datapath: Allow flow key Netlink attributes to appear in any order.
[sliver-openvswitch.git] / datapath / flow.c
1 /*
2  * Distributed under the terms of the GNU GPL version 2.
3  * Copyright (c) 2007, 2008, 2009, 2010, 2011 Nicira Networks.
4  *
5  * Significant portions of this file may be copied from parts of the Linux
6  * kernel, by Linus Torvalds and others.
7  */
8
9 #include "flow.h"
10 #include "datapath.h"
11 #include <linux/uaccess.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/if_ether.h>
15 #include <linux/if_vlan.h>
16 #include <net/llc_pdu.h>
17 #include <linux/kernel.h>
18 #include <linux/jhash.h>
19 #include <linux/jiffies.h>
20 #include <linux/llc.h>
21 #include <linux/module.h>
22 #include <linux/in.h>
23 #include <linux/rcupdate.h>
24 #include <linux/if_arp.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <linux/tcp.h>
29 #include <linux/udp.h>
30 #include <linux/icmp.h>
31 #include <linux/icmpv6.h>
32 #include <linux/rculist.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36
37 #include "vlan.h"
38
39 static struct kmem_cache *flow_cache;
40 static unsigned int hash_seed __read_mostly;
41
42 static int check_header(struct sk_buff *skb, int len)
43 {
44         if (unlikely(skb->len < len))
45                 return -EINVAL;
46         if (unlikely(!pskb_may_pull(skb, len)))
47                 return -ENOMEM;
48         return 0;
49 }
50
51 static bool arphdr_ok(struct sk_buff *skb)
52 {
53         return pskb_may_pull(skb, skb_network_offset(skb) +
54                                   sizeof(struct arp_eth_header));
55 }
56
57 static int check_iphdr(struct sk_buff *skb)
58 {
59         unsigned int nh_ofs = skb_network_offset(skb);
60         unsigned int ip_len;
61         int err;
62
63         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
64         if (unlikely(err))
65                 return err;
66
67         ip_len = ip_hdrlen(skb);
68         if (unlikely(ip_len < sizeof(struct iphdr) ||
69                      skb->len < nh_ofs + ip_len))
70                 return -EINVAL;
71
72         skb_set_transport_header(skb, nh_ofs + ip_len);
73         return 0;
74 }
75
76 static bool tcphdr_ok(struct sk_buff *skb)
77 {
78         int th_ofs = skb_transport_offset(skb);
79         int tcp_len;
80
81         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
82                 return false;
83
84         tcp_len = tcp_hdrlen(skb);
85         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
86                      skb->len < th_ofs + tcp_len))
87                 return false;
88
89         return true;
90 }
91
92 static bool udphdr_ok(struct sk_buff *skb)
93 {
94         return pskb_may_pull(skb, skb_transport_offset(skb) +
95                                   sizeof(struct udphdr));
96 }
97
98 static bool icmphdr_ok(struct sk_buff *skb)
99 {
100         return pskb_may_pull(skb, skb_transport_offset(skb) +
101                                   sizeof(struct icmphdr));
102 }
103
104 u64 flow_used_time(unsigned long flow_jiffies)
105 {
106         struct timespec cur_ts;
107         u64 cur_ms, idle_ms;
108
109         ktime_get_ts(&cur_ts);
110         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
111         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
112                  cur_ts.tv_nsec / NSEC_PER_MSEC;
113
114         return cur_ms - idle_ms;
115 }
116
117 #define SW_FLOW_KEY_OFFSET(field)               \
118         (offsetof(struct sw_flow_key, field) +  \
119          FIELD_SIZEOF(struct sw_flow_key, field))
120
121 /**
122  * skip_exthdr - skip any IPv6 extension headers
123  * @skb: skbuff to parse
124  * @start: offset of first extension header
125  * @nexthdrp: Initially, points to the type of the extension header at @start.
126  * This function updates it to point to the extension header at the final
127  * offset.
128  * @frag: Points to the @frag member in a &struct sw_flow_key.  This
129  * function sets an appropriate %OVS_FRAG_TYPE_* value.
130  *
131  * This is based on ipv6_skip_exthdr() but adds the updates to *@frag.
132  *
133  * When there is more than one fragment header, this version reports whether
134  * the final fragment header that it examines is a first fragment.
135  *
136  * Returns the final payload offset, or -1 on error.
137  */
138 static int skip_exthdr(const struct sk_buff *skb, int start, u8 *nexthdrp,
139                        u8 *frag)
140 {
141         u8 nexthdr = *nexthdrp;
142
143         while (ipv6_ext_hdr(nexthdr)) {
144                 struct ipv6_opt_hdr _hdr, *hp;
145                 int hdrlen;
146
147                 if (nexthdr == NEXTHDR_NONE)
148                         return -1;
149                 hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr);
150                 if (hp == NULL)
151                         return -1;
152                 if (nexthdr == NEXTHDR_FRAGMENT) {
153                         __be16 _frag_off, *fp;
154                         fp = skb_header_pointer(skb,
155                                                 start+offsetof(struct frag_hdr,
156                                                                frag_off),
157                                                 sizeof(_frag_off),
158                                                 &_frag_off);
159                         if (fp == NULL)
160                                 return -1;
161
162                         if (ntohs(*fp) & ~0x7) {
163                                 *frag = OVS_FRAG_TYPE_LATER;
164                                 break;
165                         }
166                         *frag = OVS_FRAG_TYPE_FIRST;
167                         hdrlen = 8;
168                 } else if (nexthdr == NEXTHDR_AUTH)
169                         hdrlen = (hp->hdrlen+2)<<2;
170                 else
171                         hdrlen = ipv6_optlen(hp);
172
173                 nexthdr = hp->nexthdr;
174                 start += hdrlen;
175         }
176
177         *nexthdrp = nexthdr;
178         return start;
179 }
180
181 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
182                          int *key_lenp)
183 {
184         unsigned int nh_ofs = skb_network_offset(skb);
185         unsigned int nh_len;
186         int payload_ofs;
187         struct ipv6hdr *nh;
188         uint8_t nexthdr;
189         int err;
190
191         *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
192
193         err = check_header(skb, nh_ofs + sizeof(*nh));
194         if (unlikely(err))
195                 return err;
196
197         nh = ipv6_hdr(skb);
198         nexthdr = nh->nexthdr;
199         payload_ofs = (u8 *)(nh + 1) - skb->data;
200
201         key->ip.proto = NEXTHDR_NONE;
202         key->ip.tos = ipv6_get_dsfield(nh);
203         key->ip.ttl = nh->hop_limit;
204         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
205         ipv6_addr_copy(&key->ipv6.addr.src, &nh->saddr);
206         ipv6_addr_copy(&key->ipv6.addr.dst, &nh->daddr);
207
208         payload_ofs = skip_exthdr(skb, payload_ofs, &nexthdr, &key->ip.frag);
209         if (unlikely(payload_ofs < 0))
210                 return -EINVAL;
211
212         nh_len = payload_ofs - nh_ofs;
213         skb_set_transport_header(skb, nh_ofs + nh_len);
214         key->ip.proto = nexthdr;
215         return nh_len;
216 }
217
218 static bool icmp6hdr_ok(struct sk_buff *skb)
219 {
220         return pskb_may_pull(skb, skb_transport_offset(skb) +
221                                   sizeof(struct icmp6hdr));
222 }
223
224 #define TCP_FLAGS_OFFSET 13
225 #define TCP_FLAG_MASK 0x3f
226
227 void flow_used(struct sw_flow *flow, struct sk_buff *skb)
228 {
229         u8 tcp_flags = 0;
230
231         if (flow->key.eth.type == htons(ETH_P_IP) &&
232             flow->key.ip.proto == IPPROTO_TCP) {
233                 u8 *tcp = (u8 *)tcp_hdr(skb);
234                 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
235         }
236
237         spin_lock(&flow->lock);
238         flow->used = jiffies;
239         flow->packet_count++;
240         flow->byte_count += skb->len;
241         flow->tcp_flags |= tcp_flags;
242         spin_unlock(&flow->lock);
243 }
244
245 struct sw_flow_actions *flow_actions_alloc(const struct nlattr *actions)
246 {
247         int actions_len = nla_len(actions);
248         struct sw_flow_actions *sfa;
249
250         /* At least DP_MAX_PORTS actions are required to be able to flood a
251          * packet to every port.  Factor of 2 allows for setting VLAN tags,
252          * etc. */
253         if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
254                 return ERR_PTR(-EINVAL);
255
256         sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
257         if (!sfa)
258                 return ERR_PTR(-ENOMEM);
259
260         sfa->actions_len = actions_len;
261         memcpy(sfa->actions, nla_data(actions), actions_len);
262         return sfa;
263 }
264
265 struct sw_flow *flow_alloc(void)
266 {
267         struct sw_flow *flow;
268
269         flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
270         if (!flow)
271                 return ERR_PTR(-ENOMEM);
272
273         spin_lock_init(&flow->lock);
274         atomic_set(&flow->refcnt, 1);
275         flow->sf_acts = NULL;
276         flow->dead = false;
277
278         return flow;
279 }
280
281 static struct hlist_head __rcu *find_bucket(struct flow_table * table, u32 hash)
282 {
283         return flex_array_get(table->buckets,
284                                 (hash & (table->n_buckets - 1)));
285 }
286
287 static struct flex_array  __rcu *alloc_buckets(unsigned int n_buckets)
288 {
289         struct flex_array  __rcu *buckets;
290         int i, err;
291
292         buckets = flex_array_alloc(sizeof(struct hlist_head *),
293                                    n_buckets, GFP_KERNEL);
294         if (!buckets)
295                 return NULL;
296
297         err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
298         if (err) {
299                 flex_array_free(buckets);
300                 return NULL;
301         }
302
303         for (i = 0; i < n_buckets; i++)
304                 INIT_HLIST_HEAD((struct hlist_head *)
305                                         flex_array_get(buckets, i));
306
307         return buckets;
308 }
309
310 static void free_buckets(struct flex_array *buckets)
311 {
312         flex_array_free(buckets);
313 }
314
315 struct flow_table *flow_tbl_alloc(int new_size)
316 {
317         struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
318
319         if (!table)
320                 return NULL;
321
322         table->buckets = alloc_buckets(new_size);
323
324         if (!table->buckets) {
325                 kfree(table);
326                 return NULL;
327         }
328         table->n_buckets = new_size;
329         table->count = 0;
330
331         return table;
332 }
333
334 static void flow_free(struct sw_flow *flow)
335 {
336         flow->dead = true;
337         flow_put(flow);
338 }
339
340 void flow_tbl_destroy(struct flow_table *table)
341 {
342         int i;
343
344         if (!table)
345                 return;
346
347         for (i = 0; i < table->n_buckets; i++) {
348                 struct sw_flow *flow;
349                 struct hlist_head *head = flex_array_get(table->buckets, i);
350                 struct hlist_node *node, *n;
351
352                 hlist_for_each_entry_safe(flow, node, n, head, hash_node) {
353                         hlist_del_init_rcu(&flow->hash_node);
354                         flow_free(flow);
355                 }
356         }
357
358         free_buckets(table->buckets);
359         kfree(table);
360 }
361
362 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
363 {
364         struct flow_table *table = container_of(rcu, struct flow_table, rcu);
365
366         flow_tbl_destroy(table);
367 }
368
369 void flow_tbl_deferred_destroy(struct flow_table *table)
370 {
371         if (!table)
372                 return;
373
374         call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
375 }
376
377 struct sw_flow *flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
378 {
379         struct sw_flow *flow;
380         struct hlist_head *head;
381         struct hlist_node *n;
382         int i;
383
384         while (*bucket < table->n_buckets) {
385                 i = 0;
386                 head = flex_array_get(table->buckets, *bucket);
387                 hlist_for_each_entry_rcu(flow, n, head, hash_node) {
388                         if (i < *last) {
389                                 i++;
390                                 continue;
391                         }
392                         *last = i + 1;
393                         return flow;
394                 }
395                 (*bucket)++;
396                 *last = 0;
397         }
398
399         return NULL;
400 }
401
402 struct flow_table *flow_tbl_expand(struct flow_table *table)
403 {
404         struct flow_table *new_table;
405         int n_buckets = table->n_buckets * 2;
406         int i;
407
408         new_table = flow_tbl_alloc(n_buckets);
409         if (!new_table)
410                 return ERR_PTR(-ENOMEM);
411
412         for (i = 0; i < table->n_buckets; i++) {
413                 struct sw_flow *flow;
414                 struct hlist_head *head;
415                 struct hlist_node *n, *pos;
416
417                 head = flex_array_get(table->buckets, i);
418
419                 hlist_for_each_entry_safe(flow, n, pos, head, hash_node) {
420                         hlist_del_init_rcu(&flow->hash_node);
421                         flow_tbl_insert(new_table, flow);
422                 }
423         }
424
425         return new_table;
426 }
427
428 /* RCU callback used by flow_deferred_free. */
429 static void rcu_free_flow_callback(struct rcu_head *rcu)
430 {
431         struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
432
433         flow->dead = true;
434         flow_put(flow);
435 }
436
437 /* Schedules 'flow' to be freed after the next RCU grace period.
438  * The caller must hold rcu_read_lock for this to be sensible. */
439 void flow_deferred_free(struct sw_flow *flow)
440 {
441         call_rcu(&flow->rcu, rcu_free_flow_callback);
442 }
443
444 void flow_hold(struct sw_flow *flow)
445 {
446         atomic_inc(&flow->refcnt);
447 }
448
449 void flow_put(struct sw_flow *flow)
450 {
451         if (unlikely(!flow))
452                 return;
453
454         if (atomic_dec_and_test(&flow->refcnt)) {
455                 kfree((struct sf_flow_acts __force *)flow->sf_acts);
456                 kmem_cache_free(flow_cache, flow);
457         }
458 }
459
460 /* RCU callback used by flow_deferred_free_acts. */
461 static void rcu_free_acts_callback(struct rcu_head *rcu)
462 {
463         struct sw_flow_actions *sf_acts = container_of(rcu,
464                         struct sw_flow_actions, rcu);
465         kfree(sf_acts);
466 }
467
468 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
469  * The caller must hold rcu_read_lock for this to be sensible. */
470 void flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
471 {
472         call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
473 }
474
475 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
476 {
477         struct qtag_prefix {
478                 __be16 eth_type; /* ETH_P_8021Q */
479                 __be16 tci;
480         };
481         struct qtag_prefix *qp;
482
483         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
484                                          sizeof(__be16))))
485                 return -ENOMEM;
486
487         qp = (struct qtag_prefix *) skb->data;
488         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
489         __skb_pull(skb, sizeof(struct qtag_prefix));
490
491         return 0;
492 }
493
494 static __be16 parse_ethertype(struct sk_buff *skb)
495 {
496         struct llc_snap_hdr {
497                 u8  dsap;  /* Always 0xAA */
498                 u8  ssap;  /* Always 0xAA */
499                 u8  ctrl;
500                 u8  oui[3];
501                 __be16 ethertype;
502         };
503         struct llc_snap_hdr *llc;
504         __be16 proto;
505
506         proto = *(__be16 *) skb->data;
507         __skb_pull(skb, sizeof(__be16));
508
509         if (ntohs(proto) >= 1536)
510                 return proto;
511
512         if (skb->len < sizeof(struct llc_snap_hdr))
513                 return htons(ETH_P_802_2);
514
515         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
516                 return htons(0);
517
518         llc = (struct llc_snap_hdr *) skb->data;
519         if (llc->dsap != LLC_SAP_SNAP ||
520             llc->ssap != LLC_SAP_SNAP ||
521             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
522                 return htons(ETH_P_802_2);
523
524         __skb_pull(skb, sizeof(struct llc_snap_hdr));
525         return llc->ethertype;
526 }
527
528 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
529                         int *key_lenp, int nh_len)
530 {
531         struct icmp6hdr *icmp = icmp6_hdr(skb);
532         int error = 0;
533         int key_len;
534
535         /* The ICMPv6 type and code fields use the 16-bit transport port
536          * fields, so we need to store them in 16-bit network byte order.
537          */
538         key->ipv6.tp.src = htons(icmp->icmp6_type);
539         key->ipv6.tp.dst = htons(icmp->icmp6_code);
540         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
541
542         if (icmp->icmp6_code == 0 &&
543             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
544              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
545                 int icmp_len = skb->len - skb_transport_offset(skb);
546                 struct nd_msg *nd;
547                 int offset;
548
549                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
550
551                 /* In order to process neighbor discovery options, we need the
552                  * entire packet.
553                  */
554                 if (unlikely(icmp_len < sizeof(*nd)))
555                         goto out;
556                 if (unlikely(skb_linearize(skb))) {
557                         error = -ENOMEM;
558                         goto out;
559                 }
560
561                 nd = (struct nd_msg *)skb_transport_header(skb);
562                 ipv6_addr_copy(&key->ipv6.nd.target, &nd->target);
563                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
564
565                 icmp_len -= sizeof(*nd);
566                 offset = 0;
567                 while (icmp_len >= 8) {
568                         struct nd_opt_hdr *nd_opt =
569                                  (struct nd_opt_hdr *)(nd->opt + offset);
570                         int opt_len = nd_opt->nd_opt_len * 8;
571
572                         if (unlikely(!opt_len || opt_len > icmp_len))
573                                 goto invalid;
574
575                         /* Store the link layer address if the appropriate
576                          * option is provided.  It is considered an error if
577                          * the same link layer option is specified twice.
578                          */
579                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
580                             && opt_len == 8) {
581                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
582                                         goto invalid;
583                                 memcpy(key->ipv6.nd.sll,
584                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
585                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
586                                    && opt_len == 8) {
587                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
588                                         goto invalid;
589                                 memcpy(key->ipv6.nd.tll,
590                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
591                         }
592
593                         icmp_len -= opt_len;
594                         offset += opt_len;
595                 }
596         }
597
598         goto out;
599
600 invalid:
601         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
602         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
603         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
604
605 out:
606         *key_lenp = key_len;
607         return error;
608 }
609
610 /**
611  * flow_extract - extracts a flow key from an Ethernet frame.
612  * @skb: sk_buff that contains the frame, with skb->data pointing to the
613  * Ethernet header
614  * @in_port: port number on which @skb was received.
615  * @key: output flow key
616  * @key_lenp: length of output flow key
617  *
618  * The caller must ensure that skb->len >= ETH_HLEN.
619  *
620  * Returns 0 if successful, otherwise a negative errno value.
621  *
622  * Initializes @skb header pointers as follows:
623  *
624  *    - skb->mac_header: the Ethernet header.
625  *
626  *    - skb->network_header: just past the Ethernet header, or just past the
627  *      VLAN header, to the first byte of the Ethernet payload.
628  *
629  *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
630  *      on output, then just past the IP header, if one is present and
631  *      of a correct length, otherwise the same as skb->network_header.
632  *      For other key->dl_type values it is left untouched.
633  */
634 int flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
635                  int *key_lenp)
636 {
637         int error = 0;
638         int key_len = SW_FLOW_KEY_OFFSET(eth);
639         struct ethhdr *eth;
640
641         memset(key, 0, sizeof(*key));
642
643         key->phy.priority = skb->priority;
644         key->phy.tun_id = OVS_CB(skb)->tun_id;
645         key->phy.in_port = in_port;
646
647         skb_reset_mac_header(skb);
648
649         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
650          * header in the linear data area.
651          */
652         eth = eth_hdr(skb);
653         memcpy(key->eth.src, eth->h_source, ETH_ALEN);
654         memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
655
656         __skb_pull(skb, 2 * ETH_ALEN);
657
658         if (vlan_tx_tag_present(skb))
659                 key->eth.tci = htons(vlan_get_tci(skb));
660         else if (eth->h_proto == htons(ETH_P_8021Q))
661                 if (unlikely(parse_vlan(skb, key)))
662                         return -ENOMEM;
663
664         key->eth.type = parse_ethertype(skb);
665         if (unlikely(key->eth.type == htons(0)))
666                 return -ENOMEM;
667
668         skb_reset_network_header(skb);
669         __skb_push(skb, skb->data - skb_mac_header(skb));
670
671         /* Network layer. */
672         if (key->eth.type == htons(ETH_P_IP)) {
673                 struct iphdr *nh;
674                 __be16 offset;
675
676                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
677
678                 error = check_iphdr(skb);
679                 if (unlikely(error)) {
680                         if (error == -EINVAL) {
681                                 skb->transport_header = skb->network_header;
682                                 error = 0;
683                         }
684                         goto out;
685                 }
686
687                 nh = ip_hdr(skb);
688                 key->ipv4.addr.src = nh->saddr;
689                 key->ipv4.addr.dst = nh->daddr;
690
691                 key->ip.proto = nh->protocol;
692                 key->ip.tos = nh->tos;
693                 key->ip.ttl = nh->ttl;
694
695                 offset = nh->frag_off & htons(IP_OFFSET);
696                 if (offset) {
697                         key->ip.frag = OVS_FRAG_TYPE_LATER;
698                         goto out;
699                 }
700                 if (nh->frag_off & htons(IP_MF) ||
701                          skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
702                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
703
704                 /* Transport layer. */
705                 if (key->ip.proto == IPPROTO_TCP) {
706                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
707                         if (tcphdr_ok(skb)) {
708                                 struct tcphdr *tcp = tcp_hdr(skb);
709                                 key->ipv4.tp.src = tcp->source;
710                                 key->ipv4.tp.dst = tcp->dest;
711                         }
712                 } else if (key->ip.proto == IPPROTO_UDP) {
713                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
714                         if (udphdr_ok(skb)) {
715                                 struct udphdr *udp = udp_hdr(skb);
716                                 key->ipv4.tp.src = udp->source;
717                                 key->ipv4.tp.dst = udp->dest;
718                         }
719                 } else if (key->ip.proto == IPPROTO_ICMP) {
720                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
721                         if (icmphdr_ok(skb)) {
722                                 struct icmphdr *icmp = icmp_hdr(skb);
723                                 /* The ICMP type and code fields use the 16-bit
724                                  * transport port fields, so we need to store
725                                  * them in 16-bit network byte order. */
726                                 key->ipv4.tp.src = htons(icmp->type);
727                                 key->ipv4.tp.dst = htons(icmp->code);
728                         }
729                 }
730
731         } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
732                 struct arp_eth_header *arp;
733
734                 arp = (struct arp_eth_header *)skb_network_header(skb);
735
736                 if (arp->ar_hrd == htons(ARPHRD_ETHER)
737                                 && arp->ar_pro == htons(ETH_P_IP)
738                                 && arp->ar_hln == ETH_ALEN
739                                 && arp->ar_pln == 4) {
740
741                         /* We only match on the lower 8 bits of the opcode. */
742                         if (ntohs(arp->ar_op) <= 0xff)
743                                 key->ip.proto = ntohs(arp->ar_op);
744
745                         if (key->ip.proto == ARPOP_REQUEST
746                                         || key->ip.proto == ARPOP_REPLY) {
747                                 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
748                                 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
749                                 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
750                                 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
751                                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
752                         }
753                 }
754         } else if (key->eth.type == htons(ETH_P_IPV6)) {
755                 int nh_len;             /* IPv6 Header + Extensions */
756
757                 nh_len = parse_ipv6hdr(skb, key, &key_len);
758                 if (unlikely(nh_len < 0)) {
759                         if (nh_len == -EINVAL)
760                                 skb->transport_header = skb->network_header;
761                         else
762                                 error = nh_len;
763                         goto out;
764                 }
765
766                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
767                         goto out;
768                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
769                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
770
771                 /* Transport layer. */
772                 if (key->ip.proto == NEXTHDR_TCP) {
773                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
774                         if (tcphdr_ok(skb)) {
775                                 struct tcphdr *tcp = tcp_hdr(skb);
776                                 key->ipv6.tp.src = tcp->source;
777                                 key->ipv6.tp.dst = tcp->dest;
778                         }
779                 } else if (key->ip.proto == NEXTHDR_UDP) {
780                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
781                         if (udphdr_ok(skb)) {
782                                 struct udphdr *udp = udp_hdr(skb);
783                                 key->ipv6.tp.src = udp->source;
784                                 key->ipv6.tp.dst = udp->dest;
785                         }
786                 } else if (key->ip.proto == NEXTHDR_ICMP) {
787                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
788                         if (icmp6hdr_ok(skb)) {
789                                 error = parse_icmpv6(skb, key, &key_len, nh_len);
790                                 if (error < 0)
791                                         goto out;
792                         }
793                 }
794         }
795
796 out:
797         *key_lenp = key_len;
798         return error;
799 }
800
801 u32 flow_hash(const struct sw_flow_key *key, int key_len)
802 {
803         return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), hash_seed);
804 }
805
806 struct sw_flow *flow_tbl_lookup(struct flow_table *table,
807                                 struct sw_flow_key *key, int key_len)
808 {
809         struct sw_flow *flow;
810         struct hlist_node *n;
811         struct hlist_head *head;
812         u32 hash;
813
814         hash = flow_hash(key, key_len);
815
816         head = find_bucket(table, hash);
817         hlist_for_each_entry_rcu(flow, n, head, hash_node) {
818
819                 if (flow->hash == hash &&
820                     !memcmp(&flow->key, key, key_len)) {
821                         return flow;
822                 }
823         }
824         return NULL;
825 }
826
827 void flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
828 {
829         struct hlist_head *head;
830
831         head = find_bucket(table, flow->hash);
832         hlist_add_head_rcu(&flow->hash_node, head);
833         table->count++;
834 }
835
836 void flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
837 {
838         if (!hlist_unhashed(&flow->hash_node)) {
839                 hlist_del_init_rcu(&flow->hash_node);
840                 table->count--;
841                 BUG_ON(table->count < 0);
842         }
843 }
844
845 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
846 const u32 ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
847         [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
848         [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
849         [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
850         [OVS_KEY_ATTR_8021Q] = sizeof(struct ovs_key_8021q),
851         [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
852         [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
853         [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
854         [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
855         [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
856         [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
857         [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
858         [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
859         [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
860
861         /* Not upstream. */
862         [OVS_KEY_ATTR_TUN_ID] = sizeof(__be64),
863 };
864
865 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
866                                   const struct nlattr *a[], u64 *attrs)
867 {
868         const struct ovs_key_icmp *icmp_key;
869         const struct ovs_key_tcp *tcp_key;
870         const struct ovs_key_udp *udp_key;
871
872         switch (swkey->ip.proto) {
873         case IPPROTO_TCP:
874                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
875                         return -EINVAL;
876                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
877
878                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
879                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
880                 swkey->ipv4.tp.src = tcp_key->tcp_src;
881                 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
882                 break;
883
884         case IPPROTO_UDP:
885                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
886                         return -EINVAL;
887                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
888
889                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
890                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
891                 swkey->ipv4.tp.src = udp_key->udp_src;
892                 swkey->ipv4.tp.dst = udp_key->udp_dst;
893                 break;
894
895         case IPPROTO_ICMP:
896                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
897                         return -EINVAL;
898                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
899
900                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
901                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
902                 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
903                 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
904                 break;
905         }
906
907         return 0;
908 }
909
910 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
911                                   const struct nlattr *a[], u64 *attrs)
912 {
913         const struct ovs_key_icmpv6 *icmpv6_key;
914         const struct ovs_key_tcp *tcp_key;
915         const struct ovs_key_udp *udp_key;
916
917         switch (swkey->ip.proto) {
918         case IPPROTO_TCP:
919                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
920                         return -EINVAL;
921                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
922
923                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
924                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
925                 swkey->ipv6.tp.src = tcp_key->tcp_src;
926                 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
927                 break;
928
929         case IPPROTO_UDP:
930                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
931                         return -EINVAL;
932                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
933
934                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
935                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
936                 swkey->ipv6.tp.src = udp_key->udp_src;
937                 swkey->ipv6.tp.dst = udp_key->udp_dst;
938                 break;
939
940         case IPPROTO_ICMPV6:
941                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
942                         return -EINVAL;
943                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
944
945                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
946                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
947                 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
948                 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
949
950                 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
951                     swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
952                         const struct ovs_key_nd *nd_key;
953
954                         if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
955                                 return -EINVAL;
956                         *attrs &= ~(1 << OVS_KEY_ATTR_ND);
957
958                         *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
959                         nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
960                         memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
961                                sizeof(swkey->ipv6.nd.target));
962                         memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
963                         memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
964                 }
965                 break;
966         }
967
968         return 0;
969 }
970
971 /**
972  * flow_from_nlattrs - parses Netlink attributes into a flow key.
973  * @swkey: receives the extracted flow key.
974  * @key_lenp: number of bytes used in @swkey.
975  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
976  * sequence.
977  */
978 int flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
979                       const struct nlattr *attr)
980 {
981         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
982         const struct ovs_key_ethernet *eth_key;
983         const struct nlattr *nla;
984         int key_len;
985         u64 attrs;
986         int rem;
987
988         memset(swkey, 0, sizeof(struct sw_flow_key));
989         key_len = SW_FLOW_KEY_OFFSET(eth);
990
991         attrs = 0;
992         nla_for_each_nested(nla, attr, rem) {
993                 u16 type = nla_type(nla);
994
995                 if (type > OVS_KEY_ATTR_MAX || attrs & (1ULL << type) ||
996                     nla_len(nla) != ovs_key_lens[type])
997                         return -EINVAL;
998                 attrs |= 1ULL << type;
999                 a[type] = nla;
1000         }
1001         if (rem)
1002                 return -EINVAL;
1003
1004         /* Metadata attributes. */
1005         if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1006                 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
1007                 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1008         }
1009         if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1010                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1011                 if (in_port >= DP_MAX_PORTS)
1012                         return -EINVAL;
1013                 swkey->phy.in_port = in_port;
1014                 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1015         } else {
1016                 swkey->phy.in_port = USHRT_MAX;
1017         }
1018
1019         if (attrs & (1ULL << OVS_KEY_ATTR_TUN_ID)) {
1020                 swkey->phy.tun_id = nla_get_be64(a[OVS_KEY_ATTR_TUN_ID]);
1021                 attrs &= ~(1ULL << OVS_KEY_ATTR_TUN_ID);
1022         }
1023
1024         /* Data attributes. */
1025         if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1026                 return -EINVAL;
1027         attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1028
1029         eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1030         memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1031         memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1032
1033         if (attrs & (1 << OVS_KEY_ATTR_8021Q)) {
1034                 const struct ovs_key_8021q *q_key;
1035
1036                 q_key = nla_data(a[OVS_KEY_ATTR_8021Q]);
1037                 /* Only standard 0x8100 VLANs currently supported. */
1038                 if (q_key->q_tpid != htons(ETH_P_8021Q))
1039                         return -EINVAL;
1040                 if (q_key->q_tci & htons(VLAN_TAG_PRESENT))
1041                         return -EINVAL;
1042                 swkey->eth.tci = q_key->q_tci | htons(VLAN_TAG_PRESENT);
1043
1044                 attrs &= ~(1 << OVS_KEY_ATTR_8021Q);
1045         }
1046
1047         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1048                 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1049                 if (ntohs(swkey->eth.type) < 1536)
1050                         return -EINVAL;
1051                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1052         } else {
1053                 swkey->eth.type = htons(ETH_P_802_2);
1054         }
1055
1056         if (swkey->eth.type == htons(ETH_P_IP)) {
1057                 const struct ovs_key_ipv4 *ipv4_key;
1058
1059                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1060                         return -EINVAL;
1061                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1062
1063                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1064                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1065                 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1066                         return -EINVAL;
1067                 swkey->ip.proto = ipv4_key->ipv4_proto;
1068                 swkey->ip.tos = ipv4_key->ipv4_tos;
1069                 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1070                 swkey->ip.frag = ipv4_key->ipv4_frag;
1071                 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1072                 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1073
1074                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1075                         int err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1076                         if (err)
1077                                 return err;
1078                 }
1079         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1080                 const struct ovs_key_ipv6 *ipv6_key;
1081
1082                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1083                         return -EINVAL;
1084                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1085
1086                 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1087                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1088                 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1089                         return -EINVAL;
1090                 swkey->ipv6.label = ipv6_key->ipv6_label;
1091                 swkey->ip.proto = ipv6_key->ipv6_proto;
1092                 swkey->ip.tos = ipv6_key->ipv6_tclass;
1093                 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1094                 swkey->ip.frag = ipv6_key->ipv6_frag;
1095                 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1096                        sizeof(swkey->ipv6.addr.src));
1097                 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1098                        sizeof(swkey->ipv6.addr.dst));
1099
1100                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1101                         int err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1102                         if (err)
1103                                 return err;
1104                 }
1105         } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1106                 const struct ovs_key_arp *arp_key;
1107
1108                 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1109                         return -EINVAL;
1110                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1111
1112                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1113                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1114                 swkey->ipv4.addr.src = arp_key->arp_sip;
1115                 swkey->ipv4.addr.dst = arp_key->arp_tip;
1116                 if (arp_key->arp_op & htons(0xff00))
1117                         return -EINVAL;
1118                 swkey->ip.proto = ntohs(arp_key->arp_op);
1119                 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1120                 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1121         }
1122
1123         if (attrs)
1124                 return -EINVAL;
1125         *key_lenp = key_len;
1126
1127         return 0;
1128 }
1129
1130 /**
1131  * flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1132  * @in_port: receives the extracted input port.
1133  * @tun_id: receives the extracted tunnel ID.
1134  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1135  * sequence.
1136  *
1137  * This parses a series of Netlink attributes that form a flow key, which must
1138  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1139  * get the metadata, that is, the parts of the flow key that cannot be
1140  * extracted from the packet itself.
1141  */
1142 int flow_metadata_from_nlattrs(u32 *priority, u16 *in_port, __be64 *tun_id,
1143                                const struct nlattr *attr)
1144 {
1145         const struct nlattr *nla;
1146         int rem;
1147
1148         *in_port = USHRT_MAX;
1149         *tun_id = 0;
1150         *priority = 0;
1151
1152         nla_for_each_nested(nla, attr, rem) {
1153                 int type = nla_type(nla);
1154
1155                 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] != 0) {
1156                         if (nla_len(nla) != ovs_key_lens[type])
1157                                 return -EINVAL;
1158
1159                         switch (type) {
1160                         case OVS_KEY_ATTR_PRIORITY:
1161                                 *priority = nla_get_u32(nla);
1162                                 break;
1163
1164                         case OVS_KEY_ATTR_TUN_ID:
1165                                 *tun_id = nla_get_be64(nla);
1166                                 break;
1167
1168                         case OVS_KEY_ATTR_IN_PORT:
1169                                 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1170                                         return -EINVAL;
1171                                 *in_port = nla_get_u32(nla);
1172                                 break;
1173                         }
1174                 }
1175         }
1176         if (rem)
1177                 return -EINVAL;
1178         return 0;
1179 }
1180
1181 int flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1182 {
1183         struct ovs_key_ethernet *eth_key;
1184         struct nlattr *nla;
1185
1186         if (swkey->phy.priority)
1187                 NLA_PUT_U32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority);
1188
1189         if (swkey->phy.tun_id != cpu_to_be64(0))
1190                 NLA_PUT_BE64(skb, OVS_KEY_ATTR_TUN_ID, swkey->phy.tun_id);
1191
1192         if (swkey->phy.in_port != USHRT_MAX)
1193                 NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port);
1194
1195         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1196         if (!nla)
1197                 goto nla_put_failure;
1198         eth_key = nla_data(nla);
1199         memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1200         memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1201
1202         if (swkey->eth.tci != htons(0)) {
1203                 struct ovs_key_8021q q_key;
1204
1205                 q_key.q_tpid = htons(ETH_P_8021Q);
1206                 q_key.q_tci = swkey->eth.tci & ~htons(VLAN_TAG_PRESENT);
1207                 NLA_PUT(skb, OVS_KEY_ATTR_8021Q, sizeof(q_key), &q_key);
1208         }
1209
1210         if (swkey->eth.type == htons(ETH_P_802_2))
1211                 return 0;
1212
1213         NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type);
1214
1215         if (swkey->eth.type == htons(ETH_P_IP)) {
1216                 struct ovs_key_ipv4 *ipv4_key;
1217
1218                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1219                 if (!nla)
1220                         goto nla_put_failure;
1221                 ipv4_key = nla_data(nla);
1222                 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1223                 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1224                 ipv4_key->ipv4_proto = swkey->ip.proto;
1225                 ipv4_key->ipv4_tos = swkey->ip.tos;
1226                 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1227                 ipv4_key->ipv4_frag = swkey->ip.frag;
1228         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1229                 struct ovs_key_ipv6 *ipv6_key;
1230
1231                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1232                 if (!nla)
1233                         goto nla_put_failure;
1234                 ipv6_key = nla_data(nla);
1235                 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1236                                 sizeof(ipv6_key->ipv6_src));
1237                 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1238                                 sizeof(ipv6_key->ipv6_dst));
1239                 ipv6_key->ipv6_label = swkey->ipv6.label;
1240                 ipv6_key->ipv6_proto = swkey->ip.proto;
1241                 ipv6_key->ipv6_tclass = swkey->ip.tos;
1242                 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1243                 ipv6_key->ipv6_frag = swkey->ip.frag;
1244         } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1245                 struct ovs_key_arp *arp_key;
1246
1247                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1248                 if (!nla)
1249                         goto nla_put_failure;
1250                 arp_key = nla_data(nla);
1251                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1252                 arp_key->arp_sip = swkey->ipv4.addr.src;
1253                 arp_key->arp_tip = swkey->ipv4.addr.dst;
1254                 arp_key->arp_op = htons(swkey->ip.proto);
1255                 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1256                 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1257         }
1258
1259         if ((swkey->eth.type == htons(ETH_P_IP) ||
1260              swkey->eth.type == htons(ETH_P_IPV6)) &&
1261              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1262
1263                 if (swkey->ip.proto == IPPROTO_TCP) {
1264                         struct ovs_key_tcp *tcp_key;
1265
1266                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1267                         if (!nla)
1268                                 goto nla_put_failure;
1269                         tcp_key = nla_data(nla);
1270                         if (swkey->eth.type == htons(ETH_P_IP)) {
1271                                 tcp_key->tcp_src = swkey->ipv4.tp.src;
1272                                 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1273                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1274                                 tcp_key->tcp_src = swkey->ipv6.tp.src;
1275                                 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1276                         }
1277                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1278                         struct ovs_key_udp *udp_key;
1279
1280                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1281                         if (!nla)
1282                                 goto nla_put_failure;
1283                         udp_key = nla_data(nla);
1284                         if (swkey->eth.type == htons(ETH_P_IP)) {
1285                                 udp_key->udp_src = swkey->ipv4.tp.src;
1286                                 udp_key->udp_dst = swkey->ipv4.tp.dst;
1287                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1288                                 udp_key->udp_src = swkey->ipv6.tp.src;
1289                                 udp_key->udp_dst = swkey->ipv6.tp.dst;
1290                         }
1291                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1292                            swkey->ip.proto == IPPROTO_ICMP) {
1293                         struct ovs_key_icmp *icmp_key;
1294
1295                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1296                         if (!nla)
1297                                 goto nla_put_failure;
1298                         icmp_key = nla_data(nla);
1299                         icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1300                         icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1301                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1302                            swkey->ip.proto == IPPROTO_ICMPV6) {
1303                         struct ovs_key_icmpv6 *icmpv6_key;
1304
1305                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1306                                                 sizeof(*icmpv6_key));
1307                         if (!nla)
1308                                 goto nla_put_failure;
1309                         icmpv6_key = nla_data(nla);
1310                         icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1311                         icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1312
1313                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1314                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1315                                 struct ovs_key_nd *nd_key;
1316
1317                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1318                                 if (!nla)
1319                                         goto nla_put_failure;
1320                                 nd_key = nla_data(nla);
1321                                 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1322                                                         sizeof(nd_key->nd_target));
1323                                 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1324                                 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1325                         }
1326                 }
1327         }
1328
1329         return 0;
1330
1331 nla_put_failure:
1332         return -EMSGSIZE;
1333 }
1334
1335 /* Initializes the flow module.
1336  * Returns zero if successful or a negative error code. */
1337 int flow_init(void)
1338 {
1339         flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1340                                         0, NULL);
1341         if (flow_cache == NULL)
1342                 return -ENOMEM;
1343
1344         get_random_bytes(&hash_seed, sizeof(hash_seed));
1345
1346         return 0;
1347 }
1348
1349 /* Uninitializes the flow module. */
1350 void flow_exit(void)
1351 {
1352         kmem_cache_destroy(flow_cache);
1353 }