datapath: Remove custom version of ipv6_skip_exthdr().
[sliver-openvswitch.git] / datapath / flow.c
1 /*
2  * Copyright (c) 2007-2011 Nicira Networks.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/if_ether.h>
36 #include <linux/ip.h>
37 #include <linux/ipv6.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/ndisc.h>
46
47 #include "vlan.h"
48
49 static struct kmem_cache *flow_cache;
50 static unsigned int hash_seed __read_mostly;
51
52 static int check_header(struct sk_buff *skb, int len)
53 {
54         if (unlikely(skb->len < len))
55                 return -EINVAL;
56         if (unlikely(!pskb_may_pull(skb, len)))
57                 return -ENOMEM;
58         return 0;
59 }
60
61 static bool arphdr_ok(struct sk_buff *skb)
62 {
63         return pskb_may_pull(skb, skb_network_offset(skb) +
64                                   sizeof(struct arp_eth_header));
65 }
66
67 static int check_iphdr(struct sk_buff *skb)
68 {
69         unsigned int nh_ofs = skb_network_offset(skb);
70         unsigned int ip_len;
71         int err;
72
73         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
74         if (unlikely(err))
75                 return err;
76
77         ip_len = ip_hdrlen(skb);
78         if (unlikely(ip_len < sizeof(struct iphdr) ||
79                      skb->len < nh_ofs + ip_len))
80                 return -EINVAL;
81
82         skb_set_transport_header(skb, nh_ofs + ip_len);
83         return 0;
84 }
85
86 static bool tcphdr_ok(struct sk_buff *skb)
87 {
88         int th_ofs = skb_transport_offset(skb);
89         int tcp_len;
90
91         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
92                 return false;
93
94         tcp_len = tcp_hdrlen(skb);
95         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
96                      skb->len < th_ofs + tcp_len))
97                 return false;
98
99         return true;
100 }
101
102 static bool udphdr_ok(struct sk_buff *skb)
103 {
104         return pskb_may_pull(skb, skb_transport_offset(skb) +
105                                   sizeof(struct udphdr));
106 }
107
108 static bool icmphdr_ok(struct sk_buff *skb)
109 {
110         return pskb_may_pull(skb, skb_transport_offset(skb) +
111                                   sizeof(struct icmphdr));
112 }
113
114 u64 ovs_flow_used_time(unsigned long flow_jiffies)
115 {
116         struct timespec cur_ts;
117         u64 cur_ms, idle_ms;
118
119         ktime_get_ts(&cur_ts);
120         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
121         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
122                  cur_ts.tv_nsec / NSEC_PER_MSEC;
123
124         return cur_ms - idle_ms;
125 }
126
127 #define SW_FLOW_KEY_OFFSET(field)               \
128         (offsetof(struct sw_flow_key, field) +  \
129          FIELD_SIZEOF(struct sw_flow_key, field))
130
131 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
132                          int *key_lenp)
133 {
134         unsigned int nh_ofs = skb_network_offset(skb);
135         unsigned int nh_len;
136         int payload_ofs;
137         struct ipv6hdr *nh;
138         uint8_t nexthdr;
139         __be16 frag_off;
140         int err;
141
142         *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
143
144         err = check_header(skb, nh_ofs + sizeof(*nh));
145         if (unlikely(err))
146                 return err;
147
148         nh = ipv6_hdr(skb);
149         nexthdr = nh->nexthdr;
150         payload_ofs = (u8 *)(nh + 1) - skb->data;
151
152         key->ip.proto = NEXTHDR_NONE;
153         key->ip.tos = ipv6_get_dsfield(nh);
154         key->ip.ttl = nh->hop_limit;
155         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
156         key->ipv6.addr.src = nh->saddr;
157         key->ipv6.addr.dst = nh->daddr;
158
159         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
160         if (unlikely(payload_ofs < 0))
161                 return -EINVAL;
162
163         if (frag_off) {
164                 if (frag_off & htons(~0x7))
165                         key->ip.frag = OVS_FRAG_TYPE_LATER;
166                 else
167                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
168         }
169
170         nh_len = payload_ofs - nh_ofs;
171         skb_set_transport_header(skb, nh_ofs + nh_len);
172         key->ip.proto = nexthdr;
173         return nh_len;
174 }
175
176 static bool icmp6hdr_ok(struct sk_buff *skb)
177 {
178         return pskb_may_pull(skb, skb_transport_offset(skb) +
179                                   sizeof(struct icmp6hdr));
180 }
181
182 #define TCP_FLAGS_OFFSET 13
183 #define TCP_FLAG_MASK 0x3f
184
185 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
186 {
187         u8 tcp_flags = 0;
188
189         if (flow->key.eth.type == htons(ETH_P_IP) &&
190             flow->key.ip.proto == IPPROTO_TCP) {
191                 u8 *tcp = (u8 *)tcp_hdr(skb);
192                 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
193         }
194
195         spin_lock(&flow->lock);
196         flow->used = jiffies;
197         flow->packet_count++;
198         flow->byte_count += skb->len;
199         flow->tcp_flags |= tcp_flags;
200         spin_unlock(&flow->lock);
201 }
202
203 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
204 {
205         int actions_len = nla_len(actions);
206         struct sw_flow_actions *sfa;
207
208         /* At least DP_MAX_PORTS actions are required to be able to flood a
209          * packet to every port.  Factor of 2 allows for setting VLAN tags,
210          * etc. */
211         if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
212                 return ERR_PTR(-EINVAL);
213
214         sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
215         if (!sfa)
216                 return ERR_PTR(-ENOMEM);
217
218         sfa->actions_len = actions_len;
219         memcpy(sfa->actions, nla_data(actions), actions_len);
220         return sfa;
221 }
222
223 struct sw_flow *ovs_flow_alloc(void)
224 {
225         struct sw_flow *flow;
226
227         flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
228         if (!flow)
229                 return ERR_PTR(-ENOMEM);
230
231         spin_lock_init(&flow->lock);
232         atomic_set(&flow->refcnt, 1);
233         flow->sf_acts = NULL;
234         flow->dead = false;
235
236         return flow;
237 }
238
239 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
240 {
241         return flex_array_get(table->buckets,
242                                 (hash & (table->n_buckets - 1)));
243 }
244
245 static struct flex_array *alloc_buckets(unsigned int n_buckets)
246 {
247         struct flex_array *buckets;
248         int i, err;
249
250         buckets = flex_array_alloc(sizeof(struct hlist_head *),
251                                    n_buckets, GFP_KERNEL);
252         if (!buckets)
253                 return NULL;
254
255         err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
256         if (err) {
257                 flex_array_free(buckets);
258                 return NULL;
259         }
260
261         for (i = 0; i < n_buckets; i++)
262                 INIT_HLIST_HEAD((struct hlist_head *)
263                                         flex_array_get(buckets, i));
264
265         return buckets;
266 }
267
268 static void free_buckets(struct flex_array *buckets)
269 {
270         flex_array_free(buckets);
271 }
272
273 struct flow_table *ovs_flow_tbl_alloc(int new_size)
274 {
275         struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
276
277         if (!table)
278                 return NULL;
279
280         table->buckets = alloc_buckets(new_size);
281
282         if (!table->buckets) {
283                 kfree(table);
284                 return NULL;
285         }
286         table->n_buckets = new_size;
287         table->count = 0;
288
289         return table;
290 }
291
292 static void flow_free(struct sw_flow *flow)
293 {
294         flow->dead = true;
295         ovs_flow_put(flow);
296 }
297
298 void ovs_flow_tbl_destroy(struct flow_table *table)
299 {
300         int i;
301
302         if (!table)
303                 return;
304
305         for (i = 0; i < table->n_buckets; i++) {
306                 struct sw_flow *flow;
307                 struct hlist_head *head = flex_array_get(table->buckets, i);
308                 struct hlist_node *node, *n;
309
310                 hlist_for_each_entry_safe(flow, node, n, head, hash_node) {
311                         hlist_del_init_rcu(&flow->hash_node);
312                         flow_free(flow);
313                 }
314         }
315
316         free_buckets(table->buckets);
317         kfree(table);
318 }
319
320 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
321 {
322         struct flow_table *table = container_of(rcu, struct flow_table, rcu);
323
324         ovs_flow_tbl_destroy(table);
325 }
326
327 void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
328 {
329         if (!table)
330                 return;
331
332         call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
333 }
334
335 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
336 {
337         struct sw_flow *flow;
338         struct hlist_head *head;
339         struct hlist_node *n;
340         int i;
341
342         while (*bucket < table->n_buckets) {
343                 i = 0;
344                 head = flex_array_get(table->buckets, *bucket);
345                 hlist_for_each_entry_rcu(flow, n, head, hash_node) {
346                         if (i < *last) {
347                                 i++;
348                                 continue;
349                         }
350                         *last = i + 1;
351                         return flow;
352                 }
353                 (*bucket)++;
354                 *last = 0;
355         }
356
357         return NULL;
358 }
359
360 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
361 {
362         struct flow_table *new_table;
363         int n_buckets = table->n_buckets * 2;
364         int i;
365
366         new_table = ovs_flow_tbl_alloc(n_buckets);
367         if (!new_table)
368                 return ERR_PTR(-ENOMEM);
369
370         for (i = 0; i < table->n_buckets; i++) {
371                 struct sw_flow *flow;
372                 struct hlist_head *head;
373                 struct hlist_node *n, *pos;
374
375                 head = flex_array_get(table->buckets, i);
376
377                 hlist_for_each_entry_safe(flow, n, pos, head, hash_node) {
378                         hlist_del_init_rcu(&flow->hash_node);
379                         ovs_flow_tbl_insert(new_table, flow);
380                 }
381         }
382
383         return new_table;
384 }
385
386 /* RCU callback used by ovs_flow_deferred_free. */
387 static void rcu_free_flow_callback(struct rcu_head *rcu)
388 {
389         struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
390
391         flow->dead = true;
392         ovs_flow_put(flow);
393 }
394
395 /* Schedules 'flow' to be freed after the next RCU grace period.
396  * The caller must hold rcu_read_lock for this to be sensible. */
397 void ovs_flow_deferred_free(struct sw_flow *flow)
398 {
399         call_rcu(&flow->rcu, rcu_free_flow_callback);
400 }
401
402 void ovs_flow_hold(struct sw_flow *flow)
403 {
404         atomic_inc(&flow->refcnt);
405 }
406
407 void ovs_flow_put(struct sw_flow *flow)
408 {
409         if (unlikely(!flow))
410                 return;
411
412         if (atomic_dec_and_test(&flow->refcnt)) {
413                 kfree((struct sf_flow_acts __force *)flow->sf_acts);
414                 kmem_cache_free(flow_cache, flow);
415         }
416 }
417
418 /* RCU callback used by ovs_flow_deferred_free_acts. */
419 static void rcu_free_acts_callback(struct rcu_head *rcu)
420 {
421         struct sw_flow_actions *sf_acts = container_of(rcu,
422                         struct sw_flow_actions, rcu);
423         kfree(sf_acts);
424 }
425
426 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
427  * The caller must hold rcu_read_lock for this to be sensible. */
428 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
429 {
430         call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
431 }
432
433 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
434 {
435         struct qtag_prefix {
436                 __be16 eth_type; /* ETH_P_8021Q */
437                 __be16 tci;
438         };
439         struct qtag_prefix *qp;
440
441         if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
442                 return 0;
443
444         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
445                                          sizeof(__be16))))
446                 return -ENOMEM;
447
448         qp = (struct qtag_prefix *) skb->data;
449         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
450         __skb_pull(skb, sizeof(struct qtag_prefix));
451
452         return 0;
453 }
454
455 static __be16 parse_ethertype(struct sk_buff *skb)
456 {
457         struct llc_snap_hdr {
458                 u8  dsap;  /* Always 0xAA */
459                 u8  ssap;  /* Always 0xAA */
460                 u8  ctrl;
461                 u8  oui[3];
462                 __be16 ethertype;
463         };
464         struct llc_snap_hdr *llc;
465         __be16 proto;
466
467         proto = *(__be16 *) skb->data;
468         __skb_pull(skb, sizeof(__be16));
469
470         if (ntohs(proto) >= 1536)
471                 return proto;
472
473         if (skb->len < sizeof(struct llc_snap_hdr))
474                 return htons(ETH_P_802_2);
475
476         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
477                 return htons(0);
478
479         llc = (struct llc_snap_hdr *) skb->data;
480         if (llc->dsap != LLC_SAP_SNAP ||
481             llc->ssap != LLC_SAP_SNAP ||
482             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
483                 return htons(ETH_P_802_2);
484
485         __skb_pull(skb, sizeof(struct llc_snap_hdr));
486         return llc->ethertype;
487 }
488
489 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
490                         int *key_lenp, int nh_len)
491 {
492         struct icmp6hdr *icmp = icmp6_hdr(skb);
493         int error = 0;
494         int key_len;
495
496         /* The ICMPv6 type and code fields use the 16-bit transport port
497          * fields, so we need to store them in 16-bit network byte order.
498          */
499         key->ipv6.tp.src = htons(icmp->icmp6_type);
500         key->ipv6.tp.dst = htons(icmp->icmp6_code);
501         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
502
503         if (icmp->icmp6_code == 0 &&
504             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
505              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
506                 int icmp_len = skb->len - skb_transport_offset(skb);
507                 struct nd_msg *nd;
508                 int offset;
509
510                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
511
512                 /* In order to process neighbor discovery options, we need the
513                  * entire packet.
514                  */
515                 if (unlikely(icmp_len < sizeof(*nd)))
516                         goto out;
517                 if (unlikely(skb_linearize(skb))) {
518                         error = -ENOMEM;
519                         goto out;
520                 }
521
522                 nd = (struct nd_msg *)skb_transport_header(skb);
523                 key->ipv6.nd.target = nd->target;
524                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
525
526                 icmp_len -= sizeof(*nd);
527                 offset = 0;
528                 while (icmp_len >= 8) {
529                         struct nd_opt_hdr *nd_opt =
530                                  (struct nd_opt_hdr *)(nd->opt + offset);
531                         int opt_len = nd_opt->nd_opt_len * 8;
532
533                         if (unlikely(!opt_len || opt_len > icmp_len))
534                                 goto invalid;
535
536                         /* Store the link layer address if the appropriate
537                          * option is provided.  It is considered an error if
538                          * the same link layer option is specified twice.
539                          */
540                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
541                             && opt_len == 8) {
542                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
543                                         goto invalid;
544                                 memcpy(key->ipv6.nd.sll,
545                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
546                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
547                                    && opt_len == 8) {
548                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
549                                         goto invalid;
550                                 memcpy(key->ipv6.nd.tll,
551                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
552                         }
553
554                         icmp_len -= opt_len;
555                         offset += opt_len;
556                 }
557         }
558
559         goto out;
560
561 invalid:
562         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
563         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
564         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
565
566 out:
567         *key_lenp = key_len;
568         return error;
569 }
570
571 /**
572  * ovs_flow_extract - extracts a flow key from an Ethernet frame.
573  * @skb: sk_buff that contains the frame, with skb->data pointing to the
574  * Ethernet header
575  * @in_port: port number on which @skb was received.
576  * @key: output flow key
577  * @key_lenp: length of output flow key
578  *
579  * The caller must ensure that skb->len >= ETH_HLEN.
580  *
581  * Returns 0 if successful, otherwise a negative errno value.
582  *
583  * Initializes @skb header pointers as follows:
584  *
585  *    - skb->mac_header: the Ethernet header.
586  *
587  *    - skb->network_header: just past the Ethernet header, or just past the
588  *      VLAN header, to the first byte of the Ethernet payload.
589  *
590  *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
591  *      on output, then just past the IP header, if one is present and
592  *      of a correct length, otherwise the same as skb->network_header.
593  *      For other key->dl_type values it is left untouched.
594  */
595 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
596                  int *key_lenp)
597 {
598         int error = 0;
599         int key_len = SW_FLOW_KEY_OFFSET(eth);
600         struct ethhdr *eth;
601
602         memset(key, 0, sizeof(*key));
603
604         key->phy.priority = skb->priority;
605         key->phy.tun_id = OVS_CB(skb)->tun_id;
606         key->phy.in_port = in_port;
607
608         skb_reset_mac_header(skb);
609
610         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
611          * header in the linear data area.
612          */
613         eth = eth_hdr(skb);
614         memcpy(key->eth.src, eth->h_source, ETH_ALEN);
615         memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
616
617         __skb_pull(skb, 2 * ETH_ALEN);
618
619         if (vlan_tx_tag_present(skb))
620                 key->eth.tci = htons(vlan_get_tci(skb));
621         else if (eth->h_proto == htons(ETH_P_8021Q))
622                 if (unlikely(parse_vlan(skb, key)))
623                         return -ENOMEM;
624
625         key->eth.type = parse_ethertype(skb);
626         if (unlikely(key->eth.type == htons(0)))
627                 return -ENOMEM;
628
629         skb_reset_network_header(skb);
630         __skb_push(skb, skb->data - skb_mac_header(skb));
631
632         /* Network layer. */
633         if (key->eth.type == htons(ETH_P_IP)) {
634                 struct iphdr *nh;
635                 __be16 offset;
636
637                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
638
639                 error = check_iphdr(skb);
640                 if (unlikely(error)) {
641                         if (error == -EINVAL) {
642                                 skb->transport_header = skb->network_header;
643                                 error = 0;
644                         }
645                         goto out;
646                 }
647
648                 nh = ip_hdr(skb);
649                 key->ipv4.addr.src = nh->saddr;
650                 key->ipv4.addr.dst = nh->daddr;
651
652                 key->ip.proto = nh->protocol;
653                 key->ip.tos = nh->tos;
654                 key->ip.ttl = nh->ttl;
655
656                 offset = nh->frag_off & htons(IP_OFFSET);
657                 if (offset) {
658                         key->ip.frag = OVS_FRAG_TYPE_LATER;
659                         goto out;
660                 }
661                 if (nh->frag_off & htons(IP_MF) ||
662                          skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
663                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
664
665                 /* Transport layer. */
666                 if (key->ip.proto == IPPROTO_TCP) {
667                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
668                         if (tcphdr_ok(skb)) {
669                                 struct tcphdr *tcp = tcp_hdr(skb);
670                                 key->ipv4.tp.src = tcp->source;
671                                 key->ipv4.tp.dst = tcp->dest;
672                         }
673                 } else if (key->ip.proto == IPPROTO_UDP) {
674                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
675                         if (udphdr_ok(skb)) {
676                                 struct udphdr *udp = udp_hdr(skb);
677                                 key->ipv4.tp.src = udp->source;
678                                 key->ipv4.tp.dst = udp->dest;
679                         }
680                 } else if (key->ip.proto == IPPROTO_ICMP) {
681                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
682                         if (icmphdr_ok(skb)) {
683                                 struct icmphdr *icmp = icmp_hdr(skb);
684                                 /* The ICMP type and code fields use the 16-bit
685                                  * transport port fields, so we need to store
686                                  * them in 16-bit network byte order. */
687                                 key->ipv4.tp.src = htons(icmp->type);
688                                 key->ipv4.tp.dst = htons(icmp->code);
689                         }
690                 }
691
692         } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
693                 struct arp_eth_header *arp;
694
695                 arp = (struct arp_eth_header *)skb_network_header(skb);
696
697                 if (arp->ar_hrd == htons(ARPHRD_ETHER)
698                                 && arp->ar_pro == htons(ETH_P_IP)
699                                 && arp->ar_hln == ETH_ALEN
700                                 && arp->ar_pln == 4) {
701
702                         /* We only match on the lower 8 bits of the opcode. */
703                         if (ntohs(arp->ar_op) <= 0xff)
704                                 key->ip.proto = ntohs(arp->ar_op);
705
706                         if (key->ip.proto == ARPOP_REQUEST
707                                         || key->ip.proto == ARPOP_REPLY) {
708                                 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
709                                 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
710                                 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
711                                 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
712                                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
713                         }
714                 }
715         } else if (key->eth.type == htons(ETH_P_IPV6)) {
716                 int nh_len;             /* IPv6 Header + Extensions */
717
718                 nh_len = parse_ipv6hdr(skb, key, &key_len);
719                 if (unlikely(nh_len < 0)) {
720                         if (nh_len == -EINVAL)
721                                 skb->transport_header = skb->network_header;
722                         else
723                                 error = nh_len;
724                         goto out;
725                 }
726
727                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
728                         goto out;
729                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
730                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
731
732                 /* Transport layer. */
733                 if (key->ip.proto == NEXTHDR_TCP) {
734                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
735                         if (tcphdr_ok(skb)) {
736                                 struct tcphdr *tcp = tcp_hdr(skb);
737                                 key->ipv6.tp.src = tcp->source;
738                                 key->ipv6.tp.dst = tcp->dest;
739                         }
740                 } else if (key->ip.proto == NEXTHDR_UDP) {
741                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
742                         if (udphdr_ok(skb)) {
743                                 struct udphdr *udp = udp_hdr(skb);
744                                 key->ipv6.tp.src = udp->source;
745                                 key->ipv6.tp.dst = udp->dest;
746                         }
747                 } else if (key->ip.proto == NEXTHDR_ICMP) {
748                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
749                         if (icmp6hdr_ok(skb)) {
750                                 error = parse_icmpv6(skb, key, &key_len, nh_len);
751                                 if (error < 0)
752                                         goto out;
753                         }
754                 }
755         }
756
757 out:
758         *key_lenp = key_len;
759         return error;
760 }
761
762 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
763 {
764         return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), hash_seed);
765 }
766
767 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
768                                 struct sw_flow_key *key, int key_len)
769 {
770         struct sw_flow *flow;
771         struct hlist_node *n;
772         struct hlist_head *head;
773         u32 hash;
774
775         hash = ovs_flow_hash(key, key_len);
776
777         head = find_bucket(table, hash);
778         hlist_for_each_entry_rcu(flow, n, head, hash_node) {
779
780                 if (flow->hash == hash &&
781                     !memcmp(&flow->key, key, key_len)) {
782                         return flow;
783                 }
784         }
785         return NULL;
786 }
787
788 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
789 {
790         struct hlist_head *head;
791
792         head = find_bucket(table, flow->hash);
793         hlist_add_head_rcu(&flow->hash_node, head);
794         table->count++;
795 }
796
797 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
798 {
799         if (!hlist_unhashed(&flow->hash_node)) {
800                 hlist_del_init_rcu(&flow->hash_node);
801                 table->count--;
802                 BUG_ON(table->count < 0);
803         }
804 }
805
806 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
807 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
808         [OVS_KEY_ATTR_ENCAP] = -1,
809         [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
810         [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
811         [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
812         [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
813         [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
814         [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
815         [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
816         [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
817         [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
818         [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
819         [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
820         [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
821         [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
822
823         /* Not upstream. */
824         [OVS_KEY_ATTR_TUN_ID] = sizeof(__be64),
825 };
826
827 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
828                                   const struct nlattr *a[], u64 *attrs)
829 {
830         const struct ovs_key_icmp *icmp_key;
831         const struct ovs_key_tcp *tcp_key;
832         const struct ovs_key_udp *udp_key;
833
834         switch (swkey->ip.proto) {
835         case IPPROTO_TCP:
836                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
837                         return -EINVAL;
838                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
839
840                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
841                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
842                 swkey->ipv4.tp.src = tcp_key->tcp_src;
843                 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
844                 break;
845
846         case IPPROTO_UDP:
847                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
848                         return -EINVAL;
849                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
850
851                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
852                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
853                 swkey->ipv4.tp.src = udp_key->udp_src;
854                 swkey->ipv4.tp.dst = udp_key->udp_dst;
855                 break;
856
857         case IPPROTO_ICMP:
858                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
859                         return -EINVAL;
860                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
861
862                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
863                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
864                 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
865                 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
866                 break;
867         }
868
869         return 0;
870 }
871
872 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
873                                   const struct nlattr *a[], u64 *attrs)
874 {
875         const struct ovs_key_icmpv6 *icmpv6_key;
876         const struct ovs_key_tcp *tcp_key;
877         const struct ovs_key_udp *udp_key;
878
879         switch (swkey->ip.proto) {
880         case IPPROTO_TCP:
881                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
882                         return -EINVAL;
883                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
884
885                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
886                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
887                 swkey->ipv6.tp.src = tcp_key->tcp_src;
888                 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
889                 break;
890
891         case IPPROTO_UDP:
892                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
893                         return -EINVAL;
894                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
895
896                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
897                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
898                 swkey->ipv6.tp.src = udp_key->udp_src;
899                 swkey->ipv6.tp.dst = udp_key->udp_dst;
900                 break;
901
902         case IPPROTO_ICMPV6:
903                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
904                         return -EINVAL;
905                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
906
907                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
908                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
909                 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
910                 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
911
912                 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
913                     swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
914                         const struct ovs_key_nd *nd_key;
915
916                         if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
917                                 return -EINVAL;
918                         *attrs &= ~(1 << OVS_KEY_ATTR_ND);
919
920                         *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
921                         nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
922                         memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
923                                sizeof(swkey->ipv6.nd.target));
924                         memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
925                         memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
926                 }
927                 break;
928         }
929
930         return 0;
931 }
932
933 static int parse_flow_nlattrs(const struct nlattr *attr,
934                               const struct nlattr *a[], u64 *attrsp)
935 {
936         const struct nlattr *nla;
937         u64 attrs;
938         int rem;
939
940         attrs = 0;
941         nla_for_each_nested(nla, attr, rem) {
942                 u16 type = nla_type(nla);
943                 int expected_len;
944
945                 if (type > OVS_KEY_ATTR_MAX || attrs & (1ULL << type))
946                         return -EINVAL;
947
948                 expected_len = ovs_key_lens[type];
949                 if (nla_len(nla) != expected_len && expected_len != -1)
950                         return -EINVAL;
951
952                 attrs |= 1ULL << type;
953                 a[type] = nla;
954         }
955         if (rem)
956                 return -EINVAL;
957
958         *attrsp = attrs;
959         return 0;
960 }
961
962 /**
963  * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
964  * @swkey: receives the extracted flow key.
965  * @key_lenp: number of bytes used in @swkey.
966  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
967  * sequence.
968  */
969 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
970                       const struct nlattr *attr)
971 {
972         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
973         const struct ovs_key_ethernet *eth_key;
974         int key_len;
975         u64 attrs;
976         int err;
977
978         memset(swkey, 0, sizeof(struct sw_flow_key));
979         key_len = SW_FLOW_KEY_OFFSET(eth);
980
981         err = parse_flow_nlattrs(attr, a, &attrs);
982         if (err)
983                 return err;
984
985         /* Metadata attributes. */
986         if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
987                 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
988                 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
989         }
990         if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
991                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
992                 if (in_port >= DP_MAX_PORTS)
993                         return -EINVAL;
994                 swkey->phy.in_port = in_port;
995                 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
996         } else {
997                 swkey->phy.in_port = USHRT_MAX;
998         }
999
1000         if (attrs & (1ULL << OVS_KEY_ATTR_TUN_ID)) {
1001                 swkey->phy.tun_id = nla_get_be64(a[OVS_KEY_ATTR_TUN_ID]);
1002                 attrs &= ~(1ULL << OVS_KEY_ATTR_TUN_ID);
1003         }
1004
1005         /* Data attributes. */
1006         if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1007                 return -EINVAL;
1008         attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1009
1010         eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1011         memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1012         memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1013
1014         if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1015             nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1016                 const struct nlattr *encap;
1017                 __be16 tci;
1018
1019                 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1020                               (1 << OVS_KEY_ATTR_ETHERTYPE) |
1021                               (1 << OVS_KEY_ATTR_ENCAP)))
1022                         return -EINVAL;
1023
1024                 encap = a[OVS_KEY_ATTR_ENCAP];
1025                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1026                 if (tci & htons(VLAN_TAG_PRESENT)) {
1027                         swkey->eth.tci = tci;
1028
1029                         err = parse_flow_nlattrs(encap, a, &attrs);
1030                         if (err)
1031                                 return err;
1032                 } else if (!tci) {
1033                         /* Corner case for truncated 802.1Q header. */
1034                         if (nla_len(encap))
1035                                 return -EINVAL;
1036
1037                         swkey->eth.type = htons(ETH_P_8021Q);
1038                         *key_lenp = key_len;
1039                         return 0;
1040                 } else {
1041                         return -EINVAL;
1042                 }
1043         }
1044
1045         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1046                 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1047                 if (ntohs(swkey->eth.type) < 1536)
1048                         return -EINVAL;
1049                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1050         } else {
1051                 swkey->eth.type = htons(ETH_P_802_2);
1052         }
1053
1054         if (swkey->eth.type == htons(ETH_P_IP)) {
1055                 const struct ovs_key_ipv4 *ipv4_key;
1056
1057                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1058                         return -EINVAL;
1059                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1060
1061                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1062                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1063                 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1064                         return -EINVAL;
1065                 swkey->ip.proto = ipv4_key->ipv4_proto;
1066                 swkey->ip.tos = ipv4_key->ipv4_tos;
1067                 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1068                 swkey->ip.frag = ipv4_key->ipv4_frag;
1069                 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1070                 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1071
1072                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1073                         err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1074                         if (err)
1075                                 return err;
1076                 }
1077         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1078                 const struct ovs_key_ipv6 *ipv6_key;
1079
1080                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1081                         return -EINVAL;
1082                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1083
1084                 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1085                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1086                 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1087                         return -EINVAL;
1088                 swkey->ipv6.label = ipv6_key->ipv6_label;
1089                 swkey->ip.proto = ipv6_key->ipv6_proto;
1090                 swkey->ip.tos = ipv6_key->ipv6_tclass;
1091                 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1092                 swkey->ip.frag = ipv6_key->ipv6_frag;
1093                 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1094                        sizeof(swkey->ipv6.addr.src));
1095                 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1096                        sizeof(swkey->ipv6.addr.dst));
1097
1098                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1099                         err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1100                         if (err)
1101                                 return err;
1102                 }
1103         } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1104                 const struct ovs_key_arp *arp_key;
1105
1106                 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1107                         return -EINVAL;
1108                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1109
1110                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1111                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1112                 swkey->ipv4.addr.src = arp_key->arp_sip;
1113                 swkey->ipv4.addr.dst = arp_key->arp_tip;
1114                 if (arp_key->arp_op & htons(0xff00))
1115                         return -EINVAL;
1116                 swkey->ip.proto = ntohs(arp_key->arp_op);
1117                 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1118                 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1119         }
1120
1121         if (attrs)
1122                 return -EINVAL;
1123         *key_lenp = key_len;
1124
1125         return 0;
1126 }
1127
1128 /**
1129  * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1130  * @in_port: receives the extracted input port.
1131  * @tun_id: receives the extracted tunnel ID.
1132  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1133  * sequence.
1134  *
1135  * This parses a series of Netlink attributes that form a flow key, which must
1136  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1137  * get the metadata, that is, the parts of the flow key that cannot be
1138  * extracted from the packet itself.
1139  */
1140 int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port, __be64 *tun_id,
1141                                    const struct nlattr *attr)
1142 {
1143         const struct nlattr *nla;
1144         int rem;
1145
1146         *in_port = USHRT_MAX;
1147         *tun_id = 0;
1148         *priority = 0;
1149
1150         nla_for_each_nested(nla, attr, rem) {
1151                 int type = nla_type(nla);
1152
1153                 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1154                         if (nla_len(nla) != ovs_key_lens[type])
1155                                 return -EINVAL;
1156
1157                         switch (type) {
1158                         case OVS_KEY_ATTR_PRIORITY:
1159                                 *priority = nla_get_u32(nla);
1160                                 break;
1161
1162                         case OVS_KEY_ATTR_TUN_ID:
1163                                 *tun_id = nla_get_be64(nla);
1164                                 break;
1165
1166                         case OVS_KEY_ATTR_IN_PORT:
1167                                 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1168                                         return -EINVAL;
1169                                 *in_port = nla_get_u32(nla);
1170                                 break;
1171                         }
1172                 }
1173         }
1174         if (rem)
1175                 return -EINVAL;
1176         return 0;
1177 }
1178
1179 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1180 {
1181         struct ovs_key_ethernet *eth_key;
1182         struct nlattr *nla, *encap;
1183
1184         if (swkey->phy.priority)
1185                 NLA_PUT_U32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority);
1186
1187         if (swkey->phy.tun_id != cpu_to_be64(0))
1188                 NLA_PUT_BE64(skb, OVS_KEY_ATTR_TUN_ID, swkey->phy.tun_id);
1189
1190         if (swkey->phy.in_port != USHRT_MAX)
1191                 NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port);
1192
1193         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1194         if (!nla)
1195                 goto nla_put_failure;
1196         eth_key = nla_data(nla);
1197         memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1198         memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1199
1200         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1201                 NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q));
1202                 NLA_PUT_BE16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci);
1203                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1204                 if (!swkey->eth.tci)
1205                         goto unencap;
1206         } else {
1207                 encap = NULL;
1208         }
1209
1210         if (swkey->eth.type == htons(ETH_P_802_2))
1211                 goto unencap;
1212
1213         NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type);
1214
1215         if (swkey->eth.type == htons(ETH_P_IP)) {
1216                 struct ovs_key_ipv4 *ipv4_key;
1217
1218                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1219                 if (!nla)
1220                         goto nla_put_failure;
1221                 ipv4_key = nla_data(nla);
1222                 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1223                 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1224                 ipv4_key->ipv4_proto = swkey->ip.proto;
1225                 ipv4_key->ipv4_tos = swkey->ip.tos;
1226                 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1227                 ipv4_key->ipv4_frag = swkey->ip.frag;
1228         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1229                 struct ovs_key_ipv6 *ipv6_key;
1230
1231                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1232                 if (!nla)
1233                         goto nla_put_failure;
1234                 ipv6_key = nla_data(nla);
1235                 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1236                                 sizeof(ipv6_key->ipv6_src));
1237                 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1238                                 sizeof(ipv6_key->ipv6_dst));
1239                 ipv6_key->ipv6_label = swkey->ipv6.label;
1240                 ipv6_key->ipv6_proto = swkey->ip.proto;
1241                 ipv6_key->ipv6_tclass = swkey->ip.tos;
1242                 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1243                 ipv6_key->ipv6_frag = swkey->ip.frag;
1244         } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1245                 struct ovs_key_arp *arp_key;
1246
1247                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1248                 if (!nla)
1249                         goto nla_put_failure;
1250                 arp_key = nla_data(nla);
1251                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1252                 arp_key->arp_sip = swkey->ipv4.addr.src;
1253                 arp_key->arp_tip = swkey->ipv4.addr.dst;
1254                 arp_key->arp_op = htons(swkey->ip.proto);
1255                 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1256                 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1257         }
1258
1259         if ((swkey->eth.type == htons(ETH_P_IP) ||
1260              swkey->eth.type == htons(ETH_P_IPV6)) &&
1261              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1262
1263                 if (swkey->ip.proto == IPPROTO_TCP) {
1264                         struct ovs_key_tcp *tcp_key;
1265
1266                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1267                         if (!nla)
1268                                 goto nla_put_failure;
1269                         tcp_key = nla_data(nla);
1270                         if (swkey->eth.type == htons(ETH_P_IP)) {
1271                                 tcp_key->tcp_src = swkey->ipv4.tp.src;
1272                                 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1273                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1274                                 tcp_key->tcp_src = swkey->ipv6.tp.src;
1275                                 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1276                         }
1277                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1278                         struct ovs_key_udp *udp_key;
1279
1280                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1281                         if (!nla)
1282                                 goto nla_put_failure;
1283                         udp_key = nla_data(nla);
1284                         if (swkey->eth.type == htons(ETH_P_IP)) {
1285                                 udp_key->udp_src = swkey->ipv4.tp.src;
1286                                 udp_key->udp_dst = swkey->ipv4.tp.dst;
1287                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1288                                 udp_key->udp_src = swkey->ipv6.tp.src;
1289                                 udp_key->udp_dst = swkey->ipv6.tp.dst;
1290                         }
1291                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1292                            swkey->ip.proto == IPPROTO_ICMP) {
1293                         struct ovs_key_icmp *icmp_key;
1294
1295                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1296                         if (!nla)
1297                                 goto nla_put_failure;
1298                         icmp_key = nla_data(nla);
1299                         icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1300                         icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1301                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1302                            swkey->ip.proto == IPPROTO_ICMPV6) {
1303                         struct ovs_key_icmpv6 *icmpv6_key;
1304
1305                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1306                                                 sizeof(*icmpv6_key));
1307                         if (!nla)
1308                                 goto nla_put_failure;
1309                         icmpv6_key = nla_data(nla);
1310                         icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1311                         icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1312
1313                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1314                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1315                                 struct ovs_key_nd *nd_key;
1316
1317                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1318                                 if (!nla)
1319                                         goto nla_put_failure;
1320                                 nd_key = nla_data(nla);
1321                                 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1322                                                         sizeof(nd_key->nd_target));
1323                                 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1324                                 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1325                         }
1326                 }
1327         }
1328
1329 unencap:
1330         if (encap)
1331                 nla_nest_end(skb, encap);
1332
1333         return 0;
1334
1335 nla_put_failure:
1336         return -EMSGSIZE;
1337 }
1338
1339 /* Initializes the flow module.
1340  * Returns zero if successful or a negative error code. */
1341 int ovs_flow_init(void)
1342 {
1343         flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1344                                         0, NULL);
1345         if (flow_cache == NULL)
1346                 return -ENOMEM;
1347
1348         get_random_bytes(&hash_seed, sizeof(hash_seed));
1349
1350         return 0;
1351 }
1352
1353 /* Uninitializes the flow module. */
1354 void ovs_flow_exit(void)
1355 {
1356         kmem_cache_destroy(flow_cache);
1357 }