upgrade to linux 2.6.10-1.12_FC2
[linux-2.6.git] / arch / ppc64 / mm / numa.c
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/lmb.h>
21 #include <asm/machdep.h>
22 #include <asm/abs_addr.h>
23
24 static int numa_enabled = 1;
25
26 static int numa_debug;
27 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
28
29 #ifdef DEBUG_NUMA
30 #define ARRAY_INITIALISER -1
31 #else
32 #define ARRAY_INITIALISER 0
33 #endif
34
35 int numa_cpu_lookup_table[NR_CPUS] = { [ 0 ... (NR_CPUS - 1)] =
36         ARRAY_INITIALISER};
37 char *numa_memory_lookup_table;
38 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
39 int nr_cpus_in_node[MAX_NUMNODES] = { [0 ... (MAX_NUMNODES -1)] = 0};
40
41 struct pglist_data *node_data[MAX_NUMNODES];
42 bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
43 static unsigned long node0_io_hole_size;
44 static int min_common_depth;
45
46 /*
47  * We need somewhere to store start/span for each node until we have
48  * allocated the real node_data structures.
49  */
50 static struct {
51         unsigned long node_start_pfn;
52         unsigned long node_spanned_pages;
53 } init_node_data[MAX_NUMNODES] __initdata;
54
55 EXPORT_SYMBOL(node_data);
56 EXPORT_SYMBOL(numa_cpu_lookup_table);
57 EXPORT_SYMBOL(numa_memory_lookup_table);
58 EXPORT_SYMBOL(numa_cpumask_lookup_table);
59 EXPORT_SYMBOL(nr_cpus_in_node);
60
61 static inline void map_cpu_to_node(int cpu, int node)
62 {
63         numa_cpu_lookup_table[cpu] = node;
64         if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) {
65                 cpu_set(cpu, numa_cpumask_lookup_table[node]);
66                 nr_cpus_in_node[node]++;
67         }
68 }
69
70 #ifdef CONFIG_HOTPLUG_CPU
71 static void unmap_cpu_from_node(unsigned long cpu)
72 {
73         int node = numa_cpu_lookup_table[cpu];
74
75         dbg("removing cpu %lu from node %d\n", cpu, node);
76
77         if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
78                 cpu_clear(cpu, numa_cpumask_lookup_table[node]);
79                 nr_cpus_in_node[node]--;
80         } else {
81                 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
82                        cpu, node);
83         }
84 }
85 #endif /* CONFIG_HOTPLUG_CPU */
86
87 static struct device_node * __devinit find_cpu_node(unsigned int cpu)
88 {
89         unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
90         struct device_node *cpu_node = NULL;
91         unsigned int *interrupt_server, *reg;
92         int len;
93
94         while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
95                 /* Try interrupt server first */
96                 interrupt_server = (unsigned int *)get_property(cpu_node,
97                                         "ibm,ppc-interrupt-server#s", &len);
98
99                 len = len / sizeof(u32);
100
101                 if (interrupt_server && (len > 0)) {
102                         while (len--) {
103                                 if (interrupt_server[len] == hw_cpuid)
104                                         return cpu_node;
105                         }
106                 } else {
107                         reg = (unsigned int *)get_property(cpu_node,
108                                                            "reg", &len);
109                         if (reg && (len > 0) && (reg[0] == hw_cpuid))
110                                 return cpu_node;
111                 }
112         }
113
114         return NULL;
115 }
116
117 /* must hold reference to node during call */
118 static int *of_get_associativity(struct device_node *dev)
119 {
120         return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
121 }
122
123 static int of_node_numa_domain(struct device_node *device)
124 {
125         int numa_domain;
126         unsigned int *tmp;
127
128         if (min_common_depth == -1)
129                 return 0;
130
131         tmp = of_get_associativity(device);
132         if (tmp && (tmp[0] >= min_common_depth)) {
133                 numa_domain = tmp[min_common_depth];
134         } else {
135                 dbg("WARNING: no NUMA information for %s\n",
136                     device->full_name);
137                 numa_domain = 0;
138         }
139         return numa_domain;
140 }
141
142 /*
143  * In theory, the "ibm,associativity" property may contain multiple
144  * associativity lists because a resource may be multiply connected
145  * into the machine.  This resource then has different associativity
146  * characteristics relative to its multiple connections.  We ignore
147  * this for now.  We also assume that all cpu and memory sets have
148  * their distances represented at a common level.  This won't be
149  * true for heirarchical NUMA.
150  *
151  * In any case the ibm,associativity-reference-points should give
152  * the correct depth for a normal NUMA system.
153  *
154  * - Dave Hansen <haveblue@us.ibm.com>
155  */
156 static int __init find_min_common_depth(void)
157 {
158         int depth;
159         unsigned int *ref_points;
160         struct device_node *rtas_root;
161         unsigned int len;
162
163         rtas_root = of_find_node_by_path("/rtas");
164
165         if (!rtas_root)
166                 return -1;
167
168         /*
169          * this property is 2 32-bit integers, each representing a level of
170          * depth in the associativity nodes.  The first is for an SMP
171          * configuration (should be all 0's) and the second is for a normal
172          * NUMA configuration.
173          */
174         ref_points = (unsigned int *)get_property(rtas_root,
175                         "ibm,associativity-reference-points", &len);
176
177         if ((len >= 1) && ref_points) {
178                 depth = ref_points[1];
179         } else {
180                 dbg("WARNING: could not find NUMA "
181                     "associativity reference point\n");
182                 depth = -1;
183         }
184         of_node_put(rtas_root);
185
186         return depth;
187 }
188
189 static unsigned long read_cell_ul(struct device_node *device, unsigned int **buf)
190 {
191         int i;
192         unsigned long result = 0;
193
194         i = prom_n_size_cells(device);
195         /* bug on i>2 ?? */
196         while (i--) {
197                 result = (result << 32) | **buf;
198                 (*buf)++;
199         }
200         return result;
201 }
202
203 /*
204  * Figure out to which domain a cpu belongs and stick it there.
205  * Return the id of the domain used.
206  */
207 static int numa_setup_cpu(unsigned long lcpu)
208 {
209         int numa_domain = 0;
210         struct device_node *cpu = find_cpu_node(lcpu);
211
212         if (!cpu) {
213                 WARN_ON(1);
214                 goto out;
215         }
216
217         numa_domain = of_node_numa_domain(cpu);
218
219         if (numa_domain >= numnodes) {
220                 /*
221                  * POWER4 LPAR uses 0xffff as invalid node,
222                  * dont warn in this case.
223                  */
224                 if (numa_domain != 0xffff)
225                         printk(KERN_ERR "WARNING: cpu %ld "
226                                "maps to invalid NUMA node %d\n",
227                                lcpu, numa_domain);
228                 numa_domain = 0;
229         }
230 out:
231         node_set_online(numa_domain);
232
233         map_cpu_to_node(lcpu, numa_domain);
234
235         of_node_put(cpu);
236
237         return numa_domain;
238 }
239
240 static int cpu_numa_callback(struct notifier_block *nfb,
241                              unsigned long action,
242                              void *hcpu)
243 {
244         unsigned long lcpu = (unsigned long)hcpu;
245         int ret = NOTIFY_DONE;
246
247         switch (action) {
248         case CPU_UP_PREPARE:
249                 if (min_common_depth == -1 || !numa_enabled)
250                         map_cpu_to_node(lcpu, 0);
251                 else
252                         numa_setup_cpu(lcpu);
253                 ret = NOTIFY_OK;
254                 break;
255 #ifdef CONFIG_HOTPLUG_CPU
256         case CPU_DEAD:
257         case CPU_UP_CANCELED:
258                 unmap_cpu_from_node(lcpu);
259                 break;
260                 ret = NOTIFY_OK;
261 #endif
262         }
263         return ret;
264 }
265
266 static int __init parse_numa_properties(void)
267 {
268         struct device_node *cpu = NULL;
269         struct device_node *memory = NULL;
270         int max_domain = 0;
271         long entries = lmb_end_of_DRAM() >> MEMORY_INCREMENT_SHIFT;
272         unsigned long i;
273
274         if (numa_enabled == 0) {
275                 printk(KERN_WARNING "NUMA disabled by user\n");
276                 return -1;
277         }
278
279         numa_memory_lookup_table =
280                 (char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1));
281         memset(numa_memory_lookup_table, 0, entries * sizeof(char));
282
283         for (i = 0; i < entries ; i++)
284                 numa_memory_lookup_table[i] = ARRAY_INITIALISER;
285
286         min_common_depth = find_min_common_depth();
287
288         dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
289         if (min_common_depth < 0)
290                 return min_common_depth;
291
292         max_domain = numa_setup_cpu(boot_cpuid);
293
294         /*
295          * Even though we connect cpus to numa domains later in SMP init,
296          * we need to know the maximum node id now. This is because each
297          * node id must have NODE_DATA etc backing it.
298          * As a result of hotplug we could still have cpus appear later on
299          * with larger node ids. In that case we force the cpu into node 0.
300          */
301         for_each_cpu(i) {
302                 int numa_domain;
303
304                 cpu = find_cpu_node(i);
305
306                 if (cpu) {
307                         numa_domain = of_node_numa_domain(cpu);
308                         of_node_put(cpu);
309
310                         if (numa_domain < MAX_NUMNODES &&
311                             max_domain < numa_domain)
312                                 max_domain = numa_domain;
313                 }
314         }
315
316         memory = NULL;
317         while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
318                 unsigned long start;
319                 unsigned long size;
320                 int numa_domain;
321                 int ranges;
322                 unsigned int *memcell_buf;
323                 unsigned int len;
324
325                 memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
326                 if (!memcell_buf || len <= 0)
327                         continue;
328
329                 ranges = memory->n_addrs;
330 new_range:
331                 /* these are order-sensitive, and modify the buffer pointer */
332                 start = read_cell_ul(memory, &memcell_buf);
333                 size = read_cell_ul(memory, &memcell_buf);
334
335                 start = _ALIGN_DOWN(start, MEMORY_INCREMENT);
336                 size = _ALIGN_UP(size, MEMORY_INCREMENT);
337
338                 numa_domain = of_node_numa_domain(memory);
339
340                 if (numa_domain >= MAX_NUMNODES) {
341                         if (numa_domain != 0xffff)
342                                 printk(KERN_ERR "WARNING: memory at %lx maps "
343                                        "to invalid NUMA node %d\n", start,
344                                        numa_domain);
345                         numa_domain = 0;
346                 }
347
348                 node_set_online(numa_domain);
349
350                 if (max_domain < numa_domain)
351                         max_domain = numa_domain;
352
353                 /* 
354                  * For backwards compatibility, OF splits the first node
355                  * into two regions (the first being 0-4GB). Check for
356                  * this simple case and complain if there is a gap in
357                  * memory
358                  */
359                 if (init_node_data[numa_domain].node_spanned_pages) {
360                         unsigned long shouldstart =
361                                 init_node_data[numa_domain].node_start_pfn +
362                                 init_node_data[numa_domain].node_spanned_pages;
363                         if (shouldstart != (start / PAGE_SIZE)) {
364                                 printk(KERN_ERR "WARNING: Hole in node, "
365                                                 "disabling region start %lx "
366                                                 "length %lx\n", start, size);
367                                 continue;
368                         }
369                         init_node_data[numa_domain].node_spanned_pages +=
370                                 size / PAGE_SIZE;
371                 } else {
372                         init_node_data[numa_domain].node_start_pfn =
373                                 start / PAGE_SIZE;
374                         init_node_data[numa_domain].node_spanned_pages =
375                                 size / PAGE_SIZE;
376                 }
377
378                 for (i = start ; i < (start+size); i += MEMORY_INCREMENT)
379                         numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] =
380                                 numa_domain;
381
382                 ranges--;
383                 if (ranges)
384                         goto new_range;
385         }
386
387         numnodes = max_domain + 1;
388
389         return 0;
390 }
391
392 static void __init setup_nonnuma(void)
393 {
394         unsigned long top_of_ram = lmb_end_of_DRAM();
395         unsigned long total_ram = lmb_phys_mem_size();
396         unsigned long i;
397
398         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
399                top_of_ram, total_ram);
400         printk(KERN_INFO "Memory hole size: %ldMB\n",
401                (top_of_ram - total_ram) >> 20);
402
403         if (!numa_memory_lookup_table) {
404                 long entries = top_of_ram >> MEMORY_INCREMENT_SHIFT;
405                 numa_memory_lookup_table =
406                         (char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1));
407                 memset(numa_memory_lookup_table, 0, entries * sizeof(char));
408                 for (i = 0; i < entries ; i++)
409                         numa_memory_lookup_table[i] = ARRAY_INITIALISER;
410         }
411
412         map_cpu_to_node(boot_cpuid, 0);
413
414         node_set_online(0);
415
416         init_node_data[0].node_start_pfn = 0;
417         init_node_data[0].node_spanned_pages = lmb_end_of_DRAM() / PAGE_SIZE;
418
419         for (i = 0 ; i < top_of_ram; i += MEMORY_INCREMENT)
420                 numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = 0;
421
422         node0_io_hole_size = top_of_ram - total_ram;
423 }
424
425 static void __init dump_numa_topology(void)
426 {
427         unsigned int node;
428         unsigned int count;
429
430         if (min_common_depth == -1 || !numa_enabled)
431                 return;
432
433         for (node = 0; node < MAX_NUMNODES; node++) {
434                 unsigned long i;
435
436                 if (!node_online(node))
437                         continue;
438
439                 printk(KERN_INFO "Node %d Memory:", node);
440
441                 count = 0;
442
443                 for (i = 0; i < lmb_end_of_DRAM(); i += MEMORY_INCREMENT) {
444                         if (numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] == node) {
445                                 if (count == 0)
446                                         printk(" 0x%lx", i);
447                                 ++count;
448                         } else {
449                                 if (count > 0)
450                                         printk("-0x%lx", i);
451                                 count = 0;
452                         }
453                 }
454
455                 if (count > 0)
456                         printk("-0x%lx", i);
457                 printk("\n");
458         }
459         return;
460 }
461
462 /*
463  * Allocate some memory, satisfying the lmb or bootmem allocator where
464  * required. nid is the preferred node and end is the physical address of
465  * the highest address in the node.
466  *
467  * Returns the physical address of the memory.
468  */
469 static unsigned long careful_allocation(int nid, unsigned long size,
470                                         unsigned long align, unsigned long end)
471 {
472         unsigned long ret = lmb_alloc_base(size, align, end);
473
474         /* retry over all memory */
475         if (!ret)
476                 ret = lmb_alloc_base(size, align, lmb_end_of_DRAM());
477
478         if (!ret)
479                 panic("numa.c: cannot allocate %lu bytes on node %d",
480                       size, nid);
481
482         /*
483          * If the memory came from a previously allocated node, we must
484          * retry with the bootmem allocator.
485          */
486         if (pa_to_nid(ret) < nid) {
487                 nid = pa_to_nid(ret);
488                 ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(nid),
489                                 size, align, 0);
490
491                 if (!ret)
492                         panic("numa.c: cannot allocate %lu bytes on node %d",
493                               size, nid);
494
495                 ret = virt_to_abs(ret);
496
497                 dbg("alloc_bootmem %lx %lx\n", ret, size);
498         }
499
500         return ret;
501 }
502
503 void __init do_init_bootmem(void)
504 {
505         int nid;
506         static struct notifier_block ppc64_numa_nb = {
507                 .notifier_call = cpu_numa_callback,
508                 .priority = 1 /* Must run before sched domains notifier. */
509         };
510
511         min_low_pfn = 0;
512         max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
513         max_pfn = max_low_pfn;
514
515         if (parse_numa_properties())
516                 setup_nonnuma();
517         else
518                 dump_numa_topology();
519
520         register_cpu_notifier(&ppc64_numa_nb);
521
522         for (nid = 0; nid < numnodes; nid++) {
523                 unsigned long start_paddr, end_paddr;
524                 int i;
525                 unsigned long bootmem_paddr;
526                 unsigned long bootmap_pages;
527
528                 start_paddr = init_node_data[nid].node_start_pfn * PAGE_SIZE;
529                 end_paddr = start_paddr + (init_node_data[nid].node_spanned_pages * PAGE_SIZE);
530
531                 /* Allocate the node structure node local if possible */
532                 NODE_DATA(nid) = (struct pglist_data *)careful_allocation(nid,
533                                         sizeof(struct pglist_data),
534                                         SMP_CACHE_BYTES, end_paddr);
535                 NODE_DATA(nid) = abs_to_virt(NODE_DATA(nid));
536                 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
537
538                 dbg("node %d\n", nid);
539                 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
540
541                 NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
542                 NODE_DATA(nid)->node_start_pfn =
543                         init_node_data[nid].node_start_pfn;
544                 NODE_DATA(nid)->node_spanned_pages =
545                         init_node_data[nid].node_spanned_pages;
546
547                 if (init_node_data[nid].node_spanned_pages == 0)
548                         continue;
549
550                 dbg("start_paddr = %lx\n", start_paddr);
551                 dbg("end_paddr = %lx\n", end_paddr);
552
553                 bootmap_pages = bootmem_bootmap_pages((end_paddr - start_paddr) >> PAGE_SHIFT);
554
555                 bootmem_paddr = careful_allocation(nid,
556                                 bootmap_pages << PAGE_SHIFT,
557                                 PAGE_SIZE, end_paddr);
558                 memset(abs_to_virt(bootmem_paddr), 0,
559                        bootmap_pages << PAGE_SHIFT);
560                 dbg("bootmap_paddr = %lx\n", bootmem_paddr);
561
562                 init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
563                                   start_paddr >> PAGE_SHIFT,
564                                   end_paddr >> PAGE_SHIFT);
565
566                 for (i = 0; i < lmb.memory.cnt; i++) {
567                         unsigned long physbase, size;
568
569                         physbase = lmb.memory.region[i].physbase;
570                         size = lmb.memory.region[i].size;
571
572                         if (physbase < end_paddr &&
573                             (physbase+size) > start_paddr) {
574                                 /* overlaps */
575                                 if (physbase < start_paddr) {
576                                         size -= start_paddr - physbase;
577                                         physbase = start_paddr;
578                                 }
579
580                                 if (size > end_paddr - physbase)
581                                         size = end_paddr - physbase;
582
583                                 dbg("free_bootmem %lx %lx\n", physbase, size);
584                                 free_bootmem_node(NODE_DATA(nid), physbase,
585                                                   size);
586                         }
587                 }
588
589                 for (i = 0; i < lmb.reserved.cnt; i++) {
590                         unsigned long physbase = lmb.reserved.region[i].physbase;
591                         unsigned long size = lmb.reserved.region[i].size;
592
593                         if (physbase < end_paddr &&
594                             (physbase+size) > start_paddr) {
595                                 /* overlaps */
596                                 if (physbase < start_paddr) {
597                                         size -= start_paddr - physbase;
598                                         physbase = start_paddr;
599                                 }
600
601                                 if (size > end_paddr - physbase)
602                                         size = end_paddr - physbase;
603
604                                 dbg("reserve_bootmem %lx %lx\n", physbase,
605                                     size);
606                                 reserve_bootmem_node(NODE_DATA(nid), physbase,
607                                                      size);
608                         }
609                 }
610         }
611 }
612
613 void __init paging_init(void)
614 {
615         unsigned long zones_size[MAX_NR_ZONES];
616         unsigned long zholes_size[MAX_NR_ZONES];
617         int nid;
618
619         memset(zones_size, 0, sizeof(zones_size));
620         memset(zholes_size, 0, sizeof(zholes_size));
621
622         for (nid = 0; nid < numnodes; nid++) {
623                 unsigned long start_pfn;
624                 unsigned long end_pfn;
625
626                 start_pfn = plat_node_bdata[nid].node_boot_start >> PAGE_SHIFT;
627                 end_pfn = plat_node_bdata[nid].node_low_pfn;
628
629                 zones_size[ZONE_DMA] = end_pfn - start_pfn;
630                 zholes_size[ZONE_DMA] = 0;
631                 if (nid == 0)
632                         zholes_size[ZONE_DMA] = node0_io_hole_size >> PAGE_SHIFT;
633
634                 dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
635                     zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
636
637                 free_area_init_node(nid, NODE_DATA(nid), zones_size,
638                                                         start_pfn, zholes_size);
639         }
640 }
641
642 static int __init early_numa(char *p)
643 {
644         if (!p)
645                 return 0;
646
647         if (strstr(p, "off"))
648                 numa_enabled = 0;
649
650         if (strstr(p, "debug"))
651                 numa_debug = 1;
652
653         return 0;
654 }
655 early_param("numa", early_numa);