datapath: Convert ODP_FLOW_* commands to use AF_NETLINK socket layer.
[sliver-openvswitch.git] / datapath / flow.c
1 /*
2  * Distributed under the terms of the GNU GPL version 2.
3  * Copyright (c) 2007, 2008, 2009, 2010, 2011 Nicira Networks.
4  *
5  * Significant portions of this file may be copied from parts of the Linux
6  * kernel, by Linus Torvalds and others.
7  */
8
9 #include "flow.h"
10 #include "datapath.h"
11 #include <asm/uaccess.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/if_ether.h>
15 #include <linux/if_vlan.h>
16 #include <net/llc_pdu.h>
17 #include <linux/kernel.h>
18 #include <linux/jhash.h>
19 #include <linux/jiffies.h>
20 #include <linux/llc.h>
21 #include <linux/module.h>
22 #include <linux/in.h>
23 #include <linux/rcupdate.h>
24 #include <linux/if_arp.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/icmp.h>
30 #include <net/inet_ecn.h>
31 #include <net/ip.h>
32
33 static struct kmem_cache *flow_cache;
34 static unsigned int hash_seed __read_mostly;
35
36 static inline bool arphdr_ok(struct sk_buff *skb)
37 {
38         return skb->len >= skb_network_offset(skb) + sizeof(struct arp_eth_header);
39 }
40
41 static inline int check_iphdr(struct sk_buff *skb)
42 {
43         unsigned int nh_ofs = skb_network_offset(skb);
44         unsigned int ip_len;
45
46         if (skb->len < nh_ofs + sizeof(struct iphdr))
47                 return -EINVAL;
48
49         ip_len = ip_hdrlen(skb);
50         if (ip_len < sizeof(struct iphdr) || skb->len < nh_ofs + ip_len)
51                 return -EINVAL;
52
53         /*
54          * Pull enough header bytes to account for the IP header plus the
55          * longest transport header that we parse, currently 20 bytes for TCP.
56          */
57         if (!pskb_may_pull(skb, min(nh_ofs + ip_len + 20, skb->len)))
58                 return -ENOMEM;
59
60         skb_set_transport_header(skb, nh_ofs + ip_len);
61         return 0;
62 }
63
64 static inline bool tcphdr_ok(struct sk_buff *skb)
65 {
66         int th_ofs = skb_transport_offset(skb);
67         if (skb->len >= th_ofs + sizeof(struct tcphdr)) {
68                 int tcp_len = tcp_hdrlen(skb);
69                 return (tcp_len >= sizeof(struct tcphdr)
70                         && skb->len >= th_ofs + tcp_len);
71         }
72         return false;
73 }
74
75 static inline bool udphdr_ok(struct sk_buff *skb)
76 {
77         return skb->len >= skb_transport_offset(skb) + sizeof(struct udphdr);
78 }
79
80 static inline bool icmphdr_ok(struct sk_buff *skb)
81 {
82         return skb->len >= skb_transport_offset(skb) + sizeof(struct icmphdr);
83 }
84
85 #define TCP_FLAGS_OFFSET 13
86 #define TCP_FLAG_MASK 0x3f
87
88 void flow_used(struct sw_flow *flow, struct sk_buff *skb)
89 {
90         u8 tcp_flags = 0;
91
92         if (flow->key.dl_type == htons(ETH_P_IP) &&
93             flow->key.nw_proto == IPPROTO_TCP) {
94                 u8 *tcp = (u8 *)tcp_hdr(skb);
95                 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
96         }
97
98         spin_lock_bh(&flow->lock);
99         flow->used = jiffies;
100         flow->packet_count++;
101         flow->byte_count += skb->len;
102         flow->tcp_flags |= tcp_flags;
103         spin_unlock_bh(&flow->lock);
104 }
105
106 struct sw_flow_actions *flow_actions_alloc(const struct nlattr *actions)
107 {
108         int actions_len = nla_len(actions);
109         struct sw_flow_actions *sfa;
110
111         /* At least DP_MAX_PORTS actions are required to be able to flood a
112          * packet to every port.  Factor of 2 allows for setting VLAN tags,
113          * etc. */
114         if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
115                 return ERR_PTR(-EINVAL);
116
117         sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
118         if (!sfa)
119                 return ERR_PTR(-ENOMEM);
120
121         sfa->actions_len = actions_len;
122         memcpy(sfa->actions, nla_data(actions), actions_len);
123         return sfa;
124 }
125
126 struct sw_flow *flow_alloc(void)
127 {
128         struct sw_flow *flow;
129
130         flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
131         if (!flow)
132                 return ERR_PTR(-ENOMEM);
133
134         spin_lock_init(&flow->lock);
135         atomic_set(&flow->refcnt, 1);
136         flow->dead = false;
137
138         return flow;
139 }
140
141 void flow_free_tbl(struct tbl_node *node)
142 {
143         struct sw_flow *flow = flow_cast(node);
144
145         flow->dead = true;
146         flow_put(flow);
147 }
148
149 /* RCU callback used by flow_deferred_free. */
150 static void rcu_free_flow_callback(struct rcu_head *rcu)
151 {
152         struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
153
154         flow->dead = true;
155         flow_put(flow);
156 }
157
158 /* Schedules 'flow' to be freed after the next RCU grace period.
159  * The caller must hold rcu_read_lock for this to be sensible. */
160 void flow_deferred_free(struct sw_flow *flow)
161 {
162         call_rcu(&flow->rcu, rcu_free_flow_callback);
163 }
164
165 void flow_hold(struct sw_flow *flow)
166 {
167         atomic_inc(&flow->refcnt);
168 }
169
170 void flow_put(struct sw_flow *flow)
171 {
172         if (unlikely(!flow))
173                 return;
174
175         if (atomic_dec_and_test(&flow->refcnt)) {
176                 kfree((struct sf_flow_acts __force *)flow->sf_acts);
177                 kmem_cache_free(flow_cache, flow);
178         }
179 }
180
181 /* RCU callback used by flow_deferred_free_acts. */
182 static void rcu_free_acts_callback(struct rcu_head *rcu)
183 {
184         struct sw_flow_actions *sf_acts = container_of(rcu,
185                         struct sw_flow_actions, rcu);
186         kfree(sf_acts);
187 }
188
189 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
190  * The caller must hold rcu_read_lock for this to be sensible. */
191 void flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
192 {
193         call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
194 }
195
196 static void parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
197 {
198         struct qtag_prefix {
199                 __be16 eth_type; /* ETH_P_8021Q */
200                 __be16 tci;
201         };
202         struct qtag_prefix *qp;
203
204         if (skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))
205                 return;
206
207         qp = (struct qtag_prefix *) skb->data;
208         key->dl_tci = qp->tci | htons(VLAN_TAG_PRESENT);
209         __skb_pull(skb, sizeof(struct qtag_prefix));
210 }
211
212 static __be16 parse_ethertype(struct sk_buff *skb)
213 {
214         struct llc_snap_hdr {
215                 u8  dsap;  /* Always 0xAA */
216                 u8  ssap;  /* Always 0xAA */
217                 u8  ctrl;
218                 u8  oui[3];
219                 __be16 ethertype;
220         };
221         struct llc_snap_hdr *llc;
222         __be16 proto;
223
224         proto = *(__be16 *) skb->data;
225         __skb_pull(skb, sizeof(__be16));
226
227         if (ntohs(proto) >= 1536)
228                 return proto;
229
230         if (unlikely(skb->len < sizeof(struct llc_snap_hdr)))
231                 return htons(ETH_P_802_2);
232
233         llc = (struct llc_snap_hdr *) skb->data;
234         if (llc->dsap != LLC_SAP_SNAP ||
235             llc->ssap != LLC_SAP_SNAP ||
236             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
237                 return htons(ETH_P_802_2);
238
239         __skb_pull(skb, sizeof(struct llc_snap_hdr));
240         return llc->ethertype;
241 }
242
243 /**
244  * flow_extract - extracts a flow key from an Ethernet frame.
245  * @skb: sk_buff that contains the frame, with skb->data pointing to the
246  * Ethernet header
247  * @in_port: port number on which @skb was received.
248  * @key: output flow key
249  * @is_frag: set to 1 if @skb contains an IPv4 fragment, or to 0 if @skb does
250  * not contain an IPv4 packet or if it is not a fragment.
251  *
252  * The caller must ensure that skb->len >= ETH_HLEN.
253  *
254  * Returns 0 if successful, otherwise a negative errno value.
255  *
256  * Initializes @skb header pointers as follows:
257  *
258  *    - skb->mac_header: the Ethernet header.
259  *
260  *    - skb->network_header: just past the Ethernet header, or just past the
261  *      VLAN header, to the first byte of the Ethernet payload.
262  *
263  *    - skb->transport_header: If key->dl_type is ETH_P_IP on output, then just
264  *      past the IPv4 header, if one is present and of a correct length,
265  *      otherwise the same as skb->network_header.  For other key->dl_type
266  *      values it is left untouched.
267  */
268 int flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
269                  bool *is_frag)
270 {
271         struct ethhdr *eth;
272
273         memset(key, 0, sizeof(*key));
274         key->tun_id = OVS_CB(skb)->tun_id;
275         key->in_port = in_port;
276         *is_frag = false;
277
278         /*
279          * We would really like to pull as many bytes as we could possibly
280          * want to parse into the linear data area.  Currently that is:
281          *
282          *    14     Ethernet header
283          *     4     VLAN header
284          *    60     max IP header with options
285          *    20     max TCP/UDP/ICMP header (don't care about options)
286          *    --
287          *    98
288          *
289          * But Xen only allocates 64 or 72 bytes for the linear data area in
290          * netback, which means that we would reallocate and copy the skb's
291          * linear data on every packet if we did that.  So instead just pull 64
292          * bytes, which is always sufficient without IP options, and then check
293          * whether we need to pull more later when we look at the IP header.
294          */
295         if (!pskb_may_pull(skb, min(skb->len, 64u)))
296                 return -ENOMEM;
297
298         skb_reset_mac_header(skb);
299
300         /* Link layer. */
301         eth = eth_hdr(skb);
302         memcpy(key->dl_src, eth->h_source, ETH_ALEN);
303         memcpy(key->dl_dst, eth->h_dest, ETH_ALEN);
304
305         /* dl_type, dl_vlan, dl_vlan_pcp. */
306         __skb_pull(skb, 2 * ETH_ALEN);
307         if (eth->h_proto == htons(ETH_P_8021Q))
308                 parse_vlan(skb, key);
309         key->dl_type = parse_ethertype(skb);
310         skb_reset_network_header(skb);
311         __skb_push(skb, skb->data - (unsigned char *)eth);
312
313         /* Network layer. */
314         if (key->dl_type == htons(ETH_P_IP)) {
315                 struct iphdr *nh;
316                 int error;
317
318                 error = check_iphdr(skb);
319                 if (unlikely(error)) {
320                         if (error == -EINVAL) {
321                                 skb->transport_header = skb->network_header;
322                                 return 0;
323                         }
324                         return error;
325                 }
326
327                 nh = ip_hdr(skb);
328                 key->nw_src = nh->saddr;
329                 key->nw_dst = nh->daddr;
330                 key->nw_tos = nh->tos & ~INET_ECN_MASK;
331                 key->nw_proto = nh->protocol;
332
333                 /* Transport layer. */
334                 if (!(nh->frag_off & htons(IP_MF | IP_OFFSET)) &&
335                     !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP)) {
336                         if (key->nw_proto == IPPROTO_TCP) {
337                                 if (tcphdr_ok(skb)) {
338                                         struct tcphdr *tcp = tcp_hdr(skb);
339                                         key->tp_src = tcp->source;
340                                         key->tp_dst = tcp->dest;
341                                 }
342                         } else if (key->nw_proto == IPPROTO_UDP) {
343                                 if (udphdr_ok(skb)) {
344                                         struct udphdr *udp = udp_hdr(skb);
345                                         key->tp_src = udp->source;
346                                         key->tp_dst = udp->dest;
347                                 }
348                         } else if (key->nw_proto == IPPROTO_ICMP) {
349                                 if (icmphdr_ok(skb)) {
350                                         struct icmphdr *icmp = icmp_hdr(skb);
351                                         /* The ICMP type and code fields use the 16-bit
352                                          * transport port fields, so we need to store them
353                                          * in 16-bit network byte order. */
354                                         key->tp_src = htons(icmp->type);
355                                         key->tp_dst = htons(icmp->code);
356                                 }
357                         }
358                 } else
359                         *is_frag = true;
360
361         } else if (key->dl_type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
362                 struct arp_eth_header *arp;
363
364                 arp = (struct arp_eth_header *)skb_network_header(skb);
365
366                 if (arp->ar_hrd == htons(ARPHRD_ETHER)
367                                 && arp->ar_pro == htons(ETH_P_IP)
368                                 && arp->ar_hln == ETH_ALEN
369                                 && arp->ar_pln == 4) {
370
371                         /* We only match on the lower 8 bits of the opcode. */
372                         if (ntohs(arp->ar_op) <= 0xff)
373                                 key->nw_proto = ntohs(arp->ar_op);
374
375                         if (key->nw_proto == ARPOP_REQUEST
376                                         || key->nw_proto == ARPOP_REPLY) {
377                                 memcpy(&key->nw_src, arp->ar_sip, sizeof(key->nw_src));
378                                 memcpy(&key->nw_dst, arp->ar_tip, sizeof(key->nw_dst));
379                         }
380                 }
381         }
382         return 0;
383 }
384
385 u32 flow_hash(const struct sw_flow_key *key)
386 {
387         return jhash2((u32*)key, sizeof(*key) / sizeof(u32), hash_seed);
388 }
389
390 int flow_cmp(const struct tbl_node *node, void *key2_)
391 {
392         const struct sw_flow_key *key1 = &flow_cast(node)->key;
393         const struct sw_flow_key *key2 = key2_;
394
395         return !memcmp(key1, key2, sizeof(struct sw_flow_key));
396 }
397
398 /**
399  * flow_from_nlattrs - parses Netlink attributes into a flow key.
400  * @swkey: receives the extracted flow key.
401  * @key: Netlink attribute holding nested %ODP_KEY_ATTR_* Netlink attribute
402  * sequence.
403  *
404  * This state machine accepts the following forms, with [] for optional
405  * elements and | for alternatives:
406  *
407  * [tun_id] in_port ethernet [8021q] [ethertype [IP [TCP|UDP|ICMP] | ARP]
408  */
409 int flow_from_nlattrs(struct sw_flow_key *swkey, const struct nlattr *attr)
410 {
411         const struct nlattr *nla;
412         u16 prev_type;
413         int rem;
414
415         memset(swkey, 0, sizeof(*swkey));
416         swkey->dl_type = htons(ETH_P_802_2);
417
418         prev_type = ODP_KEY_ATTR_UNSPEC;
419         nla_for_each_nested(nla, attr, rem) {
420                 static const u32 key_lens[ODP_KEY_ATTR_MAX + 1] = {
421                         [ODP_KEY_ATTR_TUN_ID] = 8,
422                         [ODP_KEY_ATTR_IN_PORT] = 4,
423                         [ODP_KEY_ATTR_ETHERNET] = sizeof(struct odp_key_ethernet),
424                         [ODP_KEY_ATTR_8021Q] = sizeof(struct odp_key_8021q),
425                         [ODP_KEY_ATTR_ETHERTYPE] = 2,
426                         [ODP_KEY_ATTR_IPV4] = sizeof(struct odp_key_ipv4),
427                         [ODP_KEY_ATTR_TCP] = sizeof(struct odp_key_tcp),
428                         [ODP_KEY_ATTR_UDP] = sizeof(struct odp_key_udp),
429                         [ODP_KEY_ATTR_ICMP] = sizeof(struct odp_key_icmp),
430                         [ODP_KEY_ATTR_ARP] = sizeof(struct odp_key_arp),
431                 };
432
433                 const struct odp_key_ethernet *eth_key;
434                 const struct odp_key_8021q *q_key;
435                 const struct odp_key_ipv4 *ipv4_key;
436                 const struct odp_key_tcp *tcp_key;
437                 const struct odp_key_udp *udp_key;
438                 const struct odp_key_icmp *icmp_key;
439                 const struct odp_key_arp *arp_key;
440
441                 int type = nla_type(nla);
442
443                 if (type > ODP_KEY_ATTR_MAX || nla_len(nla) != key_lens[type])
444                         return -EINVAL;
445
446 #define TRANSITION(PREV_TYPE, TYPE) (((PREV_TYPE) << 16) | (TYPE))
447                 switch (TRANSITION(prev_type, type)) {
448                 case TRANSITION(ODP_KEY_ATTR_UNSPEC, ODP_KEY_ATTR_TUN_ID):
449                         swkey->tun_id = nla_get_be64(nla);
450                         break;
451
452                 case TRANSITION(ODP_KEY_ATTR_UNSPEC, ODP_KEY_ATTR_IN_PORT):
453                 case TRANSITION(ODP_KEY_ATTR_TUN_ID, ODP_KEY_ATTR_IN_PORT):
454                         if (nla_get_u32(nla) >= DP_MAX_PORTS)
455                                 return -EINVAL;
456                         swkey->in_port = nla_get_u32(nla);
457                         break;
458
459                 case TRANSITION(ODP_KEY_ATTR_IN_PORT, ODP_KEY_ATTR_ETHERNET):
460                         eth_key = nla_data(nla);
461                         memcpy(swkey->dl_src, eth_key->eth_src, ETH_ALEN);
462                         memcpy(swkey->dl_dst, eth_key->eth_dst, ETH_ALEN);
463                         break;
464
465                 case TRANSITION(ODP_KEY_ATTR_ETHERNET, ODP_KEY_ATTR_8021Q):
466                         q_key = nla_data(nla);
467                         /* Only standard 0x8100 VLANs currently supported. */
468                         if (q_key->q_tpid != htons(ETH_P_8021Q))
469                                 return -EINVAL;
470                         if (q_key->q_tci & htons(VLAN_TAG_PRESENT))
471                                 return -EINVAL;
472                         swkey->dl_tci = q_key->q_tci | htons(VLAN_TAG_PRESENT);
473                         break;
474
475                 case TRANSITION(ODP_KEY_ATTR_8021Q, ODP_KEY_ATTR_ETHERTYPE):
476                 case TRANSITION(ODP_KEY_ATTR_ETHERNET, ODP_KEY_ATTR_ETHERTYPE):
477                         swkey->dl_type = nla_get_be16(nla);
478                         if (ntohs(swkey->dl_type) < 1536)
479                                 return -EINVAL;
480                         break;
481
482                 case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_IPV4):
483                         if (swkey->dl_type != htons(ETH_P_IP))
484                                 return -EINVAL;
485                         ipv4_key = nla_data(nla);
486                         swkey->nw_src = ipv4_key->ipv4_src;
487                         swkey->nw_dst = ipv4_key->ipv4_dst;
488                         swkey->nw_proto = ipv4_key->ipv4_proto;
489                         swkey->nw_tos = ipv4_key->ipv4_tos;
490                         if (swkey->nw_tos & INET_ECN_MASK)
491                                 return -EINVAL;
492                         break;
493
494                 case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_TCP):
495                         if (swkey->nw_proto != IPPROTO_TCP)
496                                 return -EINVAL;
497                         tcp_key = nla_data(nla);
498                         swkey->tp_src = tcp_key->tcp_src;
499                         swkey->tp_dst = tcp_key->tcp_dst;
500                         break;
501
502                 case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_UDP):
503                         if (swkey->nw_proto != IPPROTO_UDP)
504                                 return -EINVAL;
505                         udp_key = nla_data(nla);
506                         swkey->tp_src = udp_key->udp_src;
507                         swkey->tp_dst = udp_key->udp_dst;
508                         break;
509
510                 case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_ICMP):
511                         if (swkey->nw_proto != IPPROTO_ICMP)
512                                 return -EINVAL;
513                         icmp_key = nla_data(nla);
514                         swkey->tp_src = htons(icmp_key->icmp_type);
515                         swkey->tp_dst = htons(icmp_key->icmp_code);
516                         break;
517
518                 case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_ARP):
519                         if (swkey->dl_type != htons(ETH_P_ARP))
520                                 return -EINVAL;
521                         arp_key = nla_data(nla);
522                         swkey->nw_src = arp_key->arp_sip;
523                         swkey->nw_dst = arp_key->arp_tip;
524                         if (arp_key->arp_op & htons(0xff00))
525                                 return -EINVAL;
526                         swkey->nw_proto = ntohs(arp_key->arp_op);
527                         break;
528
529                 default:
530                         return -EINVAL;
531                 }
532
533                 prev_type = type;
534         }
535         if (rem)
536                 return -EINVAL;
537
538         switch (prev_type) {
539         case ODP_KEY_ATTR_UNSPEC:
540                 return -EINVAL;
541
542         case ODP_KEY_ATTR_TUN_ID:
543         case ODP_KEY_ATTR_IN_PORT:
544                 return -EINVAL;
545
546         case ODP_KEY_ATTR_ETHERNET:
547         case ODP_KEY_ATTR_8021Q:
548                 return 0;
549
550         case ODP_KEY_ATTR_ETHERTYPE:
551                 if (swkey->dl_type == htons(ETH_P_IP) ||
552                     swkey->dl_type == htons(ETH_P_ARP))
553                         return -EINVAL;
554                 return 0;
555
556         case ODP_KEY_ATTR_IPV4:
557                 if (swkey->nw_proto == IPPROTO_TCP ||
558                     swkey->nw_proto == IPPROTO_UDP ||
559                     swkey->nw_proto == IPPROTO_ICMP)
560                         return -EINVAL;
561                 return 0;
562
563         case ODP_KEY_ATTR_TCP:
564         case ODP_KEY_ATTR_UDP:
565         case ODP_KEY_ATTR_ICMP:
566         case ODP_KEY_ATTR_ARP:
567                 return 0;
568         }
569
570         WARN_ON_ONCE(1);
571         return -EINVAL;
572 }
573
574 int flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
575 {
576         struct odp_key_ethernet *eth_key;
577         struct nlattr *nla;
578
579         if (swkey->tun_id != cpu_to_be64(0))
580                 NLA_PUT_BE64(skb, ODP_KEY_ATTR_TUN_ID, swkey->tun_id);
581
582         NLA_PUT_U32(skb, ODP_KEY_ATTR_IN_PORT, swkey->in_port);
583
584         nla = nla_reserve(skb, ODP_KEY_ATTR_ETHERNET, sizeof(*eth_key));
585         if (!nla)
586                 goto nla_put_failure;
587         eth_key = nla_data(nla);
588         memcpy(eth_key->eth_src, swkey->dl_src, ETH_ALEN);
589         memcpy(eth_key->eth_dst, swkey->dl_dst, ETH_ALEN);
590
591         if (swkey->dl_tci != htons(0)) {
592                 struct odp_key_8021q q_key;
593
594                 q_key.q_tpid = htons(ETH_P_8021Q);
595                 q_key.q_tci = swkey->dl_tci & ~htons(VLAN_TAG_PRESENT);
596                 NLA_PUT(skb, ODP_KEY_ATTR_8021Q, sizeof(q_key), &q_key);
597         }
598
599         if (swkey->dl_type == htons(ETH_P_802_2))
600                 return 0;
601
602         NLA_PUT_BE16(skb, ODP_KEY_ATTR_ETHERTYPE, swkey->dl_type);
603
604         if (swkey->dl_type == htons(ETH_P_IP)) {
605                 struct odp_key_ipv4 *ipv4_key;
606
607                 nla = nla_reserve(skb, ODP_KEY_ATTR_IPV4, sizeof(*ipv4_key));
608                 if (!nla)
609                         goto nla_put_failure;
610                 ipv4_key = nla_data(nla);
611                 ipv4_key->ipv4_src = swkey->nw_src;
612                 ipv4_key->ipv4_dst = swkey->nw_dst;
613                 ipv4_key->ipv4_proto = swkey->nw_proto;
614                 ipv4_key->ipv4_tos = swkey->nw_tos;
615
616                 if (swkey->nw_proto == IPPROTO_TCP) {
617                         struct odp_key_tcp *tcp_key;
618
619                         nla = nla_reserve(skb, ODP_KEY_ATTR_TCP, sizeof(*tcp_key));
620                         if (!nla)
621                                 goto nla_put_failure;
622                         tcp_key = nla_data(nla);
623                         tcp_key->tcp_src = swkey->tp_src;
624                         tcp_key->tcp_dst = swkey->tp_dst;
625                 } else if (swkey->nw_proto == IPPROTO_UDP) {
626                         struct odp_key_udp *udp_key;
627
628                         nla = nla_reserve(skb, ODP_KEY_ATTR_UDP, sizeof(*udp_key));
629                         if (!nla)
630                                 goto nla_put_failure;
631                         udp_key = nla_data(nla);
632                         udp_key->udp_src = swkey->tp_src;
633                         udp_key->udp_dst = swkey->tp_dst;
634                 } else if (swkey->nw_proto == IPPROTO_ICMP) {
635                         struct odp_key_icmp *icmp_key;
636
637                         nla = nla_reserve(skb, ODP_KEY_ATTR_ICMP, sizeof(*icmp_key));
638                         if (!nla)
639                                 goto nla_put_failure;
640                         icmp_key = nla_data(nla);
641                         icmp_key->icmp_type = ntohs(swkey->tp_src);
642                         icmp_key->icmp_code = ntohs(swkey->tp_dst);
643                 }
644         } else if (swkey->dl_type == htons(ETH_P_ARP)) {
645                 struct odp_key_arp *arp_key;
646
647                 nla = nla_reserve(skb, ODP_KEY_ATTR_ARP, sizeof(*arp_key));
648                 if (!nla)
649                         goto nla_put_failure;
650                 arp_key = nla_data(nla);
651                 arp_key->arp_sip = swkey->nw_src;
652                 arp_key->arp_tip = swkey->nw_dst;
653                 arp_key->arp_op = htons(swkey->nw_proto);
654         }
655
656         return 0;
657
658 nla_put_failure:
659         return -EMSGSIZE;
660 }
661
662 /* Initializes the flow module.
663  * Returns zero if successful or a negative error code. */
664 int flow_init(void)
665 {
666         flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
667                                         0, NULL);
668         if (flow_cache == NULL)
669                 return -ENOMEM;
670
671         get_random_bytes(&hash_seed, sizeof(hash_seed));
672
673         return 0;
674 }
675
676 /* Uninitializes the flow module. */
677 void flow_exit(void)
678 {
679         kmem_cache_destroy(flow_cache);
680 }