/* * Copyright (c) 2009, 2010, 2011 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* "White box" tests for classifier. * * With very few exceptions, these tests obtain complete coverage of every * basic block and every branch in the classifier implementation, e.g. a clean * report from "gcov -b". (Covering the exceptions would require finding * collisions in the hash function used for flow data, etc.) * * This test should receive a clean report from "valgrind --leak-check=full": * it frees every heap block that it allocates. */ #include #include "classifier.h" #include #include #include "byte-order.h" #include "command-line.h" #include "flow.h" #include "ofp-util.h" #include "packets.h" #include "unaligned.h" #undef NDEBUG #include /* Fields in a rule. */ #define CLS_FIELDS \ /* struct flow all-caps */ \ /* FWW_* bit(s) member name name */ \ /* -------------------------- ----------- -------- */ \ CLS_FIELD(0, tun_id, TUN_ID) \ CLS_FIELD(0, nw_src, NW_SRC) \ CLS_FIELD(0, nw_dst, NW_DST) \ CLS_FIELD(FWW_IN_PORT, in_port, IN_PORT) \ CLS_FIELD(0, vlan_tci, VLAN_TCI) \ CLS_FIELD(FWW_DL_TYPE, dl_type, DL_TYPE) \ CLS_FIELD(FWW_TP_SRC, tp_src, TP_SRC) \ CLS_FIELD(FWW_TP_DST, tp_dst, TP_DST) \ CLS_FIELD(FWW_DL_SRC, dl_src, DL_SRC) \ CLS_FIELD(FWW_DL_DST | FWW_ETH_MCAST, dl_dst, DL_DST) \ CLS_FIELD(FWW_NW_PROTO, nw_proto, NW_PROTO) \ CLS_FIELD(FWW_NW_DSCP, nw_tos, NW_DSCP) /* Field indexes. * * (These are also indexed into struct classifier's 'tables' array.) */ enum { #define CLS_FIELD(WILDCARDS, MEMBER, NAME) CLS_F_IDX_##NAME, CLS_FIELDS #undef CLS_FIELD CLS_N_FIELDS }; /* Field information. */ struct cls_field { int ofs; /* Offset in struct flow. */ int len; /* Length in bytes. */ flow_wildcards_t wildcards; /* FWW_* bit or bits for this field. */ const char *name; /* Name (for debugging). */ }; static const struct cls_field cls_fields[CLS_N_FIELDS] = { #define CLS_FIELD(WILDCARDS, MEMBER, NAME) \ { offsetof(struct flow, MEMBER), \ sizeof ((struct flow *)0)->MEMBER, \ WILDCARDS, \ #NAME }, CLS_FIELDS #undef CLS_FIELD }; struct test_rule { int aux; /* Auxiliary data. */ struct cls_rule cls_rule; /* Classifier rule data. */ }; static struct test_rule * test_rule_from_cls_rule(const struct cls_rule *rule) { return rule ? CONTAINER_OF(rule, struct test_rule, cls_rule) : NULL; } /* Trivial (linear) classifier. */ struct tcls { size_t n_rules; size_t allocated_rules; struct test_rule **rules; }; static void tcls_init(struct tcls *tcls) { tcls->n_rules = 0; tcls->allocated_rules = 0; tcls->rules = NULL; } static void tcls_destroy(struct tcls *tcls) { if (tcls) { size_t i; for (i = 0; i < tcls->n_rules; i++) { free(tcls->rules[i]); } free(tcls->rules); } } static bool tcls_is_empty(const struct tcls *tcls) { return tcls->n_rules == 0; } static struct test_rule * tcls_insert(struct tcls *tcls, const struct test_rule *rule) { size_t i; assert(!flow_wildcards_is_exact(&rule->cls_rule.wc) || rule->cls_rule.priority == UINT_MAX); for (i = 0; i < tcls->n_rules; i++) { const struct cls_rule *pos = &tcls->rules[i]->cls_rule; if (cls_rule_equal(pos, &rule->cls_rule)) { /* Exact match. */ free(tcls->rules[i]); tcls->rules[i] = xmemdup(rule, sizeof *rule); return tcls->rules[i]; } else if (pos->priority < rule->cls_rule.priority) { break; } } if (tcls->n_rules >= tcls->allocated_rules) { tcls->rules = x2nrealloc(tcls->rules, &tcls->allocated_rules, sizeof *tcls->rules); } if (i != tcls->n_rules) { memmove(&tcls->rules[i + 1], &tcls->rules[i], sizeof *tcls->rules * (tcls->n_rules - i)); } tcls->rules[i] = xmemdup(rule, sizeof *rule); tcls->n_rules++; return tcls->rules[i]; } static void tcls_remove(struct tcls *cls, const struct test_rule *rule) { size_t i; for (i = 0; i < cls->n_rules; i++) { struct test_rule *pos = cls->rules[i]; if (pos == rule) { free(pos); memmove(&cls->rules[i], &cls->rules[i + 1], sizeof *cls->rules * (cls->n_rules - i - 1)); cls->n_rules--; return; } } NOT_REACHED(); } static bool match(const struct cls_rule *wild, const struct flow *fixed) { int f_idx; for (f_idx = 0; f_idx < CLS_N_FIELDS; f_idx++) { const struct cls_field *f = &cls_fields[f_idx]; bool eq; if (f->wildcards) { void *wild_field = (char *) &wild->flow + f->ofs; void *fixed_field = (char *) fixed + f->ofs; eq = ((wild->wc.wildcards & f->wildcards) == f->wildcards || !memcmp(wild_field, fixed_field, f->len)); } else if (f_idx == CLS_F_IDX_NW_SRC) { eq = !((fixed->nw_src ^ wild->flow.nw_src) & wild->wc.nw_src_mask); } else if (f_idx == CLS_F_IDX_NW_DST) { eq = !((fixed->nw_dst ^ wild->flow.nw_dst) & wild->wc.nw_dst_mask); } else if (f_idx == CLS_F_IDX_VLAN_TCI) { eq = !((fixed->vlan_tci ^ wild->flow.vlan_tci) & wild->wc.vlan_tci_mask); } else if (f_idx == CLS_F_IDX_TUN_ID) { eq = !((fixed->tun_id ^ wild->flow.tun_id) & wild->wc.tun_id_mask); } else if (f_idx == CLS_F_IDX_NW_DSCP) { eq = !((fixed->nw_tos ^ wild->flow.nw_tos) & IP_DSCP_MASK); } else { NOT_REACHED(); } if (!eq) { return false; } } return true; } static struct cls_rule * tcls_lookup(const struct tcls *cls, const struct flow *flow) { size_t i; for (i = 0; i < cls->n_rules; i++) { struct test_rule *pos = cls->rules[i]; if (match(&pos->cls_rule, flow)) { return &pos->cls_rule; } } return NULL; } static void tcls_delete_matches(struct tcls *cls, const struct cls_rule *target) { size_t i; for (i = 0; i < cls->n_rules; ) { struct test_rule *pos = cls->rules[i]; if (!flow_wildcards_has_extra(&pos->cls_rule.wc, &target->wc) && match(target, &pos->cls_rule.flow)) { tcls_remove(cls, pos); } else { i++; } } } static ovs_be32 nw_src_values[] = { CONSTANT_HTONL(0xc0a80001), CONSTANT_HTONL(0xc0a04455) }; static ovs_be32 nw_dst_values[] = { CONSTANT_HTONL(0xc0a80002), CONSTANT_HTONL(0xc0a04455) }; static ovs_be64 tun_id_values[] = { 0, CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) }; static uint16_t in_port_values[] = { 1, OFPP_LOCAL }; static ovs_be16 vlan_tci_values[] = { CONSTANT_HTONS(101), CONSTANT_HTONS(0) }; static ovs_be16 dl_type_values[] = { CONSTANT_HTONS(ETH_TYPE_IP), CONSTANT_HTONS(ETH_TYPE_ARP) }; static ovs_be16 tp_src_values[] = { CONSTANT_HTONS(49362), CONSTANT_HTONS(80) }; static ovs_be16 tp_dst_values[] = { CONSTANT_HTONS(6667), CONSTANT_HTONS(22) }; static uint8_t dl_src_values[][6] = { { 0x00, 0x02, 0xe3, 0x0f, 0x80, 0xa4 }, { 0x5e, 0x33, 0x7f, 0x5f, 0x1e, 0x99 } }; static uint8_t dl_dst_values[][6] = { { 0x4a, 0x27, 0x71, 0xae, 0x64, 0xc1 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } }; static uint8_t nw_proto_values[] = { IPPROTO_TCP, IPPROTO_ICMP }; static uint8_t nw_dscp_values[] = { 48, 0 }; static void *values[CLS_N_FIELDS][2]; static void init_values(void) { values[CLS_F_IDX_TUN_ID][0] = &tun_id_values[0]; values[CLS_F_IDX_TUN_ID][1] = &tun_id_values[1]; values[CLS_F_IDX_IN_PORT][0] = &in_port_values[0]; values[CLS_F_IDX_IN_PORT][1] = &in_port_values[1]; values[CLS_F_IDX_VLAN_TCI][0] = &vlan_tci_values[0]; values[CLS_F_IDX_VLAN_TCI][1] = &vlan_tci_values[1]; values[CLS_F_IDX_DL_SRC][0] = dl_src_values[0]; values[CLS_F_IDX_DL_SRC][1] = dl_src_values[1]; values[CLS_F_IDX_DL_DST][0] = dl_dst_values[0]; values[CLS_F_IDX_DL_DST][1] = dl_dst_values[1]; values[CLS_F_IDX_DL_TYPE][0] = &dl_type_values[0]; values[CLS_F_IDX_DL_TYPE][1] = &dl_type_values[1]; values[CLS_F_IDX_NW_SRC][0] = &nw_src_values[0]; values[CLS_F_IDX_NW_SRC][1] = &nw_src_values[1]; values[CLS_F_IDX_NW_DST][0] = &nw_dst_values[0]; values[CLS_F_IDX_NW_DST][1] = &nw_dst_values[1]; values[CLS_F_IDX_NW_PROTO][0] = &nw_proto_values[0]; values[CLS_F_IDX_NW_PROTO][1] = &nw_proto_values[1]; values[CLS_F_IDX_NW_DSCP][0] = &nw_dscp_values[0]; values[CLS_F_IDX_NW_DSCP][1] = &nw_dscp_values[1]; values[CLS_F_IDX_TP_SRC][0] = &tp_src_values[0]; values[CLS_F_IDX_TP_SRC][1] = &tp_src_values[1]; values[CLS_F_IDX_TP_DST][0] = &tp_dst_values[0]; values[CLS_F_IDX_TP_DST][1] = &tp_dst_values[1]; } #define N_NW_SRC_VALUES ARRAY_SIZE(nw_src_values) #define N_NW_DST_VALUES ARRAY_SIZE(nw_dst_values) #define N_TUN_ID_VALUES ARRAY_SIZE(tun_id_values) #define N_IN_PORT_VALUES ARRAY_SIZE(in_port_values) #define N_VLAN_TCI_VALUES ARRAY_SIZE(vlan_tci_values) #define N_DL_TYPE_VALUES ARRAY_SIZE(dl_type_values) #define N_TP_SRC_VALUES ARRAY_SIZE(tp_src_values) #define N_TP_DST_VALUES ARRAY_SIZE(tp_dst_values) #define N_DL_SRC_VALUES ARRAY_SIZE(dl_src_values) #define N_DL_DST_VALUES ARRAY_SIZE(dl_dst_values) #define N_NW_PROTO_VALUES ARRAY_SIZE(nw_proto_values) #define N_NW_DSCP_VALUES ARRAY_SIZE(nw_dscp_values) #define N_FLOW_VALUES (N_NW_SRC_VALUES * \ N_NW_DST_VALUES * \ N_TUN_ID_VALUES * \ N_IN_PORT_VALUES * \ N_VLAN_TCI_VALUES * \ N_DL_TYPE_VALUES * \ N_TP_SRC_VALUES * \ N_TP_DST_VALUES * \ N_DL_SRC_VALUES * \ N_DL_DST_VALUES * \ N_NW_PROTO_VALUES * \ N_NW_DSCP_VALUES) static unsigned int get_value(unsigned int *x, unsigned n_values) { unsigned int rem = *x % n_values; *x /= n_values; return rem; } static void compare_classifiers(struct classifier *cls, struct tcls *tcls) { static const int confidence = 500; unsigned int i; assert(classifier_count(cls) == tcls->n_rules); for (i = 0; i < confidence; i++) { struct cls_rule *cr0, *cr1; struct flow flow; unsigned int x; x = rand () % N_FLOW_VALUES; flow.nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)]; flow.nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)]; flow.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)]; flow.in_port = in_port_values[get_value(&x, N_IN_PORT_VALUES)]; flow.vlan_tci = vlan_tci_values[get_value(&x, N_VLAN_TCI_VALUES)]; flow.dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)]; flow.tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)]; flow.tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)]; memcpy(flow.dl_src, dl_src_values[get_value(&x, N_DL_SRC_VALUES)], ETH_ADDR_LEN); memcpy(flow.dl_dst, dl_dst_values[get_value(&x, N_DL_DST_VALUES)], ETH_ADDR_LEN); flow.nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)]; flow.nw_tos = nw_dscp_values[get_value(&x, N_NW_DSCP_VALUES)]; cr0 = classifier_lookup(cls, &flow); cr1 = tcls_lookup(tcls, &flow); assert((cr0 == NULL) == (cr1 == NULL)); if (cr0 != NULL) { const struct test_rule *tr0 = test_rule_from_cls_rule(cr0); const struct test_rule *tr1 = test_rule_from_cls_rule(cr1); assert(cls_rule_equal(cr0, cr1)); assert(tr0->aux == tr1->aux); } } } static void destroy_classifier(struct classifier *cls) { struct test_rule *rule, *next_rule; struct cls_cursor cursor; cls_cursor_init(&cursor, cls, NULL); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) { classifier_remove(cls, &rule->cls_rule); free(rule); } classifier_destroy(cls); } static void check_tables(const struct classifier *cls, int n_tables, int n_rules, int n_dups) { const struct cls_table *table; struct test_rule *test_rule; struct cls_cursor cursor; int found_tables = 0; int found_rules = 0; int found_dups = 0; int found_rules2 = 0; HMAP_FOR_EACH (table, hmap_node, &cls->tables) { const struct cls_rule *head; assert(!hmap_is_empty(&table->rules)); found_tables++; HMAP_FOR_EACH (head, hmap_node, &table->rules) { unsigned int prev_priority = UINT_MAX; const struct cls_rule *rule; found_rules++; LIST_FOR_EACH (rule, list, &head->list) { assert(rule->priority < prev_priority); prev_priority = rule->priority; found_rules++; found_dups++; assert(classifier_find_rule_exactly(cls, rule) == rule); } } } assert(found_tables == hmap_count(&cls->tables)); assert(n_tables == -1 || n_tables == hmap_count(&cls->tables)); assert(n_rules == -1 || found_rules == n_rules); assert(n_dups == -1 || found_dups == n_dups); cls_cursor_init(&cursor, cls, NULL); CLS_CURSOR_FOR_EACH (test_rule, cls_rule, &cursor) { found_rules2++; } assert(found_rules == found_rules2); } static struct test_rule * make_rule(int wc_fields, unsigned int priority, int value_pat) { const struct cls_field *f; struct test_rule *rule; rule = xzalloc(sizeof *rule); cls_rule_init_catchall(&rule->cls_rule, wc_fields ? priority : UINT_MAX); for (f = &cls_fields[0]; f < &cls_fields[CLS_N_FIELDS]; f++) { int f_idx = f - cls_fields; int value_idx = (value_pat & (1u << f_idx)) != 0; memcpy((char *) &rule->cls_rule.flow + f->ofs, values[f_idx][value_idx], f->len); if (f->wildcards) { rule->cls_rule.wc.wildcards &= ~f->wildcards; } else if (f_idx == CLS_F_IDX_NW_SRC) { rule->cls_rule.wc.nw_src_mask = htonl(UINT32_MAX); } else if (f_idx == CLS_F_IDX_NW_DST) { rule->cls_rule.wc.nw_dst_mask = htonl(UINT32_MAX); } else if (f_idx == CLS_F_IDX_VLAN_TCI) { rule->cls_rule.wc.vlan_tci_mask = htons(UINT16_MAX); } else if (f_idx == CLS_F_IDX_TUN_ID) { rule->cls_rule.wc.tun_id_mask = htonll(UINT64_MAX); } else { NOT_REACHED(); } } return rule; } static void shuffle(unsigned int *p, size_t n) { for (; n > 1; n--, p++) { unsigned int *q = &p[rand() % n]; unsigned int tmp = *p; *p = *q; *q = tmp; } } /* Tests an empty classifier. */ static void test_empty(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { struct classifier cls; struct tcls tcls; classifier_init(&cls); tcls_init(&tcls); assert(classifier_is_empty(&cls)); assert(tcls_is_empty(&tcls)); compare_classifiers(&cls, &tcls); classifier_destroy(&cls); tcls_destroy(&tcls); } /* Destroys a null classifier. */ static void test_destroy_null(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { classifier_destroy(NULL); } /* Tests classification with one rule at a time. */ static void test_single_rule(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { unsigned int wc_fields; /* Hilarious. */ for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) { struct classifier cls; struct test_rule *rule, *tcls_rule; struct tcls tcls; rule = make_rule(wc_fields, hash_bytes(&wc_fields, sizeof wc_fields, 0), 0); classifier_init(&cls); tcls_init(&tcls); tcls_rule = tcls_insert(&tcls, rule); classifier_insert(&cls, &rule->cls_rule); check_tables(&cls, 1, 1, 0); compare_classifiers(&cls, &tcls); classifier_remove(&cls, &rule->cls_rule); tcls_remove(&tcls, tcls_rule); assert(classifier_is_empty(&cls)); assert(tcls_is_empty(&tcls)); compare_classifiers(&cls, &tcls); free(rule); classifier_destroy(&cls); tcls_destroy(&tcls); } } /* Tests replacing one rule by another. */ static void test_rule_replacement(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { unsigned int wc_fields; for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) { struct classifier cls; struct test_rule *rule1; struct test_rule *rule2; struct tcls tcls; rule1 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX); rule2 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX); rule2->aux += 5; rule2->aux += 5; classifier_init(&cls); tcls_init(&tcls); tcls_insert(&tcls, rule1); classifier_insert(&cls, &rule1->cls_rule); check_tables(&cls, 1, 1, 0); compare_classifiers(&cls, &tcls); tcls_destroy(&tcls); tcls_init(&tcls); tcls_insert(&tcls, rule2); assert(test_rule_from_cls_rule( classifier_replace(&cls, &rule2->cls_rule)) == rule1); free(rule1); check_tables(&cls, 1, 1, 0); compare_classifiers(&cls, &tcls); tcls_destroy(&tcls); destroy_classifier(&cls); } } static int factorial(int n_items) { int n, i; n = 1; for (i = 2; i <= n_items; i++) { n *= i; } return n; } static void swap(int *a, int *b) { int tmp = *a; *a = *b; *b = tmp; } static void reverse(int *a, int n) { int i; for (i = 0; i < n / 2; i++) { int j = n - (i + 1); swap(&a[i], &a[j]); } } static bool next_permutation(int *a, int n) { int k; for (k = n - 2; k >= 0; k--) { if (a[k] < a[k + 1]) { int l; for (l = n - 1; ; l--) { if (a[l] > a[k]) { swap(&a[k], &a[l]); reverse(a + (k + 1), n - (k + 1)); return true; } } } } return false; } /* Tests classification with rules that have the same matching criteria. */ static void test_many_rules_in_one_list (int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { enum { N_RULES = 3 }; int n_pris; for (n_pris = N_RULES; n_pris >= 1; n_pris--) { int ops[N_RULES * 2]; int pris[N_RULES]; int n_permutations; int i; pris[0] = 0; for (i = 1; i < N_RULES; i++) { pris[i] = pris[i - 1] + (n_pris > i); } for (i = 0; i < N_RULES * 2; i++) { ops[i] = i / 2; } n_permutations = 0; do { struct test_rule *rules[N_RULES]; struct test_rule *tcls_rules[N_RULES]; int pri_rules[N_RULES]; struct classifier cls; struct tcls tcls; n_permutations++; for (i = 0; i < N_RULES; i++) { rules[i] = make_rule(456, pris[i], 0); tcls_rules[i] = NULL; pri_rules[i] = -1; } classifier_init(&cls); tcls_init(&tcls); for (i = 0; i < ARRAY_SIZE(ops); i++) { int j = ops[i]; int m, n; if (!tcls_rules[j]) { struct test_rule *displaced_rule; tcls_rules[j] = tcls_insert(&tcls, rules[j]); displaced_rule = test_rule_from_cls_rule( classifier_replace(&cls, &rules[j]->cls_rule)); if (pri_rules[pris[j]] >= 0) { int k = pri_rules[pris[j]]; assert(displaced_rule != NULL); assert(displaced_rule != rules[j]); assert(pris[j] == displaced_rule->cls_rule.priority); tcls_rules[k] = NULL; } else { assert(displaced_rule == NULL); } pri_rules[pris[j]] = j; } else { classifier_remove(&cls, &rules[j]->cls_rule); tcls_remove(&tcls, tcls_rules[j]); tcls_rules[j] = NULL; pri_rules[pris[j]] = -1; } n = 0; for (m = 0; m < N_RULES; m++) { n += tcls_rules[m] != NULL; } check_tables(&cls, n > 0, n, n - 1); compare_classifiers(&cls, &tcls); } classifier_destroy(&cls); tcls_destroy(&tcls); for (i = 0; i < N_RULES; i++) { free(rules[i]); } } while (next_permutation(ops, ARRAY_SIZE(ops))); assert(n_permutations == (factorial(N_RULES * 2) >> N_RULES)); } } static int count_ones(unsigned long int x) { int n = 0; while (x) { x &= x - 1; n++; } return n; } static bool array_contains(int *array, int n, int value) { int i; for (i = 0; i < n; i++) { if (array[i] == value) { return true; } } return false; } /* Tests classification with two rules at a time that fall into the same * table but different lists. */ static void test_many_rules_in_one_table(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { int iteration; for (iteration = 0; iteration < 50; iteration++) { enum { N_RULES = 20 }; struct test_rule *rules[N_RULES]; struct test_rule *tcls_rules[N_RULES]; struct classifier cls; struct tcls tcls; int value_pats[N_RULES]; int value_mask; int wcf; int i; do { wcf = rand() & ((1u << CLS_N_FIELDS) - 1); value_mask = ~wcf & ((1u << CLS_N_FIELDS) - 1); } while ((1 << count_ones(value_mask)) < N_RULES); classifier_init(&cls); tcls_init(&tcls); for (i = 0; i < N_RULES; i++) { unsigned int priority = rand(); do { value_pats[i] = rand() & value_mask; } while (array_contains(value_pats, i, value_pats[i])); rules[i] = make_rule(wcf, priority, value_pats[i]); tcls_rules[i] = tcls_insert(&tcls, rules[i]); classifier_insert(&cls, &rules[i]->cls_rule); check_tables(&cls, 1, i + 1, 0); compare_classifiers(&cls, &tcls); } for (i = 0; i < N_RULES; i++) { tcls_remove(&tcls, tcls_rules[i]); classifier_remove(&cls, &rules[i]->cls_rule); free(rules[i]); check_tables(&cls, i < N_RULES - 1, N_RULES - (i + 1), 0); compare_classifiers(&cls, &tcls); } classifier_destroy(&cls); tcls_destroy(&tcls); } } /* Tests classification with many rules at a time that fall into random lists * in 'n' tables. */ static void test_many_rules_in_n_tables(int n_tables) { enum { MAX_RULES = 50 }; int wcfs[10]; int iteration; int i; assert(n_tables < 10); for (i = 0; i < n_tables; i++) { do { wcfs[i] = rand() & ((1u << CLS_N_FIELDS) - 1); } while (array_contains(wcfs, i, wcfs[i])); } for (iteration = 0; iteration < 30; iteration++) { unsigned int priorities[MAX_RULES]; struct classifier cls; struct tcls tcls; srand(iteration); for (i = 0; i < MAX_RULES; i++) { priorities[i] = i * 129; } shuffle(priorities, ARRAY_SIZE(priorities)); classifier_init(&cls); tcls_init(&tcls); for (i = 0; i < MAX_RULES; i++) { struct test_rule *rule; unsigned int priority = priorities[i]; int wcf = wcfs[rand() % n_tables]; int value_pat = rand() & ((1u << CLS_N_FIELDS) - 1); rule = make_rule(wcf, priority, value_pat); tcls_insert(&tcls, rule); classifier_insert(&cls, &rule->cls_rule); check_tables(&cls, -1, i + 1, -1); compare_classifiers(&cls, &tcls); } while (!classifier_is_empty(&cls)) { struct test_rule *rule, *next_rule; struct test_rule *target; struct cls_cursor cursor; target = xmemdup(tcls.rules[rand() % tcls.n_rules], sizeof(struct test_rule)); cls_cursor_init(&cursor, &cls, &target->cls_rule); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) { classifier_remove(&cls, &rule->cls_rule); free(rule); } tcls_delete_matches(&tcls, &target->cls_rule); compare_classifiers(&cls, &tcls); check_tables(&cls, -1, -1, -1); free(target); } destroy_classifier(&cls); tcls_destroy(&tcls); } } static void test_many_rules_in_two_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { test_many_rules_in_n_tables(2); } static void test_many_rules_in_five_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { test_many_rules_in_n_tables(5); } static const struct command commands[] = { {"empty", 0, 0, test_empty}, {"destroy-null", 0, 0, test_destroy_null}, {"single-rule", 0, 0, test_single_rule}, {"rule-replacement", 0, 0, test_rule_replacement}, {"many-rules-in-one-list", 0, 0, test_many_rules_in_one_list}, {"many-rules-in-one-table", 0, 0, test_many_rules_in_one_table}, {"many-rules-in-two-tables", 0, 0, test_many_rules_in_two_tables}, {"many-rules-in-five-tables", 0, 0, test_many_rules_in_five_tables}, {NULL, 0, 0, NULL}, }; int main(int argc, char *argv[]) { set_program_name(argv[0]); init_values(); run_command(argc - 1, argv + 1, commands); return 0; }