This commit was manufactured by cvs2svn to create tag
[linux-2.6.git] / arch / ppc64 / mm / hugetlbpage.c
1 /*
2  * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  *
6  * Based on the IA-32 version:
7  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8  */
9
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/smp_lock.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/sysctl.h>
19 #include <asm/mman.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlb.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/machdep.h>
25 #include <asm/cputable.h>
26 #include <asm/tlb.h>
27
28 #include <linux/sysctl.h>
29
30 /* HugePTE layout:
31  *
32  * 31 30 ... 15 14 13 12 10 9  8  7   6    5    4    3    2    1    0
33  * PFN>>12..... -  -  -  -  -  -  HASH_IX....   2ND  HASH RW   -    HG=1
34  */
35
36 #define HUGEPTE_SHIFT   15
37 #define _HUGEPAGE_PFN           0xffff8000
38 #define _HUGEPAGE_BAD           0x00007f00
39 #define _HUGEPAGE_HASHPTE       0x00000008
40 #define _HUGEPAGE_SECONDARY     0x00000010
41 #define _HUGEPAGE_GROUP_IX      0x000000e0
42 #define _HUGEPAGE_HPTEFLAGS     (_HUGEPAGE_HASHPTE | _HUGEPAGE_SECONDARY | \
43                                  _HUGEPAGE_GROUP_IX)
44 #define _HUGEPAGE_RW            0x00000004
45
46 typedef struct {unsigned int val;} hugepte_t;
47 #define hugepte_val(hugepte)    ((hugepte).val)
48 #define __hugepte(x)            ((hugepte_t) { (x) } )
49 #define hugepte_pfn(x)          \
50         ((unsigned long)(hugepte_val(x)>>HUGEPTE_SHIFT) << HUGETLB_PAGE_ORDER)
51 #define mk_hugepte(page,wr)     __hugepte( \
52         ((page_to_pfn(page)>>HUGETLB_PAGE_ORDER) << HUGEPTE_SHIFT ) \
53         | (!!(wr) * _HUGEPAGE_RW) | _PMD_HUGEPAGE )
54
55 #define hugepte_bad(x)  ( !(hugepte_val(x) & _PMD_HUGEPAGE) || \
56                           (hugepte_val(x) & _HUGEPAGE_BAD) )
57 #define hugepte_page(x) pfn_to_page(hugepte_pfn(x))
58 #define hugepte_none(x) (!(hugepte_val(x) & _HUGEPAGE_PFN))
59
60
61 static void flush_hash_hugepage(mm_context_t context, unsigned long ea,
62                                 hugepte_t pte, int local);
63
64 static inline unsigned int hugepte_update(hugepte_t *p, unsigned int clr,
65                                           unsigned int set)
66 {
67         unsigned int old, tmp;
68
69         __asm__ __volatile__(
70         "1:     lwarx   %0,0,%3         # pte_update\n\
71         andc    %1,%0,%4 \n\
72         or      %1,%1,%5 \n\
73         stwcx.  %1,0,%3 \n\
74         bne-    1b"
75         : "=&r" (old), "=&r" (tmp), "=m" (*p)
76         : "r" (p), "r" (clr), "r" (set), "m" (*p)
77         : "cc" );
78         return old;
79 }
80
81 static inline void set_hugepte(hugepte_t *ptep, hugepte_t pte)
82 {
83         hugepte_update(ptep, ~_HUGEPAGE_HPTEFLAGS,
84                        hugepte_val(pte) & ~_HUGEPAGE_HPTEFLAGS);
85 }
86
87 static hugepte_t *hugepte_alloc(struct mm_struct *mm, unsigned long addr)
88 {
89         pgd_t *pgd;
90         pmd_t *pmd = NULL;
91
92         BUG_ON(!in_hugepage_area(mm->context, addr));
93
94         pgd = pgd_offset(mm, addr);
95         pmd = pmd_alloc(mm, pgd, addr);
96
97         /* We shouldn't find a (normal) PTE page pointer here */
98         BUG_ON(!pmd_none(*pmd) && !pmd_hugepage(*pmd));
99         
100         return (hugepte_t *)pmd;
101 }
102
103 static hugepte_t *hugepte_offset(struct mm_struct *mm, unsigned long addr)
104 {
105         pgd_t *pgd;
106         pmd_t *pmd = NULL;
107
108         BUG_ON(!in_hugepage_area(mm->context, addr));
109
110         pgd = pgd_offset(mm, addr);
111         if (pgd_none(*pgd))
112                 return NULL;
113
114         pmd = pmd_offset(pgd, addr);
115
116         /* We shouldn't find a (normal) PTE page pointer here */
117         BUG_ON(!pmd_none(*pmd) && !pmd_hugepage(*pmd));
118
119         return (hugepte_t *)pmd;
120 }
121
122 static void setup_huge_pte(struct mm_struct *mm, struct page *page,
123                            hugepte_t *ptep, int write_access)
124 {
125         hugepte_t entry;
126         int i;
127
128         mm->rss += (HPAGE_SIZE / PAGE_SIZE);
129         entry = mk_hugepte(page, write_access);
130         for (i = 0; i < HUGEPTE_BATCH_SIZE; i++)
131                 set_hugepte(ptep+i, entry);
132 }
133
134 static void teardown_huge_pte(hugepte_t *ptep)
135 {
136         int i;
137
138         for (i = 0; i < HUGEPTE_BATCH_SIZE; i++)
139                 pmd_clear((pmd_t *)(ptep+i));
140 }
141
142 /*
143  * This function checks for proper alignment of input addr and len parameters.
144  */
145 int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
146 {
147         if (len & ~HPAGE_MASK)
148                 return -EINVAL;
149         if (addr & ~HPAGE_MASK)
150                 return -EINVAL;
151         if (! (within_hugepage_low_range(addr, len)
152                || within_hugepage_high_range(addr, len)) )
153                 return -EINVAL;
154         return 0;
155 }
156
157 static void flush_segments(void *parm)
158 {
159         u16 segs = (unsigned long) parm;
160         unsigned long i;
161
162         asm volatile("isync" : : : "memory");
163
164         for (i = 0; i < 16; i++) {
165                 if (! (segs & (1U << i)))
166                         continue;
167                 asm volatile("slbie %0" : : "r" (i << SID_SHIFT));
168         }
169
170         asm volatile("isync" : : : "memory");
171 }
172
173 static int prepare_low_seg_for_htlb(struct mm_struct *mm, unsigned long seg)
174 {
175         unsigned long start = seg << SID_SHIFT;
176         unsigned long end = (seg+1) << SID_SHIFT;
177         struct vm_area_struct *vma;
178         unsigned long addr;
179         struct mmu_gather *tlb;
180
181         BUG_ON(seg >= 16);
182
183         /* Check no VMAs are in the region */
184         vma = find_vma(mm, start);
185         if (vma && (vma->vm_start < end))
186                 return -EBUSY;
187
188         /* Clean up any leftover PTE pages in the region */
189         spin_lock(&mm->page_table_lock);
190         tlb = tlb_gather_mmu(mm, 0);
191         for (addr = start; addr < end; addr += PMD_SIZE) {
192                 pgd_t *pgd = pgd_offset(mm, addr);
193                 pmd_t *pmd;
194                 struct page *page;
195                 pte_t *pte;
196                 int i;
197
198                 if (pgd_none(*pgd))
199                         continue;
200                 pmd = pmd_offset(pgd, addr);
201                 if (!pmd || pmd_none(*pmd))
202                         continue;
203                 if (pmd_bad(*pmd)) {
204                         pmd_ERROR(*pmd);
205                         pmd_clear(pmd);
206                         continue;
207                 }
208                 pte = (pte_t *)pmd_page_kernel(*pmd);
209                 /* No VMAs, so there should be no PTEs, check just in case. */
210                 for (i = 0; i < PTRS_PER_PTE; i++) {
211                         BUG_ON(!pte_none(*pte));
212                         pte++;
213                 }
214                 page = pmd_page(*pmd);
215                 pmd_clear(pmd);
216                 dec_page_state(nr_page_table_pages);
217                 pte_free_tlb(tlb, page);
218         }
219         tlb_finish_mmu(tlb, start, end);
220         spin_unlock(&mm->page_table_lock);
221
222         return 0;
223 }
224
225 static int open_low_hpage_segs(struct mm_struct *mm, u16 newsegs)
226 {
227         unsigned long i;
228
229         newsegs &= ~(mm->context.htlb_segs);
230         if (! newsegs)
231                 return 0; /* The segments we want are already open */
232
233         for (i = 0; i < 16; i++)
234                 if ((1 << i) & newsegs)
235                         if (prepare_low_seg_for_htlb(mm, i) != 0)
236                                 return -EBUSY;
237
238         mm->context.htlb_segs |= newsegs;
239         /* the context change must make it to memory before the flush,
240          * so that further SLB misses do the right thing. */
241         mb();
242         on_each_cpu(flush_segments, (void *)(unsigned long)newsegs, 0, 1);
243
244         return 0;
245 }
246
247 int prepare_hugepage_range(unsigned long addr, unsigned long len)
248 {
249         if (within_hugepage_high_range(addr, len))
250                 return 0;
251         else if ((addr < 0x100000000) && ((addr+len) < 0x100000000)) {
252                 int err;
253                 /* Yes, we need both tests, in case addr+len overflows
254                  * 64-bit arithmetic */
255                 err = open_low_hpage_segs(current->mm,
256                                           LOW_ESID_MASK(addr, len));
257                 if (err)
258                         printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
259                                " failed (segs: 0x%04hx)\n", addr, len,
260                                LOW_ESID_MASK(addr, len));
261                 return err;
262         }
263
264         return -EINVAL;
265 }
266
267 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
268                         struct vm_area_struct *vma)
269 {
270         hugepte_t *src_pte, *dst_pte, entry;
271         struct page *ptepage;
272         unsigned long addr = vma->vm_start;
273         unsigned long end = vma->vm_end;
274
275         while (addr < end) {
276                 BUG_ON(! in_hugepage_area(src->context, addr));
277                 BUG_ON(! in_hugepage_area(dst->context, addr));
278
279                 dst_pte = hugepte_alloc(dst, addr);
280                 if (!dst_pte)
281                         return -ENOMEM;
282
283                 src_pte = hugepte_offset(src, addr);
284                 entry = *src_pte;
285                 
286                 if ((addr % HPAGE_SIZE) == 0) {
287                         /* This is the first hugepte in a batch */
288                         ptepage = hugepte_page(entry);
289                         get_page(ptepage);
290                         dst->rss += (HPAGE_SIZE / PAGE_SIZE);
291                 }
292                 set_hugepte(dst_pte, entry);
293
294
295                 addr += PMD_SIZE;
296         }
297         return 0;
298 }
299
300 int
301 follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
302                     struct page **pages, struct vm_area_struct **vmas,
303                     unsigned long *position, int *length, int i)
304 {
305         unsigned long vpfn, vaddr = *position;
306         int remainder = *length;
307
308         WARN_ON(!is_vm_hugetlb_page(vma));
309
310         vpfn = vaddr/PAGE_SIZE;
311         while (vaddr < vma->vm_end && remainder) {
312                 BUG_ON(!in_hugepage_area(mm->context, vaddr));
313
314                 if (pages) {
315                         hugepte_t *pte;
316                         struct page *page;
317
318                         pte = hugepte_offset(mm, vaddr);
319
320                         /* hugetlb should be locked, and hence, prefaulted */
321                         WARN_ON(!pte || hugepte_none(*pte));
322
323                         page = &hugepte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
324
325                         WARN_ON(!PageCompound(page));
326
327                         get_page(page);
328                         pages[i] = page;
329                 }
330
331                 if (vmas)
332                         vmas[i] = vma;
333
334                 vaddr += PAGE_SIZE;
335                 ++vpfn;
336                 --remainder;
337                 ++i;
338         }
339
340         *length = remainder;
341         *position = vaddr;
342
343         return i;
344 }
345
346 struct page *
347 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
348 {
349         return ERR_PTR(-EINVAL);
350 }
351
352 int pmd_huge(pmd_t pmd)
353 {
354         return pmd_hugepage(pmd);
355 }
356
357 struct page *
358 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
359                 pmd_t *pmd, int write)
360 {
361         struct page *page;
362
363         BUG_ON(! pmd_hugepage(*pmd));
364
365         page = hugepte_page(*(hugepte_t *)pmd);
366         if (page)
367                 page += ((address & ~HPAGE_MASK) >> PAGE_SHIFT);
368         return page;
369 }
370
371 void unmap_hugepage_range(struct vm_area_struct *vma,
372                           unsigned long start, unsigned long end)
373 {
374         struct mm_struct *mm = vma->vm_mm;
375         unsigned long addr;
376         hugepte_t *ptep;
377         struct page *page;
378         int local = 0;
379         cpumask_t tmp;
380
381         WARN_ON(!is_vm_hugetlb_page(vma));
382         BUG_ON((start % HPAGE_SIZE) != 0);
383         BUG_ON((end % HPAGE_SIZE) != 0);
384
385         /* XXX are there races with checking cpu_vm_mask? - Anton */
386         tmp = cpumask_of_cpu(smp_processor_id());
387         if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
388                 local = 1;
389
390         for (addr = start; addr < end; addr += HPAGE_SIZE) {
391                 hugepte_t pte;
392
393                 BUG_ON(!in_hugepage_area(mm->context, addr));
394
395                 ptep = hugepte_offset(mm, addr);
396                 if (!ptep || hugepte_none(*ptep))
397                         continue;
398
399                 pte = *ptep;
400                 page = hugepte_page(pte);
401                 teardown_huge_pte(ptep);
402                 
403                 if (hugepte_val(pte) & _HUGEPAGE_HASHPTE)
404                         flush_hash_hugepage(mm->context, addr,
405                                             pte, local);
406
407                 put_page(page);
408         }
409
410         mm->rss -= (end - start) >> PAGE_SHIFT;
411 }
412
413 int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
414 {
415         struct mm_struct *mm = current->mm;
416         unsigned long addr;
417         int ret = 0;
418
419         WARN_ON(!is_vm_hugetlb_page(vma));
420         BUG_ON((vma->vm_start % HPAGE_SIZE) != 0);
421         BUG_ON((vma->vm_end % HPAGE_SIZE) != 0);
422
423         spin_lock(&mm->page_table_lock);
424         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
425                 unsigned long idx;
426                 hugepte_t *pte = hugepte_alloc(mm, addr);
427                 struct page *page;
428
429                 BUG_ON(!in_hugepage_area(mm->context, addr));
430
431                 if (!pte) {
432                         ret = -ENOMEM;
433                         goto out;
434                 }
435                 if (!hugepte_none(*pte))
436                         continue;
437
438                 idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
439                         + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
440                 page = find_get_page(mapping, idx);
441                 if (!page) {
442                         /* charge the fs quota first */
443                         if (hugetlb_get_quota(mapping)) {
444                                 ret = -ENOMEM;
445                                 goto out;
446                         }
447                         page = alloc_huge_page();
448                         if (!page) {
449                                 hugetlb_put_quota(mapping);
450                                 ret = -ENOMEM;
451                                 goto out;
452                         }
453                         ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
454                         if (! ret) {
455                                 unlock_page(page);
456                         } else {
457                                 hugetlb_put_quota(mapping);
458                                 free_huge_page(page);
459                                 goto out;
460                         }
461                 }
462                 setup_huge_pte(mm, page, pte, vma->vm_flags & VM_WRITE);
463         }
464 out:
465         spin_unlock(&mm->page_table_lock);
466         return ret;
467 }
468
469 /* Because we have an exclusive hugepage region which lies within the
470  * normal user address space, we have to take special measures to make
471  * non-huge mmap()s evade the hugepage reserved regions. */
472 unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
473                                      unsigned long len, unsigned long pgoff,
474                                      unsigned long flags)
475 {
476         struct mm_struct *mm = current->mm;
477         struct vm_area_struct *vma;
478         unsigned long start_addr;
479
480         if (len > TASK_SIZE)
481                 return -ENOMEM;
482
483         if (addr) {
484                 addr = PAGE_ALIGN(addr);
485                 vma = find_vma(mm, addr);
486                 if (((TASK_SIZE - len) >= addr)
487                     && (!vma || (addr+len) <= vma->vm_start)
488                     && !is_hugepage_only_range(addr,len))
489                         return addr;
490         }
491         start_addr = addr = mm->free_area_cache;
492
493 full_search:
494         vma = find_vma(mm, addr);
495         while (TASK_SIZE - len >= addr) {
496                 BUG_ON(vma && (addr >= vma->vm_end));
497
498                 if (touches_hugepage_low_range(addr, len)) {
499                         addr = ALIGN(addr+1, 1<<SID_SHIFT);
500                         vma = find_vma(mm, addr);
501                         continue;
502                 }
503                 if (touches_hugepage_high_range(addr, len)) {
504                         addr = TASK_HPAGE_END;
505                         vma = find_vma(mm, addr);
506                         continue;
507                 }
508                 if (!vma || addr + len <= vma->vm_start) {
509                         /*
510                          * Remember the place where we stopped the search:
511                          */
512                         mm->free_area_cache = addr + len;
513                         return addr;
514                 }
515                 addr = vma->vm_end;
516                 vma = vma->vm_next;
517         }
518
519         /* Make sure we didn't miss any holes */
520         if (start_addr != TASK_UNMAPPED_BASE) {
521                 start_addr = addr = TASK_UNMAPPED_BASE;
522                 goto full_search;
523         }
524         return -ENOMEM;
525 }
526
527 static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
528 {
529         unsigned long addr = 0;
530         struct vm_area_struct *vma;
531
532         vma = find_vma(current->mm, addr);
533         while (addr + len <= 0x100000000UL) {
534                 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
535
536                 if (! __within_hugepage_low_range(addr, len, segmask)) {
537                         addr = ALIGN(addr+1, 1<<SID_SHIFT);
538                         vma = find_vma(current->mm, addr);
539                         continue;
540                 }
541
542                 if (!vma || (addr + len) <= vma->vm_start)
543                         return addr;
544                 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
545                 /* Depending on segmask this might not be a confirmed
546                  * hugepage region, so the ALIGN could have skipped
547                  * some VMAs */
548                 vma = find_vma(current->mm, addr);
549         }
550
551         return -ENOMEM;
552 }
553
554 static unsigned long htlb_get_high_area(unsigned long len)
555 {
556         unsigned long addr = TASK_HPAGE_BASE;
557         struct vm_area_struct *vma;
558
559         vma = find_vma(current->mm, addr);
560         for (vma = find_vma(current->mm, addr);
561              addr + len <= TASK_HPAGE_END;
562              vma = vma->vm_next) {
563                 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
564                 BUG_ON(! within_hugepage_high_range(addr, len));
565
566                 if (!vma || (addr + len) <= vma->vm_start)
567                         return addr;
568                 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
569                 /* Because we're in a hugepage region, this alignment
570                  * should not skip us over any VMAs */
571         }
572
573         return -ENOMEM;
574 }
575
576 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
577                                         unsigned long len, unsigned long pgoff,
578                                         unsigned long flags)
579 {
580         if (len & ~HPAGE_MASK)
581                 return -EINVAL;
582
583         if (!(cur_cpu_spec->cpu_features & CPU_FTR_16M_PAGE))
584                 return -EINVAL;
585
586         if (test_thread_flag(TIF_32BIT)) {
587                 int lastshift = 0;
588                 u16 segmask, cursegs = current->mm->context.htlb_segs;
589
590                 /* First see if we can do the mapping in the existing
591                  * low hpage segments */
592                 addr = htlb_get_low_area(len, cursegs);
593                 if (addr != -ENOMEM)
594                         return addr;
595
596                 for (segmask = LOW_ESID_MASK(0x100000000UL-len, len);
597                      ! lastshift; segmask >>=1) {
598                         if (segmask & 1)
599                                 lastshift = 1;
600
601                         addr = htlb_get_low_area(len, cursegs | segmask);
602                         if ((addr != -ENOMEM)
603                             && open_low_hpage_segs(current->mm, segmask) == 0)
604                                 return addr;
605                 }
606                 printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
607                        " enough segments\n");
608                 return -ENOMEM;
609         } else {
610                 return htlb_get_high_area(len);
611         }
612 }
613
614 int hash_huge_page(struct mm_struct *mm, unsigned long access,
615                    unsigned long ea, unsigned long vsid, int local)
616 {
617         hugepte_t *ptep;
618         unsigned long va, vpn;
619         int is_write;
620         hugepte_t old_pte, new_pte;
621         unsigned long hpteflags, prpn, flags;
622         long slot;
623
624         /* We have to find the first hugepte in the batch, since
625          * that's the one that will store the HPTE flags */
626         ea &= HPAGE_MASK;
627         ptep = hugepte_offset(mm, ea);
628
629         /* Search the Linux page table for a match with va */
630         va = (vsid << 28) | (ea & 0x0fffffff);
631         vpn = va >> HPAGE_SHIFT;
632
633         /*
634          * If no pte found or not present, send the problem up to
635          * do_page_fault
636          */
637         if (unlikely(!ptep || hugepte_none(*ptep)))
638                 return 1;
639
640         BUG_ON(hugepte_bad(*ptep));
641
642         /* 
643          * Check the user's access rights to the page.  If access should be
644          * prevented then send the problem up to do_page_fault.
645          */
646         is_write = access & _PAGE_RW;
647         if (unlikely(is_write && !(hugepte_val(*ptep) & _HUGEPAGE_RW)))
648                 return 1;
649
650         /*
651          * At this point, we have a pte (old_pte) which can be used to build
652          * or update an HPTE. There are 2 cases:
653          *
654          * 1. There is a valid (present) pte with no associated HPTE (this is 
655          *      the most common case)
656          * 2. There is a valid (present) pte with an associated HPTE. The
657          *      current values of the pp bits in the HPTE prevent access
658          *      because we are doing software DIRTY bit management and the
659          *      page is currently not DIRTY. 
660          */
661
662         spin_lock_irqsave(&mm->page_table_lock, flags);
663
664         old_pte = *ptep;
665         new_pte = old_pte;
666
667         hpteflags = 0x2 | (! (hugepte_val(new_pte) & _HUGEPAGE_RW));
668
669         /* Check if pte already has an hpte (case 2) */
670         if (unlikely(hugepte_val(old_pte) & _HUGEPAGE_HASHPTE)) {
671                 /* There MIGHT be an HPTE for this pte */
672                 unsigned long hash, slot;
673
674                 hash = hpt_hash(vpn, 1);
675                 if (hugepte_val(old_pte) & _HUGEPAGE_SECONDARY)
676                         hash = ~hash;
677                 slot = (hash & htab_data.htab_hash_mask) * HPTES_PER_GROUP;
678                 slot += (hugepte_val(old_pte) & _HUGEPAGE_GROUP_IX) >> 5;
679
680                 if (ppc_md.hpte_updatepp(slot, hpteflags, va, 1, local) == -1)
681                         hugepte_val(old_pte) &= ~_HUGEPAGE_HPTEFLAGS;
682         }
683
684         if (likely(!(hugepte_val(old_pte) & _HUGEPAGE_HASHPTE))) {
685                 unsigned long hash = hpt_hash(vpn, 1);
686                 unsigned long hpte_group;
687
688                 prpn = hugepte_pfn(old_pte);
689
690 repeat:
691                 hpte_group = ((hash & htab_data.htab_hash_mask) *
692                               HPTES_PER_GROUP) & ~0x7UL;
693
694                 /* Update the linux pte with the HPTE slot */
695                 hugepte_val(new_pte) &= ~_HUGEPAGE_HPTEFLAGS;
696                 hugepte_val(new_pte) |= _HUGEPAGE_HASHPTE;
697
698                 /* Add in WIMG bits */
699                 /* XXX We should store these in the pte */
700                 hpteflags |= _PAGE_COHERENT;
701
702                 slot = ppc_md.hpte_insert(hpte_group, va, prpn, 0,
703                                           hpteflags, 0, 1);
704
705                 /* Primary is full, try the secondary */
706                 if (unlikely(slot == -1)) {
707                         hugepte_val(new_pte) |= _HUGEPAGE_SECONDARY;
708                         hpte_group = ((~hash & htab_data.htab_hash_mask) *
709                                       HPTES_PER_GROUP) & ~0x7UL; 
710                         slot = ppc_md.hpte_insert(hpte_group, va, prpn,
711                                                   1, hpteflags, 0, 1);
712                         if (slot == -1) {
713                                 if (mftb() & 0x1)
714                                         hpte_group = ((hash & htab_data.htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
715
716                                 ppc_md.hpte_remove(hpte_group);
717                                 goto repeat;
718                         }
719                 }
720
721                 if (unlikely(slot == -2))
722                         panic("hash_huge_page: pte_insert failed\n");
723
724                 hugepte_val(new_pte) |= (slot<<5) & _HUGEPAGE_GROUP_IX;
725
726                 /* 
727                  * No need to use ldarx/stdcx here because all who
728                  * might be updating the pte will hold the
729                  * page_table_lock or the hash_table_lock
730                  * (we hold both)
731                  */
732                 *ptep = new_pte;
733         }
734
735         spin_unlock_irqrestore(&mm->page_table_lock, flags);
736
737         return 0;
738 }
739
740 static void flush_hash_hugepage(mm_context_t context, unsigned long ea,
741                                 hugepte_t pte, int local)
742 {
743         unsigned long vsid, vpn, va, hash, slot;
744
745         BUG_ON(hugepte_bad(pte));
746         BUG_ON(!in_hugepage_area(context, ea));
747
748         vsid = get_vsid(context.id, ea);
749
750         va = (vsid << 28) | (ea & 0x0fffffff);
751         vpn = va >> LARGE_PAGE_SHIFT;
752         hash = hpt_hash(vpn, 1);
753         if (hugepte_val(pte) & _HUGEPAGE_SECONDARY)
754                 hash = ~hash;
755         slot = (hash & htab_data.htab_hash_mask) * HPTES_PER_GROUP;
756         slot += (hugepte_val(pte) & _HUGEPAGE_GROUP_IX) >> 5;
757
758         ppc_md.hpte_invalidate(slot, va, 1, local);
759 }