ofport *old_ofport; struct ofport *new_ofport; int error; COVERAGE_INC(ofproto_update_port); /* Query the datapath for port information. */ error = dpif_port_query_by_name(p->dpif, devname, &odp_port); /* Find the old ofport. */ old_ofport = shash_find_data(&p->port_by_name, devname); if (!error) { if (!old_ofport) { /* There's no port named 'devname' but there might be a port with * the same port number. This could happen if a port is deleted * and then a new one added in its place very quickly, or if a port * is renamed. In the former case we want to send an OFPPR_DELETE * and an OFPPR_ADD, and in the latter case we want to send a * single OFPPR_MODIFY. We can distinguish the cases by comparing * the old port's ifindex against the new port, or perhaps less * reliably but more portably by comparing the old port's MAC * against the new port's MAC. However, this code isn't that smart * and always sends an OFPPR_MODIFY (XXX). */ old_ofport = port_array_get(&p->ports, odp_port.port); } } else if (error != ENOENT && error != ENODEV) { VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error " "%s", strerror(error)); return; } /* Create a new ofport. */ new_ofport = !error ? make_ofport(&odp_port) : NULL; /* Eliminate a few pathological cases. */ if (!old_ofport && !new_ofport) { return; } else if (old_ofport && new_ofport) { /* Most of the 'config' bits are OpenFlow soft state, but * OFPPC_PORT_DOWN is maintained the kernel. So transfer the OpenFlow * bits from old_ofport. (make_ofport() only sets OFPPC_PORT_DOWN and * leaves the other bits 0.) */ new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN; if (ofport_equal(old_ofport, new_ofport)) { /* False alarm--no change. */ ofport_free(new_ofport); return; } } /* Now deal with the normal cases. */ if (old_ofport) { ofport_remove(p, old_ofport); } if (new_ofport) { ofport_install(p, new_ofport); } send_port_status(p, new_ofport ? new_ofport : old_ofport, (!old_ofport ? OFPPR_ADD : !new_ofport ? OFPPR_DELETE : OFPPR_MODIFY)); ofport_free(old_ofport); /* Update port groups. */ refresh_port_groups(p); } static int init_ports(struct ofproto *p) { struct odp_port *ports; size_t n_ports; size_t i; int error; error = dpif_port_list(p->dpif, &ports, &n_ports); if (error) { return error; } for (i = 0; i < n_ports; i++) { const struct odp_port *odp_port = &ports[i]; if (!ofport_conflicts(p, odp_port)) { struct ofport *ofport = make_ofport(odp_port); if (ofport) { ofport_install(p, ofport); } } } free(ports); refresh_port_groups(p); return 0; } static struct ofconn * ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type) { struct ofconn *ofconn = xzalloc(sizeof *ofconn); ofconn->ofproto = p; list_push_back(&p->all_conns, &ofconn->node); ofconn->rconn = rconn; ofconn->type = type; ofconn->role = NX_ROLE_OTHER; ofconn->packet_in_counter = rconn_packet_counter_create (); ofconn->pktbuf = NULL; ofconn->miss_send_len = 0; ofconn->reply_counter = rconn_packet_counter_create (); return ofconn; } static void ofconn_destroy(struct ofconn *ofconn) { if (ofconn->type == OFCONN_PRIMARY) { hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node); } discovery_destroy(ofconn->discovery); list_remove(&ofconn->node); switch_status_unregister(ofconn->ss); rconn_destroy(ofconn->rconn); rconn_packet_counter_destroy(ofconn->packet_in_counter); rconn_packet_counter_destroy(ofconn->reply_counter); pktbuf_destroy(ofconn->pktbuf); free(ofconn); } static void ofconn_run(struct ofconn *ofconn, struct ofproto *p) { int iteration; size_t i; if (ofconn->discovery) { char *controller_name; if (rconn_is_connectivity_questionable(ofconn->rconn)) { discovery_question_connectivity(ofconn->discovery); } if (discovery_run(ofconn->discovery, &controller_name)) { if (controller_name) { char *ofconn_name = ofconn_make_name(p, controller_name); rconn_connect(ofconn->rconn, controller_name, ofconn_name); free(ofconn_name); } else { rconn_disconnect(ofconn->rconn); } } } for (i = 0; i < N_SCHEDULERS; i++) { pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn); } rconn_run(ofconn->rconn); if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) { /* Limit the number of iterations to prevent other tasks from * starving. */ for (iteration = 0; iteration < 50; iteration++) { struct ofpbuf *of_msg = rconn_recv(ofconn->rconn); if (!of_msg) { break; } if (p->fail_open) { fail_open_maybe_recover(p->fail_open); } handle_openflow(ofconn, p, of_msg); ofpbuf_delete(of_msg); } } if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) { ofconn_destroy(ofconn); } } static void ofconn_wait(struct ofconn *ofconn) { int i; if (ofconn->discovery) { discovery_wait(ofconn->discovery); } for (i = 0; i < N_SCHEDULERS; i++) { pinsched_wait(ofconn->schedulers[i]); } rconn_run_wait(ofconn->rconn); if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) { rconn_recv_wait(ofconn->rconn); } else { COVERAGE_INC(ofproto_ofconn_stuck); } } /* Returns true if 'ofconn' should receive asynchronous messages. */ static bool ofconn_receives_async_msgs(const struct ofconn *ofconn) { if (ofconn->type == OFCONN_PRIMARY) { /* Primary controllers always get asynchronous messages unless they * have configured themselves as "slaves". */ return ofconn->role != NX_ROLE_SLAVE; } else { /* Service connections don't get asynchronous messages unless they have * explicitly asked for them by setting a nonzero miss send length. */ return ofconn->miss_send_len > 0; } } /* Returns a human-readable name for an OpenFlow connection between 'ofproto' * and 'target', suitable for use in log messages for identifying the * connection. * * The name is dynamically allocated. The caller should free it (with free()) * when it is no longer needed. */ static char * ofconn_make_name(const struct ofproto *ofproto, const char *target) { return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target); } static void ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst) { int i; for (i = 0; i < N_SCHEDULERS; i++) { struct pinsched **s = &ofconn->schedulers[i]; if (rate > 0) { if (!*s) { *s = pinsched_create(rate, burst, ofconn->ofproto->switch_status); } else { pinsched_set_limits(*s, rate, burst); } } else { pinsched_destroy(*s); *s = NULL; } } } static void ofservice_reconfigure(struct ofservice *ofservice, const struct ofproto_controller *c) { ofservice->probe_interval = c->probe_interval; ofservice->rate_limit = c->rate_limit; ofservice->burst_limit = c->burst_limit; } /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a * positive errno value. */ static int ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c) { struct ofservice *ofservice; struct pvconn *pvconn; int error; error = pvconn_open(c->target, &pvconn); if (error) { return error; } ofservice = xzalloc(sizeof *ofservice); hmap_insert(&ofproto->services, &ofservice->node, hash_string(c->target, 0)); ofservice->pvconn = pvconn; ofservice_reconfigure(ofservice, c); return 0; } static void ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice) { hmap_remove(&ofproto->services, &ofservice->node); pvconn_close(ofservice->pvconn); free(ofservice); } /* Finds and returns the ofservice within 'ofproto' that has the given * 'target', or a null pointer if none exists. */ static struct ofservice * ofservice_lookup(struct ofproto *ofproto, const char *target) { struct ofservice *ofservice; HMAP_FOR_EACH_WITH_HASH (ofservice, struct ofservice, node, hash_string(target, 0), &ofproto->services) { if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) { return ofservice; } } return NULL; } /* Caller is responsible for initializing the 'cr' member of the returned * rule. */ static struct rule * rule_create(struct ofproto *ofproto, struct rule *super, const union ofp_action *actions, size_t n_actions, uint16_t idle_timeout, uint16_t hard_timeout, uint64_t flow_cookie, bool send_flow_removed) { struct rule *rule = xzalloc(sizeof *rule); rule->idle_timeout = idle_timeout; rule->hard_timeout = hard_timeout; rule->flow_cookie = flow_cookie; rule->used = rule->created = time_msec(); rule->send_flow_removed = send_flow_removed; rule->super = super; if (super) { list_push_back(&super->list, &rule->list); } else { list_init(&rule->list); } rule->n_actions = n_actions; rule->actions = xmemdup(actions, n_actions * sizeof *actions); netflow_flow_clear(&rule->nf_flow); netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->created); return rule; } static struct rule * rule_from_cls_rule(const struct cls_rule *cls_rule) { return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL; } static void rule_free(struct rule *rule) { free(rule->actions); free(rule->odp_actions); free(rule); } /* Destroys 'rule'. If 'rule' is a subrule, also removes it from its * super-rule's list of subrules. If 'rule' is a super-rule, also iterates * through all of its subrules and revalidates them, destroying any that no * longer has a super-rule (which is probably all of them). * * Before calling this function, the caller must make have removed 'rule' from * the classifier. If 'rule' is an exact-match rule, the caller is also * responsible for ensuring that it has been uninstalled from the datapath. */ static void rule_destroy(struct ofproto *ofproto, struct rule *rule) { if (!rule->super) { struct rule *subrule, *next; LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) { revalidate_rule(ofproto, subrule); } } else { list_remove(&rule->list); } rule_free(rule); } static bool rule_has_out_port(const struct rule *rule, uint16_t out_port) { const union ofp_action *oa; struct actions_iterator i; if (out_port == htons(OFPP_NONE)) { return true; } for (oa = actions_first(&i, rule->actions, rule->n_actions); oa; oa = actions_next(&i)) { if (action_outputs_to_port(oa, out_port)) { return true; } } return false; } /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on * 'packet', which arrived on 'in_port'. * * Takes ownership of 'packet'. */ static bool execute_odp_actions(struct ofproto *ofproto, uint16_t in_port, const union odp_action *actions, size_t n_actions, struct ofpbuf *packet) { if (n_actions == 1 && actions[0].type == ODPAT_CONTROLLER) { /* As an optimization, avoid a round-trip from userspace to kernel to * userspace. This also avoids possibly filling up kernel packet * buffers along the way. */ struct odp_msg *msg; msg = ofpbuf_push_uninit(packet, sizeof *msg); msg->type = _ODPL_ACTION_NR; msg->length = sizeof(struct odp_msg) + packet->size; msg->port = in_port; msg->reserved = 0; msg->arg = actions[0].controller.arg; send_packet_in(ofproto, packet); return true; } else { int error; error = dpif_execute(ofproto->dpif, in_port, actions, n_actions, packet); ofpbuf_delete(packet); return !error; } } /* Executes the actions indicated by 'rule' on 'packet', which is in flow * 'flow' and is considered to have arrived on ODP port 'in_port'. 'packet' * must have at least sizeof(struct ofp_packet_in) bytes of headroom. * * The flow that 'packet' actually contains does not need to actually match * 'rule'; the actions in 'rule' will be applied to it either way. Likewise, * the packet and byte counters for 'rule' will be credited for the packet sent * out whether or not the packet actually matches 'rule'. * * If 'rule' is an exact-match rule and 'flow' actually equals the rule's flow, * the caller must already have accurately composed ODP actions for it given * 'packet' using rule_make_actions(). If 'rule' is a wildcard rule, or if * 'rule' is an exact-match rule but 'flow' is not the rule's flow, then this * function will compose a set of ODP actions based on 'rule''s OpenFlow * actions and apply them to 'packet'. * * Takes ownership of 'packet'. */ static void rule_execute(struct ofproto *ofproto, struct rule *rule, struct ofpbuf *packet, const flow_t *flow) { const union odp_action *actions; struct odp_flow_stats stats; size_t n_actions; struct odp_actions a; assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in)); /* Grab or compose the ODP actions. * * The special case for an exact-match 'rule' where 'flow' is not the * rule's flow is important to avoid, e.g., sending a packet out its input * port simply because the ODP actions were composed for the wrong * scenario. */ if (rule->cr.wc.wildcards || !flow_equal(flow, &rule->cr.flow)) { struct rule *super = rule->super ? rule->super : rule; if (xlate_actions(super->actions, super->n_actions, flow, ofproto, packet, &a, NULL, 0, NULL)) { ofpbuf_delete(packet); return; } actions = a.actions; n_actions = a.n_actions; } else { actions = rule->odp_actions; n_actions = rule->n_odp_actions; } /* Execute the ODP actions. */ flow_extract_stats(flow, packet, &stats); if (execute_odp_actions(ofproto, flow->in_port, actions, n_actions, packet)) { update_stats(ofproto, rule, &stats); rule->used = time_msec(); netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, rule->used); } } /* Inserts 'rule' into 'p''s flow table. * * If 'packet' is nonnull, takes ownership of 'packet', executes 'rule''s * actions on it and credits the statistics for sending the packet to 'rule'. * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of * headroom. */ static void rule_insert(struct ofproto *p, struct rule *rule, struct ofpbuf *packet, uint16_t in_port) { struct rule *displaced_rule; /* Insert the rule in the classifier. */ displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr)); if (!rule->cr.wc.wildcards) { rule_make_actions(p, rule, packet); } /* Send the packet and credit it to the rule. */ if (packet) { flow_t flow; flow_extract(packet, 0, in_port, &flow); rule_execute(p, rule, packet, &flow); } /* Install the rule in the datapath only after sending the packet, to * avoid packet reordering. */ if (rule->cr.wc.wildcards) { COVERAGE_INC(ofproto_add_wc_flow); p->need_revalidate = true; } else { rule_install(p, rule, displaced_rule); } /* Free the rule that was displaced, if any. */ if (displaced_rule) { rule_destroy(p, displaced_rule); } } static struct rule * rule_create_subrule(struct ofproto *ofproto, struct rule *rule, const flow_t *flow) { struct rule *subrule = rule_create(ofproto, rule, NULL, 0, rule->idle_timeout, rule->hard_timeout, 0, false); COVERAGE_INC(ofproto_subrule_create); cls_rule_from_flow(flow, 0, (rule->cr.priority <= UINT16_MAX ? UINT16_MAX : rule->cr.priority), &subrule->cr); classifier_insert_exact(&ofproto->cls, &subrule->cr); return subrule; } static void rule_remove(struct ofproto *ofproto, struct rule *rule) { if (rule->cr.wc.wildcards) { COVERAGE_INC(ofproto_del_wc_flow); ofproto->need_revalidate = true; } else { rule_uninstall(ofproto, rule); } classifier_remove(&ofproto->cls, &rule->cr); rule_destroy(ofproto, rule); } /* Returns true if the actions changed, false otherwise. */ static bool rule_make_actions(struct ofproto *p, struct rule *rule, const struct ofpbuf *packet) { const struct rule *super; struct odp_actions a; size_t actions_len; assert(!rule->cr.wc.wildcards); super = rule->super ? rule->super : rule; rule->tags = 0; xlate_actions(super->actions, super->n_actions, &rule->cr.flow, p, packet, &a, &rule->tags, &rule->may_install, &rule->nf_flow.output_iface); actions_len = a.n_actions * sizeof *a.actions; if (rule->n_odp_actions != a.n_actions || memcmp(rule->odp_actions, a.actions, actions_len)) { COVERAGE_INC(ofproto_odp_unchanged); free(rule->odp_actions); rule->n_odp_actions = a.n_actions; rule->odp_actions = xmemdup(a.actions, actions_len); return true; } else { return false; } } static int do_put_flow(struct ofproto *ofproto, struct rule *rule, int flags, struct odp_flow_put *put) { memset(&put->flow.stats, 0, sizeof put->flow.stats); put->flow.key = rule->cr.flow; put->flow.actions = rule->odp_actions; put->flow.n_actions = rule->n_odp_actions; put->flow.flags = 0; put->flags = flags; return dpif_flow_put(ofproto->dpif, put); } static void rule_install(struct ofproto *p, struct rule *rule, struct rule *displaced_rule) { assert(!rule->cr.wc.wildcards); if (rule->may_install) { struct odp_flow_put put; if (!do_put_flow(p, rule, ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS, &put)) { rule->installed = true; if (displaced_rule) { update_stats(p, displaced_rule, &put.flow.stats); rule_post_uninstall(p, displaced_rule); } } } else if (displaced_rule) { rule_uninstall(p, displaced_rule); } } static void rule_reinstall(struct ofproto *ofproto, struct rule *rule) { if (rule->installed) { struct odp_flow_put put; COVERAGE_INC(ofproto_dp_missed); do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put); } else { rule_install(ofproto, rule, NULL); } } static void rule_update_actions(struct ofproto *ofproto, struct rule *rule) { bool actions_changed; uint16_t new_out_iface, old_out_iface; old_out_iface = rule->nf_flow.output_iface; actions_changed = rule_make_actions(ofproto, rule, NULL); if (rule->may_install) { if (rule->installed) { if (actions_changed) { struct odp_flow_put put; do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS, &put); update_stats(ofproto, rule, &put.flow.stats); /* Temporarily set the old output iface so that NetFlow * messages have the correct output interface for the old * stats. */ new_out_iface = rule->nf_flow.output_iface; rule->nf_flow.output_iface = old_out_iface; rule_post_uninstall(ofproto, rule); rule->nf_flow.output_iface = new_out_iface; } } else { rule_install(ofproto, rule, NULL); } } else { rule_uninstall(ofproto, rule); } } static void rule_account(struct ofproto *ofproto, struct rule *rule, uint64_t extra_bytes) { uint64_t total_bytes = rule->byte_count + extra_bytes; if (ofproto->ofhooks->account_flow_cb && total_bytes > rule->accounted_bytes) { ofproto->ofhooks->account_flow_cb( &rule->cr.flow, rule->tags, rule->odp_actions, rule->n_odp_actions, total_bytes - rule->accounted_bytes, ofproto->aux); rule->accounted_bytes = total_bytes; } } static void rule_uninstall(struct ofproto *p, struct rule *rule) { assert(!rule->cr.wc.wildcards); if (rule->installed) { struct odp_flow odp_flow; odp_flow.key = rule->cr.flow; odp_flow.actions = NULL; odp_flow.n_actions = 0; odp_flow.flags = 0; if (!dpif_flow_del(p->dpif, &odp_flow)) { update_stats(p, rule, &odp_flow.stats); } rule->installed = false; rule_post_uninstall(p, rule); } } static bool is_controller_rule(struct rule *rule) { /* If the only action is send to the controller then don't report * NetFlow expiration messages since it is just part of the control * logic for the network and not real traffic. */ return (rule && rule->super && rule->super->n_actions == 1 && action_outputs_to_port(&rule->super->actions[0], htons(OFPP_CONTROLLER))); } static void rule_post_uninstall(struct ofproto *ofproto, struct rule *rule) { struct rule *super = rule->super; rule_account(ofproto, rule, 0); if (ofproto->netflow && !is_controller_rule(rule)) { struct ofexpired expired; expired.flow = rule->cr.flow; expired.packet_count = rule->packet_count; expired.byte_count = rule->byte_count; expired.used = rule->used; netflow_expire(ofproto->netflow, &rule->nf_flow, &expired); } if (super) { super->packet_count += rule->packet_count; super->byte_count += rule->byte_count; /* Reset counters to prevent double counting if the rule ever gets * reinstalled. */ rule->packet_count = 0; rule->byte_count = 0; rule->accounted_bytes = 0; netflow_flow_clear(&rule->nf_flow); } } static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn, struct rconn_packet_counter *counter) { update_openflow_length(msg); if (rconn_send(ofconn->rconn, msg, counter)) { ofpbuf_delete(msg); } } static void send_error(const struct ofconn *ofconn, const struct ofp_header *oh, int error, const void *data, size_t len) { struct ofpbuf *buf; struct ofp_error_msg *oem; if (!(error >> 16)) { VLOG_WARN_RL(&rl, "not sending bad error code %d to controller", error); return; } COVERAGE_INC(ofproto_error); oem = make_openflow_xid(len + sizeof *oem, OFPT_ERROR, oh ? oh->xid : 0, &buf); oem->type = htons((unsigned int) error >> 16); oem->code = htons(error & 0xffff); memcpy(oem->data, data, len); queue_tx(buf, ofconn, ofconn->reply_counter); } static void send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh, int error) { size_t oh_length = ntohs(oh->length); send_error(ofconn, oh, error, oh, MIN(oh_length, 64)); } static void hton_ofp_phy_port(struct ofp_phy_port *opp) { opp->port_no = htons(opp->port_no); opp->config = htonl(opp->config); opp->state = htonl(opp->state); opp->curr = htonl(opp->curr); opp->advertised = htonl(opp->advertised); opp->supported = htonl(opp->supported); opp->peer = htonl(opp->peer); } static int handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_header *rq = oh; queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter); return 0; } static int handle_features_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_switch_features *osf; struct ofpbuf *buf; unsigned int port_no; struct ofport *port; osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf); osf->datapath_id = htonll(p->datapath_id); osf->n_buffers = htonl(pktbuf_capacity()); osf->n_tables = 2; osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS | OFPC_PORT_STATS | OFPC_ARP_MATCH_IP); osf->actions = htonl((1u << OFPAT_OUTPUT) | (1u << OFPAT_SET_VLAN_VID) | (1u << OFPAT_SET_VLAN_PCP) | (1u << OFPAT_STRIP_VLAN) | (1u << OFPAT_SET_DL_SRC) | (1u << OFPAT_SET_DL_DST) | (1u << OFPAT_SET_NW_SRC) | (1u << OFPAT_SET_NW_DST) | (1u << OFPAT_SET_NW_TOS) | (1u << OFPAT_SET_TP_SRC) | (1u << OFPAT_SET_TP_DST) | (1u << OFPAT_ENQUEUE)); PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) { hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp)); } queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static int handle_get_config_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { struct ofpbuf *buf; struct ofp_switch_config *osc; uint16_t flags; bool drop_frags; /* Figure out flags. */ dpif_get_drop_frags(p->dpif, &drop_frags); flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL; /* Send reply. */ osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf); osc->flags = htons(flags); osc->miss_send_len = htons(ofconn->miss_send_len); queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static int handle_set_config(struct ofproto *p, struct ofconn *ofconn, struct ofp_switch_config *osc) { uint16_t flags; int error; error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc); if (error) { return error; } flags = ntohs(osc->flags); if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) { switch (flags & OFPC_FRAG_MASK) { case OFPC_FRAG_NORMAL: dpif_set_drop_frags(p->dpif, false); break; case OFPC_FRAG_DROP: dpif_set_drop_frags(p->dpif, true); break; default: VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")", osc->flags); break; } } ofconn->miss_send_len = ntohs(osc->miss_send_len); return 0; } static void add_output_group_action(struct odp_actions *actions, uint16_t group, uint16_t *nf_output_iface) { odp_actions_add(actions, ODPAT_OUTPUT_GROUP)->output_group.group = group; if (group == DP_GROUP_ALL || group == DP_GROUP_FLOOD) { *nf_output_iface = NF_OUT_FLOOD; } } static void add_controller_action(struct odp_actions *actions, uint16_t max_len) { union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER); a->controller.arg = max_len; } struct action_xlate_ctx { /* Input. */ flow_t flow; /* Flow to which these actions correspond. */ int recurse; /* Recursion level, via xlate_table_action. */ struct ofproto *ofproto; const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a * null pointer if we are revalidating * without a packet to refer to. */ /* Output. */ struct odp_actions *out; /* Datapath actions. */ tag_type *tags; /* Tags associated with OFPP_NORMAL actions. */ bool may_set_up_flow; /* True ordinarily; false if the actions must * be reassessed for every packet. */ uint16_t nf_output_iface; /* Output interface index for NetFlow. */ }; /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a * flow translation. */ #define MAX_RESUBMIT_RECURSION 8 static void do_xlate_actions(const union ofp_action *in, size_t n_in, struct action_xlate_ctx *ctx); static void add_output_action(struct action_xlate_ctx *ctx, uint16_t port) { const struct ofport *ofport = port_array_get(&ctx->ofproto->ports, port); if (ofport) { if (ofport->opp.config & OFPPC_NO_FWD) { /* Forwarding disabled on port. */ return; } } else { /* * We don't have an ofport record for this port, but it doesn't hurt to * allow forwarding to it anyhow. Maybe such a port will appear later * and we're pre-populating the flow table. */ } odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port; ctx->nf_output_iface = port; } static struct rule * lookup_valid_rule(struct ofproto *ofproto, const flow_t *flow) { struct rule *rule; rule = rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow)); /* The rule we found might not be valid, since we could be in need of * revalidation. If it is not valid, don't return it. */ if (rule && rule->super && ofproto->need_revalidate && !revalidate_rule(ofproto, rule)) { COVERAGE_INC(ofproto_invalidated); return NULL; } return rule; } static void xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port) { if (ctx->recurse < MAX_RESUBMIT_RECURSION) { uint16_t old_in_port; struct rule *rule; /* Look up a flow with 'in_port' as the input port. Then restore the * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will * have surprising behavior). */ old_in_port = ctx->flow.in_port; ctx->flow.in_port = in_port; rule = lookup_valid_rule(ctx->ofproto, &ctx->flow); ctx->flow.in_port = old_in_port; if (rule) { if (rule->super) { rule = rule->super; } ctx->recurse++; do_xlate_actions(rule->actions, rule->n_actions, ctx); ctx->recurse--; } } else { struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times", MAX_RESUBMIT_RECURSION); } } static void xlate_output_action__(struct action_xlate_ctx *ctx, uint16_t port, uint16_t max_len) { uint16_t odp_port; uint16_t prev_nf_output_iface = ctx->nf_output_iface; ctx->nf_output_iface = NF_OUT_DROP; switch (port) { case OFPP_IN_PORT: add_output_action(ctx, ctx->flow.in_port); break; case OFPP_TABLE: xlate_table_action(ctx, ctx->flow.in_port); break; case OFPP_NORMAL: if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet, ctx->out, ctx->tags, &ctx->nf_output_iface, ctx->ofproto->aux)) { COVERAGE_INC(ofproto_uninstallable); ctx->may_set_up_flow = false; } break; case OFPP_FLOOD: add_output_group_action(ctx->out, DP_GROUP_FLOOD, &ctx->nf_output_iface); break; case OFPP_ALL: add_output_group_action(ctx->out, DP_GROUP_ALL, &ctx->nf_output_iface); break; case OFPP_CONTROLLER: add_controller_action(ctx->out, max_len); break; case OFPP_LOCAL: add_output_action(ctx, ODPP_LOCAL); break; default: odp_port = ofp_port_to_odp_port(port); if (odp_port != ctx->flow.in_port) { add_output_action(ctx, odp_port); } break; } if (prev_nf_output_iface == NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_FLOOD; } else if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = prev_nf_output_iface; } else if (prev_nf_output_iface != NF_OUT_DROP && ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_output_action(struct action_xlate_ctx *ctx, const struct ofp_action_output *oao) { xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len)); } /* If the final ODP action in 'ctx' is "pop priority", drop it, as an * optimization, because we're going to add another action that sets the * priority immediately after, or because there are no actions following the * pop. */ static void remove_pop_action(struct action_xlate_ctx *ctx) { size_t n = ctx->out->n_actions; if (n > 0 && ctx->out->actions[n - 1].type == ODPAT_POP_PRIORITY) { ctx->out->n_actions--; } } static void xlate_enqueue_action(struct action_xlate_ctx *ctx, const struct ofp_action_enqueue *oae) { uint16_t ofp_port, odp_port; uint32_t priority; int error; error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id), &priority); if (error) { /* Fall back to ordinary output action. */ xlate_output_action__(ctx, ntohs(oae->port), 0); return; } /* Figure out ODP output port. */ ofp_port = ntohs(oae->port); if (ofp_port != OFPP_IN_PORT) { odp_port = ofp_port_to_odp_port(ofp_port); } else { odp_port = ctx->flow.in_port; } /* Add ODP actions. */ remove_pop_action(ctx); odp_actions_add(ctx->out, ODPAT_SET_PRIORITY)->priority.priority = priority; add_output_action(ctx, odp_port); odp_actions_add(ctx->out, ODPAT_POP_PRIORITY); /* Update NetFlow output port. */ if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = odp_port; } else if (ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_nicira_action(struct action_xlate_ctx *ctx, const struct nx_action_header *nah) { const struct nx_action_resubmit *nar; const struct nx_action_set_tunnel *nast; union odp_action *oa; int subtype = ntohs(nah->subtype); assert(nah->vendor == htonl(NX_VENDOR_ID)); switch (subtype) { case NXAST_RESUBMIT: nar = (const struct nx_action_resubmit *) nah; xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port))); break; case NXAST_SET_TUNNEL: nast = (const struct nx_action_set_tunnel *) nah; oa = odp_actions_add(ctx->out, ODPAT_SET_TUNNEL); ctx->flow.tun_id = oa->tunnel.tun_id = nast->tun_id; break; case NXAST_DROP_SPOOFED_ARP: if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) { odp_actions_add(ctx->out, ODPAT_DROP_SPOOFED_ARP); } break; /* If you add a new action here that modifies flow data, don't forget to * update the flow key in ctx->flow at the same time. */ default: VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype); break; } } static void do_xlate_actions(const union ofp_action *in, size_t n_in, struct action_xlate_ctx *ctx) { struct actions_iterator iter; const union ofp_action *ia; const struct ofport *port; port = port_array_get(&ctx->ofproto->ports, ctx->flow.in_port); if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) && port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp) ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) { /* Drop this flow. */ return; } for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) { uint16_t type = ntohs(ia->type); union odp_action *oa; switch (type) { case OFPAT_OUTPUT: xlate_output_action(ctx, &ia->output); break; case OFPAT_SET_VLAN_VID: oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_VID); ctx->flow.dl_vlan = oa->vlan_vid.vlan_vid = ia->vlan_vid.vlan_vid; break; case OFPAT_SET_VLAN_PCP: oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_PCP); ctx->flow.dl_vlan_pcp = oa->vlan_pcp.vlan_pcp = ia->vlan_pcp.vlan_pcp; break; case OFPAT_STRIP_VLAN: odp_actions_add(ctx->out, ODPAT_STRIP_VLAN); ctx->flow.dl_vlan = htons(OFP_VLAN_NONE); ctx->flow.dl_vlan_pcp = 0; break; case OFPAT_SET_DL_SRC: oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC); memcpy(oa->dl_addr.dl_addr, ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN); memcpy(ctx->flow.dl_src, ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN); break; case OFPAT_SET_DL_DST: oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST); memcpy(oa->dl_addr.dl_addr, ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN); memcpy(ctx->flow.dl_dst, ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN); break; case OFPAT_SET_NW_SRC: oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC); ctx->flow.nw_src = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr; break; case OFPAT_SET_NW_DST: oa = odp_actions_add(ctx->out, ODPAT_SET_NW_DST); ctx->flow.nw_dst = oa->nw_addr.nw_addr = ia->nw_addr.nw_addr; break; case OFPAT_SET_NW_TOS: oa = odp_actions_add(ctx->out, ODPAT_SET_NW_TOS); ctx->flow.nw_tos = oa->nw_tos.nw_tos = ia->nw_tos.nw_tos; break; case OFPAT_SET_TP_SRC: oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC); ctx->flow.tp_src = oa->tp_port.tp_port = ia->tp_port.tp_port; break; case OFPAT_SET_TP_DST: oa = odp_actions_add(ctx->out, ODPAT_SET_TP_DST); ctx->flow.tp_dst = oa->tp_port.tp_port = ia->tp_port.tp_port; break; case OFPAT_VENDOR: xlate_nicira_action(ctx, (const struct nx_action_header *) ia); break; case OFPAT_ENQUEUE: xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia); break; default: VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type); break; } } } static int xlate_actions(const union ofp_action *in, size_t n_in, const flow_t *flow, struct ofproto *ofproto, const struct ofpbuf *packet, struct odp_actions *out, tag_type *tags, bool *may_set_up_flow, uint16_t *nf_output_iface) { tag_type no_tags = 0; struct action_xlate_ctx ctx; COVERAGE_INC(ofproto_ofp2odp); odp_actions_init(out); ctx.flow = *flow; ctx.recurse = 0; ctx.ofproto = ofproto; ctx.packet = packet; ctx.out = out; ctx.tags = tags ? tags : &no_tags; ctx.may_set_up_flow = true; ctx.nf_output_iface = NF_OUT_DROP; do_xlate_actions(in, n_in, &ctx); remove_pop_action(&ctx); /* Check with in-band control to see if we're allowed to set up this * flow. */ if (!in_band_rule_check(ofproto->in_band, flow, out)) { ctx.may_set_up_flow = false; } if (may_set_up_flow) { *may_set_up_flow = ctx.may_set_up_flow; } if (nf_output_iface) { *nf_output_iface = ctx.nf_output_iface; } if (odp_actions_overflow(out)) { COVERAGE_INC(odp_overflow); odp_actions_init(out); return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY); } return 0; } /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow * error message code (composed with ofp_mkerr()) for the caller to propagate * upward. Otherwise, returns 0. * * 'oh' is used to make log messages more informative. */ static int reject_slave_controller(struct ofconn *ofconn, const struct ofp_header *oh) { if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) { static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5); char *type_name; type_name = ofp_message_type_to_string(oh->type); VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller", type_name); free(type_name); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM); } else { return 0; } } static int handle_packet_out(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_packet_out *opo; struct ofpbuf payload, *buffer; struct odp_actions actions; int n_actions; uint16_t in_port; flow_t flow; int error; error = reject_slave_controller(ofconn, oh); if (error) { return error; } error = check_ofp_packet_out(oh, &payload, &n_actions, p->max_ports); if (error) { return error; } opo = (struct ofp_packet_out *) oh; COVERAGE_INC(ofproto_packet_out); if (opo->buffer_id != htonl(UINT32_MAX)) { error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id), &buffer, &in_port); if (error || !buffer) { return error; } payload = *buffer; } else { buffer = NULL; } flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)), &flow); error = xlate_actions((const union ofp_action *) opo->actions, n_actions, &flow, p, &payload, &actions, NULL, NULL, NULL); if (error) { return error; } dpif_execute(p->dpif, flow.in_port, actions.actions, actions.n_actions, &payload); ofpbuf_delete(buffer); return 0; } static void update_port_config(struct ofproto *p, struct ofport *port, uint32_t config, uint32_t mask) { mask &= config ^ port->opp.config; if (mask & OFPPC_PORT_DOWN) { if (config & OFPPC_PORT_DOWN) { netdev_turn_flags_off(port->netdev, NETDEV_UP, true); } else { netdev_turn_flags_on(port->netdev, NETDEV_UP, true); } } #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | OFPPC_NO_FWD) if (mask & REVALIDATE_BITS) { COVERAGE_INC(ofproto_costly_flags); port->opp.config ^= mask & REVALIDATE_BITS; p->need_revalidate = true; } #undef REVALIDATE_BITS if (mask & OFPPC_NO_FLOOD) { port->opp.config ^= OFPPC_NO_FLOOD; refresh_port_groups(p); } if (mask & OFPPC_NO_PACKET_IN) { port->opp.config ^= OFPPC_NO_PACKET_IN; } } static int handle_port_mod(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { const struct ofp_port_mod *opm; struct ofport *port; int error; error = reject_slave_controller(ofconn, oh); if (error) { return error; } error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm); if (error) { return error; } opm = (struct ofp_port_mod *) oh; port = port_array_get(&p->ports, ofp_port_to_odp_port(ntohs(opm->port_no))); if (!port) { return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT); } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) { return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR); } else { update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask)); if (opm->advertise) { netdev_set_advertisements(port->netdev, ntohl(opm->advertise)); } } return 0; } static struct ofpbuf * make_stats_reply(uint32_t xid, uint16_t type, size_t body_len) { struct ofp_stats_reply *osr; struct ofpbuf *msg; msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX)); osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg); osr->type = type; osr->flags = htons(0); return msg; } static struct ofpbuf * start_stats_reply(const struct ofp_stats_request *request, size_t body_len) { return make_stats_reply(request->header.xid, request->type, body_len); } static void * append_stats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp) { struct ofpbuf *msg = *msgp; assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply)); if (nbytes + msg->size > UINT16_MAX) { struct ofp_stats_reply *reply = msg->data; reply->flags = htons(OFPSF_REPLY_MORE); *msgp = make_stats_reply(reply->header.xid, reply->type, nbytes); queue_tx(msg, ofconn, ofconn->reply_counter); } return ofpbuf_put_uninit(*msgp, nbytes); } static int handle_desc_stats_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_stats_request *request) { struct ofp_desc_stats *ods; struct ofpbuf *msg; msg = start_stats_reply(request, sizeof *ods); ods = append_stats_reply(sizeof *ods, ofconn, &msg); memset(ods, 0, sizeof *ods); ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc); ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc); ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc); ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num); ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc); queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } static void count_subrules(struct cls_rule *cls_rule, void *n_subrules_) { struct rule *rule = rule_from_cls_rule(cls_rule); int *n_subrules = n_subrules_; if (rule->super) { (*n_subrules)++; } } static int handle_table_stats_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_stats_request *request) { struct ofp_table_stats *ots; struct ofpbuf *msg; struct odp_stats dpstats; int n_exact, n_subrules, n_wild; msg = start_stats_reply(request, sizeof *ots * 2); /* Count rules of various kinds. */ n_subrules = 0; classifier_for_each(&p->cls, CLS_INC_EXACT, count_subrules, &n_subrules); n_exact = classifier_count_exact(&p->cls) - n_subrules; n_wild = classifier_count(&p->cls) - classifier_count_exact(&p->cls); /* Hash table. */ dpif_get_dp_stats(p->dpif, &dpstats); ots = append_stats_reply(sizeof *ots, ofconn, &msg); memset(ots, 0, sizeof *ots); ots->table_id = TABLEID_HASH; strcpy(ots->name, "hash"); ots->wildcards = htonl(0); ots->max_entries = htonl(dpstats.max_capacity); ots->active_count = htonl(n_exact); ots->lookup_count = htonll(dpstats.n_frags + dpstats.n_hit + dpstats.n_missed); ots->matched_count = htonll(dpstats.n_hit); /* XXX */ /* Classifier table. */ ots = append_stats_reply(sizeof *ots, ofconn, &msg); memset(ots, 0, sizeof *ots); ots->table_id = TABLEID_CLASSIFIER; strcpy(ots->name, "classifier"); ots->wildcards = p->tun_id_from_cookie ? htonl(OVSFW_ALL) : htonl(OFPFW_ALL); ots->max_entries = htonl(65536); ots->active_count = htonl(n_wild); ots->lookup_count = htonll(0); /* XXX */ ots->matched_count = htonll(0); /* XXX */ queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } static void append_port_stat(struct ofport *port, uint16_t port_no, struct ofconn *ofconn, struct ofpbuf **msgp) { struct netdev_stats stats; struct ofp_port_stats *ops; /* Intentionally ignore return value, since errors will set * 'stats' to all-1s, which is correct for OpenFlow, and * netdev_get_stats() will log errors. */ netdev_get_stats(port->netdev, &stats); ops = append_stats_reply(sizeof *ops, ofconn, msgp); ops->port_no = htons(odp_port_to_ofp_port(port_no)); memset(ops->pad, 0, sizeof ops->pad); ops->rx_packets = htonll(stats.rx_packets); ops->tx_packets = htonll(stats.tx_packets); ops->rx_bytes = htonll(stats.rx_bytes); ops->tx_bytes = htonll(stats.tx_bytes); ops->rx_dropped = htonll(stats.rx_dropped); ops->tx_dropped = htonll(stats.tx_dropped); ops->rx_errors = htonll(stats.rx_errors); ops->tx_errors = htonll(stats.tx_errors); ops->rx_frame_err = htonll(stats.rx_frame_errors); ops->rx_over_err = htonll(stats.rx_over_errors); ops->rx_crc_err = htonll(stats.rx_crc_errors); ops->collisions = htonll(stats.collisions); } static int handle_port_stats_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_stats_request *osr, size_t arg_size) { struct ofp_port_stats_request *psr; struct ofp_port_stats *ops; struct ofpbuf *msg; struct ofport *port; unsigned int port_no; if (arg_size != sizeof *psr) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } psr = (struct ofp_port_stats_request *) osr->body; msg = start_stats_reply(osr, sizeof *ops * 16); if (psr->port_no != htons(OFPP_NONE)) { port = port_array_get(&p->ports, ofp_port_to_odp_port(ntohs(psr->port_no))); if (port) { append_port_stat(port, ntohs(psr->port_no), ofconn, &msg); } } else { PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) { append_port_stat(port, port_no, ofconn, &msg); } } queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } struct flow_stats_cbdata { struct ofproto *ofproto; struct ofconn *ofconn; uint16_t out_port; struct ofpbuf *msg; }; /* Obtains statistic counters for 'rule' within 'p' and stores them into * '*packet_countp' and '*byte_countp'. If 'rule' is a wildcarded rule, the * returned statistic include statistics for all of 'rule''s subrules. */ static void query_stats(struct ofproto *p, struct rule *rule, uint64_t *packet_countp, uint64_t *byte_countp) { uint64_t packet_count, byte_count; struct rule *subrule; struct odp_flow *odp_flows; size_t n_odp_flows; /* Start from historical data for 'rule' itself that are no longer tracked * by the datapath. This counts, for example, subrules that have * expired. */ packet_count = rule->packet_count; byte_count = rule->byte_count; /* Prepare to ask the datapath for statistics on 'rule', or if it is * wildcarded then on all of its subrules. * * Also, add any statistics that are not tracked by the datapath for each * subrule. This includes, for example, statistics for packets that were * executed "by hand" by ofproto via dpif_execute() but must be accounted * to a flow. */ n_odp_flows = rule->cr.wc.wildcards ? list_size(&rule->list) : 1; odp_flows = xzalloc(n_odp_flows * sizeof *odp_flows); if (rule->cr.wc.wildcards) { size_t i = 0; LIST_FOR_EACH (subrule, struct rule, list, &rule->list) { odp_flows[i++].key = subrule->cr.flow; packet_count += subrule->packet_count; byte_count += subrule->byte_count; } } else { odp_flows[0].key = rule->cr.flow; } /* Fetch up-to-date statistics from the datapath and add them in. */ if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) { size_t i; for (i = 0; i < n_odp_flows; i++) { struct odp_flow *odp_flow = &odp_flows[i]; packet_count += odp_flow->stats.n_packets; byte_count += odp_flow->stats.n_bytes; } } free(odp_flows); /* Return the stats to the caller. */ *packet_countp = packet_count; *byte_countp = byte_count; } static void flow_stats_cb(struct cls_rule *rule_, void *cbdata_) { struct rule *rule = rule_from_cls_rule(rule_); struct flow_stats_cbdata *cbdata = cbdata_; struct ofp_flow_stats *ofs; uint64_t packet_count, byte_count; size_t act_len, len; long long int tdiff = time_msec() - rule->created; uint32_t sec = tdiff / 1000; uint32_t msec = tdiff - (sec * 1000); if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) { return; } act_len = sizeof *rule->actions * rule->n_actions; len = offsetof(struct ofp_flow_stats, actions) + act_len; query_stats(cbdata->ofproto, rule, &packet_count, &byte_count); ofs = append_stats_reply(len, cbdata->ofconn, &cbdata->msg); ofs->length = htons(len); ofs->table_id = rule->cr.wc.wildcards ? TABLEID_CLASSIFIER : TABLEID_HASH; ofs->pad = 0; flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, cbdata->ofproto->tun_id_from_cookie, &ofs->match); ofs->duration_sec = htonl(sec); ofs->duration_nsec = htonl(msec * 1000000); ofs->cookie = rule->flow_cookie; ofs->priority = htons(rule->cr.priority); ofs->idle_timeout = htons(rule->idle_timeout); ofs->hard_timeout = htons(rule->hard_timeout); memset(ofs->pad2, 0, sizeof ofs->pad2); ofs->packet_count = htonll(packet_count); ofs->byte_count = htonll(byte_count); memcpy(ofs->actions, rule->actions, act_len); } static int table_id_to_include(uint8_t table_id) { return (table_id == TABLEID_HASH ? CLS_INC_EXACT : table_id == TABLEID_CLASSIFIER ? CLS_INC_WILD : table_id == 0xff ? CLS_INC_ALL : 0); } static int handle_flow_stats_request(struct ofproto *p, struct ofconn *ofconn, const struct ofp_stats_request *osr, size_t arg_size) { struct ofp_flow_stats_request *fsr; struct flow_stats_cbdata cbdata; struct cls_rule target; if (arg_size != sizeof *fsr) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } fsr = (struct ofp_flow_stats_request *) osr->body; COVERAGE_INC(ofproto_flows_req); cbdata.ofproto = p; cbdata.ofconn = ofconn; cbdata.out_port = fsr->out_port; cbdata.msg = start_stats_reply(osr, 1024); cls_rule_from_match(&fsr->match, 0, false, 0, &target); classifier_for_each_match(&p->cls, &target, table_id_to_include(fsr->table_id), flow_stats_cb, &cbdata); queue_tx(cbdata.msg, ofconn, ofconn->reply_counter); return 0; } struct flow_stats_ds_cbdata { struct ofproto *ofproto; struct ds *results; }; static void flow_stats_ds_cb(struct cls_rule *rule_, void *cbdata_) { struct rule *rule = rule_from_cls_rule(rule_); struct flow_stats_ds_cbdata *cbdata = cbdata_; struct ds *results = cbdata->results; struct ofp_match match; uint64_t packet_count, byte_count; size_t act_len = sizeof *rule->actions * rule->n_actions; /* Don't report on subrules. */ if (rule->super != NULL) { return; } query_stats(cbdata->ofproto, rule, &packet_count, &byte_count); flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, cbdata->ofproto->tun_id_from_cookie, &match); ds_put_format(results, "duration=%llds, ", (time_msec() - rule->created) / 1000); ds_put_format(results, "priority=%u, ", rule->cr.priority); ds_put_format(results, "n_packets=%"PRIu64", ", packet_count); ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count); ofp_print_match(results, &match, true); ofp_print_actions(results, &rule->actions->header, act_len); ds_put_cstr(results, "\n"); } /* Adds a pretty-printed description of all flows to 'results', including * those marked hidden by secchan (e.g., by in-band control). */ void ofproto_get_all_flows(struct ofproto *p, struct ds *results) { struct ofp_match match; struct cls_rule target; struct flow_stats_ds_cbdata cbdata; memset(&match, 0, sizeof match); match.wildcards = htonl(OVSFW_ALL); cbdata.ofproto = p; cbdata.results = results; cls_rule_from_match(&match, 0, false, 0, &target); classifier_for_each_match(&p->cls, &target, CLS_INC_ALL, flow_stats_ds_cb, &cbdata); } struct aggregate_stats_cbdata { struct ofproto *ofproto; uint16_t out_port; uint64_t packet_count; uint64_t byte_count; uint32_t n_flows; }; static void aggregate_stats_cb(struct cls_rule *rule_, void *cbdata_) { struct rule *rule = rule_from_cls_rule(rule_); struct aggregate_stats_cbdata *cbdata = cbdata_; uint64_t packet_count, byte_count; if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) { return; } query_stats(cbdata->ofproto, rule, &packet_count, &byte_count); cbdata->packet_count += packet_count; cbdata->byte_count += byte_count; cbdata->n_flows++; } static int handle_aggregate_stats_request(struct ofproto *p, struct ofconn *ofconn, const struct ofp_stats_request *osr, size_t arg_size) { struct ofp_aggregate_stats_request *asr; struct ofp_aggregate_stats_reply *reply; struct aggregate_stats_cbdata cbdata; struct cls_rule target; struct ofpbuf *msg; if (arg_size != sizeof *asr) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } asr = (struct ofp_aggregate_stats_request *) osr->body; COVERAGE_INC(ofproto_agg_request); cbdata.ofproto = p; cbdata.out_port = asr->out_port; cbdata.packet_count = 0; cbdata.byte_count = 0; cbdata.n_flows = 0; cls_rule_from_match(&asr->match, 0, false, 0, &target); classifier_for_each_match(&p->cls, &target, table_id_to_include(asr->table_id), aggregate_stats_cb, &cbdata); msg = start_stats_reply(osr, sizeof *reply); reply = append_stats_reply(sizeof *reply, ofconn, &msg); reply->flow_count = htonl(cbdata.n_flows); reply->packet_count = htonll(cbdata.packet_count); reply->byte_count = htonll(cbdata.byte_count); queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } struct queue_stats_cbdata { struct ofconn *ofconn; struct ofpbuf *msg; uint16_t port_no; }; static void put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id, const struct netdev_queue_stats *stats) { struct ofp_queue_stats *reply; reply = append_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg); reply->port_no = htons(cbdata->port_no); memset(reply->pad, 0, sizeof reply->pad); reply->queue_id = htonl(queue_id); reply->tx_bytes = htonll(stats->tx_bytes); reply->tx_packets = htonll(stats->tx_packets); reply->tx_errors = htonll(stats->tx_errors); } static void handle_queue_stats_dump_cb(uint32_t queue_id, struct netdev_queue_stats *stats, void *cbdata_) { struct queue_stats_cbdata *cbdata = cbdata_; put_queue_stats(cbdata, queue_id, stats); } static void handle_queue_stats_for_port(struct ofport *port, uint16_t port_no, uint32_t queue_id, struct queue_stats_cbdata *cbdata) { cbdata->port_no = port_no; if (queue_id == OFPQ_ALL) { netdev_dump_queue_stats(port->netdev, handle_queue_stats_dump_cb, cbdata); } else { struct netdev_queue_stats stats; netdev_get_queue_stats(port->netdev, queue_id, &stats); put_queue_stats(cbdata, queue_id, &stats); } } static int handle_queue_stats_request(struct ofproto *ofproto, struct ofconn *ofconn, const struct ofp_stats_request *osr, size_t arg_size) { struct ofp_queue_stats_request *qsr; struct queue_stats_cbdata cbdata; struct ofport *port; unsigned int port_no; uint32_t queue_id; if (arg_size != sizeof *qsr) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } qsr = (struct ofp_queue_stats_request *) osr->body; COVERAGE_INC(ofproto_queue_req); cbdata.ofconn = ofconn; cbdata.msg = start_stats_reply(osr, 128); port_no = ntohs(qsr->port_no); queue_id = ntohl(qsr->queue_id); if (port_no == OFPP_ALL) { PORT_ARRAY_FOR_EACH (port, &ofproto->ports, port_no) { handle_queue_stats_for_port(port, port_no, queue_id, &cbdata); } } else if (port_no < ofproto->max_ports) { port = port_array_get(&ofproto->ports, port_no); if (port) { handle_queue_stats_for_port(port, port_no, queue_id, &cbdata); } } else { ofpbuf_delete(cbdata.msg); return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT); } queue_tx(cbdata.msg, ofconn, ofconn->reply_counter); return 0; } static int handle_stats_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_stats_request *osr; size_t arg_size; int error; error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr, 1, &arg_size); if (error) { return error; } osr = (struct ofp_stats_request *) oh; switch (ntohs(osr->type)) { case OFPST_DESC: return handle_desc_stats_request(p, ofconn, osr); case OFPST_FLOW: return handle_flow_stats_request(p, ofconn, osr, arg_size); case OFPST_AGGREGATE: return handle_aggregate_stats_request(p, ofconn, osr, arg_size); case OFPST_TABLE: return handle_table_stats_request(p, ofconn, osr); case OFPST_PORT: return handle_port_stats_request(p, ofconn, osr, arg_size); case OFPST_QUEUE: return handle_queue_stats_request(p, ofconn, osr, arg_size); case OFPST_VENDOR: return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR); default: return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT); } } static long long int msec_from_nsec(uint64_t sec, uint32_t nsec) { return !sec ? 0 : sec * 1000 + nsec / 1000000; } static void update_time(struct ofproto *ofproto, struct rule *rule, const struct odp_flow_stats *stats) { long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec); if (used > rule->used) { rule->used = used; if (rule->super && used > rule->super->used) { rule->super->used = used; } netflow_flow_update_time(ofproto->netflow, &rule->nf_flow, used); } } static void update_stats(struct ofproto *ofproto, struct rule *rule, const struct odp_flow_stats *stats) { if (stats->n_packets) { update_time(ofproto, rule, stats); rule->packet_count += stats->n_packets; rule->byte_count += stats->n_bytes; netflow_flow_update_flags(&rule->nf_flow, stats->tcp_flags); } } /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT * in which no matching flow already exists in the flow table. * * Adds the flow specified by 'ofm', which is followed by 'n_actions' * ofp_actions, to 'p''s flow table. Returns 0 on success or an OpenFlow error * code as encoded by ofp_mkerr() on failure. * * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id, * if any. */ static int add_flow(struct ofproto *p, struct ofconn *ofconn, const struct ofp_flow_mod *ofm, size_t n_actions) { struct ofpbuf *packet; struct rule *rule; uint16_t in_port; int error; if (ofm->flags & htons(OFPFF_CHECK_OVERLAP)) { flow_t flow; uint32_t wildcards; flow_from_match(&ofm->match, p->tun_id_from_cookie, ofm->cookie, &flow, &wildcards); if (classifier_rule_overlaps(&p->cls, &flow, wildcards, ntohs(ofm->priority))) { return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP); } } rule = rule_create(p, NULL, (const union ofp_action *) ofm->actions, n_actions, ntohs(ofm->idle_timeout), ntohs(ofm->hard_timeout), ofm->cookie, ofm->flags & htons(OFPFF_SEND_FLOW_REM)); cls_rule_from_match(&ofm->match, ntohs(ofm->priority), p->tun_id_from_cookie, ofm->cookie, &rule->cr); error = 0; if (ofm->buffer_id != htonl(UINT32_MAX)) { error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id), &packet, &in_port); } else { packet = NULL; in_port = UINT16_MAX; } rule_insert(p, rule, packet, in_port); return error; } static struct rule * find_flow_strict(struct ofproto *p, const struct ofp_flow_mod *ofm) { uint32_t wildcards; flow_t flow; flow_from_match(&ofm->match, p->tun_id_from_cookie, ofm->cookie, &flow, &wildcards); return rule_from_cls_rule(classifier_find_rule_exactly( &p->cls, &flow, wildcards, ntohs(ofm->priority))); } static int send_buffered_packet(struct ofproto *ofproto, struct ofconn *ofconn, struct rule *rule, const struct ofp_flow_mod *ofm) { struct ofpbuf *packet; uint16_t in_port; flow_t flow; int error; if (ofm->buffer_id == htonl(UINT32_MAX)) { return 0; } error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id), &packet, &in_port); if (error) { return error; } flow_extract(packet, 0, in_port, &flow); rule_execute(ofproto, rule, packet, &flow); return 0; } /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */ struct modify_flows_cbdata { struct ofproto *ofproto; const struct ofp_flow_mod *ofm; size_t n_actions; struct rule *match; }; static int modify_flow(struct ofproto *, const struct ofp_flow_mod *, size_t n_actions, struct rule *); static void modify_flows_cb(struct cls_rule *, void *cbdata_); /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as * encoded by ofp_mkerr() on failure. * * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id, * if any. */ static int modify_flows_loose(struct ofproto *p, struct ofconn *ofconn, const struct ofp_flow_mod *ofm, size_t n_actions) { struct modify_flows_cbdata cbdata; struct cls_rule target; cbdata.ofproto = p; cbdata.ofm = ofm; cbdata.n_actions = n_actions; cbdata.match = NULL; cls_rule_from_match(&ofm->match, 0, p->tun_id_from_cookie, ofm->cookie, &target); classifier_for_each_match(&p->cls, &target, CLS_INC_ALL, modify_flows_cb, &cbdata); if (cbdata.match) { /* This credits the packet to whichever flow happened to happened to * match last. That's weird. Maybe we should do a lookup for the * flow that actually matches the packet? Who knows. */ send_buffered_packet(p, ofconn, cbdata.match, ofm); return 0; } else { return add_flow(p, ofconn, ofm, n_actions); } } /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error * code as encoded by ofp_mkerr() on failure. * * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id, * if any. */ static int modify_flow_strict(struct ofproto *p, struct ofconn *ofconn, struct ofp_flow_mod *ofm, size_t n_actions) { struct rule *rule = find_flow_strict(p, ofm); if (rule && !rule_is_hidden(rule)) { modify_flow(p, ofm, n_actions, rule); return send_buffered_packet(p, ofconn, rule, ofm); } else { return add_flow(p, ofconn, ofm, n_actions); } } /* Callback for modify_flows_loose(). */ static void modify_flows_cb(struct cls_rule *rule_, void *cbdata_) { struct rule *rule = rule_from_cls_rule(rule_); struct modify_flows_cbdata *cbdata = cbdata_; if (!rule_is_hidden(rule)) { cbdata->match = rule; modify_flow(cbdata->ofproto, cbdata->ofm, cbdata->n_actions, rule); } } /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has * been identified as a flow in 'p''s flow table to be modified, by changing * the rule's actions to match those in 'ofm' (which is followed by 'n_actions' * ofp_action[] structures). */ static int modify_flow(struct ofproto *p, const struct ofp_flow_mod *ofm, size_t n_actions, struct rule *rule) { size_t actions_len = n_actions * sizeof *rule->actions; rule->flow_cookie = ofm->cookie; /* If the actions are the same, do nothing. */ if (n_actions == rule->n_actions && !memcmp(ofm->actions, rule->actions, actions_len)) { return 0; } /* Replace actions. */ free(rule->actions); rule->actions = xmemdup(ofm->actions, actions_len); rule->n_actions = n_actions; /* Make sure that the datapath gets updated properly. */ if (rule->cr.wc.wildcards) { COVERAGE_INC(ofproto_mod_wc_flow); p->need_revalidate = true; } else { rule_update_actions(p, rule); } return 0; } /* OFPFC_DELETE implementation. */ struct delete_flows_cbdata { struct ofproto *ofproto; uint16_t out_port; }; static void delete_flows_cb(struct cls_rule *, void *cbdata_); static void delete_flow(struct ofproto *, struct rule *, uint16_t out_port); /* Implements OFPFC_DELETE. */ static void delete_flows_loose(struct ofproto *p, const struct ofp_flow_mod *ofm) { struct delete_flows_cbdata cbdata; struct cls_rule target; cbdata.ofproto = p; cbdata.out_port = ofm->out_port; cls_rule_from_match(&ofm->match, 0, p->tun_id_from_cookie, ofm->cookie, &target); classifier_for_each_match(&p->cls, &target, CLS_INC_ALL, delete_flows_cb, &cbdata); } /* Implements OFPFC_DELETE_STRICT. */ static void delete_flow_strict(struct ofproto *p, struct ofp_flow_mod *ofm) { struct rule *rule = find_flow_strict(p, ofm); if (rule) { delete_flow(p, rule, ofm->out_port); } } /* Callback for delete_flows_loose(). */ static void delete_flows_cb(struct cls_rule *rule_, void *cbdata_) { struct rule *rule = rule_from_cls_rule(rule_); struct delete_flows_cbdata *cbdata = cbdata_; delete_flow(cbdata->ofproto, rule, cbdata->out_port); } /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has * been identified as a flow to delete from 'p''s flow table, by deleting the * flow and sending out a OFPT_FLOW_REMOVED message to any interested * controller. * * Will not delete 'rule' if it is hidden. Will delete 'rule' only if * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the * specified 'out_port'. */ static void delete_flow(struct ofproto *p, struct rule *rule, uint16_t out_port) { if (rule_is_hidden(rule)) { return; } if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) { return; } send_flow_removed(p, rule, time_msec(), OFPRR_DELETE); rule_remove(p, rule); } static int handle_flow_mod(struct ofproto *p, struct ofconn *ofconn, struct ofp_flow_mod *ofm) { struct ofp_match orig_match; size_t n_actions; int error; error = reject_slave_controller(ofconn, &ofm->header); if (error) { return error; } error = check_ofp_message_array(&ofm->header, OFPT_FLOW_MOD, sizeof *ofm, sizeof *ofm->actions, &n_actions); if (error) { return error; } /* We do not support the emergency flow cache. It will hopefully * get dropped from OpenFlow in the near future. */ if (ofm->flags & htons(OFPFF_EMERG)) { /* There isn't a good fit for an error code, so just state that the * flow table is full. */ return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL); } /* Normalize ofp->match. If normalization actually changes anything, then * log the differences. */ ofm->match.pad1[0] = ofm->match.pad2[0] = 0; orig_match = ofm->match; normalize_match(&ofm->match); if (memcmp(&ofm->match, &orig_match, sizeof orig_match)) { static struct vlog_rate_limit normal_rl = VLOG_RATE_LIMIT_INIT(1, 1); if (!VLOG_DROP_INFO(&normal_rl)) { char *old = ofp_match_to_literal_string(&orig_match); char *new = ofp_match_to_literal_string(&ofm->match); VLOG_INFO("%s: normalization changed ofp_match, details:", rconn_get_name(ofconn->rconn)); VLOG_INFO(" pre: %s", old); VLOG_INFO("post: %s", new); free(old); free(new); } } if (!ofm->match.wildcards) { ofm->priority = htons(UINT16_MAX); } error = validate_actions((const union ofp_action *) ofm->actions, n_actions, p->max_ports); if (error) { return error; } switch (ntohs(ofm->command)) { case OFPFC_ADD: return add_flow(p, ofconn, ofm, n_actions); case OFPFC_MODIFY: return modify_flows_loose(p, ofconn, ofm, n_actions); case OFPFC_MODIFY_STRICT: return modify_flow_strict(p, ofconn, ofm, n_actions); case OFPFC_DELETE: delete_flows_loose(p, ofm); return 0; case OFPFC_DELETE_STRICT: delete_flow_strict(p, ofm); return 0; default: return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND); } } static int handle_tun_id_from_cookie(struct ofproto *p, struct nxt_tun_id_cookie *msg) { int error; error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg); if (error) { return error; } p->tun_id_from_cookie = !!msg->set; return 0; } static int handle_role_request(struct ofproto *ofproto, struct ofconn *ofconn, struct nicira_header *msg) { struct nx_role_request *nrr; struct nx_role_request *reply; struct ofpbuf *buf; uint32_t role; if (ntohs(msg->header.length) != sizeof *nrr) { VLOG_WARN_RL(&rl, "received role request of length %u (expected %zu)", ntohs(msg->header.length), sizeof *nrr); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } nrr = (struct nx_role_request *) msg; if (ofconn->type != OFCONN_PRIMARY) { VLOG_WARN_RL(&rl, "ignoring role request on non-controller " "connection"); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM); } role = ntohl(nrr->role); if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER && role != NX_ROLE_SLAVE) { VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role); /* There's no good error code for this. */ return ofp_mkerr(OFPET_BAD_REQUEST, -1); } if (role == NX_ROLE_MASTER) { struct ofconn *other; HMAP_FOR_EACH (other, struct ofconn, hmap_node, &ofproto->controllers) { if (other->role == NX_ROLE_MASTER) { other->role = NX_ROLE_SLAVE; } } } ofconn->role = role; reply = make_openflow_xid(sizeof *reply, OFPT_VENDOR, msg->header.xid, &buf); reply->nxh.vendor = htonl(NX_VENDOR_ID); reply->nxh.subtype = htonl(NXT_ROLE_REPLY); reply->role = htonl(role); queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static int handle_vendor(struct ofproto *p, struct ofconn *ofconn, void *msg) { struct ofp_vendor_header *ovh = msg; struct nicira_header *nh; if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) { VLOG_WARN_RL(&rl, "received vendor message of length %u " "(expected at least %zu)", ntohs(ovh->header.length), sizeof(struct ofp_vendor_header)); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } if (ovh->vendor != htonl(NX_VENDOR_ID)) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR); } if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) { VLOG_WARN_RL(&rl, "received Nicira vendor message of length %u " "(expected at least %zu)", ntohs(ovh->header.length), sizeof(struct nicira_header)); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } nh = msg; switch (ntohl(nh->subtype)) { case NXT_STATUS_REQUEST: return switch_status_handle_request(p->switch_status, ofconn->rconn, msg); case NXT_TUN_ID_FROM_COOKIE: return handle_tun_id_from_cookie(p, msg); case NXT_ROLE_REQUEST: return handle_role_request(p, ofconn, msg); } return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE); } static int handle_barrier_request(struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_header *ob; struct ofpbuf *buf; /* Currently, everything executes synchronously, so we can just * immediately send the barrier reply. */ ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf); queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static void handle_openflow(struct ofconn *ofconn, struct ofproto *p, struct ofpbuf *ofp_msg) { struct ofp_header *oh = ofp_msg->data; int error; COVERAGE_INC(ofproto_recv_openflow); switch (oh->type) { case OFPT_ECHO_REQUEST: error = handle_echo_request(ofconn, oh); break; case OFPT_ECHO_REPLY: error = 0; break; case OFPT_FEATURES_REQUEST: error = handle_features_request(p, ofconn, oh); break; case OFPT_GET_CONFIG_REQUEST: error = handle_get_config_request(p, ofconn, oh); break; case OFPT_SET_CONFIG: error = handle_set_config(p, ofconn, ofp_msg->data); break; case OFPT_PACKET_OUT: error = handle_packet_out(p, ofconn, ofp_msg->data); break; case OFPT_PORT_MOD: error = handle_port_mod(p, ofconn, oh); break; case OFPT_FLOW_MOD: error = handle_flow_mod(p, ofconn, ofp_msg->data); break; case OFPT_STATS_REQUEST: error = handle_stats_request(p, ofconn, oh); break; case OFPT_VENDOR: error = handle_vendor(p, ofconn, ofp_msg->data); break; case OFPT_BARRIER_REQUEST: error = handle_barrier_request(ofconn, oh); break; default: if (VLOG_IS_WARN_ENABLED()) { char *s = ofp_to_string(oh, ntohs(oh->length), 2); VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s); free(s); } error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE); break; } if (error) { send_error_oh(ofconn, ofp_msg->data, error); } } static void handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet) { struct odp_msg *msg = packet->data; struct rule *rule; struct ofpbuf payload; flow_t flow; payload.data = msg + 1; payload.size = msg->length - sizeof *msg; flow_extract(&payload, msg->arg, msg->port, &flow); /* Check with in-band control to see if this packet should be sent * to the local port regardless of the flow table. */ if (in_band_msg_in_hook(p->in_band, &flow, &payload)) { union odp_action action; memset(&action, 0, sizeof(action)); action.output.type = ODPAT_OUTPUT; action.output.port = ODPP_LOCAL; dpif_execute(p->dpif, flow.in_port, &action, 1, &payload); } rule = lookup_valid_rule(p, &flow); if (!rule) { /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */ struct ofport *port = port_array_get(&p->ports, msg->port); if (port) { if (port->opp.config & OFPPC_NO_PACKET_IN) { COVERAGE_INC(ofproto_no_packet_in); /* XXX install 'drop' flow entry */ ofpbuf_delete(packet); return; } } else { VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, msg->port); } COVERAGE_INC(ofproto_packet_in); send_packet_in(p, packet); return; } if (rule->cr.wc.wildcards) { rule = rule_create_subrule(p, rule, &flow); rule_make_actions(p, rule, packet); } else { if (!rule->may_install) { /* The rule is not installable, that is, we need to process every * packet, so process the current packet and set its actions into * 'subrule'. */ rule_make_actions(p, rule, packet); } else { /* XXX revalidate rule if it needs it */ } } if (rule->super && rule->super->cr.priority == FAIL_OPEN_PRIORITY) { /* * Extra-special case for fail-open mode. * * We are in fail-open mode and the packet matched the fail-open rule, * but we are connected to a controller too. We should send the packet * up to the controller in the hope that it will try to set up a flow * and thereby allow us to exit fail-open. * * See the top-level comment in fail-open.c for more information. */ send_packet_in(p, ofpbuf_clone_with_headroom(packet, DPIF_RECV_MSG_PADDING)); } ofpbuf_pull(packet, sizeof *msg); rule_execute(p, rule, packet, &flow); rule_reinstall(p, rule); } static void handle_odp_msg(struct ofproto *p, struct ofpbuf *packet) { struct odp_msg *msg = packet->data; switch (msg->type) { case _ODPL_ACTION_NR: COVERAGE_INC(ofproto_ctlr_action); send_packet_in(p, packet); break; case _ODPL_SFLOW_NR: if (p->sflow) { ofproto_sflow_received(p->sflow, msg); } ofpbuf_delete(packet); break; case _ODPL_MISS_NR: handle_odp_miss_msg(p, packet); break; default: VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32, msg->type); break; } } static void revalidate_cb(struct cls_rule *sub_, void *cbdata_) { struct rule *sub = rule_from_cls_rule(sub_); struct revalidate_cbdata *cbdata = cbdata_; if (cbdata->revalidate_all || (cbdata->revalidate_subrules && sub->super) || (tag_set_intersects(&cbdata->revalidate_set, sub->tags))) { revalidate_rule(cbdata->ofproto, sub); } } static bool revalidate_rule(struct ofproto *p, struct rule *rule) { const flow_t *flow = &rule->cr.flow; COVERAGE_INC(ofproto_revalidate_rule); if (rule->super) { struct rule *super; super = rule_from_cls_rule(classifier_lookup_wild(&p->cls, flow)); if (!super) { rule_remove(p, rule); return false; } else if (super != rule->super) { COVERAGE_INC(ofproto_revalidate_moved); list_remove(&rule->list); list_push_back(&super->list, &rule->list); rule->super = super; rule->hard_timeout = super->hard_timeout; rule->idle_timeout = super->idle_timeout; rule->created = super->created; rule->used = 0; } } rule_update_actions(p, rule); return true; } static struct ofpbuf * compose_flow_removed(struct ofproto *p, const struct rule *rule, long long int now, uint8_t reason) { struct ofp_flow_removed *ofr; struct ofpbuf *buf; long long int tdiff = now - rule->created; uint32_t sec = tdiff / 1000; uint32_t msec = tdiff - (sec * 1000); ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf); flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, p->tun_id_from_cookie, &ofr->match); ofr->cookie = rule->flow_cookie; ofr->priority = htons(rule->cr.priority); ofr->reason = reason; ofr->duration_sec = htonl(sec); ofr->duration_nsec = htonl(msec * 1000000); ofr->idle_timeout = htons(rule->idle_timeout); ofr->packet_count = htonll(rule->packet_count); ofr->byte_count = htonll(rule->byte_count); return buf; } static void uninstall_idle_flow(struct ofproto *ofproto, struct rule *rule) { assert(rule->installed); assert(!rule->cr.wc.wildcards); if (rule->super) { rule_remove(ofproto, rule); } else { rule_uninstall(ofproto, rule); } } static void send_flow_removed(struct ofproto *p, struct rule *rule, long long int now, uint8_t reason) { struct ofconn *ofconn; struct ofconn *prev; struct ofpbuf *buf = NULL; /* We limit the maximum number of queued flow expirations it by accounting * them under the counter for replies. That works because preventing * OpenFlow requests from being processed also prevents new flows from * being added (and expiring). (It also prevents processing OpenFlow * requests that would not add new flows, so it is imperfect.) */ prev = NULL; LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) { if (rule->send_flow_removed && rconn_is_connected(ofconn->rconn) && ofconn_receives_async_msgs(ofconn)) { if (prev) { queue_tx(ofpbuf_clone(buf), prev, prev->reply_counter); } else { buf = compose_flow_removed(p, rule, now, reason); } prev = ofconn; } } if (prev) { queue_tx(buf, prev, prev->reply_counter); } } static void expire_rule(struct cls_rule *cls_rule, void *p_) { struct ofproto *p = p_; struct rule *rule = rule_from_cls_rule(cls_rule); long long int hard_expire, idle_expire, expire, now; hard_expire = (rule->hard_timeout ? rule->created + rule->hard_timeout * 1000 : LLONG_MAX); idle_expire = (rule->idle_timeout && (rule->super || list_is_empty(&rule->list)) ? rule->used + rule->idle_timeout * 1000 : LLONG_MAX); expire = MIN(hard_expire, idle_expire); now = time_msec(); if (now < expire) { if (rule->installed && now >= rule->used + 5000) { uninstall_idle_flow(p, rule); } else if (!rule->cr.wc.wildcards) { active_timeout(p, rule); } return; } COVERAGE_INC(ofproto_expired); /* Update stats. This code will be a no-op if the rule expired * due to an idle timeout. */ if (rule->cr.wc.wildcards) { struct rule *subrule, *next; LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) { rule_remove(p, subrule); } } else { rule_uninstall(p, rule); } if (!rule_is_hidden(rule)) { send_flow_removed(p, rule, now, (now >= hard_expire ? OFPRR_HARD_TIMEOUT : OFPRR_IDLE_TIMEOUT)); } rule_remove(p, rule); } static void active_timeout(struct ofproto *ofproto, struct rule *rule) { if (ofproto->netflow && !is_controller_rule(rule) && netflow_active_timeout_expired(ofproto->netflow, &rule->nf_flow)) { struct ofexpired expired; struct odp_flow odp_flow; /* Get updated flow stats. */ memset(&odp_flow, 0, sizeof odp_flow); if (rule->installed) { odp_flow.key = rule->cr.flow; odp_flow.flags = ODPFF_ZERO_TCP_FLAGS; dpif_flow_get(ofproto->dpif, &odp_flow); if (odp_flow.stats.n_packets) { update_time(ofproto, rule, &odp_flow.stats); netflow_flow_update_flags(&rule->nf_flow, odp_flow.stats.tcp_flags); } } expired.flow = rule->cr.flow; expired.packet_count = rule->packet_count + odp_flow.stats.n_packets; expired.byte_count = rule->byte_count + odp_flow.stats.n_bytes; expired.used = rule->used; netflow_expire(ofproto->netflow, &rule->nf_flow, &expired); /* Schedule us to send the accumulated records once we have * collected all of them. */ poll_immediate_wake(); } } static void update_used(struct ofproto *p) { struct odp_flow *flows; size_t n_flows; size_t i; int error; error = dpif_flow_list_all(p->dpif, &flows, &n_flows); if (error) { return; } for (i = 0; i < n_flows; i++) { struct odp_flow *f = &flows[i]; struct rule *rule; rule = rule_from_cls_rule( classifier_find_rule_exactly(&p->cls, &f->key, 0, UINT16_MAX)); if (!rule || !rule->installed) { COVERAGE_INC(ofproto_unexpected_rule); dpif_flow_del(p->dpif, f); continue; } update_time(p, rule, &f->stats); rule_account(p, rule, f->stats.n_bytes); } free(flows); } /* pinsched callback for sending 'packet' on 'ofconn'. */ static void do_send_packet_in(struct ofpbuf *packet, void *ofconn_) { struct ofconn *ofconn = ofconn_; rconn_send_with_limit(ofconn->rconn, packet, ofconn->packet_in_counter, 100); } /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s * packet scheduler for sending. * * 'max_len' specifies the maximum number of bytes of the packet to send on * 'ofconn' (INT_MAX specifies no limit). * * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise, * ownership is transferred to this function. */ static void schedule_packet_in(struct ofconn *ofconn, struct ofpbuf *packet, int max_len, bool clone) { struct ofproto *ofproto = ofconn->ofproto; struct ofp_packet_in *opi = packet->data; uint16_t in_port = ofp_port_to_odp_port(ntohs(opi->in_port)); int send_len, trim_size; uint32_t buffer_id; /* Get buffer. */ if (opi->reason == OFPR_ACTION) { buffer_id = UINT32_MAX; } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) { buffer_id = pktbuf_get_null(); } else if (!ofconn->pktbuf) { buffer_id = UINT32_MAX; } else { struct ofpbuf payload; payload.data = opi->data; payload.size = packet->size - offsetof(struct ofp_packet_in, data); buffer_id = pktbuf_save(ofconn->pktbuf, &payload, in_port); } /* Figure out how much of the packet to send. */ send_len = ntohs(opi->total_len); if (buffer_id != UINT32_MAX) { send_len = MIN(send_len, ofconn->miss_send_len); } send_len = MIN(send_len, max_len); /* Adjust packet length and clone if necessary. */ trim_size = offsetof(struct ofp_packet_in, data) + send_len; if (clone) { packet = ofpbuf_clone_data(packet->data, trim_size); opi = packet->data; } else { packet->size = trim_size; } /* Update packet headers. */ opi->buffer_id = htonl(buffer_id); update_openflow_length(packet); /* Hand over to packet scheduler. It might immediately call into * do_send_packet_in() or it might buffer it for a while (until a later * call to pinsched_run()). */ pinsched_send(ofconn->schedulers[opi->reason], in_port, packet, do_send_packet_in, ofconn); } /* Replace struct odp_msg header in 'packet' by equivalent struct * ofp_packet_in. The odp_msg must have sufficient headroom to do so (e.g. as * returned by dpif_recv()). * * The conversion is not complete: the caller still needs to trim any unneeded * payload off the end of the buffer, set the length in the OpenFlow header, * and set buffer_id. Those require us to know the controller settings and so * must be done on a per-controller basis. * * Returns the maximum number of bytes of the packet that should be sent to * the controller (INT_MAX if no limit). */ static int do_convert_to_packet_in(struct ofpbuf *packet) { struct odp_msg *msg = packet->data; struct ofp_packet_in *opi; uint8_t reason; uint16_t total_len; uint16_t in_port; int max_len; /* Extract relevant header fields */ if (msg->type == _ODPL_ACTION_NR) { reason = OFPR_ACTION; max_len = msg->arg; } else { reason = OFPR_NO_MATCH; max_len = INT_MAX; } total_len = msg->length - sizeof *msg; in_port = odp_port_to_ofp_port(msg->port); /* Repurpose packet buffer by overwriting header. */ ofpbuf_pull(packet, sizeof(struct odp_msg)); opi = ofpbuf_push_zeros(packet, offsetof(struct ofp_packet_in, data)); opi->header.version = OFP_VERSION; opi->header.type = OFPT_PACKET_IN; opi->total_len = htons(total_len); opi->in_port = htons(in_port); opi->reason = reason; return max_len; } /* Given 'packet' containing an odp_msg of type _ODPL_ACTION_NR or * _ODPL_MISS_NR, sends an OFPT_PACKET_IN message to each OpenFlow controller * as necessary according to their individual configurations. * * 'packet' must have sufficient headroom to convert it into a struct * ofp_packet_in (e.g. as returned by dpif_recv()). * * Takes ownership of 'packet'. */ static void send_packet_in(struct ofproto *ofproto, struct ofpbuf *packet) { struct ofconn *ofconn, *prev; int max_len; max_len = do_convert_to_packet_in(packet); prev = NULL; LIST_FOR_EACH (ofconn, struct ofconn, node, &ofproto->all_conns) { if (ofconn_receives_async_msgs(ofconn)) { if (prev) { schedule_packet_in(prev, packet, max_len, true); } prev = ofconn; } } if (prev) { schedule_packet_in(prev, packet, max_len, false); } else { ofpbuf_delete(packet); } } static uint64_t pick_datapath_id(const struct ofproto *ofproto) { const struct ofport *port; port = port_array_get(&ofproto->ports, ODPP_LOCAL); if (port) { uint8_t ea[ETH_ADDR_LEN]; int error; error = netdev_get_etheraddr(port->netdev, ea); if (!error) { return eth_addr_to_uint64(ea); } VLOG_WARN("could not get MAC address for %s (%s)", netdev_get_name(port->netdev), strerror(error)); } return ofproto->fallback_dpid; } static uint64_t pick_fallback_dpid(void) { uint8_t ea[ETH_ADDR_LEN]; eth_addr_nicira_random(ea); return eth_addr_to_uint64(ea); } static bool default_normal_ofhook_cb(const flow_t *flow, const struct ofpbuf *packet, struct odp_actions *actions, tag_type *tags, uint16_t *nf_output_iface, void *ofproto_) { struct ofproto *ofproto = ofproto_; int out_port; /* Drop frames for reserved multicast addresses. */ if (eth_addr_is_reserved(flow->dl_dst)) { return true; } /* Learn source MAC (but don't try to learn from revalidation). */ if (packet != NULL) { tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src, 0, flow->in_port, GRAT_ARP_LOCK_NONE); if (rev_tag) { /* The log messages here could actually be useful in debugging, * so keep the rate limit relatively high. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300); VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16, ETH_ADDR_ARGS(flow->dl_src), flow->in_port); ofproto_revalidate(ofproto, rev_tag); } } /* Determine output port. */ out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags, NULL); if (out_port < 0) { add_output_group_action(actions, DP_GROUP_FLOOD, nf_output_iface); } else if (out_port != flow->in_port) { odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port; *nf_output_iface = out_port; } else { /* Drop. */ } return true; } static const struct ofhooks default_ofhooks = { NULL, default_normal_ofhook_cb, NULL, NULL };