take only the first address returned by host
[sliver-openvswitch.git] / datapath / flow.c
1 /*
2  * Copyright (c) 2007-2013 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
42 #include <net/ip.h>
43 #include <net/ipv6.h>
44 #include <net/ndisc.h>
45
46 #include "vlan.h"
47
48 static struct kmem_cache *flow_cache;
49
50 static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask,
51                 struct sw_flow_key_range *range, u8 val);
52
53 static void update_range__(struct sw_flow_match *match,
54                           size_t offset, size_t size, bool is_mask)
55 {
56         struct sw_flow_key_range *range = NULL;
57         size_t start = offset;
58         size_t end = offset + size;
59
60         if (!is_mask)
61                 range = &match->range;
62         else if (match->mask)
63                 range = &match->mask->range;
64
65         if (!range)
66                 return;
67
68         if (range->start == range->end) {
69                 range->start = start;
70                 range->end = end;
71                 return;
72         }
73
74         if (range->start > start)
75                 range->start = start;
76
77         if (range->end < end)
78                 range->end = end;
79 }
80
81 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
82         do { \
83                 update_range__(match, offsetof(struct sw_flow_key, field),  \
84                                      sizeof((match)->key->field), is_mask); \
85                 if (is_mask) {                                              \
86                         if ((match)->mask)                                  \
87                                 (match)->mask->key.field = value;           \
88                 } else {                                                    \
89                         (match)->key->field = value;                        \
90                 }                                                           \
91         } while (0)
92
93 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
94         do { \
95                 update_range__(match, offsetof(struct sw_flow_key, field),  \
96                                 len, is_mask);                              \
97                 if (is_mask) {                                              \
98                         if ((match)->mask)                                  \
99                                 memcpy(&(match)->mask->key.field, value_p, len);\
100                 } else {                                                    \
101                         memcpy(&(match)->key->field, value_p, len);         \
102                 }                                                           \
103         } while (0)
104
105 void ovs_match_init(struct sw_flow_match *match,
106                     struct sw_flow_key *key,
107                     struct sw_flow_mask *mask)
108 {
109         memset(match, 0, sizeof(*match));
110         match->key = key;
111         match->mask = mask;
112
113         memset(key, 0, sizeof(*key));
114
115         if (mask) {
116                 memset(&mask->key, 0, sizeof(mask->key));
117                 mask->range.start = mask->range.end = 0;
118         }
119 }
120
121 static bool ovs_match_validate(const struct sw_flow_match *match,
122                 u64 key_attrs, u64 mask_attrs)
123 {
124         u64 key_expected = 1ULL << OVS_KEY_ATTR_ETHERNET;
125         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
126
127         /* The following mask attributes allowed only if they
128          * pass the validation tests. */
129         mask_allowed &= ~((1ULL << OVS_KEY_ATTR_IPV4)
130                         | (1ULL << OVS_KEY_ATTR_IPV6)
131                         | (1ULL << OVS_KEY_ATTR_TCP)
132                         | (1ULL << OVS_KEY_ATTR_UDP)
133                         | (1ULL << OVS_KEY_ATTR_ICMP)
134                         | (1ULL << OVS_KEY_ATTR_ICMPV6)
135                         | (1ULL << OVS_KEY_ATTR_ARP)
136                         | (1ULL << OVS_KEY_ATTR_ND));
137
138         /* Always allowed mask fields. */
139         mask_allowed |= ((1ULL << OVS_KEY_ATTR_TUNNEL)
140                        | (1ULL << OVS_KEY_ATTR_IN_PORT)
141                        | (1ULL << OVS_KEY_ATTR_ETHERTYPE));
142
143         /* Check key attributes. */
144         if (match->key->eth.type == htons(ETH_P_ARP)
145                         || match->key->eth.type == htons(ETH_P_RARP)) {
146                 key_expected |= 1ULL << OVS_KEY_ATTR_ARP;
147                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
148                         mask_allowed |= 1ULL << OVS_KEY_ATTR_ARP;
149         }
150
151         if (match->key->eth.type == htons(ETH_P_IP)) {
152                 key_expected |= 1ULL << OVS_KEY_ATTR_IPV4;
153                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
154                         mask_allowed |= 1ULL << OVS_KEY_ATTR_IPV4;
155
156                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
157                         if (match->key->ip.proto == IPPROTO_UDP) {
158                                 key_expected |= 1ULL << OVS_KEY_ATTR_UDP;
159                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
160                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_UDP;
161                         }
162
163                         if (match->key->ip.proto == IPPROTO_TCP) {
164                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP;
165                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
166                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP;
167                         }
168
169                         if (match->key->ip.proto == IPPROTO_ICMP) {
170                                 key_expected |= 1ULL << OVS_KEY_ATTR_ICMP;
171                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
172                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_ICMP;
173                         }
174                 }
175         }
176
177         if (match->key->eth.type == htons(ETH_P_IPV6)) {
178                 key_expected |= 1ULL << OVS_KEY_ATTR_IPV6;
179                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
180                         mask_allowed |= 1ULL << OVS_KEY_ATTR_IPV6;
181
182                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
183                         if (match->key->ip.proto == IPPROTO_UDP) {
184                                 key_expected |= 1ULL << OVS_KEY_ATTR_UDP;
185                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
186                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_UDP;
187                         }
188
189                         if (match->key->ip.proto == IPPROTO_TCP) {
190                                 key_expected |= 1ULL << OVS_KEY_ATTR_TCP;
191                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
192                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP;
193                         }
194
195                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
196                                 key_expected |= 1ULL << OVS_KEY_ATTR_ICMPV6;
197                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
198                                         mask_allowed |= 1ULL << OVS_KEY_ATTR_ICMPV6;
199
200                                 if (match->key->ipv6.tp.src ==
201                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
202                                     match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
203                                         key_expected |= 1ULL << OVS_KEY_ATTR_ND;
204                                         if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff)))
205                                                 mask_allowed |= 1ULL << OVS_KEY_ATTR_ND;
206                                 }
207                         }
208                 }
209         }
210
211         if ((key_attrs & key_expected) != key_expected) {
212                 /* Key attributes check failed. */
213                 OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
214                                 key_attrs, key_expected);
215                 return false;
216         }
217
218         if ((mask_attrs & mask_allowed) != mask_attrs) {
219                 /* Mask attributes check failed. */
220                 OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
221                                 mask_attrs, mask_allowed);
222                 return false;
223         }
224
225         return true;
226 }
227
228 static int check_header(struct sk_buff *skb, int len)
229 {
230         if (unlikely(skb->len < len))
231                 return -EINVAL;
232         if (unlikely(!pskb_may_pull(skb, len)))
233                 return -ENOMEM;
234         return 0;
235 }
236
237 static bool arphdr_ok(struct sk_buff *skb)
238 {
239         return pskb_may_pull(skb, skb_network_offset(skb) +
240                                   sizeof(struct arp_eth_header));
241 }
242
243 static int check_iphdr(struct sk_buff *skb)
244 {
245         unsigned int nh_ofs = skb_network_offset(skb);
246         unsigned int ip_len;
247         int err;
248
249         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
250         if (unlikely(err))
251                 return err;
252
253         ip_len = ip_hdrlen(skb);
254         if (unlikely(ip_len < sizeof(struct iphdr) ||
255                      skb->len < nh_ofs + ip_len))
256                 return -EINVAL;
257
258         skb_set_transport_header(skb, nh_ofs + ip_len);
259         return 0;
260 }
261
262 static bool tcphdr_ok(struct sk_buff *skb)
263 {
264         int th_ofs = skb_transport_offset(skb);
265         int tcp_len;
266
267         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
268                 return false;
269
270         tcp_len = tcp_hdrlen(skb);
271         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
272                      skb->len < th_ofs + tcp_len))
273                 return false;
274
275         return true;
276 }
277
278 static bool udphdr_ok(struct sk_buff *skb)
279 {
280         return pskb_may_pull(skb, skb_transport_offset(skb) +
281                                   sizeof(struct udphdr));
282 }
283
284 static bool icmphdr_ok(struct sk_buff *skb)
285 {
286         return pskb_may_pull(skb, skb_transport_offset(skb) +
287                                   sizeof(struct icmphdr));
288 }
289
290 u64 ovs_flow_used_time(unsigned long flow_jiffies)
291 {
292         struct timespec cur_ts;
293         u64 cur_ms, idle_ms;
294
295         ktime_get_ts(&cur_ts);
296         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
297         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
298                  cur_ts.tv_nsec / NSEC_PER_MSEC;
299
300         return cur_ms - idle_ms;
301 }
302
303 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
304 {
305         unsigned int nh_ofs = skb_network_offset(skb);
306         unsigned int nh_len;
307         int payload_ofs;
308         struct ipv6hdr *nh;
309         uint8_t nexthdr;
310         __be16 frag_off;
311         int err;
312
313         err = check_header(skb, nh_ofs + sizeof(*nh));
314         if (unlikely(err))
315                 return err;
316
317         nh = ipv6_hdr(skb);
318         nexthdr = nh->nexthdr;
319         payload_ofs = (u8 *)(nh + 1) - skb->data;
320
321         key->ip.proto = NEXTHDR_NONE;
322         key->ip.tos = ipv6_get_dsfield(nh);
323         key->ip.ttl = nh->hop_limit;
324         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
325         key->ipv6.addr.src = nh->saddr;
326         key->ipv6.addr.dst = nh->daddr;
327
328         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
329         if (unlikely(payload_ofs < 0))
330                 return -EINVAL;
331
332         if (frag_off) {
333                 if (frag_off & htons(~0x7))
334                         key->ip.frag = OVS_FRAG_TYPE_LATER;
335                 else
336                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
337         }
338
339         nh_len = payload_ofs - nh_ofs;
340         skb_set_transport_header(skb, nh_ofs + nh_len);
341         key->ip.proto = nexthdr;
342         return nh_len;
343 }
344
345 static bool icmp6hdr_ok(struct sk_buff *skb)
346 {
347         return pskb_may_pull(skb, skb_transport_offset(skb) +
348                                   sizeof(struct icmp6hdr));
349 }
350
351 void ovs_flow_key_mask(struct sw_flow_key *dst, const struct sw_flow_key *src,
352                        const struct sw_flow_mask *mask)
353 {
354         u8 *m = (u8 *)&mask->key + mask->range.start;
355         u8 *s = (u8 *)src + mask->range.start;
356         u8 *d = (u8 *)dst + mask->range.start;
357         int i;
358
359         memset(dst, 0, sizeof(*dst));
360         for (i = 0; i < ovs_sw_flow_mask_size_roundup(mask); i++) {
361                 *d = *s & *m;
362                 d++, s++, m++;
363         }
364 }
365
366 #define TCP_FLAGS_OFFSET 13
367 #define TCP_FLAG_MASK 0x3f
368
369 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
370 {
371         u8 tcp_flags = 0;
372
373         if ((flow->key.eth.type == htons(ETH_P_IP) ||
374              flow->key.eth.type == htons(ETH_P_IPV6)) &&
375             flow->key.ip.proto == IPPROTO_TCP &&
376             likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
377                 u8 *tcp = (u8 *)tcp_hdr(skb);
378                 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
379         }
380
381         spin_lock(&flow->lock);
382         flow->used = jiffies;
383         flow->packet_count++;
384         flow->byte_count += skb->len;
385         flow->tcp_flags |= tcp_flags;
386         spin_unlock(&flow->lock);
387 }
388
389 struct sw_flow_actions *ovs_flow_actions_alloc(int size)
390 {
391         struct sw_flow_actions *sfa;
392
393         if (size > MAX_ACTIONS_BUFSIZE)
394                 return ERR_PTR(-EINVAL);
395
396         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
397         if (!sfa)
398                 return ERR_PTR(-ENOMEM);
399
400         sfa->actions_len = 0;
401         return sfa;
402 }
403
404 struct sw_flow *ovs_flow_alloc(void)
405 {
406         struct sw_flow *flow;
407
408         flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
409         if (!flow)
410                 return ERR_PTR(-ENOMEM);
411
412         spin_lock_init(&flow->lock);
413         flow->sf_acts = NULL;
414         flow->mask = NULL;
415
416         return flow;
417 }
418
419 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
420 {
421         hash = jhash_1word(hash, table->hash_seed);
422         return flex_array_get(table->buckets,
423                                 (hash & (table->n_buckets - 1)));
424 }
425
426 static struct flex_array *alloc_buckets(unsigned int n_buckets)
427 {
428         struct flex_array *buckets;
429         int i, err;
430
431         buckets = flex_array_alloc(sizeof(struct hlist_head),
432                                    n_buckets, GFP_KERNEL);
433         if (!buckets)
434                 return NULL;
435
436         err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
437         if (err) {
438                 flex_array_free(buckets);
439                 return NULL;
440         }
441
442         for (i = 0; i < n_buckets; i++)
443                 INIT_HLIST_HEAD((struct hlist_head *)
444                                         flex_array_get(buckets, i));
445
446         return buckets;
447 }
448
449 static void free_buckets(struct flex_array *buckets)
450 {
451         flex_array_free(buckets);
452 }
453
454 static struct flow_table *__flow_tbl_alloc(int new_size)
455 {
456         struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
457
458         if (!table)
459                 return NULL;
460
461         table->buckets = alloc_buckets(new_size);
462
463         if (!table->buckets) {
464                 kfree(table);
465                 return NULL;
466         }
467         table->n_buckets = new_size;
468         table->count = 0;
469         table->node_ver = 0;
470         table->keep_flows = false;
471         get_random_bytes(&table->hash_seed, sizeof(u32));
472         table->mask_list = NULL;
473
474         return table;
475 }
476
477 static void __flow_tbl_destroy(struct flow_table *table)
478 {
479         int i;
480
481         if (table->keep_flows)
482                 goto skip_flows;
483
484         for (i = 0; i < table->n_buckets; i++) {
485                 struct sw_flow *flow;
486                 struct hlist_head *head = flex_array_get(table->buckets, i);
487                 struct hlist_node *n;
488                 int ver = table->node_ver;
489
490                 hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) {
491                         hlist_del(&flow->hash_node[ver]);
492                         ovs_flow_free(flow, false);
493                 }
494         }
495
496         BUG_ON(!list_empty(table->mask_list));
497         kfree(table->mask_list);
498
499 skip_flows:
500         free_buckets(table->buckets);
501         kfree(table);
502 }
503
504 struct flow_table *ovs_flow_tbl_alloc(int new_size)
505 {
506         struct flow_table *table = __flow_tbl_alloc(new_size);
507
508         if (!table)
509                 return NULL;
510
511         table->mask_list = kmalloc(sizeof(struct list_head), GFP_KERNEL);
512         if (!table->mask_list) {
513                 table->keep_flows = true;
514                 __flow_tbl_destroy(table);
515                 return NULL;
516         }
517         INIT_LIST_HEAD(table->mask_list);
518
519         return table;
520 }
521
522 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
523 {
524         struct flow_table *table = container_of(rcu, struct flow_table, rcu);
525
526         __flow_tbl_destroy(table);
527 }
528
529 void ovs_flow_tbl_destroy(struct flow_table *table, bool deferred)
530 {
531         if (!table)
532                 return;
533
534         if (deferred)
535                 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
536         else
537                 __flow_tbl_destroy(table);
538 }
539
540 struct sw_flow *ovs_flow_dump_next(struct flow_table *table, u32 *bucket, u32 *last)
541 {
542         struct sw_flow *flow;
543         struct hlist_head *head;
544         int ver;
545         int i;
546
547         ver = table->node_ver;
548         while (*bucket < table->n_buckets) {
549                 i = 0;
550                 head = flex_array_get(table->buckets, *bucket);
551                 hlist_for_each_entry_rcu(flow, head, hash_node[ver]) {
552                         if (i < *last) {
553                                 i++;
554                                 continue;
555                         }
556                         *last = i + 1;
557                         return flow;
558                 }
559                 (*bucket)++;
560                 *last = 0;
561         }
562
563         return NULL;
564 }
565
566 static void __tbl_insert(struct flow_table *table, struct sw_flow *flow)
567 {
568         struct hlist_head *head;
569
570         head = find_bucket(table, flow->hash);
571         hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
572
573         table->count++;
574 }
575
576 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
577 {
578         int old_ver;
579         int i;
580
581         old_ver = old->node_ver;
582         new->node_ver = !old_ver;
583
584         /* Insert in new table. */
585         for (i = 0; i < old->n_buckets; i++) {
586                 struct sw_flow *flow;
587                 struct hlist_head *head;
588
589                 head = flex_array_get(old->buckets, i);
590
591                 hlist_for_each_entry(flow, head, hash_node[old_ver])
592                         __tbl_insert(new, flow);
593         }
594
595         new->mask_list = old->mask_list;
596         old->keep_flows = true;
597 }
598
599 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
600 {
601         struct flow_table *new_table;
602
603         new_table = __flow_tbl_alloc(n_buckets);
604         if (!new_table)
605                 return ERR_PTR(-ENOMEM);
606
607         flow_table_copy_flows(table, new_table);
608
609         return new_table;
610 }
611
612 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
613 {
614         return __flow_tbl_rehash(table, table->n_buckets);
615 }
616
617 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
618 {
619         return __flow_tbl_rehash(table, table->n_buckets * 2);
620 }
621
622 static void __flow_free(struct sw_flow *flow)
623 {
624         kfree((struct sf_flow_acts __force *)flow->sf_acts);
625         kmem_cache_free(flow_cache, flow);
626 }
627
628 static void rcu_free_flow_callback(struct rcu_head *rcu)
629 {
630         struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
631
632         __flow_free(flow);
633 }
634
635 void ovs_flow_free(struct sw_flow *flow, bool deferred)
636 {
637         if (!flow)
638                 return;
639
640         ovs_sw_flow_mask_del_ref(flow->mask, deferred);
641
642         if (deferred)
643                 call_rcu(&flow->rcu, rcu_free_flow_callback);
644         else
645                 __flow_free(flow);
646 }
647
648 /* RCU callback used by ovs_flow_deferred_free_acts. */
649 static void rcu_free_acts_callback(struct rcu_head *rcu)
650 {
651         struct sw_flow_actions *sf_acts = container_of(rcu,
652                         struct sw_flow_actions, rcu);
653         kfree(sf_acts);
654 }
655
656 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
657  * The caller must hold rcu_read_lock for this to be sensible. */
658 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
659 {
660         call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
661 }
662
663 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
664 {
665         struct qtag_prefix {
666                 __be16 eth_type; /* ETH_P_8021Q */
667                 __be16 tci;
668         };
669         struct qtag_prefix *qp;
670
671         if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
672                 return 0;
673
674         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
675                                          sizeof(__be16))))
676                 return -ENOMEM;
677
678         qp = (struct qtag_prefix *) skb->data;
679         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
680         __skb_pull(skb, sizeof(struct qtag_prefix));
681
682         return 0;
683 }
684
685 static __be16 parse_ethertype(struct sk_buff *skb)
686 {
687         struct llc_snap_hdr {
688                 u8  dsap;  /* Always 0xAA */
689                 u8  ssap;  /* Always 0xAA */
690                 u8  ctrl;
691                 u8  oui[3];
692                 __be16 ethertype;
693         };
694         struct llc_snap_hdr *llc;
695         __be16 proto;
696
697         proto = *(__be16 *) skb->data;
698         __skb_pull(skb, sizeof(__be16));
699
700         if (ntohs(proto) >= ETH_P_802_3_MIN)
701                 return proto;
702
703         if (skb->len < sizeof(struct llc_snap_hdr))
704                 return htons(ETH_P_802_2);
705
706         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
707                 return htons(0);
708
709         llc = (struct llc_snap_hdr *) skb->data;
710         if (llc->dsap != LLC_SAP_SNAP ||
711             llc->ssap != LLC_SAP_SNAP ||
712             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
713                 return htons(ETH_P_802_2);
714
715         __skb_pull(skb, sizeof(struct llc_snap_hdr));
716
717         if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
718                 return llc->ethertype;
719
720         return htons(ETH_P_802_2);
721 }
722
723 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
724                         int nh_len)
725 {
726         struct icmp6hdr *icmp = icmp6_hdr(skb);
727
728         /* The ICMPv6 type and code fields use the 16-bit transport port
729          * fields, so we need to store them in 16-bit network byte order.
730          */
731         key->ipv6.tp.src = htons(icmp->icmp6_type);
732         key->ipv6.tp.dst = htons(icmp->icmp6_code);
733
734         if (icmp->icmp6_code == 0 &&
735             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
736              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
737                 int icmp_len = skb->len - skb_transport_offset(skb);
738                 struct nd_msg *nd;
739                 int offset;
740
741                 /* In order to process neighbor discovery options, we need the
742                  * entire packet.
743                  */
744                 if (unlikely(icmp_len < sizeof(*nd)))
745                         return 0;
746
747                 if (unlikely(skb_linearize(skb)))
748                         return -ENOMEM;
749
750                 nd = (struct nd_msg *)skb_transport_header(skb);
751                 key->ipv6.nd.target = nd->target;
752
753                 icmp_len -= sizeof(*nd);
754                 offset = 0;
755                 while (icmp_len >= 8) {
756                         struct nd_opt_hdr *nd_opt =
757                                  (struct nd_opt_hdr *)(nd->opt + offset);
758                         int opt_len = nd_opt->nd_opt_len * 8;
759
760                         if (unlikely(!opt_len || opt_len > icmp_len))
761                                 return 0;
762
763                         /* Store the link layer address if the appropriate
764                          * option is provided.  It is considered an error if
765                          * the same link layer option is specified twice.
766                          */
767                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
768                             && opt_len == 8) {
769                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
770                                         goto invalid;
771                                 memcpy(key->ipv6.nd.sll,
772                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
773                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
774                                    && opt_len == 8) {
775                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
776                                         goto invalid;
777                                 memcpy(key->ipv6.nd.tll,
778                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
779                         }
780
781                         icmp_len -= opt_len;
782                         offset += opt_len;
783                 }
784         }
785
786         return 0;
787
788 invalid:
789         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
790         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
791         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
792
793         return 0;
794 }
795
796 /**
797  * ovs_flow_extract - extracts a flow key from an Ethernet frame.
798  * @skb: sk_buff that contains the frame, with skb->data pointing to the
799  * Ethernet header
800  * @in_port: port number on which @skb was received.
801  * @key: output flow key
802  * @key_lenp: length of output flow key
803  *
804  * The caller must ensure that skb->len >= ETH_HLEN.
805  *
806  * Returns 0 if successful, otherwise a negative errno value.
807  *
808  * Initializes @skb header pointers as follows:
809  *
810  *    - skb->mac_header: the Ethernet header.
811  *
812  *    - skb->network_header: just past the Ethernet header, or just past the
813  *      VLAN header, to the first byte of the Ethernet payload.
814  *
815  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
816  *      on output, then just past the IP header, if one is present and
817  *      of a correct length, otherwise the same as skb->network_header.
818  *      For other key->eth.type values it is left untouched.
819  */
820 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key)
821 {
822         int error;
823         struct ethhdr *eth;
824
825         memset(key, 0, sizeof(*key));
826
827         key->phy.priority = skb->priority;
828         if (OVS_CB(skb)->tun_key)
829                 memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key));
830         key->phy.in_port = in_port;
831         key->phy.skb_mark = skb_get_mark(skb);
832
833         skb_reset_mac_header(skb);
834
835         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
836          * header in the linear data area.
837          */
838         eth = eth_hdr(skb);
839         memcpy(key->eth.src, eth->h_source, ETH_ALEN);
840         memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
841
842         __skb_pull(skb, 2 * ETH_ALEN);
843         /* We are going to push all headers that we pull, so no need to
844          * update skb->csum here. */
845
846         if (vlan_tx_tag_present(skb))
847                 key->eth.tci = htons(vlan_get_tci(skb));
848         else if (eth->h_proto == htons(ETH_P_8021Q))
849                 if (unlikely(parse_vlan(skb, key)))
850                         return -ENOMEM;
851
852         key->eth.type = parse_ethertype(skb);
853         if (unlikely(key->eth.type == htons(0)))
854                 return -ENOMEM;
855
856         skb_reset_network_header(skb);
857         __skb_push(skb, skb->data - skb_mac_header(skb));
858
859         /* Network layer. */
860         if (key->eth.type == htons(ETH_P_IP)) {
861                 struct iphdr *nh;
862                 __be16 offset;
863
864                 error = check_iphdr(skb);
865                 if (unlikely(error)) {
866                         if (error == -EINVAL) {
867                                 skb->transport_header = skb->network_header;
868                                 error = 0;
869                         }
870                         return error;
871                 }
872
873                 nh = ip_hdr(skb);
874                 key->ipv4.addr.src = nh->saddr;
875                 key->ipv4.addr.dst = nh->daddr;
876
877                 key->ip.proto = nh->protocol;
878                 key->ip.tos = nh->tos;
879                 key->ip.ttl = nh->ttl;
880
881                 offset = nh->frag_off & htons(IP_OFFSET);
882                 if (offset) {
883                         key->ip.frag = OVS_FRAG_TYPE_LATER;
884                         return 0;
885                 }
886                 if (nh->frag_off & htons(IP_MF) ||
887                          skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
888                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
889
890                 /* Transport layer. */
891                 if (key->ip.proto == IPPROTO_TCP) {
892                         if (tcphdr_ok(skb)) {
893                                 struct tcphdr *tcp = tcp_hdr(skb);
894                                 key->ipv4.tp.src = tcp->source;
895                                 key->ipv4.tp.dst = tcp->dest;
896                         }
897                 } else if (key->ip.proto == IPPROTO_UDP) {
898                         if (udphdr_ok(skb)) {
899                                 struct udphdr *udp = udp_hdr(skb);
900                                 key->ipv4.tp.src = udp->source;
901                                 key->ipv4.tp.dst = udp->dest;
902                         }
903                 } else if (key->ip.proto == IPPROTO_ICMP) {
904                         if (icmphdr_ok(skb)) {
905                                 struct icmphdr *icmp = icmp_hdr(skb);
906                                 /* The ICMP type and code fields use the 16-bit
907                                  * transport port fields, so we need to store
908                                  * them in 16-bit network byte order. */
909                                 key->ipv4.tp.src = htons(icmp->type);
910                                 key->ipv4.tp.dst = htons(icmp->code);
911                         }
912                 }
913
914         } else if ((key->eth.type == htons(ETH_P_ARP) ||
915                    key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
916                 struct arp_eth_header *arp;
917
918                 arp = (struct arp_eth_header *)skb_network_header(skb);
919
920                 if (arp->ar_hrd == htons(ARPHRD_ETHER)
921                                 && arp->ar_pro == htons(ETH_P_IP)
922                                 && arp->ar_hln == ETH_ALEN
923                                 && arp->ar_pln == 4) {
924
925                         /* We only match on the lower 8 bits of the opcode. */
926                         if (ntohs(arp->ar_op) <= 0xff)
927                                 key->ip.proto = ntohs(arp->ar_op);
928                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
929                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
930                         memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
931                         memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
932                 }
933         } else if (key->eth.type == htons(ETH_P_IPV6)) {
934                 int nh_len;             /* IPv6 Header + Extensions */
935
936                 nh_len = parse_ipv6hdr(skb, key);
937                 if (unlikely(nh_len < 0)) {
938                         if (nh_len == -EINVAL) {
939                                 skb->transport_header = skb->network_header;
940                                 error = 0;
941                         } else {
942                                 error = nh_len;
943                         }
944                         return error;
945                 }
946
947                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
948                         return 0;
949                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
950                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
951
952                 /* Transport layer. */
953                 if (key->ip.proto == NEXTHDR_TCP) {
954                         if (tcphdr_ok(skb)) {
955                                 struct tcphdr *tcp = tcp_hdr(skb);
956                                 key->ipv6.tp.src = tcp->source;
957                                 key->ipv6.tp.dst = tcp->dest;
958                         }
959                 } else if (key->ip.proto == NEXTHDR_UDP) {
960                         if (udphdr_ok(skb)) {
961                                 struct udphdr *udp = udp_hdr(skb);
962                                 key->ipv6.tp.src = udp->source;
963                                 key->ipv6.tp.dst = udp->dest;
964                         }
965                 } else if (key->ip.proto == NEXTHDR_ICMP) {
966                         if (icmp6hdr_ok(skb)) {
967                                 error = parse_icmpv6(skb, key, nh_len);
968                                 if (error)
969                                         return error;
970                         }
971                 }
972         }
973
974         return 0;
975 }
976
977 static u32 ovs_flow_hash(const struct sw_flow_key *key, int key_start, int key_len)
978 {
979         return jhash2((u32 *)((u8 *)key + key_start),
980                       DIV_ROUND_UP(key_len - key_start, sizeof(u32)), 0);
981 }
982
983 static int flow_key_start(const struct sw_flow_key *key)
984 {
985         if (key->tun_key.ipv4_dst)
986                 return 0;
987         else
988                 return offsetof(struct sw_flow_key, phy);
989 }
990
991 static bool __cmp_key(const struct sw_flow_key *key1,
992                 const struct sw_flow_key *key2,  int key_start, int key_len)
993 {
994         return !memcmp((u8 *)key1 + key_start,
995                         (u8 *)key2 + key_start, (key_len - key_start));
996 }
997
998 static bool __flow_cmp_key(const struct sw_flow *flow,
999                 const struct sw_flow_key *key, int key_start, int key_len)
1000 {
1001         return __cmp_key(&flow->key, key, key_start, key_len);
1002 }
1003
1004 static bool __flow_cmp_unmasked_key(const struct sw_flow *flow,
1005                   const struct sw_flow_key *key, int key_start, int key_len)
1006 {
1007         return __cmp_key(&flow->unmasked_key, key, key_start, key_len);
1008 }
1009
1010 bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow,
1011                 const struct sw_flow_key *key, int key_len)
1012 {
1013         int key_start;
1014         key_start = flow_key_start(key);
1015
1016         return __flow_cmp_unmasked_key(flow, key, key_start, key_len);
1017
1018 }
1019
1020 struct sw_flow *ovs_flow_lookup_unmasked_key(struct flow_table *table,
1021                                        struct sw_flow_match *match)
1022 {
1023         struct sw_flow_key *unmasked = match->key;
1024         int key_len = match->range.end;
1025         struct sw_flow *flow;
1026
1027         flow = ovs_flow_lookup(table, unmasked);
1028         if (flow && (!ovs_flow_cmp_unmasked_key(flow, unmasked, key_len)))
1029                 flow = NULL;
1030
1031         return flow;
1032 }
1033
1034 static struct sw_flow *ovs_masked_flow_lookup(struct flow_table *table,
1035                                     const struct sw_flow_key *flow_key,
1036                                     struct sw_flow_mask *mask)
1037 {
1038         struct sw_flow *flow;
1039         struct hlist_head *head;
1040         int key_start = mask->range.start;
1041         int key_len = mask->range.end;
1042         u32 hash;
1043         struct sw_flow_key masked_key;
1044
1045         ovs_flow_key_mask(&masked_key, flow_key, mask);
1046         hash = ovs_flow_hash(&masked_key, key_start, key_len);
1047         head = find_bucket(table, hash);
1048         hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) {
1049                 if (flow->mask == mask &&
1050                     __flow_cmp_key(flow, &masked_key, key_start, key_len))
1051                         return flow;
1052         }
1053         return NULL;
1054 }
1055
1056 struct sw_flow *ovs_flow_lookup(struct flow_table *tbl,
1057                                 const struct sw_flow_key *key)
1058 {
1059         struct sw_flow *flow = NULL;
1060         struct sw_flow_mask *mask;
1061
1062         list_for_each_entry_rcu(mask, tbl->mask_list, list) {
1063                 flow = ovs_masked_flow_lookup(tbl, key, mask);
1064                 if (flow)  /* Found */
1065                         break;
1066         }
1067
1068         return flow;
1069 }
1070
1071
1072 void ovs_flow_insert(struct flow_table *table, struct sw_flow *flow)
1073 {
1074         flow->hash = ovs_flow_hash(&flow->key, flow->mask->range.start,
1075                         flow->mask->range.end);
1076         __tbl_insert(table, flow);
1077 }
1078
1079 void ovs_flow_remove(struct flow_table *table, struct sw_flow *flow)
1080 {
1081         BUG_ON(table->count == 0);
1082         hlist_del_rcu(&flow->hash_node[table->node_ver]);
1083         table->count--;
1084 }
1085
1086 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
1087 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
1088         [OVS_KEY_ATTR_ENCAP] = -1,
1089         [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
1090         [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
1091         [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
1092         [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
1093         [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
1094         [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
1095         [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
1096         [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
1097         [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
1098         [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
1099         [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
1100         [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
1101         [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
1102         [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
1103         [OVS_KEY_ATTR_TUNNEL] = -1,
1104 };
1105
1106 static bool is_all_zero(const u8 *fp, size_t size)
1107 {
1108         int i;
1109
1110         if (!fp)
1111                 return false;
1112
1113         for (i = 0; i < size; i++)
1114                 if (fp[i])
1115                         return false;
1116
1117         return true;
1118 }
1119
1120 static int __parse_flow_nlattrs(const struct nlattr *attr,
1121                               const struct nlattr *a[],
1122                               u64 *attrsp, bool nz)
1123 {
1124         const struct nlattr *nla;
1125         u64 attrs;
1126         int rem;
1127
1128         attrs = *attrsp;
1129         nla_for_each_nested(nla, attr, rem) {
1130                 u16 type = nla_type(nla);
1131                 int expected_len;
1132
1133                 if (type > OVS_KEY_ATTR_MAX) {
1134                         OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
1135                                   type, OVS_KEY_ATTR_MAX);
1136                 }
1137
1138                 if (attrs & (1ULL << type)) {
1139                         OVS_NLERR("Duplicate key attribute (type %d).\n", type);
1140                         return -EINVAL;
1141                 }
1142
1143                 expected_len = ovs_key_lens[type];
1144                 if (nla_len(nla) != expected_len && expected_len != -1) {
1145                         OVS_NLERR("Key attribute has unexpected length (type=%d"
1146                                   ", length=%d, expected=%d).\n", type,
1147                                   nla_len(nla), expected_len);
1148                         return -EINVAL;
1149                 }
1150
1151                 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
1152                         attrs |= 1ULL << type;
1153                         a[type] = nla;
1154                 }
1155         }
1156         if (rem) {
1157                 OVS_NLERR("Message has %d unknown bytes.\n", rem);
1158                 return -EINVAL;
1159         }
1160
1161         *attrsp = attrs;
1162         return 0;
1163 }
1164
1165 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
1166                               const struct nlattr *a[], u64 *attrsp)
1167 {
1168         return __parse_flow_nlattrs(attr, a, attrsp, true);
1169 }
1170
1171 static int parse_flow_nlattrs(const struct nlattr *attr,
1172                               const struct nlattr *a[], u64 *attrsp)
1173 {
1174         return __parse_flow_nlattrs(attr, a, attrsp, false);
1175 }
1176
1177 int ovs_ipv4_tun_from_nlattr(const struct nlattr *attr,
1178                              struct sw_flow_match *match, bool is_mask)
1179 {
1180         struct nlattr *a;
1181         int rem;
1182         bool ttl = false;
1183         __be16 tun_flags = 0;
1184
1185         nla_for_each_nested(a, attr, rem) {
1186                 int type = nla_type(a);
1187                 static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
1188                         [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
1189                         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
1190                         [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
1191                         [OVS_TUNNEL_KEY_ATTR_TOS] = 1,
1192                         [OVS_TUNNEL_KEY_ATTR_TTL] = 1,
1193                         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
1194                         [OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
1195                 };
1196
1197                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
1198                         OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
1199                         type, OVS_TUNNEL_KEY_ATTR_MAX);
1200                         return -EINVAL;
1201                 }
1202
1203                 if (ovs_tunnel_key_lens[type] != nla_len(a)) {
1204                         OVS_NLERR("IPv4 tunnel attribute type has unexpected "
1205                                   " legnth (type=%d, length=%d, expected=%d).\n",
1206                                   type, nla_len(a), ovs_tunnel_key_lens[type]);
1207                         return -EINVAL;
1208                 }
1209
1210                 switch (type) {
1211                 case OVS_TUNNEL_KEY_ATTR_ID:
1212                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
1213                                         nla_get_be64(a), is_mask);
1214                         tun_flags |= TUNNEL_KEY;
1215                         break;
1216                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
1217                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
1218                                         nla_get_be32(a), is_mask);
1219                         break;
1220                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
1221                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
1222                                         nla_get_be32(a), is_mask);
1223                         break;
1224                 case OVS_TUNNEL_KEY_ATTR_TOS:
1225                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
1226                                         nla_get_u8(a), is_mask);
1227                         break;
1228                 case OVS_TUNNEL_KEY_ATTR_TTL:
1229                         SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
1230                                         nla_get_u8(a), is_mask);
1231                         ttl = true;
1232                         break;
1233                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
1234                         tun_flags |= TUNNEL_DONT_FRAGMENT;
1235                         break;
1236                 case OVS_TUNNEL_KEY_ATTR_CSUM:
1237                         tun_flags |= TUNNEL_CSUM;
1238                         break;
1239                 default:
1240                         return -EINVAL;
1241                 }
1242         }
1243
1244         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
1245
1246         if (rem > 0) {
1247                 OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
1248                 return -EINVAL;
1249         }
1250
1251         if (!is_mask) {
1252                 if (!match->key->tun_key.ipv4_dst) {
1253                         OVS_NLERR("IPv4 tunnel destination address is zero.\n");
1254                         return -EINVAL;
1255                 }
1256
1257                 if (!ttl) {
1258                         OVS_NLERR("IPv4 tunnel TTL not specified.\n");
1259                         return -EINVAL;
1260                 }
1261         }
1262
1263         return 0;
1264 }
1265
1266 int ovs_ipv4_tun_to_nlattr(struct sk_buff *skb,
1267                            const struct ovs_key_ipv4_tunnel *tun_key,
1268                            const struct ovs_key_ipv4_tunnel *output)
1269 {
1270         struct nlattr *nla;
1271
1272         nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
1273         if (!nla)
1274                 return -EMSGSIZE;
1275
1276         if (output->tun_flags & TUNNEL_KEY &&
1277             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
1278                 return -EMSGSIZE;
1279         if (output->ipv4_src &&
1280                 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
1281                 return -EMSGSIZE;
1282         if (output->ipv4_dst &&
1283                 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
1284                 return -EMSGSIZE;
1285         if (output->ipv4_tos &&
1286                 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
1287                 return -EMSGSIZE;
1288         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
1289                 return -EMSGSIZE;
1290         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
1291                 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
1292                 return -EMSGSIZE;
1293         if ((output->tun_flags & TUNNEL_CSUM) &&
1294                 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
1295                 return -EMSGSIZE;
1296
1297         nla_nest_end(skb, nla);
1298         return 0;
1299 }
1300
1301
1302 static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
1303                 const struct nlattr **a, bool is_mask)
1304 {
1305         if (*attrs & (1ULL << OVS_KEY_ATTR_PRIORITY)) {
1306                 SW_FLOW_KEY_PUT(match, phy.priority,
1307                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1308                 *attrs &= ~(1ULL << OVS_KEY_ATTR_PRIORITY);
1309         }
1310
1311         if (*attrs & (1ULL << OVS_KEY_ATTR_IN_PORT)) {
1312                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1313
1314                 if (is_mask)
1315                         in_port = 0xffffffff; /* Always exact match in_port. */
1316                 else if (in_port >= DP_MAX_PORTS)
1317                         return -EINVAL;
1318
1319                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1320                 *attrs &= ~(1ULL << OVS_KEY_ATTR_IN_PORT);
1321         } else if (!is_mask) {
1322                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1323         }
1324
1325         if (*attrs & (1ULL << OVS_KEY_ATTR_SKB_MARK)) {
1326                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1327 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) && !defined(CONFIG_NETFILTER)
1328                 if (!is_mask && mark != 0) {
1329                         OVS_NLERR("skb->mark must be zero on this kernel (mark=%d).\n", mark);
1330                         return -EINVAL;
1331                 }
1332 #endif
1333                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1334                 *attrs &= ~(1ULL << OVS_KEY_ATTR_SKB_MARK);
1335         }
1336         if (*attrs & (1ULL << OVS_KEY_ATTR_TUNNEL)) {
1337                 if (ovs_ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1338                                         is_mask))
1339                         return -EINVAL;
1340                 *attrs &= ~(1ULL << OVS_KEY_ATTR_TUNNEL);
1341         }
1342         return 0;
1343 }
1344
1345 static int ovs_key_from_nlattrs(struct sw_flow_match *match,  u64 attrs,
1346                 const struct nlattr **a, bool is_mask)
1347 {
1348         int err;
1349         u64 orig_attrs = attrs;
1350
1351         err = metadata_from_nlattrs(match, &attrs, a, is_mask);
1352         if (err)
1353                 return err;
1354
1355         if (attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) {
1356                 const struct ovs_key_ethernet *eth_key;
1357
1358                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1359                 SW_FLOW_KEY_MEMCPY(match, eth.src,
1360                                 eth_key->eth_src, ETH_ALEN, is_mask);
1361                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1362                                 eth_key->eth_dst, ETH_ALEN, is_mask);
1363                 attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERNET);
1364         }
1365
1366         if (attrs & (1ULL << OVS_KEY_ATTR_VLAN)) {
1367                 __be16 tci;
1368
1369                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1370                 if (!(tci & htons(VLAN_TAG_PRESENT))) {
1371                         if (is_mask)
1372                                 OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
1373                         else
1374                                 OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
1375
1376                         return -EINVAL;
1377                 }
1378
1379                 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
1380                 attrs &= ~(1ULL << OVS_KEY_ATTR_VLAN);
1381         } else if (!is_mask)
1382                 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1383
1384         if (attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)) {
1385                 __be16 eth_type;
1386
1387                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1388                 if (is_mask) {
1389                         /* Always exact match EtherType. */
1390                         eth_type = htons(0xffff);
1391                 } else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
1392                         OVS_NLERR("EtherType is less than mimimum (type=%x, min=%x).\n",
1393                                         ntohs(eth_type), ETH_P_802_3_MIN);
1394                         return -EINVAL;
1395                 }
1396
1397                 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1398                 attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
1399         } else if (!is_mask) {
1400                 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1401         }
1402
1403         if (attrs & (1ULL << OVS_KEY_ATTR_IPV4)) {
1404                 const struct ovs_key_ipv4 *ipv4_key;
1405
1406                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1407                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1408                         OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
1409                                 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1410                         return -EINVAL;
1411                 }
1412                 SW_FLOW_KEY_PUT(match, ip.proto,
1413                                 ipv4_key->ipv4_proto, is_mask);
1414                 SW_FLOW_KEY_PUT(match, ip.tos,
1415                                 ipv4_key->ipv4_tos, is_mask);
1416                 SW_FLOW_KEY_PUT(match, ip.ttl,
1417                                 ipv4_key->ipv4_ttl, is_mask);
1418                 SW_FLOW_KEY_PUT(match, ip.frag,
1419                                 ipv4_key->ipv4_frag, is_mask);
1420                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1421                                 ipv4_key->ipv4_src, is_mask);
1422                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1423                                 ipv4_key->ipv4_dst, is_mask);
1424                 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV4);
1425         }
1426
1427         if (attrs & (1ULL << OVS_KEY_ATTR_IPV6)) {
1428                 const struct ovs_key_ipv6 *ipv6_key;
1429
1430                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1431                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1432                         OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
1433                                 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1434                         return -EINVAL;
1435                 }
1436                 SW_FLOW_KEY_PUT(match, ipv6.label,
1437                                 ipv6_key->ipv6_label, is_mask);
1438                 SW_FLOW_KEY_PUT(match, ip.proto,
1439                                 ipv6_key->ipv6_proto, is_mask);
1440                 SW_FLOW_KEY_PUT(match, ip.tos,
1441                                 ipv6_key->ipv6_tclass, is_mask);
1442                 SW_FLOW_KEY_PUT(match, ip.ttl,
1443                                 ipv6_key->ipv6_hlimit, is_mask);
1444                 SW_FLOW_KEY_PUT(match, ip.frag,
1445                                 ipv6_key->ipv6_frag, is_mask);
1446                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1447                                 ipv6_key->ipv6_src,
1448                                 sizeof(match->key->ipv6.addr.src),
1449                                 is_mask);
1450                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1451                                 ipv6_key->ipv6_dst,
1452                                 sizeof(match->key->ipv6.addr.dst),
1453                                 is_mask);
1454
1455                 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6);
1456         }
1457
1458         if (attrs & (1ULL << OVS_KEY_ATTR_ARP)) {
1459                 const struct ovs_key_arp *arp_key;
1460
1461                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1462                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1463                         OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
1464                                   arp_key->arp_op);
1465                         return -EINVAL;
1466                 }
1467
1468                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1469                                 arp_key->arp_sip, is_mask);
1470                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1471                         arp_key->arp_tip, is_mask);
1472                 SW_FLOW_KEY_PUT(match, ip.proto,
1473                                 ntohs(arp_key->arp_op), is_mask);
1474                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1475                                 arp_key->arp_sha, ETH_ALEN, is_mask);
1476                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1477                                 arp_key->arp_tha, ETH_ALEN, is_mask);
1478
1479                 attrs &= ~(1ULL << OVS_KEY_ATTR_ARP);
1480         }
1481
1482         if (attrs & (1ULL << OVS_KEY_ATTR_TCP)) {
1483                 const struct ovs_key_tcp *tcp_key;
1484
1485                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1486                 if (orig_attrs & (1ULL << OVS_KEY_ATTR_IPV4)) {
1487                         SW_FLOW_KEY_PUT(match, ipv4.tp.src,
1488                                         tcp_key->tcp_src, is_mask);
1489                         SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
1490                                         tcp_key->tcp_dst, is_mask);
1491                 } else {
1492                         SW_FLOW_KEY_PUT(match, ipv6.tp.src,
1493                                         tcp_key->tcp_src, is_mask);
1494                         SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
1495                                         tcp_key->tcp_dst, is_mask);
1496                 }
1497                 attrs &= ~(1ULL << OVS_KEY_ATTR_TCP);
1498         }
1499
1500         if (attrs & (1ULL << OVS_KEY_ATTR_UDP)) {
1501                 const struct ovs_key_udp *udp_key;
1502
1503                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1504                 if (orig_attrs & (1ULL << OVS_KEY_ATTR_IPV4)) {
1505                         SW_FLOW_KEY_PUT(match, ipv4.tp.src,
1506                                         udp_key->udp_src, is_mask);
1507                         SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
1508                                         udp_key->udp_dst, is_mask);
1509                 } else {
1510                         SW_FLOW_KEY_PUT(match, ipv6.tp.src,
1511                                         udp_key->udp_src, is_mask);
1512                         SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
1513                                         udp_key->udp_dst, is_mask);
1514                 }
1515                 attrs &= ~(1ULL << OVS_KEY_ATTR_UDP);
1516         }
1517
1518         if (attrs & (1ULL << OVS_KEY_ATTR_ICMP)) {
1519                 const struct ovs_key_icmp *icmp_key;
1520
1521                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1522                 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
1523                                 htons(icmp_key->icmp_type), is_mask);
1524                 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
1525                                 htons(icmp_key->icmp_code), is_mask);
1526                 attrs &= ~(1ULL << OVS_KEY_ATTR_ICMP);
1527         }
1528
1529         if (attrs & (1ULL << OVS_KEY_ATTR_ICMPV6)) {
1530                 const struct ovs_key_icmpv6 *icmpv6_key;
1531
1532                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1533                 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
1534                                 htons(icmpv6_key->icmpv6_type), is_mask);
1535                 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
1536                                 htons(icmpv6_key->icmpv6_code), is_mask);
1537                 attrs &= ~(1ULL << OVS_KEY_ATTR_ICMPV6);
1538         }
1539
1540         if (attrs & (1ULL << OVS_KEY_ATTR_ND)) {
1541                 const struct ovs_key_nd *nd_key;
1542
1543                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1544                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1545                         nd_key->nd_target,
1546                         sizeof(match->key->ipv6.nd.target),
1547                         is_mask);
1548                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1549                         nd_key->nd_sll, ETH_ALEN, is_mask);
1550                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1551                                 nd_key->nd_tll, ETH_ALEN, is_mask);
1552                 attrs &= ~(1ULL << OVS_KEY_ATTR_ND);
1553         }
1554
1555         if (attrs != 0)
1556                 return -EINVAL;
1557
1558         return 0;
1559 }
1560
1561 /**
1562  * ovs_match_from_nlattrs - parses Netlink attributes into a flow key and
1563  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1564  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1565  * does not include any don't care bit.
1566  * @match: receives the extracted flow match information.
1567  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1568  * sequence. The fields should of the packet that triggered the creation
1569  * of this flow.
1570  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1571  * attribute specifies the mask field of the wildcarded flow.
1572  */
1573 int ovs_match_from_nlattrs(struct sw_flow_match *match,
1574                            const struct nlattr *key,
1575                            const struct nlattr *mask)
1576 {
1577         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1578         const struct nlattr *encap;
1579         u64 key_attrs = 0;
1580         u64 mask_attrs = 0;
1581         bool encap_valid = false;
1582         int err;
1583
1584         err = parse_flow_nlattrs(key, a, &key_attrs);
1585         if (err)
1586                 return err;
1587
1588         if (key_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) {
1589                 encap = a[OVS_KEY_ATTR_ENCAP];
1590                 key_attrs &= ~(1ULL << OVS_KEY_ATTR_ENCAP);
1591                 if (nla_len(encap)) {
1592                         __be16 eth_type = 0; /* ETH_P_8021Q */
1593
1594                         if (a[OVS_KEY_ATTR_ETHERTYPE])
1595                                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1596
1597                         if  ((eth_type == htons(ETH_P_8021Q)) && (a[OVS_KEY_ATTR_VLAN])) {
1598                                 encap_valid = true;
1599                                 key_attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
1600                                 err = parse_flow_nlattrs(encap, a, &key_attrs);
1601                         } else {
1602                                 OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
1603                                 err = -EINVAL;
1604                         }
1605
1606                         if (err)
1607                                 return err;
1608                 }
1609         }
1610
1611         err = ovs_key_from_nlattrs(match, key_attrs, a, false);
1612         if (err)
1613                 return err;
1614
1615         if (mask) {
1616                 err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
1617                 if (err)
1618                         return err;
1619
1620                 if ((mask_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) && encap_valid) {
1621                         __be16 eth_type = 0;
1622
1623                         mask_attrs &= ~(1ULL << OVS_KEY_ATTR_ENCAP);
1624                         if (a[OVS_KEY_ATTR_ETHERTYPE])
1625                                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1626                         if (eth_type == htons(0xffff)) {
1627                                 mask_attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
1628                                 encap = a[OVS_KEY_ATTR_ENCAP];
1629                                 err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
1630                         } else {
1631                                 OVS_NLERR("VLAN frames must have an exact match"
1632                                          " on the TPID (mask=%x).\n",
1633                                          ntohs(eth_type));
1634                                 err = -EINVAL;
1635                         }
1636
1637                         if (err)
1638                                 return err;
1639                 }
1640
1641                 err = ovs_key_from_nlattrs(match, mask_attrs, a, true);
1642                 if (err)
1643                         return err;
1644         } else {
1645                 /* Populate exact match flow's key mask. */
1646                 if (match->mask)
1647                         ovs_sw_flow_mask_set(match->mask, &match->range, 0xff);
1648         }
1649
1650         if (!ovs_match_validate(match, key_attrs, mask_attrs))
1651                 return -EINVAL;
1652
1653         return 0;
1654 }
1655
1656 /**
1657  * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1658  * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
1659  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1660  * sequence.
1661  *
1662  * This parses a series of Netlink attributes that form a flow key, which must
1663  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1664  * get the metadata, that is, the parts of the flow key that cannot be
1665  * extracted from the packet itself.
1666  */
1667
1668 int ovs_flow_metadata_from_nlattrs(struct sw_flow *flow,
1669                 const struct nlattr *attr)
1670 {
1671         struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
1672         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1673         u64 attrs = 0;
1674         int err;
1675         struct sw_flow_match match;
1676
1677         flow->key.phy.in_port = DP_MAX_PORTS;
1678         flow->key.phy.priority = 0;
1679         flow->key.phy.skb_mark = 0;
1680         memset(tun_key, 0, sizeof(flow->key.tun_key));
1681
1682         err = parse_flow_nlattrs(attr, a, &attrs);
1683         if (err)
1684                 return -EINVAL;
1685
1686         memset(&match, 0, sizeof(match));
1687         match.key = &flow->key;
1688
1689         err = metadata_from_nlattrs(&match, &attrs, a, false);
1690         if (err)
1691                 return err;
1692
1693         return 0;
1694 }
1695
1696 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey,
1697                 const struct sw_flow_key *output, struct sk_buff *skb)
1698 {
1699         struct ovs_key_ethernet *eth_key;
1700         struct nlattr *nla, *encap;
1701         bool is_mask = (swkey != output);
1702
1703         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1704                 goto nla_put_failure;
1705
1706         if ((swkey->tun_key.ipv4_dst || is_mask) &&
1707             ovs_ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
1708                 goto nla_put_failure;
1709
1710         if (swkey->phy.in_port == DP_MAX_PORTS) {
1711                 if (is_mask && (output->phy.in_port == 0xffff))
1712                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1713                                 goto nla_put_failure;
1714         } else {
1715                 u16 upper_u16;
1716                 upper_u16 = !is_mask ? 0 : 0xffff;
1717
1718                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1719                                 (upper_u16 << 16) | output->phy.in_port))
1720                         goto nla_put_failure;
1721         }
1722
1723         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1724                 goto nla_put_failure;
1725
1726         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1727         if (!nla)
1728                 goto nla_put_failure;
1729
1730         eth_key = nla_data(nla);
1731         memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN);
1732         memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN);
1733
1734         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1735                 __be16 eth_type;
1736                 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1737                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1738                     nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1739                         goto nla_put_failure;
1740                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1741                 if (!swkey->eth.tci)
1742                         goto unencap;
1743         } else
1744                 encap = NULL;
1745
1746         if (swkey->eth.type == htons(ETH_P_802_2)) {
1747                 /*
1748                  * Ethertype 802.2 is represented in the netlink with omitted
1749                  * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1750                  * 0xffff in the mask attribute.  Ethertype can also
1751                  * be wildcarded.
1752                  */
1753                 if (is_mask && output->eth.type)
1754                         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1755                                                 output->eth.type))
1756                                 goto nla_put_failure;
1757                 goto unencap;
1758         }
1759
1760         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1761                 goto nla_put_failure;
1762
1763         if (swkey->eth.type == htons(ETH_P_IP)) {
1764                 struct ovs_key_ipv4 *ipv4_key;
1765
1766                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1767                 if (!nla)
1768                         goto nla_put_failure;
1769                 ipv4_key = nla_data(nla);
1770                 ipv4_key->ipv4_src = output->ipv4.addr.src;
1771                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1772                 ipv4_key->ipv4_proto = output->ip.proto;
1773                 ipv4_key->ipv4_tos = output->ip.tos;
1774                 ipv4_key->ipv4_ttl = output->ip.ttl;
1775                 ipv4_key->ipv4_frag = output->ip.frag;
1776         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1777                 struct ovs_key_ipv6 *ipv6_key;
1778
1779                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1780                 if (!nla)
1781                         goto nla_put_failure;
1782                 ipv6_key = nla_data(nla);
1783                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1784                                 sizeof(ipv6_key->ipv6_src));
1785                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1786                                 sizeof(ipv6_key->ipv6_dst));
1787                 ipv6_key->ipv6_label = output->ipv6.label;
1788                 ipv6_key->ipv6_proto = output->ip.proto;
1789                 ipv6_key->ipv6_tclass = output->ip.tos;
1790                 ipv6_key->ipv6_hlimit = output->ip.ttl;
1791                 ipv6_key->ipv6_frag = output->ip.frag;
1792         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1793                    swkey->eth.type == htons(ETH_P_RARP)) {
1794                 struct ovs_key_arp *arp_key;
1795
1796                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1797                 if (!nla)
1798                         goto nla_put_failure;
1799                 arp_key = nla_data(nla);
1800                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1801                 arp_key->arp_sip = output->ipv4.addr.src;
1802                 arp_key->arp_tip = output->ipv4.addr.dst;
1803                 arp_key->arp_op = htons(output->ip.proto);
1804                 memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN);
1805                 memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN);
1806         }
1807
1808         if ((swkey->eth.type == htons(ETH_P_IP) ||
1809              swkey->eth.type == htons(ETH_P_IPV6)) &&
1810              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1811
1812                 if (swkey->ip.proto == IPPROTO_TCP) {
1813                         struct ovs_key_tcp *tcp_key;
1814
1815                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1816                         if (!nla)
1817                                 goto nla_put_failure;
1818                         tcp_key = nla_data(nla);
1819                         if (swkey->eth.type == htons(ETH_P_IP)) {
1820                                 tcp_key->tcp_src = output->ipv4.tp.src;
1821                                 tcp_key->tcp_dst = output->ipv4.tp.dst;
1822                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1823                                 tcp_key->tcp_src = output->ipv6.tp.src;
1824                                 tcp_key->tcp_dst = output->ipv6.tp.dst;
1825                         }
1826                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1827                         struct ovs_key_udp *udp_key;
1828
1829                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1830                         if (!nla)
1831                                 goto nla_put_failure;
1832                         udp_key = nla_data(nla);
1833                         if (swkey->eth.type == htons(ETH_P_IP)) {
1834                                 udp_key->udp_src = output->ipv4.tp.src;
1835                                 udp_key->udp_dst = output->ipv4.tp.dst;
1836                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1837                                 udp_key->udp_src = output->ipv6.tp.src;
1838                                 udp_key->udp_dst = output->ipv6.tp.dst;
1839                         }
1840                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1841                            swkey->ip.proto == IPPROTO_ICMP) {
1842                         struct ovs_key_icmp *icmp_key;
1843
1844                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1845                         if (!nla)
1846                                 goto nla_put_failure;
1847                         icmp_key = nla_data(nla);
1848                         icmp_key->icmp_type = ntohs(output->ipv4.tp.src);
1849                         icmp_key->icmp_code = ntohs(output->ipv4.tp.dst);
1850                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1851                            swkey->ip.proto == IPPROTO_ICMPV6) {
1852                         struct ovs_key_icmpv6 *icmpv6_key;
1853
1854                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1855                                                 sizeof(*icmpv6_key));
1856                         if (!nla)
1857                                 goto nla_put_failure;
1858                         icmpv6_key = nla_data(nla);
1859                         icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src);
1860                         icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst);
1861
1862                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1863                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1864                                 struct ovs_key_nd *nd_key;
1865
1866                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1867                                 if (!nla)
1868                                         goto nla_put_failure;
1869                                 nd_key = nla_data(nla);
1870                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1871                                                         sizeof(nd_key->nd_target));
1872                                 memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN);
1873                                 memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN);
1874                         }
1875                 }
1876         }
1877
1878 unencap:
1879         if (encap)
1880                 nla_nest_end(skb, encap);
1881
1882         return 0;
1883
1884 nla_put_failure:
1885         return -EMSGSIZE;
1886 }
1887
1888 /* Initializes the flow module.
1889  * Returns zero if successful or a negative error code. */
1890 int ovs_flow_init(void)
1891 {
1892         flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1893                                         0, NULL);
1894         if (flow_cache == NULL)
1895                 return -ENOMEM;
1896
1897         return 0;
1898 }
1899
1900 /* Uninitializes the flow module. */
1901 void ovs_flow_exit(void)
1902 {
1903         kmem_cache_destroy(flow_cache);
1904 }
1905
1906 struct sw_flow_mask *ovs_sw_flow_mask_alloc(void)
1907 {
1908         struct sw_flow_mask *mask;
1909
1910         mask = kmalloc(sizeof(*mask), GFP_KERNEL);
1911         if (mask)
1912                 mask->ref_count = 0;
1913
1914         return mask;
1915 }
1916
1917 void ovs_sw_flow_mask_add_ref(struct sw_flow_mask *mask)
1918 {
1919         mask->ref_count++;
1920 }
1921
1922 static void rcu_free_sw_flow_mask_cb(struct rcu_head *rcu)
1923 {
1924         struct sw_flow_mask *mask = container_of(rcu, struct sw_flow_mask, rcu);
1925
1926         kfree(mask);
1927 }
1928
1929 void ovs_sw_flow_mask_del_ref(struct sw_flow_mask *mask, bool deferred)
1930 {
1931         if (!mask)
1932                 return;
1933
1934         BUG_ON(!mask->ref_count);
1935         mask->ref_count--;
1936
1937         if (!mask->ref_count) {
1938                 list_del_rcu(&mask->list);
1939                 if (deferred)
1940                         call_rcu(&mask->rcu, rcu_free_sw_flow_mask_cb);
1941                 else
1942                         kfree(mask);
1943         }
1944 }
1945
1946 static bool ovs_sw_flow_mask_equal(const struct sw_flow_mask *a,
1947                 const struct sw_flow_mask *b)
1948 {
1949         u8 *a_ = (u8 *)&a->key + a->range.start;
1950         u8 *b_ = (u8 *)&b->key + b->range.start;
1951
1952         return  (a->range.end == b->range.end)
1953                 && (a->range.start == b->range.start)
1954                 && (memcmp(a_, b_, ovs_sw_flow_mask_actual_size(a)) == 0);
1955 }
1956
1957 struct sw_flow_mask *ovs_sw_flow_mask_find(const struct flow_table *tbl,
1958                                            const struct sw_flow_mask *mask)
1959 {
1960         struct list_head *ml;
1961
1962         list_for_each(ml, tbl->mask_list) {
1963                 struct sw_flow_mask *m;
1964                 m = container_of(ml, struct sw_flow_mask, list);
1965                 if (ovs_sw_flow_mask_equal(mask, m))
1966                         return m;
1967         }
1968
1969         return NULL;
1970 }
1971
1972 /**
1973  * add a new mask into the mask list.
1974  * The caller needs to make sure that 'mask' is not the same
1975  * as any masks that are already on the list.
1976  */
1977 void ovs_sw_flow_mask_insert(struct flow_table *tbl, struct sw_flow_mask *mask)
1978 {
1979         list_add_rcu(&mask->list, tbl->mask_list);
1980 }
1981
1982 /**
1983  * Set 'range' fields in the mask to the value of 'val'.
1984  */
1985 static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask,
1986                 struct sw_flow_key_range *range, u8 val)
1987 {
1988         u8 *m = (u8 *)&mask->key + range->start;
1989
1990         mask->range = *range;
1991         memset(m, val, ovs_sw_flow_mask_size_roundup(mask));
1992 }