Merge to Fedora kernel-2.6.7-1.492
[linux-2.6.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/pagemap.h>
10 #include <linux/threads.h>
11 #include <linux/smp.h>
12 #include <linux/smp_lock.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22
23 #include <asm/head.h>
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
26 #include <asm/tlbflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/cpudata.h>
29
30 #include <asm/irq.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/oplib.h>
34 #include <asm/hardirq.h>
35 #include <asm/uaccess.h>
36 #include <asm/timer.h>
37 #include <asm/starfire.h>
38
39 extern int linux_num_cpus;
40 extern void calibrate_delay(void);
41
42 /* Please don't make this stuff initdata!!!  --DaveM */
43 static unsigned char boot_cpu_id;
44
45 cpumask_t cpu_online_map = CPU_MASK_NONE;
46 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
47 static cpumask_t smp_commenced_mask;
48 static cpumask_t cpu_callout_map;
49
50 void smp_info(struct seq_file *m)
51 {
52         int i;
53         
54         seq_printf(m, "State:\n");
55         for (i = 0; i < NR_CPUS; i++) {
56                 if (cpu_online(i))
57                         seq_printf(m,
58                                    "CPU%d:\t\tonline\n", i);
59         }
60 }
61
62 void smp_bogo(struct seq_file *m)
63 {
64         int i;
65         
66         for (i = 0; i < NR_CPUS; i++)
67                 if (cpu_online(i))
68                         seq_printf(m,
69                                    "Cpu%dBogo\t: %lu.%02lu\n"
70                                    "Cpu%dClkTck\t: %016lx\n",
71                                    i, cpu_data(i).udelay_val / (500000/HZ),
72                                    (cpu_data(i).udelay_val / (5000/HZ)) % 100,
73                                    i, cpu_data(i).clock_tick);
74 }
75
76 void __init smp_store_cpu_info(int id)
77 {
78         int cpu_node;
79
80         /* multiplier and counter set by
81            smp_setup_percpu_timer()  */
82         cpu_data(id).udelay_val                 = loops_per_jiffy;
83
84         cpu_find_by_mid(id, &cpu_node);
85         cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
86                                                      "clock-frequency", 0);
87
88         cpu_data(id).pgcache_size               = 0;
89         cpu_data(id).pte_cache[0]               = NULL;
90         cpu_data(id).pte_cache[1]               = NULL;
91         cpu_data(id).pgdcache_size              = 0;
92         cpu_data(id).pgd_cache                  = NULL;
93         cpu_data(id).idle_volume                = 1;
94 }
95
96 static void smp_setup_percpu_timer(void);
97
98 static volatile unsigned long callin_flag = 0;
99
100 extern void inherit_locked_prom_mappings(int save_p);
101
102 void __init smp_callin(void)
103 {
104         int cpuid = hard_smp_processor_id();
105         extern int bigkernel;
106         extern unsigned long kern_locked_tte_data;
107
108         if (bigkernel) {
109                 prom_dtlb_load(sparc64_highest_locked_tlbent()-1, 
110                         kern_locked_tte_data + 0x400000, KERNBASE + 0x400000);
111                 prom_itlb_load(sparc64_highest_locked_tlbent()-1, 
112                         kern_locked_tte_data + 0x400000, KERNBASE + 0x400000);
113         }
114
115         inherit_locked_prom_mappings(0);
116
117         __flush_tlb_all();
118
119         smp_setup_percpu_timer();
120
121         local_irq_enable();
122
123         calibrate_delay();
124         smp_store_cpu_info(cpuid);
125         callin_flag = 1;
126         __asm__ __volatile__("membar #Sync\n\t"
127                              "flush  %%g6" : : : "memory");
128
129         /* Clear this or we will die instantly when we
130          * schedule back to this idler...
131          */
132         clear_thread_flag(TIF_NEWCHILD);
133
134         /* Attach to the address space of init_task. */
135         atomic_inc(&init_mm.mm_count);
136         current->active_mm = &init_mm;
137
138         while (!cpu_isset(cpuid, smp_commenced_mask))
139                 membar("#LoadLoad");
140
141         cpu_set(cpuid, cpu_online_map);
142 }
143
144 void cpu_panic(void)
145 {
146         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
147         panic("SMP bolixed\n");
148 }
149
150 static unsigned long current_tick_offset;
151
152 /* This tick register synchronization scheme is taken entirely from
153  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
154  *
155  * The only change I've made is to rework it so that the master
156  * initiates the synchonization instead of the slave. -DaveM
157  */
158
159 #define MASTER  0
160 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
161
162 #define NUM_ROUNDS      64      /* magic value */
163 #define NUM_ITERS       5       /* likewise */
164
165 static spinlock_t itc_sync_lock = SPIN_LOCK_UNLOCKED;
166 static unsigned long go[SLAVE + 1];
167
168 #define DEBUG_TICK_SYNC 0
169
170 static inline long get_delta (long *rt, long *master)
171 {
172         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
173         unsigned long tcenter, t0, t1, tm;
174         unsigned long i;
175
176         for (i = 0; i < NUM_ITERS; i++) {
177                 t0 = tick_ops->get_tick();
178                 go[MASTER] = 1;
179                 membar("#StoreLoad");
180                 while (!(tm = go[SLAVE]))
181                         membar("#LoadLoad");
182                 go[SLAVE] = 0;
183                 membar("#StoreStore");
184                 t1 = tick_ops->get_tick();
185
186                 if (t1 - t0 < best_t1 - best_t0)
187                         best_t0 = t0, best_t1 = t1, best_tm = tm;
188         }
189
190         *rt = best_t1 - best_t0;
191         *master = best_tm - best_t0;
192
193         /* average best_t0 and best_t1 without overflow: */
194         tcenter = (best_t0/2 + best_t1/2);
195         if (best_t0 % 2 + best_t1 % 2 == 2)
196                 tcenter++;
197         return tcenter - best_tm;
198 }
199
200 void smp_synchronize_tick_client(void)
201 {
202         long i, delta, adj, adjust_latency = 0, done = 0;
203         unsigned long flags, rt, master_time_stamp, bound;
204 #if DEBUG_TICK_SYNC
205         struct {
206                 long rt;        /* roundtrip time */
207                 long master;    /* master's timestamp */
208                 long diff;      /* difference between midpoint and master's timestamp */
209                 long lat;       /* estimate of itc adjustment latency */
210         } t[NUM_ROUNDS];
211 #endif
212
213         go[MASTER] = 1;
214
215         while (go[MASTER])
216                 membar("#LoadLoad");
217
218         local_irq_save(flags);
219         {
220                 for (i = 0; i < NUM_ROUNDS; i++) {
221                         delta = get_delta(&rt, &master_time_stamp);
222                         if (delta == 0) {
223                                 done = 1;       /* let's lock on to this... */
224                                 bound = rt;
225                         }
226
227                         if (!done) {
228                                 if (i > 0) {
229                                         adjust_latency += -delta;
230                                         adj = -delta + adjust_latency/4;
231                                 } else
232                                         adj = -delta;
233
234                                 tick_ops->add_tick(adj, current_tick_offset);
235                         }
236 #if DEBUG_TICK_SYNC
237                         t[i].rt = rt;
238                         t[i].master = master_time_stamp;
239                         t[i].diff = delta;
240                         t[i].lat = adjust_latency/4;
241 #endif
242                 }
243         }
244         local_irq_restore(flags);
245
246 #if DEBUG_TICK_SYNC
247         for (i = 0; i < NUM_ROUNDS; i++)
248                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
249                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
250 #endif
251
252         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
253                "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
254 }
255
256 static void smp_start_sync_tick_client(int cpu);
257
258 static void smp_synchronize_one_tick(int cpu)
259 {
260         unsigned long flags, i;
261
262         go[MASTER] = 0;
263
264         smp_start_sync_tick_client(cpu);
265
266         /* wait for client to be ready */
267         while (!go[MASTER])
268                 membar("#LoadLoad");
269
270         /* now let the client proceed into his loop */
271         go[MASTER] = 0;
272         membar("#StoreLoad");
273
274         spin_lock_irqsave(&itc_sync_lock, flags);
275         {
276                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
277                         while (!go[MASTER])
278                                 membar("#LoadLoad");
279                         go[MASTER] = 0;
280                         membar("#StoreStore");
281                         go[SLAVE] = tick_ops->get_tick();
282                         membar("#StoreLoad");
283                 }
284         }
285         spin_unlock_irqrestore(&itc_sync_lock, flags);
286 }
287
288 extern unsigned long sparc64_cpu_startup;
289
290 /* The OBP cpu startup callback truncates the 3rd arg cookie to
291  * 32-bits (I think) so to be safe we have it read the pointer
292  * contained here so we work on >4GB machines. -DaveM
293  */
294 static struct thread_info *cpu_new_thread = NULL;
295
296 static int __devinit smp_boot_one_cpu(unsigned int cpu)
297 {
298         unsigned long entry =
299                 (unsigned long)(&sparc64_cpu_startup);
300         unsigned long cookie =
301                 (unsigned long)(&cpu_new_thread);
302         struct task_struct *p;
303         int timeout, ret, cpu_node;
304
305         kernel_thread(NULL, NULL, CLONE_IDLETASK);
306
307         p = prev_task(&init_task);
308
309         init_idle(p, cpu);
310
311         unhash_process(p);
312
313         callin_flag = 0;
314         cpu_new_thread = p->thread_info;
315         cpu_set(cpu, cpu_callout_map);
316
317         cpu_find_by_mid(cpu, &cpu_node);
318         prom_startcpu(cpu_node, entry, cookie);
319
320         for (timeout = 0; timeout < 5000000; timeout++) {
321                 if (callin_flag)
322                         break;
323                 udelay(100);
324         }
325         if (callin_flag) {
326                 ret = 0;
327         } else {
328                 printk("Processor %d is stuck.\n", cpu);
329                 cpu_clear(cpu, cpu_callout_map);
330                 ret = -ENODEV;
331         }
332         cpu_new_thread = NULL;
333
334         return ret;
335 }
336
337 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
338 {
339         u64 result, target;
340         int stuck, tmp;
341
342         if (this_is_starfire) {
343                 /* map to real upaid */
344                 cpu = (((cpu & 0x3c) << 1) |
345                         ((cpu & 0x40) >> 4) |
346                         (cpu & 0x3));
347         }
348
349         target = (cpu << 14) | 0x70;
350 again:
351         /* Ok, this is the real Spitfire Errata #54.
352          * One must read back from a UDB internal register
353          * after writes to the UDB interrupt dispatch, but
354          * before the membar Sync for that write.
355          * So we use the high UDB control register (ASI 0x7f,
356          * ADDR 0x20) for the dummy read. -DaveM
357          */
358         tmp = 0x40;
359         __asm__ __volatile__(
360         "wrpr   %1, %2, %%pstate\n\t"
361         "stxa   %4, [%0] %3\n\t"
362         "stxa   %5, [%0+%8] %3\n\t"
363         "add    %0, %8, %0\n\t"
364         "stxa   %6, [%0+%8] %3\n\t"
365         "membar #Sync\n\t"
366         "stxa   %%g0, [%7] %3\n\t"
367         "membar #Sync\n\t"
368         "mov    0x20, %%g1\n\t"
369         "ldxa   [%%g1] 0x7f, %%g0\n\t"
370         "membar #Sync"
371         : "=r" (tmp)
372         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
373           "r" (data0), "r" (data1), "r" (data2), "r" (target),
374           "r" (0x10), "0" (tmp)
375         : "g1");
376
377         /* NOTE: PSTATE_IE is still clear. */
378         stuck = 100000;
379         do {
380                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
381                         : "=r" (result)
382                         : "i" (ASI_INTR_DISPATCH_STAT));
383                 if (result == 0) {
384                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
385                                              : : "r" (pstate));
386                         return;
387                 }
388                 stuck -= 1;
389                 if (stuck == 0)
390                         break;
391         } while (result & 0x1);
392         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
393                              : : "r" (pstate));
394         if (stuck == 0) {
395                 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
396                        smp_processor_id(), result);
397         } else {
398                 udelay(2);
399                 goto again;
400         }
401 }
402
403 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
404 {
405         u64 pstate;
406         int i;
407
408         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
409         for_each_cpu_mask(i, mask)
410                 spitfire_xcall_helper(data0, data1, data2, pstate, i);
411 }
412
413 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
414  * packet, but we have no use for that.  However we do take advantage of
415  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
416  */
417 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
418 {
419         u64 pstate, ver;
420         int nack_busy_id, is_jalapeno;
421
422         if (cpus_empty(mask))
423                 return;
424
425         /* Unfortunately, someone at Sun had the brilliant idea to make the
426          * busy/nack fields hard-coded by ITID number for this Ultra-III
427          * derivative processor.
428          */
429         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
430         is_jalapeno = ((ver >> 32) == 0x003e0016);
431
432         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
433
434 retry:
435         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
436                              : : "r" (pstate), "i" (PSTATE_IE));
437
438         /* Setup the dispatch data registers. */
439         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
440                              "stxa      %1, [%4] %6\n\t"
441                              "stxa      %2, [%5] %6\n\t"
442                              "membar    #Sync\n\t"
443                              : /* no outputs */
444                              : "r" (data0), "r" (data1), "r" (data2),
445                                "r" (0x40), "r" (0x50), "r" (0x60),
446                                "i" (ASI_INTR_W));
447
448         nack_busy_id = 0;
449         {
450                 int i;
451
452                 for_each_cpu_mask(i, mask) {
453                         u64 target = (i << 14) | 0x70;
454
455                         if (!is_jalapeno)
456                                 target |= (nack_busy_id << 24);
457                         __asm__ __volatile__(
458                                 "stxa   %%g0, [%0] %1\n\t"
459                                 "membar #Sync\n\t"
460                                 : /* no outputs */
461                                 : "r" (target), "i" (ASI_INTR_W));
462                         nack_busy_id++;
463                 }
464         }
465
466         /* Now, poll for completion. */
467         {
468                 u64 dispatch_stat;
469                 long stuck;
470
471                 stuck = 100000 * nack_busy_id;
472                 do {
473                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
474                                              : "=r" (dispatch_stat)
475                                              : "i" (ASI_INTR_DISPATCH_STAT));
476                         if (dispatch_stat == 0UL) {
477                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
478                                                      : : "r" (pstate));
479                                 return;
480                         }
481                         if (!--stuck)
482                                 break;
483                 } while (dispatch_stat & 0x5555555555555555UL);
484
485                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
486                                      : : "r" (pstate));
487
488                 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
489                         /* Busy bits will not clear, continue instead
490                          * of freezing up on this cpu.
491                          */
492                         printk("CPU[%d]: mondo stuckage result[%016lx]\n",
493                                smp_processor_id(), dispatch_stat);
494                 } else {
495                         int i, this_busy_nack = 0;
496
497                         /* Delay some random time with interrupts enabled
498                          * to prevent deadlock.
499                          */
500                         udelay(2 * nack_busy_id);
501
502                         /* Clear out the mask bits for cpus which did not
503                          * NACK us.
504                          */
505                         for_each_cpu_mask(i, mask) {
506                                 u64 check_mask;
507
508                                 if (is_jalapeno)
509                                         check_mask = (0x2UL << (2*i));
510                                 else
511                                         check_mask = (0x2UL <<
512                                                       this_busy_nack);
513                                 if ((dispatch_stat & check_mask) == 0)
514                                         cpu_clear(i, mask);
515                                 this_busy_nack += 2;
516                         }
517
518                         goto retry;
519                 }
520         }
521 }
522
523 /* Send cross call to all processors mentioned in MASK
524  * except self.
525  */
526 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
527 {
528         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
529         int this_cpu = get_cpu();
530
531         cpus_and(mask, mask, cpu_online_map);
532         cpu_clear(this_cpu, mask);
533
534         if (tlb_type == spitfire)
535                 spitfire_xcall_deliver(data0, data1, data2, mask);
536         else
537                 cheetah_xcall_deliver(data0, data1, data2, mask);
538         /* NOTE: Caller runs local copy on master. */
539
540         put_cpu();
541 }
542
543 extern unsigned long xcall_sync_tick;
544
545 static void smp_start_sync_tick_client(int cpu)
546 {
547         cpumask_t mask = cpumask_of_cpu(cpu);
548
549         smp_cross_call_masked(&xcall_sync_tick,
550                               0, 0, 0, mask);
551 }
552
553 /* Send cross call to all processors except self. */
554 #define smp_cross_call(func, ctx, data1, data2) \
555         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
556
557 struct call_data_struct {
558         void (*func) (void *info);
559         void *info;
560         atomic_t finished;
561         int wait;
562 };
563
564 static spinlock_t call_lock = SPIN_LOCK_UNLOCKED;
565 static struct call_data_struct *call_data;
566
567 extern unsigned long xcall_call_function;
568
569 /*
570  * You must not call this function with disabled interrupts or from a
571  * hardware interrupt handler or from a bottom half handler.
572  */
573 int smp_call_function(void (*func)(void *info), void *info,
574                       int nonatomic, int wait)
575 {
576         struct call_data_struct data;
577         int cpus = num_online_cpus() - 1;
578         long timeout;
579
580         if (!cpus)
581                 return 0;
582
583         /* Can deadlock when called with interrupts disabled */
584         WARN_ON(irqs_disabled());
585
586         data.func = func;
587         data.info = info;
588         atomic_set(&data.finished, 0);
589         data.wait = wait;
590
591         spin_lock(&call_lock);
592
593         call_data = &data;
594
595         smp_cross_call(&xcall_call_function, 0, 0, 0);
596
597         /* 
598          * Wait for other cpus to complete function or at
599          * least snap the call data.
600          */
601         timeout = 1000000;
602         while (atomic_read(&data.finished) != cpus) {
603                 if (--timeout <= 0)
604                         goto out_timeout;
605                 barrier();
606                 udelay(1);
607         }
608
609         spin_unlock(&call_lock);
610
611         return 0;
612
613 out_timeout:
614         spin_unlock(&call_lock);
615         printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
616                (long) num_online_cpus() - 1L,
617                (long) atomic_read(&data.finished));
618         return 0;
619 }
620
621 void smp_call_function_client(int irq, struct pt_regs *regs)
622 {
623         void (*func) (void *info) = call_data->func;
624         void *info = call_data->info;
625
626         clear_softint(1 << irq);
627         if (call_data->wait) {
628                 /* let initiator proceed only after completion */
629                 func(info);
630                 atomic_inc(&call_data->finished);
631         } else {
632                 /* let initiator proceed after getting data */
633                 atomic_inc(&call_data->finished);
634                 func(info);
635         }
636 }
637
638 extern unsigned long xcall_flush_tlb_page;
639 extern unsigned long xcall_flush_tlb_mm;
640 extern unsigned long xcall_flush_tlb_range;
641 extern unsigned long xcall_flush_tlb_kernel_range;
642 extern unsigned long xcall_flush_tlb_all_spitfire;
643 extern unsigned long xcall_flush_tlb_all_cheetah;
644 extern unsigned long xcall_report_regs;
645 extern unsigned long xcall_receive_signal;
646 extern unsigned long xcall_flush_dcache_page_cheetah;
647 extern unsigned long xcall_flush_dcache_page_spitfire;
648
649 #ifdef CONFIG_DEBUG_DCFLUSH
650 extern atomic_t dcpage_flushes;
651 extern atomic_t dcpage_flushes_xcall;
652 #endif
653
654 static __inline__ void __local_flush_dcache_page(struct page *page)
655 {
656 #if (L1DCACHE_SIZE > PAGE_SIZE)
657         __flush_dcache_page(page_address(page),
658                             ((tlb_type == spitfire) &&
659                              page_mapping(page) != NULL));
660 #else
661         if (page_mapping(page) != NULL &&
662             tlb_type == spitfire)
663                 __flush_icache_page(__pa(page_address(page)));
664 #endif
665 }
666
667 void smp_flush_dcache_page_impl(struct page *page, int cpu)
668 {
669         cpumask_t mask = cpumask_of_cpu(cpu);
670         int this_cpu = get_cpu();
671
672 #ifdef CONFIG_DEBUG_DCFLUSH
673         atomic_inc(&dcpage_flushes);
674 #endif
675         if (cpu == this_cpu) {
676                 __local_flush_dcache_page(page);
677         } else if (cpu_online(cpu)) {
678                 void *pg_addr = page_address(page);
679                 u64 data0;
680
681                 if (tlb_type == spitfire) {
682                         data0 =
683                                 ((u64)&xcall_flush_dcache_page_spitfire);
684                         if (page_mapping(page) != NULL)
685                                 data0 |= ((u64)1 << 32);
686                         spitfire_xcall_deliver(data0,
687                                                __pa(pg_addr),
688                                                (u64) pg_addr,
689                                                mask);
690                 } else {
691                         data0 =
692                                 ((u64)&xcall_flush_dcache_page_cheetah);
693                         cheetah_xcall_deliver(data0,
694                                               __pa(pg_addr),
695                                               0, mask);
696                 }
697 #ifdef CONFIG_DEBUG_DCFLUSH
698                 atomic_inc(&dcpage_flushes_xcall);
699 #endif
700         }
701
702         put_cpu();
703 }
704
705 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
706 {
707         void *pg_addr = page_address(page);
708         cpumask_t mask = cpu_online_map;
709         u64 data0;
710         int this_cpu = get_cpu();
711
712         cpu_clear(this_cpu, mask);
713
714 #ifdef CONFIG_DEBUG_DCFLUSH
715         atomic_inc(&dcpage_flushes);
716 #endif
717         if (cpus_empty(mask))
718                 goto flush_self;
719         if (tlb_type == spitfire) {
720                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
721                 if (page_mapping(page) != NULL)
722                         data0 |= ((u64)1 << 32);
723                 spitfire_xcall_deliver(data0,
724                                        __pa(pg_addr),
725                                        (u64) pg_addr,
726                                        mask);
727         } else {
728                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
729                 cheetah_xcall_deliver(data0,
730                                       __pa(pg_addr),
731                                       0, mask);
732         }
733 #ifdef CONFIG_DEBUG_DCFLUSH
734         atomic_inc(&dcpage_flushes_xcall);
735 #endif
736  flush_self:
737         __local_flush_dcache_page(page);
738
739         put_cpu();
740 }
741
742 void smp_receive_signal(int cpu)
743 {
744         cpumask_t mask = cpumask_of_cpu(cpu);
745
746         if (cpu_online(cpu)) {
747                 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
748
749                 if (tlb_type == spitfire)
750                         spitfire_xcall_deliver(data0, 0, 0, mask);
751                 else
752                         cheetah_xcall_deliver(data0, 0, 0, mask);
753         }
754 }
755
756 void smp_receive_signal_client(int irq, struct pt_regs *regs)
757 {
758         /* Just return, rtrap takes care of the rest. */
759         clear_softint(1 << irq);
760 }
761
762 void smp_report_regs(void)
763 {
764         smp_cross_call(&xcall_report_regs, 0, 0, 0);
765 }
766
767 void smp_flush_tlb_all(void)
768 {
769         if (tlb_type == spitfire)
770                 smp_cross_call(&xcall_flush_tlb_all_spitfire, 0, 0, 0);
771         else
772                 smp_cross_call(&xcall_flush_tlb_all_cheetah, 0, 0, 0);
773         __flush_tlb_all();
774 }
775
776 /* We know that the window frames of the user have been flushed
777  * to the stack before we get here because all callers of us
778  * are flush_tlb_*() routines, and these run after flush_cache_*()
779  * which performs the flushw.
780  *
781  * The SMP TLB coherency scheme we use works as follows:
782  *
783  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
784  *    space has (potentially) executed on, this is the heuristic
785  *    we use to avoid doing cross calls.
786  *
787  *    Also, for flushing from kswapd and also for clones, we
788  *    use cpu_vm_mask as the list of cpus to make run the TLB.
789  *
790  * 2) TLB context numbers are shared globally across all processors
791  *    in the system, this allows us to play several games to avoid
792  *    cross calls.
793  *
794  *    One invariant is that when a cpu switches to a process, and
795  *    that processes tsk->active_mm->cpu_vm_mask does not have the
796  *    current cpu's bit set, that tlb context is flushed locally.
797  *
798  *    If the address space is non-shared (ie. mm->count == 1) we avoid
799  *    cross calls when we want to flush the currently running process's
800  *    tlb state.  This is done by clearing all cpu bits except the current
801  *    processor's in current->active_mm->cpu_vm_mask and performing the
802  *    flush locally only.  This will force any subsequent cpus which run
803  *    this task to flush the context from the local tlb if the process
804  *    migrates to another cpu (again).
805  *
806  * 3) For shared address spaces (threads) and swapping we bite the
807  *    bullet for most cases and perform the cross call (but only to
808  *    the cpus listed in cpu_vm_mask).
809  *
810  *    The performance gain from "optimizing" away the cross call for threads is
811  *    questionable (in theory the big win for threads is the massive sharing of
812  *    address space state across processors).
813  */
814 void smp_flush_tlb_mm(struct mm_struct *mm)
815 {
816         /*
817          * This code is called from two places, dup_mmap and exit_mmap. In the
818          * former case, we really need a flush. In the later case, the callers
819          * are single threaded exec_mmap (really need a flush), multithreaded
820          * exec_mmap case (do not need to flush, since the caller gets a new
821          * context via activate_mm), and all other callers of mmput() whence
822          * the flush can be optimized since the associated threads are dead and
823          * the mm is being torn down (__exit_mm and other mmput callers) or the
824          * owning thread is dissociating itself from the mm. The
825          * (atomic_read(&mm->mm_users) == 0) check ensures real work is done
826          * for single thread exec and dup_mmap cases. An alternate check might
827          * have been (current->mm != mm).
828          *                                              Kanoj Sarcar
829          */
830         if (atomic_read(&mm->mm_users) == 0)
831                 return;
832
833         {
834                 u32 ctx = CTX_HWBITS(mm->context);
835                 int cpu = get_cpu();
836
837                 if (atomic_read(&mm->mm_users) == 1) {
838                         /* See smp_flush_tlb_page for info about this. */
839                         mm->cpu_vm_mask = cpumask_of_cpu(cpu);
840                         goto local_flush_and_out;
841                 }
842
843                 smp_cross_call_masked(&xcall_flush_tlb_mm,
844                                       ctx, 0, 0,
845                                       mm->cpu_vm_mask);
846
847         local_flush_and_out:
848                 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
849
850                 put_cpu();
851         }
852 }
853
854 void smp_flush_tlb_range(struct mm_struct *mm, unsigned long start,
855                          unsigned long end)
856 {
857         u32 ctx = CTX_HWBITS(mm->context);
858         int cpu = get_cpu();
859
860         start &= PAGE_MASK;
861         end    = PAGE_ALIGN(end);
862
863         if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) {
864                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
865                 goto local_flush_and_out;
866         }
867
868         smp_cross_call_masked(&xcall_flush_tlb_range,
869                               ctx, start, end,
870                               mm->cpu_vm_mask);
871
872  local_flush_and_out:
873         __flush_tlb_range(ctx, start, SECONDARY_CONTEXT,
874                           end, PAGE_SIZE, (end-start));
875
876         put_cpu();
877 }
878
879 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
880 {
881         start &= PAGE_MASK;
882         end    = PAGE_ALIGN(end);
883         if (start != end) {
884                 smp_cross_call(&xcall_flush_tlb_kernel_range,
885                                0, start, end);
886
887                 __flush_tlb_kernel_range(start, end);
888         }
889 }
890
891 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long page)
892 {
893         {
894                 u32 ctx = CTX_HWBITS(mm->context);
895                 int cpu = get_cpu();
896
897                 page &= PAGE_MASK;
898                 if (mm == current->active_mm &&
899                     atomic_read(&mm->mm_users) == 1) {
900                         /* By virtue of being the current address space, and
901                          * having the only reference to it, the following
902                          * operation is safe.
903                          *
904                          * It would not be a win to perform the xcall tlb
905                          * flush in this case, because even if we switch back
906                          * to one of the other processors in cpu_vm_mask it
907                          * is almost certain that all TLB entries for this
908                          * context will be replaced by the time that happens.
909                          */
910                         mm->cpu_vm_mask = cpumask_of_cpu(cpu);
911                         goto local_flush_and_out;
912                 } else {
913                         cpumask_t this_cpu_mask = cpumask_of_cpu(cpu);
914
915                         /* By virtue of running under the mm->page_table_lock,
916                          * and mmu_context.h:switch_mm doing the same, the
917                          * following operation is safe.
918                          */
919                         if (cpus_equal(mm->cpu_vm_mask, this_cpu_mask))
920                                 goto local_flush_and_out;
921                 }
922
923                 /* OK, we have to actually perform the cross call.  Most
924                  * likely this is a cloned mm or kswapd is kicking out pages
925                  * for a task which has run recently on another cpu.
926                  */
927                 smp_cross_call_masked(&xcall_flush_tlb_page,
928                                       ctx, page, 0,
929                                       mm->cpu_vm_mask);
930                 if (!cpu_isset(cpu, mm->cpu_vm_mask))
931                         return;
932
933         local_flush_and_out:
934                 __flush_tlb_page(ctx, page, SECONDARY_CONTEXT);
935
936                 put_cpu();
937         }
938 }
939
940 /* CPU capture. */
941 /* #define CAPTURE_DEBUG */
942 extern unsigned long xcall_capture;
943
944 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
945 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
946 static unsigned long penguins_are_doing_time;
947
948 void smp_capture(void)
949 {
950         int result = __atomic_add(1, &smp_capture_depth);
951
952         membar("#StoreStore | #LoadStore");
953         if (result == 1) {
954                 int ncpus = num_online_cpus();
955
956 #ifdef CAPTURE_DEBUG
957                 printk("CPU[%d]: Sending penguins to jail...",
958                        smp_processor_id());
959 #endif
960                 penguins_are_doing_time = 1;
961                 membar("#StoreStore | #LoadStore");
962                 atomic_inc(&smp_capture_registry);
963                 smp_cross_call(&xcall_capture, 0, 0, 0);
964                 while (atomic_read(&smp_capture_registry) != ncpus)
965                         membar("#LoadLoad");
966 #ifdef CAPTURE_DEBUG
967                 printk("done\n");
968 #endif
969         }
970 }
971
972 void smp_release(void)
973 {
974         if (atomic_dec_and_test(&smp_capture_depth)) {
975 #ifdef CAPTURE_DEBUG
976                 printk("CPU[%d]: Giving pardon to "
977                        "imprisoned penguins\n",
978                        smp_processor_id());
979 #endif
980                 penguins_are_doing_time = 0;
981                 membar("#StoreStore | #StoreLoad");
982                 atomic_dec(&smp_capture_registry);
983         }
984 }
985
986 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
987  * can service tlb flush xcalls...
988  */
989 extern void prom_world(int);
990 extern void save_alternate_globals(unsigned long *);
991 extern void restore_alternate_globals(unsigned long *);
992 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
993 {
994         unsigned long global_save[24];
995
996         clear_softint(1 << irq);
997
998         preempt_disable();
999
1000         __asm__ __volatile__("flushw");
1001         save_alternate_globals(global_save);
1002         prom_world(1);
1003         atomic_inc(&smp_capture_registry);
1004         membar("#StoreLoad | #StoreStore");
1005         while (penguins_are_doing_time)
1006                 membar("#LoadLoad");
1007         restore_alternate_globals(global_save);
1008         atomic_dec(&smp_capture_registry);
1009         prom_world(0);
1010
1011         preempt_enable();
1012 }
1013
1014 extern unsigned long xcall_promstop;
1015
1016 void smp_promstop_others(void)
1017 {
1018         smp_cross_call(&xcall_promstop, 0, 0, 0);
1019 }
1020
1021 extern void sparc64_do_profile(struct pt_regs *regs);
1022
1023 #define prof_multiplier(__cpu)          cpu_data(__cpu).multiplier
1024 #define prof_counter(__cpu)             cpu_data(__cpu).counter
1025
1026 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1027 {
1028         unsigned long compare, tick, pstate;
1029         int cpu = smp_processor_id();
1030         int user = user_mode(regs);
1031
1032         /*
1033          * Check for level 14 softint.
1034          */
1035         {
1036                 unsigned long tick_mask = tick_ops->softint_mask;
1037
1038                 if (!(get_softint() & tick_mask)) {
1039                         extern void handler_irq(int, struct pt_regs *);
1040
1041                         handler_irq(14, regs);
1042                         return;
1043                 }
1044                 clear_softint(tick_mask);
1045         }
1046
1047         do {
1048                 sparc64_do_profile(regs);
1049                 if (!--prof_counter(cpu)) {
1050                         irq_enter();
1051
1052                         if (cpu == boot_cpu_id) {
1053                                 kstat_this_cpu.irqs[0]++;
1054                                 timer_tick_interrupt(regs);
1055                         }
1056
1057                         update_process_times(user);
1058
1059                         irq_exit();
1060
1061                         prof_counter(cpu) = prof_multiplier(cpu);
1062                 }
1063
1064                 /* Guarantee that the following sequences execute
1065                  * uninterrupted.
1066                  */
1067                 __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1068                                      "wrpr      %0, %1, %%pstate"
1069                                      : "=r" (pstate)
1070                                      : "i" (PSTATE_IE));
1071
1072                 compare = tick_ops->add_compare(current_tick_offset);
1073                 tick = tick_ops->get_tick();
1074
1075                 /* Restore PSTATE_IE. */
1076                 __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1077                                      : /* no outputs */
1078                                      : "r" (pstate));
1079         } while (time_after_eq(tick, compare));
1080 }
1081
1082 static void __init smp_setup_percpu_timer(void)
1083 {
1084         int cpu = smp_processor_id();
1085         unsigned long pstate;
1086
1087         prof_counter(cpu) = prof_multiplier(cpu) = 1;
1088
1089         /* Guarantee that the following sequences execute
1090          * uninterrupted.
1091          */
1092         __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1093                              "wrpr      %0, %1, %%pstate"
1094                              : "=r" (pstate)
1095                              : "i" (PSTATE_IE));
1096
1097         tick_ops->init_tick(current_tick_offset);
1098
1099         /* Restore PSTATE_IE. */
1100         __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1101                              : /* no outputs */
1102                              : "r" (pstate));
1103 }
1104
1105 void __init smp_tick_init(void)
1106 {
1107         boot_cpu_id = hard_smp_processor_id();
1108         current_tick_offset = timer_tick_offset;
1109
1110         cpu_set(boot_cpu_id, cpu_online_map);
1111         prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1112 }
1113
1114 cycles_t cacheflush_time;
1115 unsigned long cache_decay_ticks;
1116
1117 extern unsigned long cheetah_tune_scheduling(void);
1118
1119 static void __init smp_tune_scheduling(void)
1120 {
1121         unsigned long orig_flush_base, flush_base, flags, *p;
1122         unsigned int ecache_size, order;
1123         cycles_t tick1, tick2, raw;
1124         int cpu_node;
1125
1126         /* Approximate heuristic for SMP scheduling.  It is an
1127          * estimation of the time it takes to flush the L2 cache
1128          * on the local processor.
1129          *
1130          * The ia32 chooses to use the L1 cache flush time instead,
1131          * and I consider this complete nonsense.  The Ultra can service
1132          * a miss to the L1 with a hit to the L2 in 7 or 8 cycles, and
1133          * L2 misses are what create extra bus traffic (ie. the "cost"
1134          * of moving a process from one cpu to another).
1135          */
1136         printk("SMP: Calibrating ecache flush... ");
1137         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1138                 cacheflush_time = cheetah_tune_scheduling();
1139                 goto report;
1140         }
1141
1142         cpu_find_by_instance(0, &cpu_node, NULL);
1143         ecache_size = prom_getintdefault(cpu_node,
1144                                          "ecache-size", (512 * 1024));
1145         if (ecache_size > (4 * 1024 * 1024))
1146                 ecache_size = (4 * 1024 * 1024);
1147         orig_flush_base = flush_base =
1148                 __get_free_pages(GFP_KERNEL, order = get_order(ecache_size));
1149
1150         if (flush_base != 0UL) {
1151                 local_irq_save(flags);
1152
1153                 /* Scan twice the size once just to get the TLB entries
1154                  * loaded and make sure the second scan measures pure misses.
1155                  */
1156                 for (p = (unsigned long *)flush_base;
1157                      ((unsigned long)p) < (flush_base + (ecache_size<<1));
1158                      p += (64 / sizeof(unsigned long)))
1159                         *((volatile unsigned long *)p);
1160
1161                 tick1 = tick_ops->get_tick();
1162
1163                 __asm__ __volatile__("1:\n\t"
1164                                      "ldx       [%0 + 0x000], %%g1\n\t"
1165                                      "ldx       [%0 + 0x040], %%g2\n\t"
1166                                      "ldx       [%0 + 0x080], %%g3\n\t"
1167                                      "ldx       [%0 + 0x0c0], %%g5\n\t"
1168                                      "add       %0, 0x100, %0\n\t"
1169                                      "cmp       %0, %2\n\t"
1170                                      "bne,pt    %%xcc, 1b\n\t"
1171                                      " nop"
1172                                      : "=&r" (flush_base)
1173                                      : "0" (flush_base),
1174                                        "r" (flush_base + ecache_size)
1175                                      : "g1", "g2", "g3", "g5");
1176
1177                 tick2 = tick_ops->get_tick();
1178
1179                 local_irq_restore(flags);
1180
1181                 raw = (tick2 - tick1);
1182
1183                 /* Dampen it a little, considering two processes
1184                  * sharing the cache and fitting.
1185                  */
1186                 cacheflush_time = (raw - (raw >> 2));
1187
1188                 free_pages(orig_flush_base, order);
1189         } else {
1190                 cacheflush_time = ((ecache_size << 2) +
1191                                    (ecache_size << 1));
1192         }
1193 report:
1194         /* Convert ticks/sticks to jiffies. */
1195         cache_decay_ticks = cacheflush_time / timer_tick_offset;
1196         if (cache_decay_ticks < 1)
1197                 cache_decay_ticks = 1;
1198
1199         printk("Using heuristic of %ld cycles, %ld ticks.\n",
1200                cacheflush_time, cache_decay_ticks);
1201 }
1202
1203 /* /proc/profile writes can call this, don't __init it please. */
1204 static spinlock_t prof_setup_lock = SPIN_LOCK_UNLOCKED;
1205
1206 int setup_profiling_timer(unsigned int multiplier)
1207 {
1208         unsigned long flags;
1209         int i;
1210
1211         if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1212                 return -EINVAL;
1213
1214         spin_lock_irqsave(&prof_setup_lock, flags);
1215         for (i = 0; i < NR_CPUS; i++)
1216                 prof_multiplier(i) = multiplier;
1217         current_tick_offset = (timer_tick_offset / multiplier);
1218         spin_unlock_irqrestore(&prof_setup_lock, flags);
1219
1220         return 0;
1221 }
1222
1223 void __init smp_prepare_cpus(unsigned int max_cpus)
1224 {
1225         int instance, mid;
1226
1227         instance = 0;
1228         while (!cpu_find_by_instance(instance, NULL, &mid)) {
1229                 if (mid < max_cpus)
1230                         cpu_set(mid, phys_cpu_present_map);
1231                 instance++;
1232         }
1233
1234         if (num_possible_cpus() > max_cpus) {
1235                 instance = 0;
1236                 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1237                         if (mid != boot_cpu_id) {
1238                                 cpu_clear(mid, phys_cpu_present_map);
1239                                 if (num_possible_cpus() <= max_cpus)
1240                                         break;
1241                         }
1242                         instance++;
1243                 }
1244         }
1245
1246         smp_store_cpu_info(boot_cpu_id);
1247 }
1248
1249 void __devinit smp_prepare_boot_cpu(void)
1250 {
1251         if (hard_smp_processor_id() >= NR_CPUS) {
1252                 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1253                 prom_halt();
1254         }
1255
1256         current_thread_info()->cpu = hard_smp_processor_id();
1257         cpu_set(smp_processor_id(), cpu_online_map);
1258         cpu_set(smp_processor_id(), phys_cpu_present_map);
1259 }
1260
1261 int __devinit __cpu_up(unsigned int cpu)
1262 {
1263         int ret = smp_boot_one_cpu(cpu);
1264
1265         if (!ret) {
1266                 cpu_set(cpu, smp_commenced_mask);
1267                 while (!cpu_isset(cpu, cpu_online_map))
1268                         mb();
1269                 if (!cpu_isset(cpu, cpu_online_map)) {
1270                         ret = -ENODEV;
1271                 } else {
1272                         smp_synchronize_one_tick(cpu);
1273                 }
1274         }
1275         return ret;
1276 }
1277
1278 void __init smp_cpus_done(unsigned int max_cpus)
1279 {
1280         unsigned long bogosum = 0;
1281         int i;
1282
1283         for (i = 0; i < NR_CPUS; i++) {
1284                 if (cpu_online(i))
1285                         bogosum += cpu_data(i).udelay_val;
1286         }
1287         printk("Total of %ld processors activated "
1288                "(%lu.%02lu BogoMIPS).\n",
1289                (long) num_online_cpus(),
1290                bogosum/(500000/HZ),
1291                (bogosum/(5000/HZ))%100);
1292
1293         /* We want to run this with all the other cpus spinning
1294          * in the kernel.
1295          */
1296         smp_tune_scheduling();
1297 }
1298
1299 /* This needn't do anything as we do not sleep the cpu
1300  * inside of the idler task, so an interrupt is not needed
1301  * to get a clean fast response.
1302  *
1303  * XXX Reverify this assumption... -DaveM
1304  *
1305  * Addendum: We do want it to do something for the signal
1306  *           delivery case, we detect that by just seeing
1307  *           if we are trying to send this to an idler or not.
1308  */
1309 void smp_send_reschedule(int cpu)
1310 {
1311         if (cpu_data(cpu).idle_volume == 0)
1312                 smp_receive_signal(cpu);
1313 }
1314
1315 /* This is a nop because we capture all other cpus
1316  * anyways when making the PROM active.
1317  */
1318 void smp_send_stop(void)
1319 {
1320 }
1321