kernel.org linux-2.6.10
[linux-2.6.git] / arch / parisc / mm / init.c
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *
10  */
11
12 #include <linux/config.h>
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h>     /* for node_online_map */
24
25 #include <asm/pgalloc.h>
26 #include <asm/tlb.h>
27 #include <asm/pdc_chassis.h>
28 #include <asm/mmzone.h>
29
30 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
31
32 extern char _text;      /* start of kernel code, defined by linker */
33 extern int  data_start;
34 extern char _end;       /* end of BSS, defined by linker */
35 extern char __init_begin, __init_end;
36
37 #ifdef CONFIG_DISCONTIGMEM
38 struct node_map_data node_data[MAX_NUMNODES];
39 bootmem_data_t bmem_data[MAX_NUMNODES];
40 unsigned char pfnnid_map[PFNNID_MAP_MAX];
41 #endif
42
43 static struct resource data_resource = {
44         .name   = "Kernel data",
45         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
46 };
47
48 static struct resource code_resource = {
49         .name   = "Kernel code",
50         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
51 };
52
53 static struct resource pdcdata_resource = {
54         .name   = "PDC data (Page Zero)",
55         .start  = 0,
56         .end    = 0x9ff,
57         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
58 };
59
60 static struct resource sysram_resources[MAX_PHYSMEM_RANGES];
61
62 static unsigned long max_pfn;
63
64 /* The following array is initialized from the firmware specific
65  * information retrieved in kernel/inventory.c.
66  */
67
68 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES];
69 int npmem_ranges;
70
71 #ifdef __LP64__
72 #define MAX_MEM         (~0UL)
73 #else /* !__LP64__ */
74 #define MAX_MEM         (3584U*1024U*1024U)
75 #endif /* !__LP64__ */
76
77 static unsigned long mem_limit = MAX_MEM;
78
79 static void __init mem_limit_func(void)
80 {
81         char *cp, *end;
82         unsigned long limit;
83         extern char saved_command_line[];
84
85         /* We need this before __setup() functions are called */
86
87         limit = MAX_MEM;
88         for (cp = saved_command_line; *cp; ) {
89                 if (memcmp(cp, "mem=", 4) == 0) {
90                         cp += 4;
91                         limit = memparse(cp, &end);
92                         if (end != cp)
93                                 break;
94                         cp = end;
95                 } else {
96                         while (*cp != ' ' && *cp)
97                                 ++cp;
98                         while (*cp == ' ')
99                                 ++cp;
100                 }
101         }
102
103         if (limit < mem_limit)
104                 mem_limit = limit;
105 }
106
107 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
108
109 static void __init setup_bootmem(void)
110 {
111         unsigned long bootmap_size;
112         unsigned long mem_max;
113         unsigned long bootmap_pages;
114         unsigned long bootmap_start_pfn;
115         unsigned long bootmap_pfn;
116 #ifndef CONFIG_DISCONTIGMEM
117         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
118         int npmem_holes;
119 #endif
120         int i, sysram_resource_count;
121
122         disable_sr_hashing(); /* Turn off space register hashing */
123
124         /*
125          * Sort the ranges. Since the number of ranges is typically
126          * small, and performance is not an issue here, just do
127          * a simple insertion sort.
128          */
129
130         for (i = 1; i < npmem_ranges; i++) {
131                 int j;
132
133                 for (j = i; j > 0; j--) {
134                         unsigned long tmp;
135
136                         if (pmem_ranges[j-1].start_pfn <
137                             pmem_ranges[j].start_pfn) {
138
139                                 break;
140                         }
141                         tmp = pmem_ranges[j-1].start_pfn;
142                         pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
143                         pmem_ranges[j].start_pfn = tmp;
144                         tmp = pmem_ranges[j-1].pages;
145                         pmem_ranges[j-1].pages = pmem_ranges[j].pages;
146                         pmem_ranges[j].pages = tmp;
147                 }
148         }
149
150 #ifndef CONFIG_DISCONTIGMEM
151         /*
152          * Throw out ranges that are too far apart (controlled by
153          * MAX_GAP).
154          */
155
156         for (i = 1; i < npmem_ranges; i++) {
157                 if (pmem_ranges[i].start_pfn -
158                         (pmem_ranges[i-1].start_pfn +
159                          pmem_ranges[i-1].pages) > MAX_GAP) {
160                         npmem_ranges = i;
161                         printk("Large gap in memory detected (%ld pages). "
162                                "Consider turning on CONFIG_DISCONTIGMEM\n",
163                                pmem_ranges[i].start_pfn -
164                                (pmem_ranges[i-1].start_pfn +
165                                 pmem_ranges[i-1].pages));
166                         break;
167                 }
168         }
169 #endif
170
171         if (npmem_ranges > 1) {
172
173                 /* Print the memory ranges */
174
175                 printk(KERN_INFO "Memory Ranges:\n");
176
177                 for (i = 0; i < npmem_ranges; i++) {
178                         unsigned long start;
179                         unsigned long size;
180
181                         size = (pmem_ranges[i].pages << PAGE_SHIFT);
182                         start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
183                         printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld Mb\n",
184                                 i,start, start + (size - 1), size >> 20);
185                 }
186         }
187
188         sysram_resource_count = npmem_ranges;
189         for (i = 0; i < sysram_resource_count; i++) {
190                 struct resource *res = &sysram_resources[i];
191                 res->name = "System RAM";
192                 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
193                 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
194                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
195                 request_resource(&iomem_resource, res);
196         }
197
198         /*
199          * For 32 bit kernels we limit the amount of memory we can
200          * support, in order to preserve enough kernel address space
201          * for other purposes. For 64 bit kernels we don't normally
202          * limit the memory, but this mechanism can be used to
203          * artificially limit the amount of memory (and it is written
204          * to work with multiple memory ranges).
205          */
206
207         mem_limit_func();       /* check for "mem=" argument */
208
209         mem_max = 0;
210         num_physpages = 0;
211         for (i = 0; i < npmem_ranges; i++) {
212                 unsigned long rsize;
213
214                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
215                 if ((mem_max + rsize) > mem_limit) {
216                         printk(KERN_WARNING "Memory truncated to %ld Mb\n", mem_limit >> 20);
217                         if (mem_max == mem_limit)
218                                 npmem_ranges = i;
219                         else {
220                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
221                                                        - (mem_max >> PAGE_SHIFT);
222                                 npmem_ranges = i + 1;
223                                 mem_max = mem_limit;
224                         }
225                 num_physpages += pmem_ranges[i].pages;
226                         break;
227                 }
228             num_physpages += pmem_ranges[i].pages;
229                 mem_max += rsize;
230         }
231
232         printk(KERN_INFO "Total Memory: %ld Mb\n",mem_max >> 20);
233
234 #ifndef CONFIG_DISCONTIGMEM
235         /* Merge the ranges, keeping track of the holes */
236
237         {
238                 unsigned long end_pfn;
239                 unsigned long hole_pages;
240
241                 npmem_holes = 0;
242                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
243                 for (i = 1; i < npmem_ranges; i++) {
244
245                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
246                         if (hole_pages) {
247                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
248                                 pmem_holes[npmem_holes++].pages = hole_pages;
249                                 end_pfn += hole_pages;
250                         }
251                         end_pfn += pmem_ranges[i].pages;
252                 }
253
254                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
255                 npmem_ranges = 1;
256         }
257 #endif
258
259         bootmap_pages = 0;
260         for (i = 0; i < npmem_ranges; i++)
261                 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
262
263         bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
264
265 #ifdef CONFIG_DISCONTIGMEM
266         for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
267                 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
268                 NODE_DATA(i)->bdata = &bmem_data[i];
269         }
270         memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
271
272         numnodes = npmem_ranges;
273
274         for (i = 0; i < npmem_ranges; i++)
275                 node_set_online(i);
276 #endif
277
278         /*
279          * Initialize and free the full range of memory in each range.
280          * Note that the only writing these routines do are to the bootmap,
281          * and we've made sure to locate the bootmap properly so that they
282          * won't be writing over anything important.
283          */
284
285         bootmap_pfn = bootmap_start_pfn;
286         max_pfn = 0;
287         for (i = 0; i < npmem_ranges; i++) {
288                 unsigned long start_pfn;
289                 unsigned long npages;
290
291                 start_pfn = pmem_ranges[i].start_pfn;
292                 npages = pmem_ranges[i].pages;
293
294                 bootmap_size = init_bootmem_node(NODE_DATA(i),
295                                                 bootmap_pfn,
296                                                 start_pfn,
297                                                 (start_pfn + npages) );
298                 free_bootmem_node(NODE_DATA(i),
299                                   (start_pfn << PAGE_SHIFT),
300                                   (npages << PAGE_SHIFT) );
301                 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
302                 if ((start_pfn + npages) > max_pfn)
303                         max_pfn = start_pfn + npages;
304         }
305
306         if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
307                 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
308                 BUG();
309         }
310
311         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
312
313 #define PDC_CONSOLE_IO_IODC_SIZE 32768
314
315         reserve_bootmem_node(NODE_DATA(0), 0UL,
316                         (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
317         reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
318                         (unsigned long)(&_end - &_text));
319         reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
320                         ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
321
322 #ifndef CONFIG_DISCONTIGMEM
323
324         /* reserve the holes */
325
326         for (i = 0; i < npmem_holes; i++) {
327                 reserve_bootmem_node(NODE_DATA(0),
328                                 (pmem_holes[i].start_pfn << PAGE_SHIFT),
329                                 (pmem_holes[i].pages << PAGE_SHIFT));
330         }
331 #endif
332
333 #ifdef CONFIG_BLK_DEV_INITRD
334         if (initrd_start) {
335                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
336                 if (__pa(initrd_start) < mem_max) {
337                         unsigned long initrd_reserve;
338
339                         if (__pa(initrd_end) > mem_max) {
340                                 initrd_reserve = mem_max - __pa(initrd_start);
341                         } else {
342                                 initrd_reserve = initrd_end - initrd_start;
343                         }
344                         initrd_below_start_ok = 1;
345                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
346
347                         reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
348                 }
349         }
350 #endif
351
352         data_resource.start =  virt_to_phys(&data_start);
353         data_resource.end = virt_to_phys(&_end)-1;
354         code_resource.start = virt_to_phys(&_text);
355         code_resource.end = virt_to_phys(&data_start)-1;
356
357         /* We don't know which region the kernel will be in, so try
358          * all of them.
359          */
360         for (i = 0; i < sysram_resource_count; i++) {
361                 struct resource *res = &sysram_resources[i];
362                 request_resource(res, &code_resource);
363                 request_resource(res, &data_resource);
364         }
365         request_resource(&sysram_resources[0], &pdcdata_resource);
366 }
367
368 void free_initmem(void)
369 {
370         /* FIXME: */
371 #if 0
372         printk(KERN_INFO "NOT FREEING INITMEM (%dk)\n",
373                         (&__init_end - &__init_begin) >> 10);
374         return;
375 #else
376         unsigned long addr;
377         
378         printk(KERN_INFO "Freeing unused kernel memory: ");
379
380 #if 1
381         /* Attempt to catch anyone trying to execute code here
382          * by filling the page with BRK insns.
383          * 
384          * If we disable interrupts for all CPUs, then IPI stops working.
385          * Kinda breaks the global cache flushing.
386          */
387         local_irq_disable();
388
389         memset(&__init_begin, 0x00, 
390                 (unsigned long)&__init_end - (unsigned long)&__init_begin);
391
392         flush_data_cache();
393         asm volatile("sync" : : );
394         flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
395         asm volatile("sync" : : );
396
397         local_irq_enable();
398 #endif
399         
400         addr = (unsigned long)(&__init_begin);
401         for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
402                 ClearPageReserved(virt_to_page(addr));
403                 set_page_count(virt_to_page(addr), 1);
404                 free_page(addr);
405                 num_physpages++;
406                 totalram_pages++;
407         }
408
409         /* set up a new led state on systems shipped LED State panel */
410         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
411         
412         printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10);
413 #endif
414 }
415
416 /*
417  * Just an arbitrary offset to serve as a "hole" between mapping areas
418  * (between top of physical memory and a potential pcxl dma mapping
419  * area, and below the vmalloc mapping area).
420  *
421  * The current 32K value just means that there will be a 32K "hole"
422  * between mapping areas. That means that  any out-of-bounds memory
423  * accesses will hopefully be caught. The vmalloc() routines leaves
424  * a hole of 4kB between each vmalloced area for the same reason.
425  */
426
427  /* Leave room for gateway page expansion */
428 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
429 #error KERNEL_MAP_START is in gateway reserved region
430 #endif
431 #define MAP_START (KERNEL_MAP_START)
432
433 #define VM_MAP_OFFSET  (32*1024)
434 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
435                                      & ~(VM_MAP_OFFSET-1)))
436
437 void *vmalloc_start;
438 EXPORT_SYMBOL(vmalloc_start);
439
440 #ifdef CONFIG_PA11
441 unsigned long pcxl_dma_start;
442 #endif
443
444 void __init mem_init(void)
445 {
446         high_memory = __va((max_pfn << PAGE_SHIFT));
447
448 #ifndef CONFIG_DISCONTIGMEM
449         max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
450         mem_map = zone_table[ZONE_DMA]->zone_mem_map;
451         totalram_pages += free_all_bootmem();
452 #else
453         {
454                 int i;
455
456                 for (i = 0; i < npmem_ranges; i++)
457                         totalram_pages += free_all_bootmem_node(NODE_DATA(i));
458         }
459 #endif
460
461         printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
462
463 #ifdef CONFIG_PA11
464         if (hppa_dma_ops == &pcxl_dma_ops) {
465                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
466                 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
467         } else {
468                 pcxl_dma_start = 0;
469                 vmalloc_start = SET_MAP_OFFSET(MAP_START);
470         }
471 #else
472         vmalloc_start = SET_MAP_OFFSET(MAP_START);
473 #endif
474
475 }
476
477 int do_check_pgt_cache(int low, int high)
478 {
479         return 0;
480 }
481
482 unsigned long *empty_zero_page;
483
484 void show_mem(void)
485 {
486         int i,free = 0,total = 0,reserved = 0;
487         int shared = 0, cached = 0;
488
489         printk(KERN_INFO "Mem-info:\n");
490         show_free_areas();
491         printk(KERN_INFO "Free swap:     %6ldkB\n",
492                                 nr_swap_pages<<(PAGE_SHIFT-10));
493 #ifndef CONFIG_DISCONTIGMEM
494         i = max_mapnr;
495         while (i-- > 0) {
496                 total++;
497                 if (PageReserved(mem_map+i))
498                         reserved++;
499                 else if (PageSwapCache(mem_map+i))
500                         cached++;
501                 else if (!page_count(&mem_map[i]))
502                         free++;
503                 else
504                         shared += page_count(&mem_map[i]) - 1;
505         }
506 #else
507         for (i = 0; i < npmem_ranges; i++) {
508                 int j;
509
510                 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
511                         struct page *p;
512
513                         p = node_mem_map(i) + j - node_start_pfn(i);
514
515                         total++;
516                         if (PageReserved(p))
517                                 reserved++;
518                         else if (PageSwapCache(p))
519                                 cached++;
520                         else if (!page_count(p))
521                                 free++;
522                         else
523                                 shared += page_count(p) - 1;
524                 }
525         }
526 #endif
527         printk(KERN_INFO "%d pages of RAM\n", total);
528         printk(KERN_INFO "%d reserved pages\n", reserved);
529         printk(KERN_INFO "%d pages shared\n", shared);
530         printk(KERN_INFO "%d pages swap cached\n", cached);
531
532
533 #ifdef CONFIG_DISCONTIGMEM
534         {
535                 struct zonelist *zl;
536                 int i, j, k;
537
538                 for (i = 0; i < npmem_ranges; i++) {
539                         for (j = 0; j < MAX_NR_ZONES; j++) {
540                                 zl = NODE_DATA(i)->node_zonelists + j;
541
542                                 printk("Zone list for zone %d on node %d: ", j, i);
543                                 for (k = 0; zl->zones[k] != NULL; k++) 
544                                         printk("[%d/%s] ", zl->zones[k]->zone_pgdat->node_id, zl->zones[k]->name);
545                                 printk("\n");
546                         }
547                 }
548         }
549 #endif
550 }
551
552
553 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
554 {
555         pgd_t *pg_dir;
556         pmd_t *pmd;
557         pte_t *pg_table;
558         unsigned long end_paddr;
559         unsigned long start_pmd;
560         unsigned long start_pte;
561         unsigned long tmp1;
562         unsigned long tmp2;
563         unsigned long address;
564         unsigned long ro_start;
565         unsigned long ro_end;
566         unsigned long fv_addr;
567         unsigned long gw_addr;
568         extern const unsigned long fault_vector_20;
569         extern void * const linux_gateway_page;
570
571         ro_start = __pa((unsigned long)&_text);
572         ro_end   = __pa((unsigned long)&data_start);
573         fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
574         gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
575
576         end_paddr = start_paddr + size;
577
578         pg_dir = pgd_offset_k(start_vaddr);
579
580 #if PTRS_PER_PMD == 1
581         start_pmd = 0;
582 #else
583         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
584 #endif
585         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
586
587         address = start_paddr;
588         while (address < end_paddr) {
589 #if PTRS_PER_PMD == 1
590                 pmd = (pmd_t *)__pa(pg_dir);
591 #else
592                 pmd = (pmd_t *)pgd_address(*pg_dir);
593
594                 /*
595                  * pmd is physical at this point
596                  */
597
598                 if (!pmd) {
599                         pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
600                         pmd = (pmd_t *) __pa(pmd);
601                 }
602
603                 pgd_populate(NULL, pg_dir, __va(pmd));
604 #endif
605                 pg_dir++;
606
607                 /* now change pmd to kernel virtual addresses */
608
609                 pmd = (pmd_t *)__va(pmd) + start_pmd;
610                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
611
612                         /*
613                          * pg_table is physical at this point
614                          */
615
616                         pg_table = (pte_t *)pmd_address(*pmd);
617                         if (!pg_table) {
618                                 pg_table = (pte_t *)
619                                         alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
620                                 pg_table = (pte_t *) __pa(pg_table);
621                         }
622
623                         pmd_populate_kernel(NULL, pmd, __va(pg_table));
624
625                         /* now change pg_table to kernel virtual addresses */
626
627                         pg_table = (pte_t *) __va(pg_table) + start_pte;
628                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
629                                 pte_t pte;
630
631                                 /*
632                                  * Map the fault vector writable so we can
633                                  * write the HPMC checksum.
634                                  */
635                                 if (address >= ro_start && address < ro_end
636                                                         && address != fv_addr
637                                                         && address != gw_addr)
638                                     pte = __mk_pte(address, PAGE_KERNEL_RO);
639                                 else
640                                     pte = __mk_pte(address, pgprot);
641
642                                 if (address >= end_paddr)
643                                         pte_val(pte) = 0;
644
645                                 set_pte(pg_table, pte);
646
647                                 address += PAGE_SIZE;
648                         }
649                         start_pte = 0;
650
651                         if (address >= end_paddr)
652                             break;
653                 }
654                 start_pmd = 0;
655         }
656 }
657
658 /*
659  * pagetable_init() sets up the page tables
660  *
661  * Note that gateway_init() places the Linux gateway page at page 0.
662  * Since gateway pages cannot be dereferenced this has the desirable
663  * side effect of trapping those pesky NULL-reference errors in the
664  * kernel.
665  */
666 static void __init pagetable_init(void)
667 {
668         int range;
669
670         /* Map each physical memory range to its kernel vaddr */
671
672         for (range = 0; range < npmem_ranges; range++) {
673                 unsigned long start_paddr;
674                 unsigned long end_paddr;
675                 unsigned long size;
676
677                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
678                 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
679                 size = pmem_ranges[range].pages << PAGE_SHIFT;
680
681                 map_pages((unsigned long)__va(start_paddr), start_paddr,
682                         size, PAGE_KERNEL);
683         }
684
685 #ifdef CONFIG_BLK_DEV_INITRD
686         if (initrd_end && initrd_end > mem_limit) {
687                 printk("initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
688                 map_pages(initrd_start, __pa(initrd_start),
689                         initrd_end - initrd_start, PAGE_KERNEL);
690         }
691 #endif
692
693         empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
694         memset(empty_zero_page, 0, PAGE_SIZE);
695 }
696
697 static void __init gateway_init(void)
698 {
699         unsigned long linux_gateway_page_addr;
700         /* FIXME: This is 'const' in order to trick the compiler
701            into not treating it as DP-relative data. */
702         extern void * const linux_gateway_page;
703
704         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
705
706         /*
707          * Setup Linux Gateway page.
708          *
709          * The Linux gateway page will reside in kernel space (on virtual
710          * page 0), so it doesn't need to be aliased into user space.
711          */
712
713         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
714                 PAGE_SIZE, PAGE_GATEWAY);
715 }
716
717 #ifdef CONFIG_HPUX
718 void
719 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
720 {
721         pgd_t *pg_dir;
722         pmd_t *pmd;
723         pte_t *pg_table;
724         unsigned long start_pmd;
725         unsigned long start_pte;
726         unsigned long address;
727         unsigned long hpux_gw_page_addr;
728         /* FIXME: This is 'const' in order to trick the compiler
729            into not treating it as DP-relative data. */
730         extern void * const hpux_gateway_page;
731
732         hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
733
734         /*
735          * Setup HP-UX Gateway page.
736          *
737          * The HP-UX gateway page resides in the user address space,
738          * so it needs to be aliased into each process.
739          */
740
741         pg_dir = pgd_offset(mm,hpux_gw_page_addr);
742
743 #if PTRS_PER_PMD == 1
744         start_pmd = 0;
745 #else
746         start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
747 #endif
748         start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
749
750         address = __pa(&hpux_gateway_page);
751 #if PTRS_PER_PMD == 1
752         pmd = (pmd_t *)__pa(pg_dir);
753 #else
754         pmd = (pmd_t *) pgd_address(*pg_dir);
755
756         /*
757          * pmd is physical at this point
758          */
759
760         if (!pmd) {
761                 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
762                 pmd = (pmd_t *) __pa(pmd);
763         }
764
765         __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
766 #endif
767         /* now change pmd to kernel virtual addresses */
768
769         pmd = (pmd_t *)__va(pmd) + start_pmd;
770
771         /*
772          * pg_table is physical at this point
773          */
774
775         pg_table = (pte_t *) pmd_address(*pmd);
776         if (!pg_table)
777                 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
778
779         __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
780
781         /* now change pg_table to kernel virtual addresses */
782
783         pg_table = (pte_t *) __va(pg_table) + start_pte;
784         set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
785 }
786 EXPORT_SYMBOL(map_hpux_gateway_page);
787 #endif
788
789 extern void flush_tlb_all_local(void);
790
791 void __init paging_init(void)
792 {
793         int i;
794
795         setup_bootmem();
796         pagetable_init();
797         gateway_init();
798         flush_cache_all_local(); /* start with known state */
799         flush_tlb_all_local();
800
801         for (i = 0; i < npmem_ranges; i++) {
802                 unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0 };
803
804                 /* We have an IOMMU, so all memory can go into a single
805                    ZONE_DMA zone. */
806                 zones_size[ZONE_DMA] = pmem_ranges[i].pages;
807
808 #ifdef CONFIG_DISCONTIGMEM
809                 /* Need to initialize the pfnnid_map before we can initialize
810                    the zone */
811                 {
812                     int j;
813                     for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
814                          j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
815                          j++) {
816                         pfnnid_map[j] = i;
817                     }
818                 }
819 #endif
820
821                 free_area_init_node(i, NODE_DATA(i), zones_size,
822                                 pmem_ranges[i].start_pfn, NULL);
823         }
824 }
825
826 #ifdef CONFIG_PA20
827
828 /*
829  * Currently, all PA20 chips have 18 bit protection id's, which is the
830  * limiting factor (space ids are 32 bits).
831  */
832
833 #define NR_SPACE_IDS 262144
834
835 #else
836
837 /*
838  * Currently we have a one-to-one relationship between space id's and
839  * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
840  * support 15 bit protection id's, so that is the limiting factor.
841  * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
842  * probably not worth the effort for a special case here.
843  */
844
845 #define NR_SPACE_IDS 32768
846
847 #endif  /* !CONFIG_PA20 */
848
849 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
850 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
851
852 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
853 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
854 static unsigned long space_id_index;
855 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
856 static unsigned long dirty_space_ids = 0;
857
858 static spinlock_t sid_lock = SPIN_LOCK_UNLOCKED;
859
860 unsigned long alloc_sid(void)
861 {
862         unsigned long index;
863
864         spin_lock(&sid_lock);
865
866         if (free_space_ids == 0) {
867                 if (dirty_space_ids != 0) {
868                         spin_unlock(&sid_lock);
869                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
870                         spin_lock(&sid_lock);
871                 }
872                 if (free_space_ids == 0)
873                         BUG();
874         }
875
876         free_space_ids--;
877
878         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
879         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
880         space_id_index = index;
881
882         spin_unlock(&sid_lock);
883
884         return index << SPACEID_SHIFT;
885 }
886
887 void free_sid(unsigned long spaceid)
888 {
889         unsigned long index = spaceid >> SPACEID_SHIFT;
890         unsigned long *dirty_space_offset;
891
892         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
893         index &= (BITS_PER_LONG - 1);
894
895         spin_lock(&sid_lock);
896
897         if (*dirty_space_offset & (1L << index))
898             BUG(); /* attempt to free space id twice */
899
900         *dirty_space_offset |= (1L << index);
901         dirty_space_ids++;
902
903         spin_unlock(&sid_lock);
904 }
905
906
907 #ifdef CONFIG_SMP
908 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
909 {
910         int i;
911
912         /* NOTE: sid_lock must be held upon entry */
913
914         *ndirtyptr = dirty_space_ids;
915         if (dirty_space_ids != 0) {
916             for (i = 0; i < SID_ARRAY_SIZE; i++) {
917                 dirty_array[i] = dirty_space_id[i];
918                 dirty_space_id[i] = 0;
919             }
920             dirty_space_ids = 0;
921         }
922
923         return;
924 }
925
926 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
927 {
928         int i;
929
930         /* NOTE: sid_lock must be held upon entry */
931
932         if (ndirty != 0) {
933                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
934                         space_id[i] ^= dirty_array[i];
935                 }
936
937                 free_space_ids += ndirty;
938                 space_id_index = 0;
939         }
940 }
941
942 #else /* CONFIG_SMP */
943
944 static void recycle_sids(void)
945 {
946         int i;
947
948         /* NOTE: sid_lock must be held upon entry */
949
950         if (dirty_space_ids != 0) {
951                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
952                         space_id[i] ^= dirty_space_id[i];
953                         dirty_space_id[i] = 0;
954                 }
955
956                 free_space_ids += dirty_space_ids;
957                 dirty_space_ids = 0;
958                 space_id_index = 0;
959         }
960 }
961 #endif
962
963 /*
964  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
965  * purged, we can safely reuse the space ids that were released but
966  * not flushed from the tlb.
967  */
968
969 #ifdef CONFIG_SMP
970
971 static unsigned long recycle_ndirty;
972 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
973 static unsigned int recycle_inuse = 0;
974
975 void flush_tlb_all(void)
976 {
977         int do_recycle;
978
979         do_recycle = 0;
980         spin_lock(&sid_lock);
981         if (dirty_space_ids > RECYCLE_THRESHOLD) {
982             if (recycle_inuse) {
983                 BUG();  /* FIXME: Use a semaphore/wait queue here */
984             }
985             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
986             recycle_inuse++;
987             do_recycle++;
988         }
989         spin_unlock(&sid_lock);
990         on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
991         if (do_recycle) {
992             spin_lock(&sid_lock);
993             recycle_sids(recycle_ndirty,recycle_dirty_array);
994             recycle_inuse = 0;
995             spin_unlock(&sid_lock);
996         }
997 }
998 #else
999 void flush_tlb_all(void)
1000 {
1001         spin_lock(&sid_lock);
1002         flush_tlb_all_local();
1003         recycle_sids();
1004         spin_unlock(&sid_lock);
1005 }
1006 #endif
1007
1008 #ifdef CONFIG_BLK_DEV_INITRD
1009 void free_initrd_mem(unsigned long start, unsigned long end)
1010 {
1011 #if 0
1012         if (start < end)
1013                 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1014         for (; start < end; start += PAGE_SIZE) {
1015                 ClearPageReserved(virt_to_page(start));
1016                 set_page_count(virt_to_page(start), 1);
1017                 free_page(start);
1018                 num_physpages++;
1019                 totalram_pages++;
1020         }
1021 #endif
1022 }
1023 #endif