/* * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* "White box" tests for classifier. * * With very few exceptions, these tests obtain complete coverage of every * basic block and every branch in the classifier implementation, e.g. a clean * report from "gcov -b". (Covering the exceptions would require finding * collisions in the hash function used for flow data, etc.) * * This test should receive a clean report from "valgrind --leak-check=full": * it frees every heap block that it allocates. */ #include #include #include #include "byte-order.h" #include "command-line.h" #include "flow.h" #include "ofp-util.h" #include "packets.h" #include "random.h" #include "unaligned.h" #include "ovstest.h" #undef NDEBUG #include /* We need access to classifier internal definitions to be able to fully * test them. The alternative would be to expose them all in the classifier * API. */ #include "classifier.c" /* Fields in a rule. */ #define CLS_FIELDS \ /* struct flow all-caps */ \ /* member name name */ \ /* ----------- -------- */ \ CLS_FIELD(tunnel.tun_id, TUN_ID) \ CLS_FIELD(metadata, METADATA) \ CLS_FIELD(nw_src, NW_SRC) \ CLS_FIELD(nw_dst, NW_DST) \ CLS_FIELD(in_port, IN_PORT) \ CLS_FIELD(vlan_tci, VLAN_TCI) \ CLS_FIELD(dl_type, DL_TYPE) \ CLS_FIELD(tp_src, TP_SRC) \ CLS_FIELD(tp_dst, TP_DST) \ CLS_FIELD(dl_src, DL_SRC) \ CLS_FIELD(dl_dst, DL_DST) \ CLS_FIELD(nw_proto, NW_PROTO) \ CLS_FIELD(nw_tos, NW_DSCP) /* Field indexes. * * (These are also indexed into struct classifier's 'tables' array.) */ enum { #define CLS_FIELD(MEMBER, NAME) CLS_F_IDX_##NAME, CLS_FIELDS #undef CLS_FIELD CLS_N_FIELDS }; /* Field information. */ struct cls_field { int ofs; /* Offset in struct flow. */ int len; /* Length in bytes. */ const char *name; /* Name (for debugging). */ }; static const struct cls_field cls_fields[CLS_N_FIELDS] = { #define CLS_FIELD(MEMBER, NAME) \ { offsetof(struct flow, MEMBER), \ sizeof ((struct flow *)0)->MEMBER, \ #NAME }, CLS_FIELDS #undef CLS_FIELD }; struct test_rule { int aux; /* Auxiliary data. */ struct cls_rule cls_rule; /* Classifier rule data. */ }; static struct test_rule * test_rule_from_cls_rule(const struct cls_rule *rule) { return rule ? CONTAINER_OF(rule, struct test_rule, cls_rule) : NULL; } static void test_rule_destroy(struct test_rule *rule) { if (rule) { cls_rule_destroy(&rule->cls_rule); free(rule); } } static struct test_rule *make_rule(int wc_fields, unsigned int priority, int value_pat); static void free_rule(struct test_rule *); static struct test_rule *clone_rule(const struct test_rule *); /* Trivial (linear) classifier. */ struct tcls { size_t n_rules; size_t allocated_rules; struct test_rule **rules; }; static void tcls_init(struct tcls *tcls) { tcls->n_rules = 0; tcls->allocated_rules = 0; tcls->rules = NULL; } static void tcls_destroy(struct tcls *tcls) { if (tcls) { size_t i; for (i = 0; i < tcls->n_rules; i++) { test_rule_destroy(tcls->rules[i]); } free(tcls->rules); } } static bool tcls_is_empty(const struct tcls *tcls) { return tcls->n_rules == 0; } static struct test_rule * tcls_insert(struct tcls *tcls, const struct test_rule *rule) { size_t i; for (i = 0; i < tcls->n_rules; i++) { const struct cls_rule *pos = &tcls->rules[i]->cls_rule; if (cls_rule_equal(pos, &rule->cls_rule)) { /* Exact match. */ free_rule(tcls->rules[i]); tcls->rules[i] = clone_rule(rule); return tcls->rules[i]; } else if (pos->priority < rule->cls_rule.priority) { break; } } if (tcls->n_rules >= tcls->allocated_rules) { tcls->rules = x2nrealloc(tcls->rules, &tcls->allocated_rules, sizeof *tcls->rules); } if (i != tcls->n_rules) { memmove(&tcls->rules[i + 1], &tcls->rules[i], sizeof *tcls->rules * (tcls->n_rules - i)); } tcls->rules[i] = clone_rule(rule); tcls->n_rules++; return tcls->rules[i]; } static void tcls_remove(struct tcls *cls, const struct test_rule *rule) { size_t i; for (i = 0; i < cls->n_rules; i++) { struct test_rule *pos = cls->rules[i]; if (pos == rule) { test_rule_destroy(pos); memmove(&cls->rules[i], &cls->rules[i + 1], sizeof *cls->rules * (cls->n_rules - i - 1)); cls->n_rules--; return; } } OVS_NOT_REACHED(); } static bool match(const struct cls_rule *wild_, const struct flow *fixed) { struct match wild; int f_idx; minimatch_expand(&wild_->match, &wild); for (f_idx = 0; f_idx < CLS_N_FIELDS; f_idx++) { bool eq; if (f_idx == CLS_F_IDX_NW_SRC) { eq = !((fixed->nw_src ^ wild.flow.nw_src) & wild.wc.masks.nw_src); } else if (f_idx == CLS_F_IDX_NW_DST) { eq = !((fixed->nw_dst ^ wild.flow.nw_dst) & wild.wc.masks.nw_dst); } else if (f_idx == CLS_F_IDX_TP_SRC) { eq = !((fixed->tp_src ^ wild.flow.tp_src) & wild.wc.masks.tp_src); } else if (f_idx == CLS_F_IDX_TP_DST) { eq = !((fixed->tp_dst ^ wild.flow.tp_dst) & wild.wc.masks.tp_dst); } else if (f_idx == CLS_F_IDX_DL_SRC) { eq = eth_addr_equal_except(fixed->dl_src, wild.flow.dl_src, wild.wc.masks.dl_src); } else if (f_idx == CLS_F_IDX_DL_DST) { eq = eth_addr_equal_except(fixed->dl_dst, wild.flow.dl_dst, wild.wc.masks.dl_dst); } else if (f_idx == CLS_F_IDX_VLAN_TCI) { eq = !((fixed->vlan_tci ^ wild.flow.vlan_tci) & wild.wc.masks.vlan_tci); } else if (f_idx == CLS_F_IDX_TUN_ID) { eq = !((fixed->tunnel.tun_id ^ wild.flow.tunnel.tun_id) & wild.wc.masks.tunnel.tun_id); } else if (f_idx == CLS_F_IDX_METADATA) { eq = !((fixed->metadata ^ wild.flow.metadata) & wild.wc.masks.metadata); } else if (f_idx == CLS_F_IDX_NW_DSCP) { eq = !((fixed->nw_tos ^ wild.flow.nw_tos) & (wild.wc.masks.nw_tos & IP_DSCP_MASK)); } else if (f_idx == CLS_F_IDX_NW_PROTO) { eq = !((fixed->nw_proto ^ wild.flow.nw_proto) & wild.wc.masks.nw_proto); } else if (f_idx == CLS_F_IDX_DL_TYPE) { eq = !((fixed->dl_type ^ wild.flow.dl_type) & wild.wc.masks.dl_type); } else if (f_idx == CLS_F_IDX_IN_PORT) { eq = !((fixed->in_port.ofp_port ^ wild.flow.in_port.ofp_port) & wild.wc.masks.in_port.ofp_port); } else { OVS_NOT_REACHED(); } if (!eq) { return false; } } return true; } static struct cls_rule * tcls_lookup(const struct tcls *cls, const struct flow *flow) { size_t i; for (i = 0; i < cls->n_rules; i++) { struct test_rule *pos = cls->rules[i]; if (match(&pos->cls_rule, flow)) { return &pos->cls_rule; } } return NULL; } static void tcls_delete_matches(struct tcls *cls, const struct cls_rule *target) { size_t i; for (i = 0; i < cls->n_rules; ) { struct test_rule *pos = cls->rules[i]; if (!minimask_has_extra(&pos->cls_rule.match.mask, &target->match.mask)) { struct flow flow; miniflow_expand(&pos->cls_rule.match.flow, &flow); if (match(target, &flow)) { tcls_remove(cls, pos); continue; } } i++; } } static ovs_be32 nw_src_values[] = { CONSTANT_HTONL(0xc0a80001), CONSTANT_HTONL(0xc0a04455) }; static ovs_be32 nw_dst_values[] = { CONSTANT_HTONL(0xc0a80002), CONSTANT_HTONL(0xc0a04455) }; static ovs_be64 tun_id_values[] = { 0, CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) }; static ovs_be64 metadata_values[] = { 0, CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) }; static ofp_port_t in_port_values[] = { OFP_PORT_C(1), OFPP_LOCAL }; static ovs_be16 vlan_tci_values[] = { CONSTANT_HTONS(101), CONSTANT_HTONS(0) }; static ovs_be16 dl_type_values[] = { CONSTANT_HTONS(ETH_TYPE_IP), CONSTANT_HTONS(ETH_TYPE_ARP) }; static ovs_be16 tp_src_values[] = { CONSTANT_HTONS(49362), CONSTANT_HTONS(80) }; static ovs_be16 tp_dst_values[] = { CONSTANT_HTONS(6667), CONSTANT_HTONS(22) }; static uint8_t dl_src_values[][6] = { { 0x00, 0x02, 0xe3, 0x0f, 0x80, 0xa4 }, { 0x5e, 0x33, 0x7f, 0x5f, 0x1e, 0x99 } }; static uint8_t dl_dst_values[][6] = { { 0x4a, 0x27, 0x71, 0xae, 0x64, 0xc1 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } }; static uint8_t nw_proto_values[] = { IPPROTO_TCP, IPPROTO_ICMP }; static uint8_t nw_dscp_values[] = { 48, 0 }; static void *values[CLS_N_FIELDS][2]; static void init_values(void) { values[CLS_F_IDX_TUN_ID][0] = &tun_id_values[0]; values[CLS_F_IDX_TUN_ID][1] = &tun_id_values[1]; values[CLS_F_IDX_METADATA][0] = &metadata_values[0]; values[CLS_F_IDX_METADATA][1] = &metadata_values[1]; values[CLS_F_IDX_IN_PORT][0] = &in_port_values[0]; values[CLS_F_IDX_IN_PORT][1] = &in_port_values[1]; values[CLS_F_IDX_VLAN_TCI][0] = &vlan_tci_values[0]; values[CLS_F_IDX_VLAN_TCI][1] = &vlan_tci_values[1]; values[CLS_F_IDX_DL_SRC][0] = dl_src_values[0]; values[CLS_F_IDX_DL_SRC][1] = dl_src_values[1]; values[CLS_F_IDX_DL_DST][0] = dl_dst_values[0]; values[CLS_F_IDX_DL_DST][1] = dl_dst_values[1]; values[CLS_F_IDX_DL_TYPE][0] = &dl_type_values[0]; values[CLS_F_IDX_DL_TYPE][1] = &dl_type_values[1]; values[CLS_F_IDX_NW_SRC][0] = &nw_src_values[0]; values[CLS_F_IDX_NW_SRC][1] = &nw_src_values[1]; values[CLS_F_IDX_NW_DST][0] = &nw_dst_values[0]; values[CLS_F_IDX_NW_DST][1] = &nw_dst_values[1]; values[CLS_F_IDX_NW_PROTO][0] = &nw_proto_values[0]; values[CLS_F_IDX_NW_PROTO][1] = &nw_proto_values[1]; values[CLS_F_IDX_NW_DSCP][0] = &nw_dscp_values[0]; values[CLS_F_IDX_NW_DSCP][1] = &nw_dscp_values[1]; values[CLS_F_IDX_TP_SRC][0] = &tp_src_values[0]; values[CLS_F_IDX_TP_SRC][1] = &tp_src_values[1]; values[CLS_F_IDX_TP_DST][0] = &tp_dst_values[0]; values[CLS_F_IDX_TP_DST][1] = &tp_dst_values[1]; } #define N_NW_SRC_VALUES ARRAY_SIZE(nw_src_values) #define N_NW_DST_VALUES ARRAY_SIZE(nw_dst_values) #define N_TUN_ID_VALUES ARRAY_SIZE(tun_id_values) #define N_METADATA_VALUES ARRAY_SIZE(metadata_values) #define N_IN_PORT_VALUES ARRAY_SIZE(in_port_values) #define N_VLAN_TCI_VALUES ARRAY_SIZE(vlan_tci_values) #define N_DL_TYPE_VALUES ARRAY_SIZE(dl_type_values) #define N_TP_SRC_VALUES ARRAY_SIZE(tp_src_values) #define N_TP_DST_VALUES ARRAY_SIZE(tp_dst_values) #define N_DL_SRC_VALUES ARRAY_SIZE(dl_src_values) #define N_DL_DST_VALUES ARRAY_SIZE(dl_dst_values) #define N_NW_PROTO_VALUES ARRAY_SIZE(nw_proto_values) #define N_NW_DSCP_VALUES ARRAY_SIZE(nw_dscp_values) #define N_FLOW_VALUES (N_NW_SRC_VALUES * \ N_NW_DST_VALUES * \ N_TUN_ID_VALUES * \ N_IN_PORT_VALUES * \ N_VLAN_TCI_VALUES * \ N_DL_TYPE_VALUES * \ N_TP_SRC_VALUES * \ N_TP_DST_VALUES * \ N_DL_SRC_VALUES * \ N_DL_DST_VALUES * \ N_NW_PROTO_VALUES * \ N_NW_DSCP_VALUES) static unsigned int get_value(unsigned int *x, unsigned n_values) { unsigned int rem = *x % n_values; *x /= n_values; return rem; } static void compare_classifiers(struct classifier *cls, struct tcls *tcls) OVS_REQ_RDLOCK(cls->rwlock) { static const int confidence = 500; unsigned int i; assert(classifier_count(cls) == tcls->n_rules); for (i = 0; i < confidence; i++) { struct cls_rule *cr0, *cr1, *cr2; struct flow flow; struct flow_wildcards wc; unsigned int x; flow_wildcards_init_catchall(&wc); x = random_range(N_FLOW_VALUES); memset(&flow, 0, sizeof flow); flow.nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)]; flow.nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)]; flow.tunnel.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)]; flow.metadata = metadata_values[get_value(&x, N_METADATA_VALUES)]; flow.in_port.ofp_port = in_port_values[get_value(&x, N_IN_PORT_VALUES)]; flow.vlan_tci = vlan_tci_values[get_value(&x, N_VLAN_TCI_VALUES)]; flow.dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)]; flow.tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)]; flow.tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)]; memcpy(flow.dl_src, dl_src_values[get_value(&x, N_DL_SRC_VALUES)], ETH_ADDR_LEN); memcpy(flow.dl_dst, dl_dst_values[get_value(&x, N_DL_DST_VALUES)], ETH_ADDR_LEN); flow.nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)]; flow.nw_tos = nw_dscp_values[get_value(&x, N_NW_DSCP_VALUES)]; cr0 = classifier_lookup(cls, &flow, &wc); cr1 = tcls_lookup(tcls, &flow); assert((cr0 == NULL) == (cr1 == NULL)); if (cr0 != NULL) { const struct test_rule *tr0 = test_rule_from_cls_rule(cr0); const struct test_rule *tr1 = test_rule_from_cls_rule(cr1); assert(cls_rule_equal(cr0, cr1)); assert(tr0->aux == tr1->aux); } cr2 = classifier_lookup(cls, &flow, NULL); assert(cr2 == cr0); } } static void destroy_classifier(struct classifier *cls) { struct test_rule *rule, *next_rule; struct cls_cursor cursor; fat_rwlock_wrlock(&cls->rwlock); cls_cursor_init(&cursor, cls, NULL); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) { classifier_remove(cls, &rule->cls_rule); free_rule(rule); } fat_rwlock_unlock(&cls->rwlock); classifier_destroy(cls); } static void check_tables(const struct classifier *cls, int n_tables, int n_rules, int n_dups) OVS_REQ_RDLOCK(cls->rwlock) { const struct cls_subtable *table; struct test_rule *test_rule; struct cls_cursor cursor; int found_tables = 0; int found_rules = 0; int found_dups = 0; int found_rules2 = 0; HMAP_FOR_EACH (table, hmap_node, &cls->cls->subtables) { const struct cls_match *head; unsigned int max_priority = 0; unsigned int max_count = 0; assert(!hmap_is_empty(&table->rules)); found_tables++; HMAP_FOR_EACH (head, hmap_node, &table->rules) { unsigned int prev_priority = UINT_MAX; const struct cls_match *rule; if (head->priority > max_priority) { max_priority = head->priority; max_count = 1; } else if (head->priority == max_priority) { ++max_count; } found_rules++; LIST_FOR_EACH (rule, list, &head->list) { assert(rule->priority < prev_priority); assert(rule->priority <= table->max_priority); prev_priority = rule->priority; found_rules++; found_dups++; assert(classifier_find_rule_exactly(cls, rule->cls_rule) == rule->cls_rule); } } assert(table->max_priority == max_priority); assert(table->max_count == max_count); } assert(found_tables == hmap_count(&cls->cls->subtables)); assert(n_tables == -1 || n_tables == hmap_count(&cls->cls->subtables)); assert(n_rules == -1 || found_rules == n_rules); assert(n_dups == -1 || found_dups == n_dups); cls_cursor_init(&cursor, cls, NULL); CLS_CURSOR_FOR_EACH (test_rule, cls_rule, &cursor) { found_rules2++; } assert(found_rules == found_rules2); } static struct test_rule * make_rule(int wc_fields, unsigned int priority, int value_pat) { const struct cls_field *f; struct test_rule *rule; struct match match; match_init_catchall(&match); for (f = &cls_fields[0]; f < &cls_fields[CLS_N_FIELDS]; f++) { int f_idx = f - cls_fields; int value_idx = (value_pat & (1u << f_idx)) != 0; memcpy((char *) &match.flow + f->ofs, values[f_idx][value_idx], f->len); if (f_idx == CLS_F_IDX_NW_SRC) { match.wc.masks.nw_src = OVS_BE32_MAX; } else if (f_idx == CLS_F_IDX_NW_DST) { match.wc.masks.nw_dst = OVS_BE32_MAX; } else if (f_idx == CLS_F_IDX_TP_SRC) { match.wc.masks.tp_src = OVS_BE16_MAX; } else if (f_idx == CLS_F_IDX_TP_DST) { match.wc.masks.tp_dst = OVS_BE16_MAX; } else if (f_idx == CLS_F_IDX_DL_SRC) { memset(match.wc.masks.dl_src, 0xff, ETH_ADDR_LEN); } else if (f_idx == CLS_F_IDX_DL_DST) { memset(match.wc.masks.dl_dst, 0xff, ETH_ADDR_LEN); } else if (f_idx == CLS_F_IDX_VLAN_TCI) { match.wc.masks.vlan_tci = OVS_BE16_MAX; } else if (f_idx == CLS_F_IDX_TUN_ID) { match.wc.masks.tunnel.tun_id = OVS_BE64_MAX; } else if (f_idx == CLS_F_IDX_METADATA) { match.wc.masks.metadata = OVS_BE64_MAX; } else if (f_idx == CLS_F_IDX_NW_DSCP) { match.wc.masks.nw_tos |= IP_DSCP_MASK; } else if (f_idx == CLS_F_IDX_NW_PROTO) { match.wc.masks.nw_proto = UINT8_MAX; } else if (f_idx == CLS_F_IDX_DL_TYPE) { match.wc.masks.dl_type = OVS_BE16_MAX; } else if (f_idx == CLS_F_IDX_IN_PORT) { match.wc.masks.in_port.ofp_port = u16_to_ofp(UINT16_MAX); } else { OVS_NOT_REACHED(); } } rule = xzalloc(sizeof *rule); cls_rule_init(&rule->cls_rule, &match, wc_fields ? priority : UINT_MAX); return rule; } static struct test_rule * clone_rule(const struct test_rule *src) { struct test_rule *dst; dst = xmalloc(sizeof *dst); dst->aux = src->aux; cls_rule_clone(&dst->cls_rule, &src->cls_rule); return dst; } static void free_rule(struct test_rule *rule) { cls_rule_destroy(&rule->cls_rule); free(rule); } static void shuffle(unsigned int *p, size_t n) { for (; n > 1; n--, p++) { unsigned int *q = &p[random_range(n)]; unsigned int tmp = *p; *p = *q; *q = tmp; } } static void shuffle_u32s(uint32_t *p, size_t n) { for (; n > 1; n--, p++) { uint32_t *q = &p[random_range(n)]; uint32_t tmp = *p; *p = *q; *q = tmp; } } /* Classifier tests. */ static enum mf_field_id trie_fields[2] = { MFF_IPV4_DST, MFF_IPV4_SRC }; /* Tests an empty classifier. */ static void test_empty(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { struct classifier cls; struct tcls tcls; classifier_init(&cls, flow_segment_u32s); fat_rwlock_wrlock(&cls.rwlock); classifier_set_prefix_fields(&cls, trie_fields, ARRAY_SIZE(trie_fields)); tcls_init(&tcls); assert(classifier_is_empty(&cls)); assert(tcls_is_empty(&tcls)); compare_classifiers(&cls, &tcls); fat_rwlock_unlock(&cls.rwlock); classifier_destroy(&cls); tcls_destroy(&tcls); } /* Destroys a null classifier. */ static void test_destroy_null(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { classifier_destroy(NULL); } /* Tests classification with one rule at a time. */ static void test_single_rule(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { unsigned int wc_fields; /* Hilarious. */ for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) { struct classifier cls; struct test_rule *rule, *tcls_rule; struct tcls tcls; rule = make_rule(wc_fields, hash_bytes(&wc_fields, sizeof wc_fields, 0), 0); classifier_init(&cls, flow_segment_u32s); fat_rwlock_wrlock(&cls.rwlock); classifier_set_prefix_fields(&cls, trie_fields, ARRAY_SIZE(trie_fields)); tcls_init(&tcls); tcls_rule = tcls_insert(&tcls, rule); classifier_insert(&cls, &rule->cls_rule); check_tables(&cls, 1, 1, 0); compare_classifiers(&cls, &tcls); classifier_remove(&cls, &rule->cls_rule); tcls_remove(&tcls, tcls_rule); assert(classifier_is_empty(&cls)); assert(tcls_is_empty(&tcls)); compare_classifiers(&cls, &tcls); free_rule(rule); fat_rwlock_unlock(&cls.rwlock); classifier_destroy(&cls); tcls_destroy(&tcls); } } /* Tests replacing one rule by another. */ static void test_rule_replacement(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { unsigned int wc_fields; for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) { struct classifier cls; struct test_rule *rule1; struct test_rule *rule2; struct tcls tcls; rule1 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX); rule2 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX); rule2->aux += 5; rule2->aux += 5; classifier_init(&cls, flow_segment_u32s); fat_rwlock_wrlock(&cls.rwlock); classifier_set_prefix_fields(&cls, trie_fields, ARRAY_SIZE(trie_fields)); tcls_init(&tcls); tcls_insert(&tcls, rule1); classifier_insert(&cls, &rule1->cls_rule); check_tables(&cls, 1, 1, 0); compare_classifiers(&cls, &tcls); tcls_destroy(&tcls); tcls_init(&tcls); tcls_insert(&tcls, rule2); assert(test_rule_from_cls_rule( classifier_replace(&cls, &rule2->cls_rule)) == rule1); free_rule(rule1); check_tables(&cls, 1, 1, 0); compare_classifiers(&cls, &tcls); tcls_destroy(&tcls); fat_rwlock_unlock(&cls.rwlock); destroy_classifier(&cls); } } static int factorial(int n_items) { int n, i; n = 1; for (i = 2; i <= n_items; i++) { n *= i; } return n; } static void swap(int *a, int *b) { int tmp = *a; *a = *b; *b = tmp; } static void reverse(int *a, int n) { int i; for (i = 0; i < n / 2; i++) { int j = n - (i + 1); swap(&a[i], &a[j]); } } static bool next_permutation(int *a, int n) { int k; for (k = n - 2; k >= 0; k--) { if (a[k] < a[k + 1]) { int l; for (l = n - 1; ; l--) { if (a[l] > a[k]) { swap(&a[k], &a[l]); reverse(a + (k + 1), n - (k + 1)); return true; } } } } return false; } /* Tests classification with rules that have the same matching criteria. */ static void test_many_rules_in_one_list (int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { enum { N_RULES = 3 }; int n_pris; for (n_pris = N_RULES; n_pris >= 1; n_pris--) { int ops[N_RULES * 2]; int pris[N_RULES]; int n_permutations; int i; pris[0] = 0; for (i = 1; i < N_RULES; i++) { pris[i] = pris[i - 1] + (n_pris > i); } for (i = 0; i < N_RULES * 2; i++) { ops[i] = i / 2; } n_permutations = 0; do { struct test_rule *rules[N_RULES]; struct test_rule *tcls_rules[N_RULES]; int pri_rules[N_RULES]; struct classifier cls; struct tcls tcls; n_permutations++; for (i = 0; i < N_RULES; i++) { rules[i] = make_rule(456, pris[i], 0); tcls_rules[i] = NULL; pri_rules[i] = -1; } classifier_init(&cls, flow_segment_u32s); fat_rwlock_wrlock(&cls.rwlock); classifier_set_prefix_fields(&cls, trie_fields, ARRAY_SIZE(trie_fields)); tcls_init(&tcls); for (i = 0; i < ARRAY_SIZE(ops); i++) { int j = ops[i]; int m, n; if (!tcls_rules[j]) { struct test_rule *displaced_rule; tcls_rules[j] = tcls_insert(&tcls, rules[j]); displaced_rule = test_rule_from_cls_rule( classifier_replace(&cls, &rules[j]->cls_rule)); if (pri_rules[pris[j]] >= 0) { int k = pri_rules[pris[j]]; assert(displaced_rule != NULL); assert(displaced_rule != rules[j]); assert(pris[j] == displaced_rule->cls_rule.priority); tcls_rules[k] = NULL; } else { assert(displaced_rule == NULL); } pri_rules[pris[j]] = j; } else { classifier_remove(&cls, &rules[j]->cls_rule); tcls_remove(&tcls, tcls_rules[j]); tcls_rules[j] = NULL; pri_rules[pris[j]] = -1; } n = 0; for (m = 0; m < N_RULES; m++) { n += tcls_rules[m] != NULL; } check_tables(&cls, n > 0, n, n - 1); compare_classifiers(&cls, &tcls); } for (i = 0; i < N_RULES; i++) { if (rules[i]->cls_rule.cls_match) { classifier_remove(&cls, &rules[i]->cls_rule); } free_rule(rules[i]); } fat_rwlock_unlock(&cls.rwlock); classifier_destroy(&cls); tcls_destroy(&tcls); } while (next_permutation(ops, ARRAY_SIZE(ops))); assert(n_permutations == (factorial(N_RULES * 2) >> N_RULES)); } } static int count_ones(unsigned long int x) { int n = 0; while (x) { x = zero_rightmost_1bit(x); n++; } return n; } static bool array_contains(int *array, int n, int value) { int i; for (i = 0; i < n; i++) { if (array[i] == value) { return true; } } return false; } /* Tests classification with two rules at a time that fall into the same * table but different lists. */ static void test_many_rules_in_one_table(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { int iteration; for (iteration = 0; iteration < 50; iteration++) { enum { N_RULES = 20 }; struct test_rule *rules[N_RULES]; struct test_rule *tcls_rules[N_RULES]; struct classifier cls; struct tcls tcls; int value_pats[N_RULES]; int value_mask; int wcf; int i; do { wcf = random_uint32() & ((1u << CLS_N_FIELDS) - 1); value_mask = ~wcf & ((1u << CLS_N_FIELDS) - 1); } while ((1 << count_ones(value_mask)) < N_RULES); classifier_init(&cls, flow_segment_u32s); fat_rwlock_wrlock(&cls.rwlock); classifier_set_prefix_fields(&cls, trie_fields, ARRAY_SIZE(trie_fields)); tcls_init(&tcls); for (i = 0; i < N_RULES; i++) { unsigned int priority = random_uint32(); do { value_pats[i] = random_uint32() & value_mask; } while (array_contains(value_pats, i, value_pats[i])); rules[i] = make_rule(wcf, priority, value_pats[i]); tcls_rules[i] = tcls_insert(&tcls, rules[i]); classifier_insert(&cls, &rules[i]->cls_rule); check_tables(&cls, 1, i + 1, 0); compare_classifiers(&cls, &tcls); } for (i = 0; i < N_RULES; i++) { tcls_remove(&tcls, tcls_rules[i]); classifier_remove(&cls, &rules[i]->cls_rule); free_rule(rules[i]); check_tables(&cls, i < N_RULES - 1, N_RULES - (i + 1), 0); compare_classifiers(&cls, &tcls); } fat_rwlock_unlock(&cls.rwlock); classifier_destroy(&cls); tcls_destroy(&tcls); } } /* Tests classification with many rules at a time that fall into random lists * in 'n' tables. */ static void test_many_rules_in_n_tables(int n_tables) { enum { MAX_RULES = 50 }; int wcfs[10]; int iteration; int i; assert(n_tables < 10); for (i = 0; i < n_tables; i++) { do { wcfs[i] = random_uint32() & ((1u << CLS_N_FIELDS) - 1); } while (array_contains(wcfs, i, wcfs[i])); } for (iteration = 0; iteration < 30; iteration++) { unsigned int priorities[MAX_RULES]; struct classifier cls; struct tcls tcls; random_set_seed(iteration + 1); for (i = 0; i < MAX_RULES; i++) { priorities[i] = i * 129; } shuffle(priorities, ARRAY_SIZE(priorities)); classifier_init(&cls, flow_segment_u32s); fat_rwlock_wrlock(&cls.rwlock); classifier_set_prefix_fields(&cls, trie_fields, ARRAY_SIZE(trie_fields)); tcls_init(&tcls); for (i = 0; i < MAX_RULES; i++) { struct test_rule *rule; unsigned int priority = priorities[i]; int wcf = wcfs[random_range(n_tables)]; int value_pat = random_uint32() & ((1u << CLS_N_FIELDS) - 1); rule = make_rule(wcf, priority, value_pat); tcls_insert(&tcls, rule); classifier_insert(&cls, &rule->cls_rule); check_tables(&cls, -1, i + 1, -1); compare_classifiers(&cls, &tcls); } while (!classifier_is_empty(&cls)) { struct test_rule *rule, *next_rule; struct test_rule *target; struct cls_cursor cursor; target = clone_rule(tcls.rules[random_range(tcls.n_rules)]); cls_cursor_init(&cursor, &cls, &target->cls_rule); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) { classifier_remove(&cls, &rule->cls_rule); free_rule(rule); } tcls_delete_matches(&tcls, &target->cls_rule); compare_classifiers(&cls, &tcls); check_tables(&cls, -1, -1, -1); free_rule(target); } fat_rwlock_unlock(&cls.rwlock); destroy_classifier(&cls); tcls_destroy(&tcls); } } static void test_many_rules_in_two_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { test_many_rules_in_n_tables(2); } static void test_many_rules_in_five_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { test_many_rules_in_n_tables(5); } /* Miniflow tests. */ static uint32_t random_value(void) { static const uint32_t values[] = { 0xffffffff, 0xaaaaaaaa, 0x55555555, 0x80000000, 0x00000001, 0xface0000, 0x00d00d1e, 0xdeadbeef }; return values[random_range(ARRAY_SIZE(values))]; } static bool choose(unsigned int n, unsigned int *idxp) { if (*idxp < n) { return true; } else { *idxp -= n; return false; } } static bool init_consecutive_values(int n_consecutive, struct flow *flow, unsigned int *idxp) { uint32_t *flow_u32 = (uint32_t *) flow; if (choose(FLOW_U32S - n_consecutive + 1, idxp)) { int i; for (i = 0; i < n_consecutive; i++) { flow_u32[*idxp + i] = random_value(); } return true; } else { return false; } } static bool next_random_flow(struct flow *flow, unsigned int idx) { uint32_t *flow_u32 = (uint32_t *) flow; int i; memset(flow, 0, sizeof *flow); /* Empty flow. */ if (choose(1, &idx)) { return true; } /* All flows with a small number of consecutive nonzero values. */ for (i = 1; i <= 4; i++) { if (init_consecutive_values(i, flow, &idx)) { return true; } } /* All flows with a large number of consecutive nonzero values. */ for (i = FLOW_U32S - 4; i <= FLOW_U32S; i++) { if (init_consecutive_values(i, flow, &idx)) { return true; } } /* All flows with exactly two nonconsecutive nonzero values. */ if (choose((FLOW_U32S - 1) * (FLOW_U32S - 2) / 2, &idx)) { int ofs1; for (ofs1 = 0; ofs1 < FLOW_U32S - 2; ofs1++) { int ofs2; for (ofs2 = ofs1 + 2; ofs2 < FLOW_U32S; ofs2++) { if (choose(1, &idx)) { flow_u32[ofs1] = random_value(); flow_u32[ofs2] = random_value(); return true; } } } OVS_NOT_REACHED(); } /* 16 randomly chosen flows with N >= 3 nonzero values. */ if (choose(16 * (FLOW_U32S - 4), &idx)) { int n = idx / 16 + 3; int i; for (i = 0; i < n; i++) { flow_u32[i] = random_value(); } shuffle_u32s(flow_u32, FLOW_U32S); return true; } return false; } static void any_random_flow(struct flow *flow) { static unsigned int max; if (!max) { while (next_random_flow(flow, max)) { max++; } } next_random_flow(flow, random_range(max)); } static void toggle_masked_flow_bits(struct flow *flow, const struct flow_wildcards *mask) { const uint32_t *mask_u32 = (const uint32_t *) &mask->masks; uint32_t *flow_u32 = (uint32_t *) flow; int i; for (i = 0; i < FLOW_U32S; i++) { if (mask_u32[i] != 0) { uint32_t bit; do { bit = 1u << random_range(32); } while (!(bit & mask_u32[i])); flow_u32[i] ^= bit; } } } static void wildcard_extra_bits(struct flow_wildcards *mask) { uint32_t *mask_u32 = (uint32_t *) &mask->masks; int i; for (i = 0; i < FLOW_U32S; i++) { if (mask_u32[i] != 0) { uint32_t bit; do { bit = 1u << random_range(32); } while (!(bit & mask_u32[i])); mask_u32[i] &= ~bit; } } } static void test_miniflow(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { struct flow flow; unsigned int idx; random_set_seed(0xb3faca38); for (idx = 0; next_random_flow(&flow, idx); idx++) { const uint32_t *flow_u32 = (const uint32_t *) &flow; struct miniflow miniflow, miniflow2, miniflow3; struct flow flow2, flow3; struct flow_wildcards mask; struct minimask minimask; int i; /* Convert flow to miniflow. */ miniflow_init(&miniflow, &flow); /* Check that the flow equals its miniflow. */ assert(miniflow_get_vid(&miniflow) == vlan_tci_to_vid(flow.vlan_tci)); for (i = 0; i < FLOW_U32S; i++) { assert(MINIFLOW_GET_TYPE(&miniflow, uint32_t, i * 4) == flow_u32[i]); } /* Check that the miniflow equals itself. */ assert(miniflow_equal(&miniflow, &miniflow)); /* Convert miniflow back to flow and verify that it's the same. */ miniflow_expand(&miniflow, &flow2); assert(flow_equal(&flow, &flow2)); /* Check that copying a miniflow works properly. */ miniflow_clone(&miniflow2, &miniflow); assert(miniflow_equal(&miniflow, &miniflow2)); assert(miniflow_hash(&miniflow, 0) == miniflow_hash(&miniflow2, 0)); miniflow_expand(&miniflow2, &flow3); assert(flow_equal(&flow, &flow3)); /* Check that masked matches work as expected for identical flows and * miniflows. */ do { next_random_flow(&mask.masks, 1); } while (flow_wildcards_is_catchall(&mask)); minimask_init(&minimask, &mask); assert(minimask_is_catchall(&minimask) == flow_wildcards_is_catchall(&mask)); assert(miniflow_equal_in_minimask(&miniflow, &miniflow2, &minimask)); assert(miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask)); assert(miniflow_hash_in_minimask(&miniflow, &minimask, 0x12345678) == flow_hash_in_minimask(&flow, &minimask, 0x12345678)); /* Check that masked matches work as expected for differing flows and * miniflows. */ toggle_masked_flow_bits(&flow2, &mask); assert(!miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask)); miniflow_init(&miniflow3, &flow2); assert(!miniflow_equal_in_minimask(&miniflow, &miniflow3, &minimask)); /* Clean up. */ miniflow_destroy(&miniflow); miniflow_destroy(&miniflow2); miniflow_destroy(&miniflow3); minimask_destroy(&minimask); } } static void test_minimask_has_extra(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { struct flow_wildcards catchall; struct minimask minicatchall; struct flow flow; unsigned int idx; flow_wildcards_init_catchall(&catchall); minimask_init(&minicatchall, &catchall); assert(minimask_is_catchall(&minicatchall)); random_set_seed(0x2ec7905b); for (idx = 0; next_random_flow(&flow, idx); idx++) { struct flow_wildcards mask; struct minimask minimask; mask.masks = flow; minimask_init(&minimask, &mask); assert(!minimask_has_extra(&minimask, &minimask)); assert(minimask_has_extra(&minicatchall, &minimask) == !minimask_is_catchall(&minimask)); if (!minimask_is_catchall(&minimask)) { struct minimask minimask2; wildcard_extra_bits(&mask); minimask_init(&minimask2, &mask); assert(minimask_has_extra(&minimask2, &minimask)); assert(!minimask_has_extra(&minimask, &minimask2)); minimask_destroy(&minimask2); } minimask_destroy(&minimask); } minimask_destroy(&minicatchall); } static void test_minimask_combine(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { struct flow_wildcards catchall; struct minimask minicatchall; struct flow flow; unsigned int idx; flow_wildcards_init_catchall(&catchall); minimask_init(&minicatchall, &catchall); assert(minimask_is_catchall(&minicatchall)); random_set_seed(0x181bf0cd); for (idx = 0; next_random_flow(&flow, idx); idx++) { struct minimask minimask, minimask2, minicombined; struct flow_wildcards mask, mask2, combined, combined2; uint32_t storage[FLOW_U32S]; struct flow flow2; mask.masks = flow; minimask_init(&minimask, &mask); minimask_combine(&minicombined, &minimask, &minicatchall, storage); assert(minimask_is_catchall(&minicombined)); any_random_flow(&flow2); mask2.masks = flow2; minimask_init(&minimask2, &mask2); minimask_combine(&minicombined, &minimask, &minimask2, storage); flow_wildcards_and(&combined, &mask, &mask2); minimask_expand(&minicombined, &combined2); assert(flow_wildcards_equal(&combined, &combined2)); minimask_destroy(&minimask); minimask_destroy(&minimask2); } minimask_destroy(&minicatchall); } static const struct command commands[] = { /* Classifier tests. */ {"empty", 0, 0, test_empty}, {"destroy-null", 0, 0, test_destroy_null}, {"single-rule", 0, 0, test_single_rule}, {"rule-replacement", 0, 0, test_rule_replacement}, {"many-rules-in-one-list", 0, 0, test_many_rules_in_one_list}, {"many-rules-in-one-table", 0, 0, test_many_rules_in_one_table}, {"many-rules-in-two-tables", 0, 0, test_many_rules_in_two_tables}, {"many-rules-in-five-tables", 0, 0, test_many_rules_in_five_tables}, /* Miniflow and minimask tests. */ {"miniflow", 0, 0, test_miniflow}, {"minimask_has_extra", 0, 0, test_minimask_has_extra}, {"minimask_combine", 0, 0, test_minimask_combine}, {NULL, 0, 0, NULL}, }; static void test_classifier_main(int argc, char *argv[]) { set_program_name(argv[0]); init_values(); run_command(argc - 1, argv + 1, commands); } OVSTEST_REGISTER("test-classifier", test_classifier_main);