NEWS: Mention new ovs-ofctl ofp-parse-pcap command.
[sliver-openvswitch.git] / WHY-OVS
1                           Why Open vSwitch?
2                           =================
3
4 Hypervisors need the ability to bridge traffic between VMs and with the
5 outside world.  On Linux-based hypervisors, this used to mean using the
6 built-in L2 switch (the Linux bridge), which is fast and reliable.  So,
7 it is reasonable to ask why Open vSwitch is used.
8
9 The answer is that Open vSwitch is targeted at multi-server
10 virtualization deployments, a landscape for which the previous stack is
11 not well suited.  These environments are often characterized by highly
12 dynamic end-points, the maintenance of logical abstractions, and
13 (sometimes) integration with or offloading to special purpose switching
14 hardware.
15
16 The following characteristics and design considerations help Open
17 vSwitch cope with the above requirements.
18
19 * The mobility of state: All network state associated with a network
20   entity (say a virtual machine) should be easily identifiable and
21   migratable between different hosts.  This may include traditional
22   "soft state" (such as an entry in an L2 learning table), L3 forwarding
23   state, policy routing state, ACLs, QoS policy, monitoring
24   configuration (e.g. NetFlow, IPFIX, sFlow), etc.
25
26   Open vSwitch has support for both configuring and migrating both slow
27   (configuration) and fast network state between instances.  For
28   example, if a VM migrates between end-hosts, it is possible to not
29   only migrate associated configuration (SPAN rules, ACLs, QoS) but any
30   live network state (including, for example, existing state which
31   may be difficult to reconstruct).  Further, Open vSwitch state is
32   typed and backed by a real data-model allowing for the development of
33   structured automation systems.
34
35 * Responding to network dynamics: Virtual environments are often
36   characterized by high-rates of change.  VMs coming and going, VMs
37   moving backwards and forwards in time, changes to the logical network
38   environments, and so forth.
39
40   Open vSwitch supports a number of features that allow a network
41   control system to respond and adapt as the environment changes.
42   This includes simple accounting and visibility support such as
43   NetFlow, IPFIX, and sFlow.  But perhaps more useful, Open vSwitch
44   supports a network state database (OVSDB) that supports remote
45   triggers.  Therefore, a piece of orchestration software can "watch"
46   various aspects of the network and respond if/when they change.
47   This is used heavily today, for example, to respond to and track VM
48   migrations.
49
50   Open vSwitch also supports OpenFlow as a method of exporting remote
51   access to control traffic.  There are a number of uses for this
52   including global network discovery through inspection of discovery
53   or link-state traffic (e.g. LLDP, CDP, OSPF, etc.).
54
55 * Maintenance of logical tags: Distributed virtual switches (such as
56   VMware vDS and Cisco's Nexus 1000V) often maintain logical context
57   within the network through appending or manipulating tags in network
58   packets.  This can be used to uniquely identify a VM (in a manner
59   resistant to hardware spoofing), or to hold some other context that
60   is only relevant in the logical domain.  Much of the problem of
61   building a distributed virtual switch is to efficiently and correctly
62   manage these tags.
63
64   Open vSwitch includes multiple methods for specifying and maintaining
65   tagging rules, all of which are accessible to a remote process for
66   orchestration.  Further, in many cases these tagging rules are stored
67   in an optimized form so they don't have to be coupled with a
68   heavyweight network device.  This allows, for example, thousands of
69   tagging or address remapping rules to be configured, changed, and
70   migrated.
71
72   In a similar vein, Open vSwitch supports a GRE implementation that can
73   handle thousands of simultaneous GRE tunnels and supports remote
74   configuration for tunnel creation, configuration, and tear-down.
75   This, for example, can be used to connect private VM networks in
76   different data centers.
77
78 * Hardware integration: Open vSwitch's forwarding path (the in-kernel
79   datapath) is designed to be amenable to "offloading" packet processing
80   to hardware chipsets, whether housed in a classic hardware switch
81   chassis or in an end-host NIC.  This allows for the Open vSwitch
82   control path to be able to both control a pure software
83   implementation or a hardware switch.
84
85   There are many ongoing efforts to port Open vSwitch to hardware
86   chipsets.  These include multiple merchant silicon chipsets (Broadcom
87   and Marvell), as well as a number of vendor-specific platforms.  (The
88   PORTING file discusses how one would go about making such a port.)
89
90   The advantage of hardware integration is not only performance within
91   virtualized environments.  If physical switches also expose the Open
92   vSwitch control abstractions, both bare-metal and virtualized hosting
93   environments can be managed using the same mechanism for automated
94   network control.
95
96 In many ways, Open vSwitch targets a different point in the design space
97 than previous hypervisor networking stacks, focusing on the need for
98 automated and dynamic network control in large-scale Linux-based
99 virtualization environments.
100
101 The goal with Open vSwitch is to keep the in-kernel code as small as
102 possible (as is necessary for performance) and to re-use existing
103 subsystems when applicable (for example Open vSwitch uses the existing
104 QoS stack).  As of Linux 3.3, Open vSwitch is included as a part of the
105 kernel and packaging for the userspace utilities are available on most
106 popular distributions.