datapath: Make adding and attaching a vport a single step.
[sliver-openvswitch.git] / datapath / tunnel.c
1 /*
2  * Copyright (c) 2010 Nicira Networks.
3  * Distributed under the terms of the GNU GPL version 2.
4  *
5  * Significant portions of this file may be copied from parts of the Linux
6  * kernel, by Linus Torvalds and others.
7  */
8
9 #include <linux/if_arp.h>
10 #include <linux/if_ether.h>
11 #include <linux/ip.h>
12 #include <linux/if_vlan.h>
13 #include <linux/in.h>
14 #include <linux/in_route.h>
15 #include <linux/jhash.h>
16 #include <linux/kernel.h>
17 #include <linux/version.h>
18 #include <linux/workqueue.h>
19
20 #include <net/dsfield.h>
21 #include <net/dst.h>
22 #include <net/icmp.h>
23 #include <net/inet_ecn.h>
24 #include <net/ip.h>
25 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
26 #include <net/ipv6.h>
27 #endif
28 #include <net/route.h>
29 #include <net/xfrm.h>
30
31 #include "actions.h"
32 #include "datapath.h"
33 #include "table.h"
34 #include "tunnel.h"
35 #include "vport.h"
36 #include "vport-generic.h"
37 #include "vport-internal_dev.h"
38
39 #ifdef NEED_CACHE_TIMEOUT
40 /*
41  * On kernels where we can't quickly detect changes in the rest of the system
42  * we use an expiration time to invalidate the cache.  A shorter expiration
43  * reduces the length of time that we may potentially blackhole packets while
44  * a longer time increases performance by reducing the frequency that the
45  * cache needs to be rebuilt.  A variety of factors may cause the cache to be
46  * invalidated before the expiration time but this is the maximum.  The time
47  * is expressed in jiffies.
48  */
49 #define MAX_CACHE_EXP HZ
50 #endif
51
52 /*
53  * Interval to check for and remove caches that are no longer valid.  Caches
54  * are checked for validity before they are used for packet encapsulation and
55  * old caches are removed at that time.  However, if no packets are sent through
56  * the tunnel then the cache will never be destroyed.  Since it holds
57  * references to a number of system objects, the cache will continue to use
58  * system resources by not allowing those objects to be destroyed.  The cache
59  * cleaner is periodically run to free invalid caches.  It does not
60  * significantly affect system performance.  A lower interval will release
61  * resources faster but will itself consume resources by requiring more frequent
62  * checks.  A longer interval may result in messages being printed to the kernel
63  * message buffer about unreleased resources.  The interval is expressed in
64  * jiffies.
65  */
66 #define CACHE_CLEANER_INTERVAL (5 * HZ)
67
68 #define CACHE_DATA_ALIGN 16
69
70 /* Protected by RCU. */
71 static struct tbl *port_table __read_mostly;
72
73 static void cache_cleaner(struct work_struct *work);
74 DECLARE_DELAYED_WORK(cache_cleaner_wq, cache_cleaner);
75
76 /*
77  * These are just used as an optimization: they don't require any kind of
78  * synchronization because we could have just as easily read the value before
79  * the port change happened.
80  */
81 static unsigned int key_local_remote_ports __read_mostly;
82 static unsigned int key_remote_ports __read_mostly;
83 static unsigned int local_remote_ports __read_mostly;
84 static unsigned int remote_ports __read_mostly;
85
86 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36)
87 #define rt_dst(rt) (rt->dst)
88 #else
89 #define rt_dst(rt) (rt->u.dst)
90 #endif
91
92 static inline struct vport *tnl_vport_to_vport(const struct tnl_vport *tnl_vport)
93 {
94         return vport_from_priv(tnl_vport);
95 }
96
97 static inline struct tnl_vport *tnl_vport_table_cast(const struct tbl_node *node)
98 {
99         return container_of(node, struct tnl_vport, tbl_node);
100 }
101
102 static inline void schedule_cache_cleaner(void)
103 {
104         schedule_delayed_work(&cache_cleaner_wq, CACHE_CLEANER_INTERVAL);
105 }
106
107 static void free_cache(struct tnl_cache *cache)
108 {
109         if (!cache)
110                 return;
111
112         flow_put(cache->flow);
113         ip_rt_put(cache->rt);
114         kfree(cache);
115 }
116
117 static void free_config_rcu(struct rcu_head *rcu)
118 {
119         struct tnl_mutable_config *c = container_of(rcu, struct tnl_mutable_config, rcu);
120         kfree(c);
121 }
122
123 static void free_cache_rcu(struct rcu_head *rcu)
124 {
125         struct tnl_cache *c = container_of(rcu, struct tnl_cache, rcu);
126         free_cache(c);
127 }
128
129 static void assign_config_rcu(struct vport *vport,
130                               struct tnl_mutable_config *new_config)
131 {
132         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
133         struct tnl_mutable_config *old_config;
134
135         old_config = tnl_vport->mutable;
136         rcu_assign_pointer(tnl_vport->mutable, new_config);
137         call_rcu(&old_config->rcu, free_config_rcu);
138 }
139
140 static void assign_cache_rcu(struct vport *vport, struct tnl_cache *new_cache)
141 {
142         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
143         struct tnl_cache *old_cache;
144
145         old_cache = tnl_vport->cache;
146         rcu_assign_pointer(tnl_vport->cache, new_cache);
147
148         if (old_cache)
149                 call_rcu(&old_cache->rcu, free_cache_rcu);
150 }
151
152 static unsigned int *find_port_pool(const struct tnl_mutable_config *mutable)
153 {
154         if (mutable->port_config.flags & TNL_F_IN_KEY_MATCH) {
155                 if (mutable->port_config.saddr)
156                         return &local_remote_ports;
157                 else
158                         return &remote_ports;
159         } else {
160                 if (mutable->port_config.saddr)
161                         return &key_local_remote_ports;
162                 else
163                         return &key_remote_ports;
164         }
165 }
166
167 struct port_lookup_key {
168         u32 tunnel_type;
169         __be32 saddr;
170         __be32 daddr;
171         __be32 key;
172         const struct tnl_mutable_config *mutable;
173 };
174
175 /*
176  * Modifies 'target' to store the rcu_dereferenced pointer that was used to do
177  * the comparision.
178  */
179 static int port_cmp(const struct tbl_node *node, void *target)
180 {
181         const struct tnl_vport *tnl_vport = tnl_vport_table_cast(node);
182         struct port_lookup_key *lookup = target;
183
184         lookup->mutable = rcu_dereference(tnl_vport->mutable);
185
186         return (lookup->mutable->tunnel_type == lookup->tunnel_type &&
187                 lookup->mutable->port_config.daddr == lookup->daddr &&
188                 lookup->mutable->port_config.in_key == lookup->key &&
189                 lookup->mutable->port_config.saddr == lookup->saddr);
190 }
191
192 static u32 port_hash(struct port_lookup_key *k)
193 {
194         return jhash_3words(k->key, k->saddr, k->daddr, k->tunnel_type);
195 }
196
197 static u32 mutable_hash(const struct tnl_mutable_config *mutable)
198 {
199         struct port_lookup_key lookup;
200
201         lookup.saddr = mutable->port_config.saddr;
202         lookup.daddr = mutable->port_config.daddr;
203         lookup.key = mutable->port_config.in_key;
204         lookup.tunnel_type = mutable->tunnel_type;
205
206         return port_hash(&lookup);
207 }
208
209 static void check_table_empty(void)
210 {
211         if (tbl_count(port_table) == 0) {
212                 struct tbl *old_table = port_table;
213
214                 cancel_delayed_work_sync(&cache_cleaner_wq);
215                 rcu_assign_pointer(port_table, NULL);
216                 tbl_deferred_destroy(old_table, NULL);
217         }
218 }
219
220 static int add_port(struct vport *vport)
221 {
222         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
223         int err;
224
225         if (!port_table) {
226                 struct tbl *new_table;
227
228                 new_table = tbl_create(0);
229                 if (!new_table)
230                         return -ENOMEM;
231
232                 rcu_assign_pointer(port_table, new_table);
233                 schedule_cache_cleaner();
234
235         } else if (tbl_count(port_table) > tbl_n_buckets(port_table)) {
236                 struct tbl *old_table = port_table;
237                 struct tbl *new_table;
238
239                 new_table = tbl_expand(old_table);
240                 if (IS_ERR(new_table))
241                         return PTR_ERR(new_table);
242
243                 rcu_assign_pointer(port_table, new_table);
244                 tbl_deferred_destroy(old_table, NULL);
245         }
246
247         err = tbl_insert(port_table, &tnl_vport->tbl_node, mutable_hash(tnl_vport->mutable));
248         if (err) {
249                 check_table_empty();
250                 return err;
251         }
252
253         (*find_port_pool(tnl_vport->mutable))++;
254
255         return 0;
256 }
257
258 static int move_port(struct vport *vport, struct tnl_mutable_config *new_mutable)
259 {
260         int err;
261         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
262         u32 hash;
263
264         hash = mutable_hash(new_mutable);
265         if (hash == tnl_vport->tbl_node.hash)
266                 goto table_updated;
267
268         /*
269          * Ideally we should make this move atomic to avoid having gaps in
270          * finding tunnels or the possibility of failure.  However, if we do
271          * find a tunnel it will always be consistent.
272          */
273         err = tbl_remove(port_table, &tnl_vport->tbl_node);
274         if (err)
275                 return err;
276
277         err = tbl_insert(port_table, &tnl_vport->tbl_node, hash);
278         if (err) {
279                 check_table_empty();
280                 return err;
281         }
282
283 table_updated:
284         assign_config_rcu(vport, new_mutable);
285
286         return 0;
287 }
288
289 static int del_port(struct vport *vport)
290 {
291         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
292         int err;
293
294         err = tbl_remove(port_table, &tnl_vport->tbl_node);
295         if (err)
296                 return err;
297
298         check_table_empty();
299         (*find_port_pool(tnl_vport->mutable))--;
300
301         return 0;
302 }
303
304 struct vport *tnl_find_port(__be32 saddr, __be32 daddr, __be32 key,
305                             int tunnel_type,
306                             const struct tnl_mutable_config **mutable)
307 {
308         struct port_lookup_key lookup;
309         struct tbl *table = rcu_dereference(port_table);
310         struct tbl_node *tbl_node;
311
312         if (unlikely(!table))
313                 return NULL;
314
315         lookup.saddr = saddr;
316         lookup.daddr = daddr;
317
318         if (tunnel_type & TNL_T_KEY_EXACT) {
319                 lookup.key = key;
320                 lookup.tunnel_type = tunnel_type & ~TNL_T_KEY_MATCH;
321
322                 if (key_local_remote_ports) {
323                         tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp);
324                         if (tbl_node)
325                                 goto found;
326                 }
327
328                 if (key_remote_ports) {
329                         lookup.saddr = 0;
330
331                         tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp);
332                         if (tbl_node)
333                                 goto found;
334
335                         lookup.saddr = saddr;
336                 }
337         }
338
339         if (tunnel_type & TNL_T_KEY_MATCH) {
340                 lookup.key = 0;
341                 lookup.tunnel_type = tunnel_type & ~TNL_T_KEY_EXACT;
342
343                 if (local_remote_ports) {
344                         tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp);
345                         if (tbl_node)
346                                 goto found;
347                 }
348
349                 if (remote_ports) {
350                         lookup.saddr = 0;
351
352                         tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp);
353                         if (tbl_node)
354                                 goto found;
355                 }
356         }
357
358         return NULL;
359
360 found:
361         *mutable = lookup.mutable;
362         return tnl_vport_to_vport(tnl_vport_table_cast(tbl_node));
363 }
364
365 static inline void ecn_decapsulate(struct sk_buff *skb)
366 {
367         u8 tos = ip_hdr(skb)->tos;
368
369         if (INET_ECN_is_ce(tos)) {
370                 __be16 protocol = skb->protocol;
371                 unsigned int nw_header = skb_network_offset(skb);
372
373                 if (skb->protocol == htons(ETH_P_8021Q)) {
374                         if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
375                                 return;
376
377                         protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
378                         nw_header += VLAN_HLEN;
379                 }
380
381                 if (protocol == htons(ETH_P_IP)) {
382                         if (unlikely(!pskb_may_pull(skb, nw_header
383                             + sizeof(struct iphdr))))
384                                 return;
385
386                         IP_ECN_set_ce((struct iphdr *)(skb->data + nw_header));
387                 }
388 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
389                 else if (protocol == htons(ETH_P_IPV6)) {
390                         if (unlikely(!pskb_may_pull(skb, nw_header
391                             + sizeof(struct ipv6hdr))))
392                                 return;
393
394                         IP6_ECN_set_ce((struct ipv6hdr *)(skb->data + nw_header));
395                 }
396 #endif
397         }
398 }
399
400 /* Called with rcu_read_lock. */
401 void tnl_rcv(struct vport *vport, struct sk_buff *skb)
402 {
403         skb->pkt_type = PACKET_HOST;
404         skb->protocol = eth_type_trans(skb, skb->dev);
405
406         skb_dst_drop(skb);
407         nf_reset(skb);
408         secpath_reset(skb);
409         skb_reset_network_header(skb);
410
411         ecn_decapsulate(skb);
412
413         skb_push(skb, ETH_HLEN);
414         compute_ip_summed(skb, false);
415
416         vport_receive(vport, skb);
417 }
418
419 static bool check_ipv4_address(__be32 addr)
420 {
421         if (ipv4_is_multicast(addr) || ipv4_is_lbcast(addr)
422             || ipv4_is_loopback(addr) || ipv4_is_zeronet(addr))
423                 return false;
424
425         return true;
426 }
427
428 static bool ipv4_should_icmp(struct sk_buff *skb)
429 {
430         struct iphdr *old_iph = ip_hdr(skb);
431
432         /* Don't respond to L2 broadcast. */
433         if (is_multicast_ether_addr(eth_hdr(skb)->h_dest))
434                 return false;
435
436         /* Don't respond to L3 broadcast or invalid addresses. */
437         if (!check_ipv4_address(old_iph->daddr) ||
438             !check_ipv4_address(old_iph->saddr))
439                 return false;
440
441         /* Only respond to the first fragment. */
442         if (old_iph->frag_off & htons(IP_OFFSET))
443                 return false;
444
445         /* Don't respond to ICMP error messages. */
446         if (old_iph->protocol == IPPROTO_ICMP) {
447                 u8 icmp_type, *icmp_typep;
448
449                 icmp_typep = skb_header_pointer(skb, (u8 *)old_iph +
450                                                 (old_iph->ihl << 2) +
451                                                 offsetof(struct icmphdr, type) -
452                                                 skb->data, sizeof(icmp_type),
453                                                 &icmp_type);
454
455                 if (!icmp_typep)
456                         return false;
457
458                 if (*icmp_typep > NR_ICMP_TYPES
459                         || (*icmp_typep <= ICMP_PARAMETERPROB
460                                 && *icmp_typep != ICMP_ECHOREPLY
461                                 && *icmp_typep != ICMP_ECHO))
462                         return false;
463         }
464
465         return true;
466 }
467
468 static void ipv4_build_icmp(struct sk_buff *skb, struct sk_buff *nskb,
469                             unsigned int mtu, unsigned int payload_length)
470 {
471         struct iphdr *iph, *old_iph = ip_hdr(skb);
472         struct icmphdr *icmph;
473         u8 *payload;
474
475         iph = (struct iphdr *)skb_put(nskb, sizeof(struct iphdr));
476         icmph = (struct icmphdr *)skb_put(nskb, sizeof(struct icmphdr));
477         payload = skb_put(nskb, payload_length);
478
479         /* IP */
480         iph->version            =       4;
481         iph->ihl                =       sizeof(struct iphdr) >> 2;
482         iph->tos                =       (old_iph->tos & IPTOS_TOS_MASK) |
483                                         IPTOS_PREC_INTERNETCONTROL;
484         iph->tot_len            =       htons(sizeof(struct iphdr)
485                                               + sizeof(struct icmphdr)
486                                               + payload_length);
487         get_random_bytes(&iph->id, sizeof(iph->id));
488         iph->frag_off           =       0;
489         iph->ttl                =       IPDEFTTL;
490         iph->protocol           =       IPPROTO_ICMP;
491         iph->daddr              =       old_iph->saddr;
492         iph->saddr              =       old_iph->daddr;
493
494         ip_send_check(iph);
495
496         /* ICMP */
497         icmph->type             =       ICMP_DEST_UNREACH;
498         icmph->code             =       ICMP_FRAG_NEEDED;
499         icmph->un.gateway       =       htonl(mtu);
500         icmph->checksum         =       0;
501
502         nskb->csum = csum_partial((u8 *)icmph, sizeof(struct icmphdr), 0);
503         nskb->csum = skb_copy_and_csum_bits(skb, (u8 *)old_iph - skb->data,
504                                             payload, payload_length,
505                                             nskb->csum);
506         icmph->checksum = csum_fold(nskb->csum);
507 }
508
509 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
510 static bool ipv6_should_icmp(struct sk_buff *skb)
511 {
512         struct ipv6hdr *old_ipv6h = ipv6_hdr(skb);
513         int addr_type;
514         int payload_off = (u8 *)(old_ipv6h + 1) - skb->data;
515         u8 nexthdr = ipv6_hdr(skb)->nexthdr;
516
517         /* Check source address is valid. */
518         addr_type = ipv6_addr_type(&old_ipv6h->saddr);
519         if (addr_type & IPV6_ADDR_MULTICAST || addr_type == IPV6_ADDR_ANY)
520                 return false;
521
522         /* Don't reply to unspecified addresses. */
523         if (ipv6_addr_type(&old_ipv6h->daddr) == IPV6_ADDR_ANY)
524                 return false;
525
526         /* Don't respond to ICMP error messages. */
527         payload_off = ipv6_skip_exthdr(skb, payload_off, &nexthdr);
528         if (payload_off < 0)
529                 return false;
530
531         if (nexthdr == NEXTHDR_ICMP) {
532                 u8 icmp_type, *icmp_typep;
533
534                 icmp_typep = skb_header_pointer(skb, payload_off +
535                                                 offsetof(struct icmp6hdr,
536                                                         icmp6_type),
537                                                 sizeof(icmp_type), &icmp_type);
538
539                 if (!icmp_typep || !(*icmp_typep & ICMPV6_INFOMSG_MASK))
540                         return false;
541         }
542
543         return true;
544 }
545
546 static void ipv6_build_icmp(struct sk_buff *skb, struct sk_buff *nskb,
547                             unsigned int mtu, unsigned int payload_length)
548 {
549         struct ipv6hdr *ipv6h, *old_ipv6h = ipv6_hdr(skb);
550         struct icmp6hdr *icmp6h;
551         u8 *payload;
552
553         ipv6h = (struct ipv6hdr *)skb_put(nskb, sizeof(struct ipv6hdr));
554         icmp6h = (struct icmp6hdr *)skb_put(nskb, sizeof(struct icmp6hdr));
555         payload = skb_put(nskb, payload_length);
556
557         /* IPv6 */
558         ipv6h->version          =       6;
559         ipv6h->priority         =       0;
560         memset(&ipv6h->flow_lbl, 0, sizeof(ipv6h->flow_lbl));
561         ipv6h->payload_len      =       htons(sizeof(struct icmp6hdr)
562                                               + payload_length);
563         ipv6h->nexthdr          =       NEXTHDR_ICMP;
564         ipv6h->hop_limit        =       IPV6_DEFAULT_HOPLIMIT;
565         ipv6_addr_copy(&ipv6h->daddr, &old_ipv6h->saddr);
566         ipv6_addr_copy(&ipv6h->saddr, &old_ipv6h->daddr);
567
568         /* ICMPv6 */
569         icmp6h->icmp6_type      =       ICMPV6_PKT_TOOBIG;
570         icmp6h->icmp6_code      =       0;
571         icmp6h->icmp6_cksum     =       0;
572         icmp6h->icmp6_mtu       =       htonl(mtu);
573
574         nskb->csum = csum_partial((u8 *)icmp6h, sizeof(struct icmp6hdr), 0);
575         nskb->csum = skb_copy_and_csum_bits(skb, (u8 *)old_ipv6h - skb->data,
576                                             payload, payload_length,
577                                             nskb->csum);
578         icmp6h->icmp6_cksum = csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
579                                                 sizeof(struct icmp6hdr)
580                                                 + payload_length,
581                                                 ipv6h->nexthdr, nskb->csum);
582 }
583 #endif /* IPv6 */
584
585 bool tnl_frag_needed(struct vport *vport, const struct tnl_mutable_config *mutable,
586                      struct sk_buff *skb, unsigned int mtu, __be32 flow_key)
587 {
588         unsigned int eth_hdr_len = ETH_HLEN;
589         unsigned int total_length = 0, header_length = 0, payload_length;
590         struct ethhdr *eh, *old_eh = eth_hdr(skb);
591         struct sk_buff *nskb;
592
593         /* Sanity check */
594         if (skb->protocol == htons(ETH_P_IP)) {
595                 if (mtu < IP_MIN_MTU)
596                         return false;
597
598                 if (!ipv4_should_icmp(skb))
599                         return true;
600         }
601 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
602         else if (skb->protocol == htons(ETH_P_IPV6)) {
603                 if (mtu < IPV6_MIN_MTU)
604                         return false;
605
606                 /*
607                  * In theory we should do PMTUD on IPv6 multicast messages but
608                  * we don't have an address to send from so just fragment.
609                  */
610                 if (ipv6_addr_type(&ipv6_hdr(skb)->daddr) & IPV6_ADDR_MULTICAST)
611                         return false;
612
613                 if (!ipv6_should_icmp(skb))
614                         return true;
615         }
616 #endif
617         else
618                 return false;
619
620         /* Allocate */
621         if (old_eh->h_proto == htons(ETH_P_8021Q))
622                 eth_hdr_len = VLAN_ETH_HLEN;
623
624         payload_length = skb->len - eth_hdr_len;
625         if (skb->protocol == htons(ETH_P_IP)) {
626                 header_length = sizeof(struct iphdr) + sizeof(struct icmphdr);
627                 total_length = min_t(unsigned int, header_length +
628                                                    payload_length, 576);
629         }
630 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
631         else {
632                 header_length = sizeof(struct ipv6hdr) +
633                                 sizeof(struct icmp6hdr);
634                 total_length = min_t(unsigned int, header_length +
635                                                   payload_length, IPV6_MIN_MTU);
636         }
637 #endif
638
639         total_length = min(total_length, mutable->mtu);
640         payload_length = total_length - header_length;
641
642         nskb = dev_alloc_skb(NET_IP_ALIGN + eth_hdr_len + header_length +
643                              payload_length);
644         if (!nskb)
645                 return false;
646
647         skb_reserve(nskb, NET_IP_ALIGN);
648
649         /* Ethernet / VLAN */
650         eh = (struct ethhdr *)skb_put(nskb, eth_hdr_len);
651         memcpy(eh->h_dest, old_eh->h_source, ETH_ALEN);
652         memcpy(eh->h_source, mutable->eth_addr, ETH_ALEN);
653         nskb->protocol = eh->h_proto = old_eh->h_proto;
654         if (old_eh->h_proto == htons(ETH_P_8021Q)) {
655                 struct vlan_ethhdr *vh = (struct vlan_ethhdr *)eh;
656
657                 vh->h_vlan_TCI = vlan_eth_hdr(skb)->h_vlan_TCI;
658                 vh->h_vlan_encapsulated_proto = skb->protocol;
659         }
660         skb_reset_mac_header(nskb);
661
662         /* Protocol */
663         if (skb->protocol == htons(ETH_P_IP))
664                 ipv4_build_icmp(skb, nskb, mtu, payload_length);
665 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
666         else
667                 ipv6_build_icmp(skb, nskb, mtu, payload_length);
668 #endif
669
670         /*
671          * Assume that flow based keys are symmetric with respect to input
672          * and output and use the key that we were going to put on the
673          * outgoing packet for the fake received packet.  If the keys are
674          * not symmetric then PMTUD needs to be disabled since we won't have
675          * any way of synthesizing packets.
676          */
677         if ((mutable->port_config.flags & (TNL_F_IN_KEY_MATCH | TNL_F_OUT_KEY_ACTION)) ==
678             (TNL_F_IN_KEY_MATCH | TNL_F_OUT_KEY_ACTION))
679                 OVS_CB(nskb)->tun_id = flow_key;
680
681         compute_ip_summed(nskb, false);
682         vport_receive(vport, nskb);
683
684         return true;
685 }
686
687 static bool check_mtu(struct sk_buff *skb,
688                       struct vport *vport,
689                       const struct tnl_mutable_config *mutable,
690                       const struct rtable *rt, __be16 *frag_offp)
691 {
692         int mtu;
693         __be16 frag_off;
694
695         frag_off = (mutable->port_config.flags & TNL_F_PMTUD) ? htons(IP_DF) : 0;
696         if (frag_off)
697                 mtu = dst_mtu(&rt_dst(rt))
698                         - ETH_HLEN
699                         - mutable->tunnel_hlen
700                         - (eth_hdr(skb)->h_proto == htons(ETH_P_8021Q) ? VLAN_HLEN : 0);
701         else
702                 mtu = mutable->mtu;
703
704         if (skb->protocol == htons(ETH_P_IP)) {
705                 struct iphdr *old_iph = ip_hdr(skb);
706
707                 frag_off |= old_iph->frag_off & htons(IP_DF);
708                 mtu = max(mtu, IP_MIN_MTU);
709
710                 if ((old_iph->frag_off & htons(IP_DF)) &&
711                     mtu < ntohs(old_iph->tot_len)) {
712                         if (tnl_frag_needed(vport, mutable, skb, mtu, OVS_CB(skb)->tun_id))
713                                 goto drop;
714                 }
715         }
716 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
717         else if (skb->protocol == htons(ETH_P_IPV6)) {
718                 unsigned int packet_length = skb->len - ETH_HLEN
719                         - (eth_hdr(skb)->h_proto == htons(ETH_P_8021Q) ? VLAN_HLEN : 0);
720
721                 mtu = max(mtu, IPV6_MIN_MTU);
722
723                 /* IPv6 requires PMTUD if the packet is above the minimum MTU. */
724                 if (packet_length > IPV6_MIN_MTU)
725                         frag_off = htons(IP_DF);
726
727                 if (mtu < packet_length) {
728                         if (tnl_frag_needed(vport, mutable, skb, mtu, OVS_CB(skb)->tun_id))
729                                 goto drop;
730                 }
731         }
732 #endif
733
734         *frag_offp = frag_off;
735         return true;
736
737 drop:
738         *frag_offp = 0;
739         return false;
740 }
741
742 static void create_tunnel_header(const struct vport *vport,
743                                  const struct tnl_mutable_config *mutable,
744                                  const struct rtable *rt, void *header)
745 {
746         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
747         struct iphdr *iph = header;
748
749         iph->version    = 4;
750         iph->ihl        = sizeof(struct iphdr) >> 2;
751         iph->frag_off   = htons(IP_DF);
752         iph->protocol   = tnl_vport->tnl_ops->ipproto;
753         iph->tos        = mutable->port_config.tos;
754         iph->daddr      = rt->rt_dst;
755         iph->saddr      = rt->rt_src;
756         iph->ttl        = mutable->port_config.ttl;
757         if (!iph->ttl)
758                 iph->ttl = dst_metric(&rt_dst(rt), RTAX_HOPLIMIT);
759
760         tnl_vport->tnl_ops->build_header(vport, mutable, iph + 1);
761 }
762
763 static inline void *get_cached_header(const struct tnl_cache *cache)
764 {
765         return (void *)cache + ALIGN(sizeof(struct tnl_cache), CACHE_DATA_ALIGN);
766 }
767
768 static inline bool check_cache_valid(const struct tnl_cache *cache,
769                                      const struct tnl_mutable_config *mutable)
770 {
771         return cache &&
772 #ifdef NEED_CACHE_TIMEOUT
773                 time_before(jiffies, cache->expiration) &&
774 #endif
775 #ifdef HAVE_RT_GENID
776                 atomic_read(&init_net.ipv4.rt_genid) == cache->rt->rt_genid &&
777 #endif
778 #ifdef HAVE_HH_SEQ
779                 rt_dst(cache->rt).hh->hh_lock.sequence == cache->hh_seq &&
780 #endif
781                 mutable->seq == cache->mutable_seq &&
782                 (!is_internal_dev(rt_dst(cache->rt).dev) ||
783                 (cache->flow && !cache->flow->dead));
784 }
785
786 static int cache_cleaner_cb(struct tbl_node *tbl_node, void *aux)
787 {
788         struct tnl_vport *tnl_vport = tnl_vport_table_cast(tbl_node);
789         const struct tnl_mutable_config *mutable = rcu_dereference(tnl_vport->mutable);
790         const struct tnl_cache *cache = rcu_dereference(tnl_vport->cache);
791
792         if (cache && !check_cache_valid(cache, mutable) &&
793             spin_trylock_bh(&tnl_vport->cache_lock)) {
794                 assign_cache_rcu(tnl_vport_to_vport(tnl_vport), NULL);
795                 spin_unlock_bh(&tnl_vport->cache_lock);
796         }
797
798         return 0;
799 }
800
801 static void cache_cleaner(struct work_struct *work)
802 {
803         schedule_cache_cleaner();
804
805         rcu_read_lock();
806         tbl_foreach(port_table, cache_cleaner_cb, NULL);
807         rcu_read_unlock();
808 }
809
810 static inline void create_eth_hdr(struct tnl_cache *cache,
811                                   const struct rtable *rt)
812 {
813         void *cache_data = get_cached_header(cache);
814         int hh_len = rt_dst(rt).hh->hh_len;
815         int hh_off = HH_DATA_ALIGN(rt_dst(rt).hh->hh_len) - hh_len;
816
817 #ifdef HAVE_HH_SEQ
818         unsigned hh_seq;
819
820         do {
821                 hh_seq = read_seqbegin(&rt_dst(rt).hh->hh_lock);
822                 memcpy(cache_data, (void *)rt_dst(rt).hh->hh_data + hh_off, hh_len);
823         } while (read_seqretry(&rt_dst(rt).hh->hh_lock, hh_seq));
824
825         cache->hh_seq = hh_seq;
826 #else
827         read_lock_bh(&rt_dst(rt).hh->hh_lock);
828         memcpy(cache_data, (void *)rt_dst(rt).hh->hh_data + hh_off, hh_len);
829         read_unlock_bh(&rt_dst(rt).hh->hh_lock);
830 #endif
831 }
832
833 static struct tnl_cache *build_cache(struct vport *vport,
834                                      const struct tnl_mutable_config *mutable,
835                                      struct rtable *rt)
836 {
837         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
838         struct tnl_cache *cache;
839         void *cache_data;
840         int cache_len;
841
842         if (!(mutable->port_config.flags & TNL_F_HDR_CACHE))
843                 return NULL;
844
845         /*
846          * If there is no entry in the ARP cache or if this device does not
847          * support hard header caching just fall back to the IP stack.
848          */
849         if (!rt_dst(rt).hh)
850                 return NULL;
851
852         /*
853          * If lock is contended fall back to directly building the header.
854          * We're not going to help performance by sitting here spinning.
855          */
856         if (!spin_trylock_bh(&tnl_vport->cache_lock))
857                 return NULL;
858
859         cache = tnl_vport->cache;
860         if (check_cache_valid(cache, mutable))
861                 goto unlock;
862         else
863                 cache = NULL;
864
865         cache_len = rt_dst(rt).hh->hh_len + mutable->tunnel_hlen;
866
867         cache = kzalloc(ALIGN(sizeof(struct tnl_cache), CACHE_DATA_ALIGN) +
868                         cache_len, GFP_ATOMIC);
869         if (!cache)
870                 goto unlock;
871
872         cache->len = cache_len;
873
874         create_eth_hdr(cache, rt);
875         cache_data = get_cached_header(cache) + rt_dst(rt).hh->hh_len;
876
877         create_tunnel_header(vport, mutable, rt, cache_data);
878
879         cache->mutable_seq = mutable->seq;
880         cache->rt = rt;
881 #ifdef NEED_CACHE_TIMEOUT
882         cache->expiration = jiffies + tnl_vport->cache_exp_interval;
883 #endif
884
885         if (is_internal_dev(rt_dst(rt).dev)) {
886                 int err;
887                 struct vport *vport;
888                 struct dp_port *dp_port;
889                 struct sk_buff *skb;
890                 bool is_frag;
891                 struct odp_flow_key flow_key;
892                 struct tbl_node *flow_node;
893
894                 vport = internal_dev_get_vport(rt_dst(rt).dev);
895                 if (!vport)
896                         goto done;
897
898                 dp_port = vport_get_dp_port(vport);
899                 if (!dp_port)
900                         goto done;
901
902                 skb = alloc_skb(cache->len, GFP_ATOMIC);
903                 if (!skb)
904                         goto done;
905
906                 __skb_put(skb, cache->len);
907                 memcpy(skb->data, get_cached_header(cache), cache->len);
908
909                 err = flow_extract(skb, dp_port->port_no, &flow_key, &is_frag);
910
911                 kfree_skb(skb);
912                 if (err || is_frag)
913                         goto done;
914
915                 flow_node = tbl_lookup(rcu_dereference(dp_port->dp->table),
916                                        &flow_key, flow_hash(&flow_key),
917                                        flow_cmp);
918                 if (flow_node) {
919                         struct sw_flow *flow = flow_cast(flow_node);
920
921                         cache->flow = flow;
922                         flow_hold(flow);
923                 }
924         }
925
926 done:
927         assign_cache_rcu(vport, cache);
928
929 unlock:
930         spin_unlock_bh(&tnl_vport->cache_lock);
931
932         return cache;
933 }
934
935 static struct rtable *find_route(struct vport *vport,
936                                  const struct tnl_mutable_config *mutable,
937                                  u8 tos, struct tnl_cache **cache)
938 {
939         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
940         struct tnl_cache *cur_cache = rcu_dereference(tnl_vport->cache);
941
942         *cache = NULL;
943         tos = RT_TOS(tos);
944
945         if (likely(tos == mutable->port_config.tos &&
946                    check_cache_valid(cur_cache, mutable))) {
947                 *cache = cur_cache;
948                 return cur_cache->rt;
949         } else {
950                 struct rtable *rt;
951                 struct flowi fl = { .nl_u = { .ip4_u =
952                                               { .daddr = mutable->port_config.daddr,
953                                                 .saddr = mutable->port_config.saddr,
954                                                 .tos = tos } },
955                                     .proto = tnl_vport->tnl_ops->ipproto };
956
957                 if (unlikely(ip_route_output_key(&init_net, &rt, &fl)))
958                         return NULL;
959
960                 if (likely(tos == mutable->port_config.tos))
961                         *cache = build_cache(vport, mutable, rt);
962
963                 return rt;
964         }
965 }
966
967 static struct sk_buff *check_headroom(struct sk_buff *skb, int headroom)
968 {
969         if (skb_headroom(skb) < headroom || skb_header_cloned(skb)) {
970                 struct sk_buff *nskb = skb_realloc_headroom(skb, headroom + 16);
971                 if (unlikely(!nskb)) {
972                         kfree_skb(skb);
973                         return ERR_PTR(-ENOMEM);
974                 }
975
976                 set_skb_csum_bits(skb, nskb);
977
978                 if (skb->sk)
979                         skb_set_owner_w(nskb, skb->sk);
980
981                 kfree_skb(skb);
982                 return nskb;
983         }
984
985         return skb;
986 }
987
988 static inline bool need_linearize(const struct sk_buff *skb)
989 {
990         int i;
991
992         if (unlikely(skb_shinfo(skb)->frag_list))
993                 return true;
994
995         /*
996          * Generally speaking we should linearize if there are paged frags.
997          * However, if all of the refcounts are 1 we know nobody else can
998          * change them from underneath us and we can skip the linearization.
999          */
1000         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1001                 if (unlikely(page_count(skb_shinfo(skb)->frags[0].page) > 1))
1002                         return true;
1003
1004         return false;
1005 }
1006
1007 static struct sk_buff *handle_offloads(struct sk_buff *skb,
1008                                        const struct tnl_mutable_config *mutable,
1009                                        const struct rtable *rt)
1010 {
1011         int min_headroom;
1012         int err;
1013
1014         forward_ip_summed(skb);
1015
1016         err = vswitch_skb_checksum_setup(skb);
1017         if (unlikely(err))
1018                 goto error_free;
1019
1020         min_headroom = LL_RESERVED_SPACE(rt_dst(rt).dev) + rt_dst(rt).header_len
1021                         + mutable->tunnel_hlen;
1022
1023         if (skb_is_gso(skb)) {
1024                 struct sk_buff *nskb;
1025
1026                 /*
1027                  * If we are doing GSO on a pskb it is better to make sure that
1028                  * the headroom is correct now.  We will only have to copy the
1029                  * portion in the linear data area and GSO will preserve
1030                  * headroom when it creates the segments.  This is particularly
1031                  * beneficial on Xen where we get a lot of GSO pskbs.
1032                  * Conversely, we avoid copying if it is just to get our own
1033                  * writable clone because GSO will do the copy for us.
1034                  */
1035                 if (skb_headroom(skb) < min_headroom) {
1036                         skb = check_headroom(skb, min_headroom);
1037                         if (unlikely(IS_ERR(skb))) {
1038                                 err = PTR_ERR(skb);
1039                                 goto error;
1040                         }
1041                 }
1042
1043                 nskb = skb_gso_segment(skb, 0);
1044                 kfree_skb(skb);
1045                 if (unlikely(IS_ERR(nskb))) {
1046                         err = PTR_ERR(nskb);
1047                         goto error;
1048                 }
1049
1050                 skb = nskb;
1051         } else {
1052                 skb = check_headroom(skb, min_headroom);
1053                 if (unlikely(IS_ERR(skb))) {
1054                         err = PTR_ERR(skb);
1055                         goto error;
1056                 }
1057
1058                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1059                         /*
1060                          * Pages aren't locked and could change at any time.
1061                          * If this happens after we compute the checksum, the
1062                          * checksum will be wrong.  We linearize now to avoid
1063                          * this problem.
1064                          */
1065                         if (unlikely(need_linearize(skb))) {
1066                                 err = __skb_linearize(skb);
1067                                 if (unlikely(err))
1068                                         goto error_free;
1069                         }
1070
1071                         err = skb_checksum_help(skb);
1072                         if (unlikely(err))
1073                                 goto error_free;
1074                 } else if (skb->ip_summed == CHECKSUM_COMPLETE)
1075                         skb->ip_summed = CHECKSUM_NONE;
1076         }
1077
1078         return skb;
1079
1080 error_free:
1081         kfree_skb(skb);
1082 error:
1083         return ERR_PTR(err);
1084 }
1085
1086 static int send_frags(struct sk_buff *skb,
1087                       const struct tnl_mutable_config *mutable)
1088 {
1089         int sent_len;
1090         int err;
1091
1092         sent_len = 0;
1093         while (skb) {
1094                 struct sk_buff *next = skb->next;
1095                 int frag_len = skb->len - mutable->tunnel_hlen;
1096
1097                 skb->next = NULL;
1098                 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
1099
1100                 err = ip_local_out(skb);
1101                 if (likely(net_xmit_eval(err) == 0))
1102                         sent_len += frag_len;
1103                 else {
1104                         skb = next;
1105                         goto free_frags;
1106                 }
1107
1108                 skb = next;
1109         }
1110
1111         return sent_len;
1112
1113 free_frags:
1114         /*
1115          * There's no point in continuing to send fragments once one has been
1116          * dropped so just free the rest.  This may help improve the congestion
1117          * that caused the first packet to be dropped.
1118          */
1119         tnl_free_linked_skbs(skb);
1120         return sent_len;
1121 }
1122
1123 int tnl_send(struct vport *vport, struct sk_buff *skb)
1124 {
1125         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1126         const struct tnl_mutable_config *mutable = rcu_dereference(tnl_vport->mutable);
1127
1128         enum vport_err_type err = VPORT_E_TX_ERROR;
1129         struct rtable *rt;
1130         struct dst_entry *unattached_dst = NULL;
1131         struct tnl_cache *cache;
1132         int sent_len = 0;
1133         __be16 frag_off;
1134         u8 ttl;
1135         u8 inner_tos;
1136         u8 tos;
1137
1138         /* Validate the protocol headers before we try to use them. */
1139         if (skb->protocol == htons(ETH_P_8021Q)) {
1140                 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
1141                         goto error_free;
1142
1143                 skb->protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
1144                 skb_set_network_header(skb, VLAN_ETH_HLEN);
1145         }
1146
1147         if (skb->protocol == htons(ETH_P_IP)) {
1148                 if (unlikely(!pskb_may_pull(skb, skb_network_offset(skb)
1149                     + sizeof(struct iphdr))))
1150                         skb->protocol = 0;
1151         }
1152 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1153         else if (skb->protocol == htons(ETH_P_IPV6)) {
1154                 if (unlikely(!pskb_may_pull(skb, skb_network_offset(skb)
1155                     + sizeof(struct ipv6hdr))))
1156                         skb->protocol = 0;
1157         }
1158 #endif
1159
1160         /* ToS */
1161         if (skb->protocol == htons(ETH_P_IP))
1162                 inner_tos = ip_hdr(skb)->tos;
1163 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1164         else if (skb->protocol == htons(ETH_P_IPV6))
1165                 inner_tos = ipv6_get_dsfield(ipv6_hdr(skb));
1166 #endif
1167         else
1168                 inner_tos = 0;
1169
1170         if (mutable->port_config.flags & TNL_F_TOS_INHERIT)
1171                 tos = inner_tos;
1172         else
1173                 tos = mutable->port_config.tos;
1174
1175         tos = INET_ECN_encapsulate(tos, inner_tos);
1176
1177         /* Route lookup */
1178         rt = find_route(vport, mutable, tos, &cache);
1179         if (unlikely(!rt))
1180                 goto error_free;
1181         if (unlikely(!cache))
1182                 unattached_dst = &rt_dst(rt);
1183
1184         /* Reset SKB */
1185         nf_reset(skb);
1186         secpath_reset(skb);
1187         skb_dst_drop(skb);
1188
1189         /* Offloading */
1190         skb = handle_offloads(skb, mutable, rt);
1191         if (unlikely(IS_ERR(skb)))
1192                 goto error;
1193
1194         /* MTU */
1195         if (unlikely(!check_mtu(skb, vport, mutable, rt, &frag_off))) {
1196                 err = VPORT_E_TX_DROPPED;
1197                 goto error_free;
1198         }
1199
1200         /*
1201          * If we are over the MTU, allow the IP stack to handle fragmentation.
1202          * Fragmentation is a slow path anyways.
1203          */
1204         if (unlikely(skb->len + mutable->tunnel_hlen > dst_mtu(&rt_dst(rt)) &&
1205                      cache)) {
1206                 unattached_dst = &rt_dst(rt);
1207                 dst_hold(unattached_dst);
1208                 cache = NULL;
1209         }
1210
1211         /* TTL */
1212         ttl = mutable->port_config.ttl;
1213         if (!ttl)
1214                 ttl = dst_metric(&rt_dst(rt), RTAX_HOPLIMIT);
1215
1216         if (mutable->port_config.flags & TNL_F_TTL_INHERIT) {
1217                 if (skb->protocol == htons(ETH_P_IP))
1218                         ttl = ip_hdr(skb)->ttl;
1219 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1220                 else if (skb->protocol == htons(ETH_P_IPV6))
1221                         ttl = ipv6_hdr(skb)->hop_limit;
1222 #endif
1223         }
1224
1225         while (skb) {
1226                 struct iphdr *iph;
1227                 struct sk_buff *next_skb = skb->next;
1228                 skb->next = NULL;
1229
1230                 if (likely(cache)) {
1231                         skb_push(skb, cache->len);
1232                         memcpy(skb->data, get_cached_header(cache), cache->len);
1233                         skb_reset_mac_header(skb);
1234                         skb_set_network_header(skb, rt_dst(rt).hh->hh_len);
1235
1236                 } else {
1237                         skb_push(skb, mutable->tunnel_hlen);
1238                         create_tunnel_header(vport, mutable, rt, skb->data);
1239                         skb_reset_network_header(skb);
1240
1241                         if (next_skb)
1242                                 skb_dst_set(skb, dst_clone(unattached_dst));
1243                         else {
1244                                 skb_dst_set(skb, unattached_dst);
1245                                 unattached_dst = NULL;
1246                         }
1247                 }
1248                 skb_set_transport_header(skb, skb_network_offset(skb) + sizeof(struct iphdr));
1249
1250                 iph = ip_hdr(skb);
1251                 iph->tos = tos;
1252                 iph->ttl = ttl;
1253                 iph->frag_off = frag_off;
1254                 ip_select_ident(iph, &rt_dst(rt), NULL);
1255
1256                 skb = tnl_vport->tnl_ops->update_header(vport, mutable, &rt_dst(rt), skb);
1257                 if (unlikely(!skb))
1258                         goto next;
1259
1260                 if (likely(cache)) {
1261                         int orig_len = skb->len - cache->len;
1262                         struct vport *cache_vport = internal_dev_get_vport(rt_dst(rt).dev);
1263
1264                         skb->protocol = htons(ETH_P_IP);
1265                         iph->tot_len = htons(skb->len - skb_network_offset(skb));
1266                         ip_send_check(iph);
1267
1268                         if (cache_vport) {
1269                                 OVS_CB(skb)->flow = cache->flow;
1270                                 compute_ip_summed(skb, true);
1271                                 vport_receive(cache_vport, skb);
1272                                 sent_len += orig_len;
1273                         } else {
1274                                 int err;
1275
1276                                 skb->dev = rt_dst(rt).dev;
1277                                 err = dev_queue_xmit(skb);
1278
1279                                 if (likely(net_xmit_eval(err) == 0))
1280                                         sent_len += orig_len;
1281                         }
1282                 } else
1283                         sent_len += send_frags(skb, mutable);
1284
1285 next:
1286                 skb = next_skb;
1287         }
1288
1289         if (unlikely(sent_len == 0))
1290                 vport_record_error(vport, VPORT_E_TX_DROPPED);
1291
1292         goto out;
1293
1294 error_free:
1295         tnl_free_linked_skbs(skb);
1296 error:
1297         dst_release(unattached_dst);
1298         vport_record_error(vport, err);
1299 out:
1300         return sent_len;
1301 }
1302
1303 static int set_config(const void *config, const struct tnl_ops *tnl_ops,
1304                       const struct vport *cur_vport,
1305                       struct tnl_mutable_config *mutable)
1306 {
1307         const struct vport *old_vport;
1308         const struct tnl_mutable_config *old_mutable;
1309
1310         mutable->port_config = *(struct tnl_port_config *)config;
1311
1312         if (mutable->port_config.daddr == 0)
1313                 return -EINVAL;
1314
1315         if (mutable->port_config.tos != RT_TOS(mutable->port_config.tos))
1316                 return -EINVAL;
1317
1318         mutable->tunnel_hlen = tnl_ops->hdr_len(&mutable->port_config);
1319         if (mutable->tunnel_hlen < 0)
1320                 return mutable->tunnel_hlen;
1321
1322         mutable->tunnel_hlen += sizeof(struct iphdr);
1323
1324         mutable->tunnel_type = tnl_ops->tunnel_type;
1325         if (mutable->port_config.flags & TNL_F_IN_KEY_MATCH) {
1326                 mutable->tunnel_type |= TNL_T_KEY_MATCH;
1327                 mutable->port_config.in_key = 0;
1328         } else
1329                 mutable->tunnel_type |= TNL_T_KEY_EXACT;
1330
1331         old_vport = tnl_find_port(mutable->port_config.saddr,
1332                                   mutable->port_config.daddr,
1333                                   mutable->port_config.in_key,
1334                                   mutable->tunnel_type,
1335                                   &old_mutable);
1336
1337         if (old_vport && old_vport != cur_vport)
1338                 return -EEXIST;
1339
1340         if (mutable->port_config.flags & TNL_F_OUT_KEY_ACTION)
1341                 mutable->port_config.out_key = 0;
1342
1343         return 0;
1344 }
1345
1346 struct vport *tnl_create(const struct vport_parms *parms,
1347                          const struct vport_ops *vport_ops,
1348                          const struct tnl_ops *tnl_ops)
1349 {
1350         struct vport *vport;
1351         struct tnl_vport *tnl_vport;
1352         int initial_frag_id;
1353         int err;
1354
1355         vport = vport_alloc(sizeof(struct tnl_vport), vport_ops);
1356         if (IS_ERR(vport)) {
1357                 err = PTR_ERR(vport);
1358                 goto error;
1359         }
1360
1361         tnl_vport = tnl_vport_priv(vport);
1362
1363         strcpy(tnl_vport->name, parms->name);
1364         tnl_vport->tnl_ops = tnl_ops;
1365
1366         tnl_vport->mutable = kzalloc(sizeof(struct tnl_mutable_config), GFP_KERNEL);
1367         if (!tnl_vport->mutable) {
1368                 err = -ENOMEM;
1369                 goto error_free_vport;
1370         }
1371
1372         vport_gen_rand_ether_addr(tnl_vport->mutable->eth_addr);
1373         tnl_vport->mutable->mtu = ETH_DATA_LEN;
1374
1375         get_random_bytes(&initial_frag_id, sizeof(int));
1376         atomic_set(&tnl_vport->frag_id, initial_frag_id);
1377
1378         err = set_config(parms->config, tnl_ops, NULL, tnl_vport->mutable);
1379         if (err)
1380                 goto error_free_mutable;
1381
1382         spin_lock_init(&tnl_vport->cache_lock);
1383
1384 #ifdef NEED_CACHE_TIMEOUT
1385         tnl_vport->cache_exp_interval = MAX_CACHE_EXP -
1386                                         (net_random() % (MAX_CACHE_EXP / 2));
1387 #endif
1388
1389         err = add_port(vport);
1390         if (err)
1391                 goto error_free_mutable;
1392
1393         return vport;
1394
1395 error_free_mutable:
1396         kfree(tnl_vport->mutable);
1397 error_free_vport:
1398         vport_free(vport);
1399 error:
1400         return ERR_PTR(err);
1401 }
1402
1403 int tnl_modify(struct vport *vport, struct odp_port *port)
1404 {
1405         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1406         struct tnl_mutable_config *mutable;
1407         int err;
1408
1409         mutable = kmemdup(tnl_vport->mutable, sizeof(struct tnl_mutable_config), GFP_KERNEL);
1410         if (!mutable) {
1411                 err = -ENOMEM;
1412                 goto error;
1413         }
1414
1415         err = set_config(port->config, tnl_vport->tnl_ops, vport, mutable);
1416         if (err)
1417                 goto error_free;
1418
1419         mutable->seq++;
1420
1421         err = move_port(vport, mutable);
1422         if (err)
1423                 goto error_free;
1424
1425         return 0;
1426
1427 error_free:
1428         kfree(mutable);
1429 error:
1430         return err;
1431 }
1432
1433 static void free_port_rcu(struct rcu_head *rcu)
1434 {
1435         struct tnl_vport *tnl_vport = container_of(rcu, struct tnl_vport, rcu);
1436
1437         spin_lock_bh(&tnl_vport->cache_lock);
1438         free_cache(tnl_vport->cache);
1439         spin_unlock_bh(&tnl_vport->cache_lock);
1440
1441         kfree(tnl_vport->mutable);
1442         vport_free(tnl_vport_to_vport(tnl_vport));
1443 }
1444
1445 int tnl_destroy(struct vport *vport)
1446 {
1447         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1448         const struct tnl_mutable_config *old_mutable;
1449
1450         if (vport == tnl_find_port(tnl_vport->mutable->port_config.saddr,
1451             tnl_vport->mutable->port_config.daddr,
1452             tnl_vport->mutable->port_config.in_key,
1453             tnl_vport->mutable->tunnel_type,
1454             &old_mutable))
1455                 del_port(vport);
1456
1457         call_rcu(&tnl_vport->rcu, free_port_rcu);
1458
1459         return 0;
1460 }
1461
1462 int tnl_set_mtu(struct vport *vport, int mtu)
1463 {
1464         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1465         struct tnl_mutable_config *mutable;
1466
1467         mutable = kmemdup(tnl_vport->mutable, sizeof(struct tnl_mutable_config), GFP_KERNEL);
1468         if (!mutable)
1469                 return -ENOMEM;
1470
1471         mutable->mtu = mtu;
1472         assign_config_rcu(vport, mutable);
1473
1474         return 0;
1475 }
1476
1477 int tnl_set_addr(struct vport *vport, const unsigned char *addr)
1478 {
1479         struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1480         struct tnl_mutable_config *mutable;
1481
1482         mutable = kmemdup(tnl_vport->mutable, sizeof(struct tnl_mutable_config), GFP_KERNEL);
1483         if (!mutable)
1484                 return -ENOMEM;
1485
1486         memcpy(mutable->eth_addr, addr, ETH_ALEN);
1487         assign_config_rcu(vport, mutable);
1488
1489         return 0;
1490 }
1491
1492 const char *tnl_get_name(const struct vport *vport)
1493 {
1494         const struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1495         return tnl_vport->name;
1496 }
1497
1498 const unsigned char *tnl_get_addr(const struct vport *vport)
1499 {
1500         const struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1501         return rcu_dereference(tnl_vport->mutable)->eth_addr;
1502 }
1503
1504 int tnl_get_mtu(const struct vport *vport)
1505 {
1506         const struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
1507         return rcu_dereference(tnl_vport->mutable)->mtu;
1508 }
1509
1510 void tnl_free_linked_skbs(struct sk_buff *skb)
1511 {
1512         if (unlikely(!skb))
1513                 return;
1514
1515         while (skb) {
1516                 struct sk_buff *next = skb->next;
1517                 kfree_skb(skb);
1518                 skb = next;
1519         }
1520 }