upgrade to fedora-2.6.12-1.1398.FC4 + vserver 2.0.rc7
[linux-2.6.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/config.h>
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/string.h>
31 #include <linux/kernel.h>
32 #include <linux/timer.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/major.h>
36 #include <linux/errno.h>
37 #include <linux/genhd.h>
38 #include <linux/blkpg.h>
39 #include <linux/slab.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/ide.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56 #include <asm/bitops.h>
57
58 int __ide_end_request(ide_drive_t *drive, struct request *rq, int uptodate,
59                       int nr_sectors)
60 {
61         int ret = 1;
62
63         BUG_ON(!(rq->flags & REQ_STARTED));
64
65         /*
66          * if failfast is set on a request, override number of sectors and
67          * complete the whole request right now
68          */
69         if (blk_noretry_request(rq) && end_io_error(uptodate))
70                 nr_sectors = rq->hard_nr_sectors;
71
72         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
73                 rq->errors = -EIO;
74
75         /*
76          * decide whether to reenable DMA -- 3 is a random magic for now,
77          * if we DMA timeout more than 3 times, just stay in PIO
78          */
79         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
80                 drive->state = 0;
81                 HWGROUP(drive)->hwif->ide_dma_on(drive);
82         }
83
84         if (!end_that_request_first(rq, uptodate, nr_sectors)) {
85                 add_disk_randomness(rq->rq_disk);
86
87                 if (blk_rq_tagged(rq))
88                         blk_queue_end_tag(drive->queue, rq);
89
90                 blkdev_dequeue_request(rq);
91                 HWGROUP(drive)->rq = NULL;
92                 end_that_request_last(rq);
93                 ret = 0;
94         }
95         return ret;
96 }
97 EXPORT_SYMBOL(__ide_end_request);
98
99 /**
100  *      ide_end_request         -       complete an IDE I/O
101  *      @drive: IDE device for the I/O
102  *      @uptodate:
103  *      @nr_sectors: number of sectors completed
104  *
105  *      This is our end_request wrapper function. We complete the I/O
106  *      update random number input and dequeue the request, which if
107  *      it was tagged may be out of order.
108  */
109
110 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
111 {
112         struct request *rq;
113         unsigned long flags;
114         int ret = 1;
115
116         spin_lock_irqsave(&ide_lock, flags);
117         rq = HWGROUP(drive)->rq;
118
119         if (!nr_sectors)
120                 nr_sectors = rq->hard_cur_sectors;
121
122         if (blk_complete_barrier_rq_locked(drive->queue, rq, nr_sectors))
123                 ret = rq->nr_sectors != 0;
124         else
125                 ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
126
127         spin_unlock_irqrestore(&ide_lock, flags);
128         return ret;
129 }
130 EXPORT_SYMBOL(ide_end_request);
131
132 /*
133  * Power Management state machine. This one is rather trivial for now,
134  * we should probably add more, like switching back to PIO on suspend
135  * to help some BIOSes, re-do the door locking on resume, etc...
136  */
137
138 enum {
139         ide_pm_flush_cache      = ide_pm_state_start_suspend,
140         idedisk_pm_standby,
141
142         idedisk_pm_idle         = ide_pm_state_start_resume,
143         ide_pm_restore_dma,
144 };
145
146 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
147 {
148         if (drive->media != ide_disk)
149                 return;
150
151         switch (rq->pm->pm_step) {
152         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
153                 if (rq->pm->pm_state == 4)
154                         rq->pm->pm_step = ide_pm_state_completed;
155                 else
156                         rq->pm->pm_step = idedisk_pm_standby;
157                 break;
158         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
159                 rq->pm->pm_step = ide_pm_state_completed;
160                 break;
161         case idedisk_pm_idle:           /* Resume step 1 (idle) complete */
162                 rq->pm->pm_step = ide_pm_restore_dma;
163                 break;
164         }
165 }
166
167 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
168 {
169         ide_task_t *args = rq->special;
170
171         memset(args, 0, sizeof(*args));
172
173         if (drive->media != ide_disk) {
174                 /* skip idedisk_pm_idle for ATAPI devices */
175                 if (rq->pm->pm_step == idedisk_pm_idle)
176                         rq->pm->pm_step = ide_pm_restore_dma;
177         }
178
179         switch (rq->pm->pm_step) {
180         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
181                 if (drive->media != ide_disk)
182                         break;
183                 /* Not supported? Switch to next step now. */
184                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
185                         ide_complete_power_step(drive, rq, 0, 0);
186                         return ide_stopped;
187                 }
188                 if (ide_id_has_flush_cache_ext(drive->id))
189                         args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
190                 else
191                         args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
192                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
193                 args->handler      = &task_no_data_intr;
194                 return do_rw_taskfile(drive, args);
195
196         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
197                 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
198                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
199                 args->handler      = &task_no_data_intr;
200                 return do_rw_taskfile(drive, args);
201
202         case idedisk_pm_idle:           /* Resume step 1 (idle) */
203                 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
204                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
205                 args->handler = task_no_data_intr;
206                 return do_rw_taskfile(drive, args);
207
208         case ide_pm_restore_dma:        /* Resume step 2 (restore DMA) */
209                 /*
210                  * Right now, all we do is call hwif->ide_dma_check(drive),
211                  * we could be smarter and check for current xfer_speed
212                  * in struct drive etc...
213                  */
214                 if ((drive->id->capability & 1) == 0)
215                         break;
216                 if (drive->hwif->ide_dma_check == NULL)
217                         break;
218                 drive->hwif->ide_dma_check(drive);
219                 break;
220         }
221         rq->pm->pm_step = ide_pm_state_completed;
222         return ide_stopped;
223 }
224
225 /**
226  *      ide_end_dequeued_request        -       complete an IDE I/O
227  *      @drive: IDE device for the I/O
228  *      @uptodate:
229  *      @nr_sectors: number of sectors completed
230  *
231  *      Complete an I/O that is no longer on the request queue. This 
232  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
233  *      We must still finish the old request but we must not tamper with the
234  *      queue in the meantime.
235  *
236  *      NOTE: This path does not handle barrier, but barrier is not supported
237  *      on ide-cd anyway.
238  */
239
240 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
241                              int uptodate, int nr_sectors)
242 {
243         unsigned long flags;
244         int ret = 1;
245
246         spin_lock_irqsave(&ide_lock, flags);
247
248         BUG_ON(!(rq->flags & REQ_STARTED));
249
250         /*
251          * if failfast is set on a request, override number of sectors and
252          * complete the whole request right now
253          */
254         if (blk_noretry_request(rq) && end_io_error(uptodate))
255                 nr_sectors = rq->hard_nr_sectors;
256
257         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
258                 rq->errors = -EIO;
259
260         /*
261          * decide whether to reenable DMA -- 3 is a random magic for now,
262          * if we DMA timeout more than 3 times, just stay in PIO
263          */
264         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
265                 drive->state = 0;
266                 HWGROUP(drive)->hwif->ide_dma_on(drive);
267         }
268
269         if (!end_that_request_first(rq, uptodate, nr_sectors)) {
270                 add_disk_randomness(rq->rq_disk);
271                 if (blk_rq_tagged(rq))
272                         blk_queue_end_tag(drive->queue, rq);
273                 end_that_request_last(rq);
274                 ret = 0;
275         }
276         spin_unlock_irqrestore(&ide_lock, flags);
277         return ret;
278 }
279 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
280
281
282 /**
283  *      ide_complete_pm_request - end the current Power Management request
284  *      @drive: target drive
285  *      @rq: request
286  *
287  *      This function cleans up the current PM request and stops the queue
288  *      if necessary.
289  */
290 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
291 {
292         unsigned long flags;
293
294 #ifdef DEBUG_PM
295         printk("%s: completing PM request, %s\n", drive->name,
296                blk_pm_suspend_request(rq) ? "suspend" : "resume");
297 #endif
298         spin_lock_irqsave(&ide_lock, flags);
299         if (blk_pm_suspend_request(rq)) {
300                 blk_stop_queue(drive->queue);
301         } else {
302                 drive->blocked = 0;
303                 blk_start_queue(drive->queue);
304         }
305         blkdev_dequeue_request(rq);
306         HWGROUP(drive)->rq = NULL;
307         end_that_request_last(rq);
308         spin_unlock_irqrestore(&ide_lock, flags);
309 }
310
311 /*
312  * FIXME: probably move this somewhere else, name is bad too :)
313  */
314 u64 ide_get_error_location(ide_drive_t *drive, char *args)
315 {
316         u32 high, low;
317         u8 hcyl, lcyl, sect;
318         u64 sector;
319
320         high = 0;
321         hcyl = args[5];
322         lcyl = args[4];
323         sect = args[3];
324
325         if (ide_id_has_flush_cache_ext(drive->id)) {
326                 low = (hcyl << 16) | (lcyl << 8) | sect;
327                 HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
328                 high = ide_read_24(drive);
329         } else {
330                 u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
331                 if (cur & 0x40) {
332                         high = cur & 0xf;
333                         low = (hcyl << 16) | (lcyl << 8) | sect;
334                 } else {
335                         low = hcyl * drive->head * drive->sect;
336                         low += lcyl * drive->sect;
337                         low += sect - 1;
338                 }
339         }
340
341         sector = ((u64) high << 24) | low;
342         return sector;
343 }
344 EXPORT_SYMBOL(ide_get_error_location);
345
346 /**
347  *      ide_end_drive_cmd       -       end an explicit drive command
348  *      @drive: command 
349  *      @stat: status bits
350  *      @err: error bits
351  *
352  *      Clean up after success/failure of an explicit drive command.
353  *      These get thrown onto the queue so they are synchronized with
354  *      real I/O operations on the drive.
355  *
356  *      In LBA48 mode we have to read the register set twice to get
357  *      all the extra information out.
358  */
359  
360 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
361 {
362         ide_hwif_t *hwif = HWIF(drive);
363         unsigned long flags;
364         struct request *rq;
365
366         spin_lock_irqsave(&ide_lock, flags);
367         rq = HWGROUP(drive)->rq;
368         spin_unlock_irqrestore(&ide_lock, flags);
369
370         if (rq->flags & REQ_DRIVE_CMD) {
371                 u8 *args = (u8 *) rq->buffer;
372                 if (rq->errors == 0)
373                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
374
375                 if (args) {
376                         args[0] = stat;
377                         args[1] = err;
378                         args[2] = hwif->INB(IDE_NSECTOR_REG);
379                 }
380         } else if (rq->flags & REQ_DRIVE_TASK) {
381                 u8 *args = (u8 *) rq->buffer;
382                 if (rq->errors == 0)
383                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
384
385                 if (args) {
386                         args[0] = stat;
387                         args[1] = err;
388                         args[2] = hwif->INB(IDE_NSECTOR_REG);
389                         args[3] = hwif->INB(IDE_SECTOR_REG);
390                         args[4] = hwif->INB(IDE_LCYL_REG);
391                         args[5] = hwif->INB(IDE_HCYL_REG);
392                         args[6] = hwif->INB(IDE_SELECT_REG);
393                 }
394         } else if (rq->flags & REQ_DRIVE_TASKFILE) {
395                 ide_task_t *args = (ide_task_t *) rq->special;
396                 if (rq->errors == 0)
397                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
398                         
399                 if (args) {
400                         if (args->tf_in_flags.b.data) {
401                                 u16 data                                = hwif->INW(IDE_DATA_REG);
402                                 args->tfRegister[IDE_DATA_OFFSET]       = (data) & 0xFF;
403                                 args->hobRegister[IDE_DATA_OFFSET]      = (data >> 8) & 0xFF;
404                         }
405                         args->tfRegister[IDE_ERROR_OFFSET]   = err;
406                         /* be sure we're looking at the low order bits */
407                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
408                         args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
409                         args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
410                         args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
411                         args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
412                         args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
413                         args->tfRegister[IDE_STATUS_OFFSET]  = stat;
414
415                         if (drive->addressing == 1) {
416                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
417                                 args->hobRegister[IDE_FEATURE_OFFSET]   = hwif->INB(IDE_FEATURE_REG);
418                                 args->hobRegister[IDE_NSECTOR_OFFSET]   = hwif->INB(IDE_NSECTOR_REG);
419                                 args->hobRegister[IDE_SECTOR_OFFSET]    = hwif->INB(IDE_SECTOR_REG);
420                                 args->hobRegister[IDE_LCYL_OFFSET]      = hwif->INB(IDE_LCYL_REG);
421                                 args->hobRegister[IDE_HCYL_OFFSET]      = hwif->INB(IDE_HCYL_REG);
422                         }
423                 }
424         } else if (blk_pm_request(rq)) {
425 #ifdef DEBUG_PM
426                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
427                         drive->name, rq->pm->pm_step, stat, err);
428 #endif
429                 ide_complete_power_step(drive, rq, stat, err);
430                 if (rq->pm->pm_step == ide_pm_state_completed)
431                         ide_complete_pm_request(drive, rq);
432                 return;
433         }
434
435         spin_lock_irqsave(&ide_lock, flags);
436         blkdev_dequeue_request(rq);
437         HWGROUP(drive)->rq = NULL;
438         rq->errors = err;
439         end_that_request_last(rq);
440         spin_unlock_irqrestore(&ide_lock, flags);
441 }
442
443 EXPORT_SYMBOL(ide_end_drive_cmd);
444
445 /**
446  *      try_to_flush_leftover_data      -       flush junk
447  *      @drive: drive to flush
448  *
449  *      try_to_flush_leftover_data() is invoked in response to a drive
450  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
451  *      resetting the drive, this routine tries to clear the condition
452  *      by read a sector's worth of data from the drive.  Of course,
453  *      this may not help if the drive is *waiting* for data from *us*.
454  */
455 static void try_to_flush_leftover_data (ide_drive_t *drive)
456 {
457         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
458
459         if (drive->media != ide_disk)
460                 return;
461         while (i > 0) {
462                 u32 buffer[16];
463                 u32 wcount = (i > 16) ? 16 : i;
464
465                 i -= wcount;
466                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
467         }
468 }
469
470 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
471 {
472         if (rq->rq_disk) {
473                 ide_driver_t *drv;
474
475                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
476                 drv->end_request(drive, 0, 0);
477         } else
478                 ide_end_request(drive, 0, 0);
479 }
480
481 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
482 {
483         ide_hwif_t *hwif = drive->hwif;
484
485         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
486                 /* other bits are useless when BUSY */
487                 rq->errors |= ERROR_RESET;
488         } else if (stat & ERR_STAT) {
489                 /* err has different meaning on cdrom and tape */
490                 if (err == ABRT_ERR) {
491                         if (drive->select.b.lba &&
492                             /* some newer drives don't support WIN_SPECIFY */
493                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
494                                 return ide_stopped;
495                 } else if ((err & BAD_CRC) == BAD_CRC) {
496                         /* UDMA crc error, just retry the operation */
497                         drive->crc_count++;
498                 } else if (err & (BBD_ERR | ECC_ERR)) {
499                         /* retries won't help these */
500                         rq->errors = ERROR_MAX;
501                 } else if (err & TRK0_ERR) {
502                         /* help it find track zero */
503                         rq->errors |= ERROR_RECAL;
504                 }
505         }
506
507         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ)
508                 try_to_flush_leftover_data(drive);
509
510         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
511                 /* force an abort */
512                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
513
514         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq))
515                 ide_kill_rq(drive, rq);
516         else {
517                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
518                         ++rq->errors;
519                         return ide_do_reset(drive);
520                 }
521                 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
522                         drive->special.b.recalibrate = 1;
523                 ++rq->errors;
524         }
525         return ide_stopped;
526 }
527
528 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
529 {
530         ide_hwif_t *hwif = drive->hwif;
531
532         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
533                 /* other bits are useless when BUSY */
534                 rq->errors |= ERROR_RESET;
535         } else {
536                 /* add decoding error stuff */
537         }
538
539         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
540                 /* force an abort */
541                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
542
543         if (rq->errors >= ERROR_MAX) {
544                 ide_kill_rq(drive, rq);
545         } else {
546                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
547                         ++rq->errors;
548                         return ide_do_reset(drive);
549                 }
550                 ++rq->errors;
551         }
552
553         return ide_stopped;
554 }
555
556 ide_startstop_t
557 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
558 {
559         if (drive->media == ide_disk)
560                 return ide_ata_error(drive, rq, stat, err);
561         return ide_atapi_error(drive, rq, stat, err);
562 }
563
564 EXPORT_SYMBOL_GPL(__ide_error);
565
566 /**
567  *      ide_error       -       handle an error on the IDE
568  *      @drive: drive the error occurred on
569  *      @msg: message to report
570  *      @stat: status bits
571  *
572  *      ide_error() takes action based on the error returned by the drive.
573  *      For normal I/O that may well include retries. We deal with
574  *      both new-style (taskfile) and old style command handling here.
575  *      In the case of taskfile command handling there is work left to
576  *      do
577  */
578  
579 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
580 {
581         struct request *rq;
582         u8 err;
583
584         err = ide_dump_status(drive, msg, stat);
585
586         if ((rq = HWGROUP(drive)->rq) == NULL)
587                 return ide_stopped;
588
589         /* retry only "normal" I/O: */
590         if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
591                 rq->errors = 1;
592                 ide_end_drive_cmd(drive, stat, err);
593                 return ide_stopped;
594         }
595
596         if (rq->rq_disk) {
597                 ide_driver_t *drv;
598
599                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
600                 return drv->error(drive, rq, stat, err);
601         } else
602                 return __ide_error(drive, rq, stat, err);
603 }
604
605 EXPORT_SYMBOL_GPL(ide_error);
606
607 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
608 {
609         if (drive->media != ide_disk)
610                 rq->errors |= ERROR_RESET;
611
612         ide_kill_rq(drive, rq);
613
614         return ide_stopped;
615 }
616
617 EXPORT_SYMBOL_GPL(__ide_abort);
618
619 /**
620  *      ide_abort       -       abort pending IDE operatins
621  *      @drive: drive the error occurred on
622  *      @msg: message to report
623  *
624  *      ide_abort kills and cleans up when we are about to do a 
625  *      host initiated reset on active commands. Longer term we
626  *      want handlers to have sensible abort handling themselves
627  *
628  *      This differs fundamentally from ide_error because in 
629  *      this case the command is doing just fine when we
630  *      blow it away.
631  */
632  
633 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
634 {
635         struct request *rq;
636
637         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
638                 return ide_stopped;
639
640         /* retry only "normal" I/O: */
641         if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
642                 rq->errors = 1;
643                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
644                 return ide_stopped;
645         }
646
647         if (rq->rq_disk) {
648                 ide_driver_t *drv;
649
650                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
651                 return drv->abort(drive, rq);
652         } else
653                 return __ide_abort(drive, rq);
654 }
655
656 /**
657  *      ide_cmd         -       issue a simple drive command
658  *      @drive: drive the command is for
659  *      @cmd: command byte
660  *      @nsect: sector byte
661  *      @handler: handler for the command completion
662  *
663  *      Issue a simple drive command with interrupts.
664  *      The drive must be selected beforehand.
665  */
666
667 static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
668                 ide_handler_t *handler)
669 {
670         ide_hwif_t *hwif = HWIF(drive);
671         if (IDE_CONTROL_REG)
672                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
673         SELECT_MASK(drive,0);
674         hwif->OUTB(nsect,IDE_NSECTOR_REG);
675         ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
676 }
677
678 /**
679  *      drive_cmd_intr          -       drive command completion interrupt
680  *      @drive: drive the completion interrupt occurred on
681  *
682  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
683  *      We do any necessary daya reading and then wait for the drive to
684  *      go non busy. At that point we may read the error data and complete
685  *      the request
686  */
687  
688 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
689 {
690         struct request *rq = HWGROUP(drive)->rq;
691         ide_hwif_t *hwif = HWIF(drive);
692         u8 *args = (u8 *) rq->buffer;
693         u8 stat = hwif->INB(IDE_STATUS_REG);
694         int retries = 10;
695
696         local_irq_enable();
697         if ((stat & DRQ_STAT) && args && args[3]) {
698                 u8 io_32bit = drive->io_32bit;
699                 drive->io_32bit = 0;
700                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
701                 drive->io_32bit = io_32bit;
702                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
703                         udelay(100);
704         }
705
706         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
707                 return ide_error(drive, "drive_cmd", stat);
708                 /* calls ide_end_drive_cmd */
709         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
710         return ide_stopped;
711 }
712
713 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
714 {
715         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
716         task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect;
717         task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl;
718         task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8;
719         task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF;
720         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
721
722         task->handler = &set_geometry_intr;
723 }
724
725 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
726 {
727         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
728         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
729
730         task->handler = &recal_intr;
731 }
732
733 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
734 {
735         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
736         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
737
738         task->handler = &set_multmode_intr;
739 }
740
741 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
742 {
743         special_t *s = &drive->special;
744         ide_task_t args;
745
746         memset(&args, 0, sizeof(ide_task_t));
747         args.command_type = IDE_DRIVE_TASK_NO_DATA;
748
749         if (s->b.set_geometry) {
750                 s->b.set_geometry = 0;
751                 ide_init_specify_cmd(drive, &args);
752         } else if (s->b.recalibrate) {
753                 s->b.recalibrate = 0;
754                 ide_init_restore_cmd(drive, &args);
755         } else if (s->b.set_multmode) {
756                 s->b.set_multmode = 0;
757                 if (drive->mult_req > drive->id->max_multsect)
758                         drive->mult_req = drive->id->max_multsect;
759                 ide_init_setmult_cmd(drive, &args);
760         } else if (s->all) {
761                 int special = s->all;
762                 s->all = 0;
763                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
764                 return ide_stopped;
765         }
766
767         do_rw_taskfile(drive, &args);
768
769         return ide_started;
770 }
771
772 /**
773  *      do_special              -       issue some special commands
774  *      @drive: drive the command is for
775  *
776  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
777  *      commands to a drive.  It used to do much more, but has been scaled
778  *      back.
779  */
780
781 static ide_startstop_t do_special (ide_drive_t *drive)
782 {
783         special_t *s = &drive->special;
784
785 #ifdef DEBUG
786         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
787 #endif
788         if (s->b.set_tune) {
789                 s->b.set_tune = 0;
790                 if (HWIF(drive)->tuneproc != NULL)
791                         HWIF(drive)->tuneproc(drive, drive->tune_req);
792                 return ide_stopped;
793         } else {
794                 if (drive->media == ide_disk)
795                         return ide_disk_special(drive);
796
797                 s->all = 0;
798                 drive->mult_req = 0;
799                 return ide_stopped;
800         }
801 }
802
803 void ide_map_sg(ide_drive_t *drive, struct request *rq)
804 {
805         ide_hwif_t *hwif = drive->hwif;
806         struct scatterlist *sg = hwif->sg_table;
807
808         if (hwif->sg_mapped)    /* needed by ide-scsi */
809                 return;
810
811         if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) {
812                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
813         } else {
814                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
815                 hwif->sg_nents = 1;
816         }
817 }
818
819 EXPORT_SYMBOL_GPL(ide_map_sg);
820
821 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
822 {
823         ide_hwif_t *hwif = drive->hwif;
824
825         hwif->nsect = hwif->nleft = rq->nr_sectors;
826         hwif->cursg = hwif->cursg_ofs = 0;
827 }
828
829 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
830
831 /**
832  *      execute_drive_command   -       issue special drive command
833  *      @drive: the drive to issue th command on
834  *      @rq: the request structure holding the command
835  *
836  *      execute_drive_cmd() issues a special drive command,  usually 
837  *      initiated by ioctl() from the external hdparm program. The
838  *      command can be a drive command, drive task or taskfile 
839  *      operation. Weirdly you can call it with NULL to wait for
840  *      all commands to finish. Don't do this as that is due to change
841  */
842
843 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
844                 struct request *rq)
845 {
846         ide_hwif_t *hwif = HWIF(drive);
847         if (rq->flags & REQ_DRIVE_TASKFILE) {
848                 ide_task_t *args = rq->special;
849  
850                 if (!args)
851                         goto done;
852
853                 hwif->data_phase = args->data_phase;
854
855                 switch (hwif->data_phase) {
856                 case TASKFILE_MULTI_OUT:
857                 case TASKFILE_OUT:
858                 case TASKFILE_MULTI_IN:
859                 case TASKFILE_IN:
860                         ide_init_sg_cmd(drive, rq);
861                         ide_map_sg(drive, rq);
862                 default:
863                         break;
864                 }
865
866                 if (args->tf_out_flags.all != 0) 
867                         return flagged_taskfile(drive, args);
868                 return do_rw_taskfile(drive, args);
869         } else if (rq->flags & REQ_DRIVE_TASK) {
870                 u8 *args = rq->buffer;
871                 u8 sel;
872  
873                 if (!args)
874                         goto done;
875 #ifdef DEBUG
876                 printk("%s: DRIVE_TASK_CMD ", drive->name);
877                 printk("cmd=0x%02x ", args[0]);
878                 printk("fr=0x%02x ", args[1]);
879                 printk("ns=0x%02x ", args[2]);
880                 printk("sc=0x%02x ", args[3]);
881                 printk("lcyl=0x%02x ", args[4]);
882                 printk("hcyl=0x%02x ", args[5]);
883                 printk("sel=0x%02x\n", args[6]);
884 #endif
885                 hwif->OUTB(args[1], IDE_FEATURE_REG);
886                 hwif->OUTB(args[3], IDE_SECTOR_REG);
887                 hwif->OUTB(args[4], IDE_LCYL_REG);
888                 hwif->OUTB(args[5], IDE_HCYL_REG);
889                 sel = (args[6] & ~0x10);
890                 if (drive->select.b.unit)
891                         sel |= 0x10;
892                 hwif->OUTB(sel, IDE_SELECT_REG);
893                 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
894                 return ide_started;
895         } else if (rq->flags & REQ_DRIVE_CMD) {
896                 u8 *args = rq->buffer;
897
898                 if (!args)
899                         goto done;
900 #ifdef DEBUG
901                 printk("%s: DRIVE_CMD ", drive->name);
902                 printk("cmd=0x%02x ", args[0]);
903                 printk("sc=0x%02x ", args[1]);
904                 printk("fr=0x%02x ", args[2]);
905                 printk("xx=0x%02x\n", args[3]);
906 #endif
907                 if (args[0] == WIN_SMART) {
908                         hwif->OUTB(0x4f, IDE_LCYL_REG);
909                         hwif->OUTB(0xc2, IDE_HCYL_REG);
910                         hwif->OUTB(args[2],IDE_FEATURE_REG);
911                         hwif->OUTB(args[1],IDE_SECTOR_REG);
912                         ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
913                         return ide_started;
914                 }
915                 hwif->OUTB(args[2],IDE_FEATURE_REG);
916                 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
917                 return ide_started;
918         }
919
920 done:
921         /*
922          * NULL is actually a valid way of waiting for
923          * all current requests to be flushed from the queue.
924          */
925 #ifdef DEBUG
926         printk("%s: DRIVE_CMD (null)\n", drive->name);
927 #endif
928         ide_end_drive_cmd(drive,
929                         hwif->INB(IDE_STATUS_REG),
930                         hwif->INB(IDE_ERROR_REG));
931         return ide_stopped;
932 }
933
934 /**
935  *      start_request   -       start of I/O and command issuing for IDE
936  *
937  *      start_request() initiates handling of a new I/O request. It
938  *      accepts commands and I/O (read/write) requests. It also does
939  *      the final remapping for weird stuff like EZDrive. Once 
940  *      device mapper can work sector level the EZDrive stuff can go away
941  *
942  *      FIXME: this function needs a rename
943  */
944  
945 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
946 {
947         ide_startstop_t startstop;
948         sector_t block;
949
950         BUG_ON(!(rq->flags & REQ_STARTED));
951
952 #ifdef DEBUG
953         printk("%s: start_request: current=0x%08lx\n",
954                 HWIF(drive)->name, (unsigned long) rq);
955 #endif
956
957         /* bail early if we've exceeded max_failures */
958         if (drive->max_failures && (drive->failures > drive->max_failures)) {
959                 goto kill_rq;
960         }
961
962         block    = rq->sector;
963         if (blk_fs_request(rq) &&
964             (drive->media == ide_disk || drive->media == ide_floppy)) {
965                 block += drive->sect0;
966         }
967         /* Yecch - this will shift the entire interval,
968            possibly killing some innocent following sector */
969         if (block == 0 && drive->remap_0_to_1 == 1)
970                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
971
972         if (blk_pm_suspend_request(rq) &&
973             rq->pm->pm_step == ide_pm_state_start_suspend)
974                 /* Mark drive blocked when starting the suspend sequence. */
975                 drive->blocked = 1;
976         else if (blk_pm_resume_request(rq) &&
977                  rq->pm->pm_step == ide_pm_state_start_resume) {
978                 /* 
979                  * The first thing we do on wakeup is to wait for BSY bit to
980                  * go away (with a looong timeout) as a drive on this hwif may
981                  * just be POSTing itself.
982                  * We do that before even selecting as the "other" device on
983                  * the bus may be broken enough to walk on our toes at this
984                  * point.
985                  */
986                 int rc;
987 #ifdef DEBUG_PM
988                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
989 #endif
990                 rc = ide_wait_not_busy(HWIF(drive), 35000);
991                 if (rc)
992                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
993                 SELECT_DRIVE(drive);
994                 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
995                 rc = ide_wait_not_busy(HWIF(drive), 10000);
996                 if (rc)
997                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
998         }
999
1000         SELECT_DRIVE(drive);
1001         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1002                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1003                 return startstop;
1004         }
1005         if (!drive->special.all) {
1006                 ide_driver_t *drv;
1007
1008                 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK))
1009                         return execute_drive_cmd(drive, rq);
1010                 else if (rq->flags & REQ_DRIVE_TASKFILE)
1011                         return execute_drive_cmd(drive, rq);
1012                 else if (blk_pm_request(rq)) {
1013 #ifdef DEBUG_PM
1014                         printk("%s: start_power_step(step: %d)\n",
1015                                 drive->name, rq->pm->pm_step);
1016 #endif
1017                         startstop = ide_start_power_step(drive, rq);
1018                         if (startstop == ide_stopped &&
1019                             rq->pm->pm_step == ide_pm_state_completed)
1020                                 ide_complete_pm_request(drive, rq);
1021                         return startstop;
1022                 }
1023
1024                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1025                 return drv->do_request(drive, rq, block);
1026         }
1027         return do_special(drive);
1028 kill_rq:
1029         ide_kill_rq(drive, rq);
1030         return ide_stopped;
1031 }
1032
1033 /**
1034  *      ide_stall_queue         -       pause an IDE device
1035  *      @drive: drive to stall
1036  *      @timeout: time to stall for (jiffies)
1037  *
1038  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1039  *      to the hwgroup by sleeping for timeout jiffies.
1040  */
1041  
1042 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1043 {
1044         if (timeout > WAIT_WORSTCASE)
1045                 timeout = WAIT_WORSTCASE;
1046         drive->sleep = timeout + jiffies;
1047         drive->sleeping = 1;
1048 }
1049
1050 EXPORT_SYMBOL(ide_stall_queue);
1051
1052 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1053
1054 /**
1055  *      choose_drive            -       select a drive to service
1056  *      @hwgroup: hardware group to select on
1057  *
1058  *      choose_drive() selects the next drive which will be serviced.
1059  *      This is necessary because the IDE layer can't issue commands
1060  *      to both drives on the same cable, unlike SCSI.
1061  */
1062  
1063 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1064 {
1065         ide_drive_t *drive, *best;
1066
1067 repeat: 
1068         best = NULL;
1069         drive = hwgroup->drive;
1070
1071         /*
1072          * drive is doing pre-flush, ordered write, post-flush sequence. even
1073          * though that is 3 requests, it must be seen as a single transaction.
1074          * we must not preempt this drive until that is complete
1075          */
1076         if (blk_queue_flushing(drive->queue)) {
1077                 /*
1078                  * small race where queue could get replugged during
1079                  * the 3-request flush cycle, just yank the plug since
1080                  * we want it to finish asap
1081                  */
1082                 blk_remove_plug(drive->queue);
1083                 return drive;
1084         }
1085
1086         do {
1087                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1088                     && !elv_queue_empty(drive->queue)) {
1089                         if (!best
1090                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1091                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1092                         {
1093                                 if (!blk_queue_plugged(drive->queue))
1094                                         best = drive;
1095                         }
1096                 }
1097         } while ((drive = drive->next) != hwgroup->drive);
1098         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1099                 long t = (signed long)(WAKEUP(best) - jiffies);
1100                 if (t >= WAIT_MIN_SLEEP) {
1101                 /*
1102                  * We *may* have some time to spare, but first let's see if
1103                  * someone can potentially benefit from our nice mood today..
1104                  */
1105                         drive = best->next;
1106                         do {
1107                                 if (!drive->sleeping
1108                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1109                                  && time_before(WAKEUP(drive), jiffies + t))
1110                                 {
1111                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1112                                         goto repeat;
1113                                 }
1114                         } while ((drive = drive->next) != best);
1115                 }
1116         }
1117         return best;
1118 }
1119
1120 /*
1121  * Issue a new request to a drive from hwgroup
1122  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1123  *
1124  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1125  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1126  * may have both interfaces in a single hwgroup to "serialize" access.
1127  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1128  * together into one hwgroup for serialized access.
1129  *
1130  * Note also that several hwgroups can end up sharing a single IRQ,
1131  * possibly along with many other devices.  This is especially common in
1132  * PCI-based systems with off-board IDE controller cards.
1133  *
1134  * The IDE driver uses the single global ide_lock spinlock to protect
1135  * access to the request queues, and to protect the hwgroup->busy flag.
1136  *
1137  * The first thread into the driver for a particular hwgroup sets the
1138  * hwgroup->busy flag to indicate that this hwgroup is now active,
1139  * and then initiates processing of the top request from the request queue.
1140  *
1141  * Other threads attempting entry notice the busy setting, and will simply
1142  * queue their new requests and exit immediately.  Note that hwgroup->busy
1143  * remains set even when the driver is merely awaiting the next interrupt.
1144  * Thus, the meaning is "this hwgroup is busy processing a request".
1145  *
1146  * When processing of a request completes, the completing thread or IRQ-handler
1147  * will start the next request from the queue.  If no more work remains,
1148  * the driver will clear the hwgroup->busy flag and exit.
1149  *
1150  * The ide_lock (spinlock) is used to protect all access to the
1151  * hwgroup->busy flag, but is otherwise not needed for most processing in
1152  * the driver.  This makes the driver much more friendlier to shared IRQs
1153  * than previous designs, while remaining 100% (?) SMP safe and capable.
1154  */
1155 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1156 {
1157         ide_drive_t     *drive;
1158         ide_hwif_t      *hwif;
1159         struct request  *rq;
1160         ide_startstop_t startstop;
1161
1162         /* for atari only: POSSIBLY BROKEN HERE(?) */
1163         ide_get_lock(ide_intr, hwgroup);
1164
1165         /* caller must own ide_lock */
1166         BUG_ON(!irqs_disabled());
1167
1168         while (!hwgroup->busy) {
1169                 hwgroup->busy = 1;
1170                 drive = choose_drive(hwgroup);
1171                 if (drive == NULL) {
1172                         int sleeping = 0;
1173                         unsigned long sleep = 0; /* shut up, gcc */
1174                         hwgroup->rq = NULL;
1175                         drive = hwgroup->drive;
1176                         do {
1177                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1178                                         sleeping = 1;
1179                                         sleep = drive->sleep;
1180                                 }
1181                         } while ((drive = drive->next) != hwgroup->drive);
1182                         if (sleeping) {
1183                 /*
1184                  * Take a short snooze, and then wake up this hwgroup again.
1185                  * This gives other hwgroups on the same a chance to
1186                  * play fairly with us, just in case there are big differences
1187                  * in relative throughputs.. don't want to hog the cpu too much.
1188                  */
1189                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1190                                         sleep = jiffies + WAIT_MIN_SLEEP;
1191 #if 1
1192                                 if (timer_pending(&hwgroup->timer))
1193                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1194 #endif
1195                                 /* so that ide_timer_expiry knows what to do */
1196                                 hwgroup->sleeping = 1;
1197                                 mod_timer(&hwgroup->timer, sleep);
1198                                 /* we purposely leave hwgroup->busy==1
1199                                  * while sleeping */
1200                         } else {
1201                                 /* Ugly, but how can we sleep for the lock
1202                                  * otherwise? perhaps from tq_disk?
1203                                  */
1204
1205                                 /* for atari only */
1206                                 ide_release_lock();
1207                                 hwgroup->busy = 0;
1208                         }
1209
1210                         /* no more work for this hwgroup (for now) */
1211                         return;
1212                 }
1213                 hwif = HWIF(drive);
1214                 if (hwgroup->hwif->sharing_irq &&
1215                     hwif != hwgroup->hwif &&
1216                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1217                         /* set nIEN for previous hwif */
1218                         SELECT_INTERRUPT(drive);
1219                 }
1220                 hwgroup->hwif = hwif;
1221                 hwgroup->drive = drive;
1222                 drive->sleeping = 0;
1223                 drive->service_start = jiffies;
1224
1225                 if (blk_queue_plugged(drive->queue)) {
1226                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1227                         break;
1228                 }
1229
1230                 /*
1231                  * we know that the queue isn't empty, but this can happen
1232                  * if the q->prep_rq_fn() decides to kill a request
1233                  */
1234                 rq = elv_next_request(drive->queue);
1235                 if (!rq) {
1236                         hwgroup->busy = 0;
1237                         break;
1238                 }
1239
1240                 /*
1241                  * Sanity: don't accept a request that isn't a PM request
1242                  * if we are currently power managed. This is very important as
1243                  * blk_stop_queue() doesn't prevent the elv_next_request()
1244                  * above to return us whatever is in the queue. Since we call
1245                  * ide_do_request() ourselves, we end up taking requests while
1246                  * the queue is blocked...
1247                  * 
1248                  * We let requests forced at head of queue with ide-preempt
1249                  * though. I hope that doesn't happen too much, hopefully not
1250                  * unless the subdriver triggers such a thing in its own PM
1251                  * state machine.
1252                  */
1253                 if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) {
1254                         /* We clear busy, there should be no pending ATA command at this point. */
1255                         hwgroup->busy = 0;
1256                         break;
1257                 }
1258
1259                 hwgroup->rq = rq;
1260
1261                 /*
1262                  * Some systems have trouble with IDE IRQs arriving while
1263                  * the driver is still setting things up.  So, here we disable
1264                  * the IRQ used by this interface while the request is being started.
1265                  * This may look bad at first, but pretty much the same thing
1266                  * happens anyway when any interrupt comes in, IDE or otherwise
1267                  *  -- the kernel masks the IRQ while it is being handled.
1268                  */
1269                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1270                         disable_irq_nosync(hwif->irq);
1271                 spin_unlock(&ide_lock);
1272                 local_irq_enable();
1273                         /* allow other IRQs while we start this request */
1274                 startstop = start_request(drive, rq);
1275                 spin_lock_irq(&ide_lock);
1276                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1277                         enable_irq(hwif->irq);
1278                 if (startstop == ide_stopped)
1279                         hwgroup->busy = 0;
1280         }
1281 }
1282
1283 /*
1284  * Passes the stuff to ide_do_request
1285  */
1286 void do_ide_request(request_queue_t *q)
1287 {
1288         ide_drive_t *drive = q->queuedata;
1289
1290         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1291 }
1292
1293 /*
1294  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1295  * retry the current request in pio mode instead of risking tossing it
1296  * all away
1297  */
1298 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1299 {
1300         ide_hwif_t *hwif = HWIF(drive);
1301         struct request *rq;
1302         ide_startstop_t ret = ide_stopped;
1303
1304         /*
1305          * end current dma transaction
1306          */
1307
1308         if (error < 0) {
1309                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1310                 (void)HWIF(drive)->ide_dma_end(drive);
1311                 ret = ide_error(drive, "dma timeout error",
1312                                                 hwif->INB(IDE_STATUS_REG));
1313         } else {
1314                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1315                 (void) hwif->ide_dma_timeout(drive);
1316         }
1317
1318         /*
1319          * disable dma for now, but remember that we did so because of
1320          * a timeout -- we'll reenable after we finish this next request
1321          * (or rather the first chunk of it) in pio.
1322          */
1323         drive->retry_pio++;
1324         drive->state = DMA_PIO_RETRY;
1325         (void) hwif->ide_dma_off_quietly(drive);
1326
1327         /*
1328          * un-busy drive etc (hwgroup->busy is cleared on return) and
1329          * make sure request is sane
1330          */
1331         rq = HWGROUP(drive)->rq;
1332         HWGROUP(drive)->rq = NULL;
1333
1334         rq->errors = 0;
1335
1336         if (!rq->bio)
1337                 goto out;
1338
1339         rq->sector = rq->bio->bi_sector;
1340         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1341         rq->hard_cur_sectors = rq->current_nr_sectors;
1342         rq->buffer = bio_data(rq->bio);
1343 out:
1344         return ret;
1345 }
1346
1347 /**
1348  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1349  *      @data: timer callback magic (hwgroup)
1350  *
1351  *      An IDE command has timed out before the expected drive return
1352  *      occurred. At this point we attempt to clean up the current
1353  *      mess. If the current handler includes an expiry handler then
1354  *      we invoke the expiry handler, and providing it is happy the
1355  *      work is done. If that fails we apply generic recovery rules
1356  *      invoking the handler and checking the drive DMA status. We
1357  *      have an excessively incestuous relationship with the DMA
1358  *      logic that wants cleaning up.
1359  */
1360  
1361 void ide_timer_expiry (unsigned long data)
1362 {
1363         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1364         ide_handler_t   *handler;
1365         ide_expiry_t    *expiry;
1366         unsigned long   flags;
1367         unsigned long   wait = -1;
1368
1369         spin_lock_irqsave(&ide_lock, flags);
1370
1371         if ((handler = hwgroup->handler) == NULL) {
1372                 /*
1373                  * Either a marginal timeout occurred
1374                  * (got the interrupt just as timer expired),
1375                  * or we were "sleeping" to give other devices a chance.
1376                  * Either way, we don't really want to complain about anything.
1377                  */
1378                 if (hwgroup->sleeping) {
1379                         hwgroup->sleeping = 0;
1380                         hwgroup->busy = 0;
1381                 }
1382         } else {
1383                 ide_drive_t *drive = hwgroup->drive;
1384                 if (!drive) {
1385                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1386                         hwgroup->handler = NULL;
1387                 } else {
1388                         ide_hwif_t *hwif;
1389                         ide_startstop_t startstop = ide_stopped;
1390                         if (!hwgroup->busy) {
1391                                 hwgroup->busy = 1;      /* paranoia */
1392                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1393                         }
1394                         if ((expiry = hwgroup->expiry) != NULL) {
1395                                 /* continue */
1396                                 if ((wait = expiry(drive)) > 0) {
1397                                         /* reset timer */
1398                                         hwgroup->timer.expires  = jiffies + wait;
1399                                         add_timer(&hwgroup->timer);
1400                                         spin_unlock_irqrestore(&ide_lock, flags);
1401                                         return;
1402                                 }
1403                         }
1404                         hwgroup->handler = NULL;
1405                         /*
1406                          * We need to simulate a real interrupt when invoking
1407                          * the handler() function, which means we need to
1408                          * globally mask the specific IRQ:
1409                          */
1410                         spin_unlock(&ide_lock);
1411                         hwif  = HWIF(drive);
1412 #if DISABLE_IRQ_NOSYNC
1413                         disable_irq_nosync(hwif->irq);
1414 #else
1415                         /* disable_irq_nosync ?? */
1416                         disable_irq(hwif->irq);
1417 #endif /* DISABLE_IRQ_NOSYNC */
1418                         /* local CPU only,
1419                          * as if we were handling an interrupt */
1420                         local_irq_disable();
1421                         if (hwgroup->polling) {
1422                                 startstop = handler(drive);
1423                         } else if (drive_is_ready(drive)) {
1424                                 if (drive->waiting_for_dma)
1425                                         (void) hwgroup->hwif->ide_dma_lostirq(drive);
1426                                 (void)ide_ack_intr(hwif);
1427                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1428                                 startstop = handler(drive);
1429                         } else {
1430                                 if (drive->waiting_for_dma) {
1431                                         startstop = ide_dma_timeout_retry(drive, wait);
1432                                 } else
1433                                         startstop =
1434                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1435                         }
1436                         drive->service_time = jiffies - drive->service_start;
1437                         spin_lock_irq(&ide_lock);
1438                         enable_irq(hwif->irq);
1439                         if (startstop == ide_stopped)
1440                                 hwgroup->busy = 0;
1441                 }
1442         }
1443         ide_do_request(hwgroup, IDE_NO_IRQ);
1444         spin_unlock_irqrestore(&ide_lock, flags);
1445 }
1446
1447 /**
1448  *      unexpected_intr         -       handle an unexpected IDE interrupt
1449  *      @irq: interrupt line
1450  *      @hwgroup: hwgroup being processed
1451  *
1452  *      There's nothing really useful we can do with an unexpected interrupt,
1453  *      other than reading the status register (to clear it), and logging it.
1454  *      There should be no way that an irq can happen before we're ready for it,
1455  *      so we needn't worry much about losing an "important" interrupt here.
1456  *
1457  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1458  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1459  *      looks "good", we just ignore the interrupt completely.
1460  *
1461  *      This routine assumes __cli() is in effect when called.
1462  *
1463  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1464  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1465  *      we could screw up by interfering with a new request being set up for 
1466  *      irq15.
1467  *
1468  *      In reality, this is a non-issue.  The new command is not sent unless 
1469  *      the drive is ready to accept one, in which case we know the drive is
1470  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1471  *      before completing the issuance of any new drive command, so we will not
1472  *      be accidentally invoked as a result of any valid command completion
1473  *      interrupt.
1474  *
1475  *      Note that we must walk the entire hwgroup here. We know which hwif
1476  *      is doing the current command, but we don't know which hwif burped
1477  *      mysteriously.
1478  */
1479  
1480 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1481 {
1482         u8 stat;
1483         ide_hwif_t *hwif = hwgroup->hwif;
1484
1485         /*
1486          * handle the unexpected interrupt
1487          */
1488         do {
1489                 if (hwif->irq == irq) {
1490                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1491                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1492                                 /* Try to not flood the console with msgs */
1493                                 static unsigned long last_msgtime, count;
1494                                 ++count;
1495                                 if (time_after(jiffies, last_msgtime + HZ)) {
1496                                         last_msgtime = jiffies;
1497                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1498                                                 "status=0x%02x, count=%ld\n",
1499                                                 hwif->name,
1500                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1501                                 }
1502                         }
1503                 }
1504         } while ((hwif = hwif->next) != hwgroup->hwif);
1505 }
1506
1507 /**
1508  *      ide_intr        -       default IDE interrupt handler
1509  *      @irq: interrupt number
1510  *      @dev_id: hwif group
1511  *      @regs: unused weirdness from the kernel irq layer
1512  *
1513  *      This is the default IRQ handler for the IDE layer. You should
1514  *      not need to override it. If you do be aware it is subtle in
1515  *      places
1516  *
1517  *      hwgroup->hwif is the interface in the group currently performing
1518  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1519  *      the IRQ handler to call. As we issue a command the handlers
1520  *      step through multiple states, reassigning the handler to the
1521  *      next step in the process. Unlike a smart SCSI controller IDE
1522  *      expects the main processor to sequence the various transfer
1523  *      stages. We also manage a poll timer to catch up with most
1524  *      timeout situations. There are still a few where the handlers
1525  *      don't ever decide to give up.
1526  *
1527  *      The handler eventually returns ide_stopped to indicate the
1528  *      request completed. At this point we issue the next request
1529  *      on the hwgroup and the process begins again.
1530  */
1531  
1532 irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1533 {
1534         unsigned long flags;
1535         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1536         ide_hwif_t *hwif;
1537         ide_drive_t *drive;
1538         ide_handler_t *handler;
1539         ide_startstop_t startstop;
1540
1541         spin_lock_irqsave(&ide_lock, flags);
1542         hwif = hwgroup->hwif;
1543
1544         if (!ide_ack_intr(hwif)) {
1545                 spin_unlock_irqrestore(&ide_lock, flags);
1546                 return IRQ_NONE;
1547         }
1548         if (hwif->polling) {
1549                 /* We took an interrupt during a polled drive retune. 
1550                    This should go away eventually when that code uses
1551                    the polling logic like do_reset1 */
1552                 spin_unlock_irqrestore(&ide_lock, flags);
1553                 return IRQ_HANDLED;
1554         }
1555         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1556                 /*
1557                  * Not expecting an interrupt from this drive.
1558                  * That means this could be:
1559                  *      (1) an interrupt from another PCI device
1560                  *      sharing the same PCI INT# as us.
1561                  * or   (2) a drive just entered sleep or standby mode,
1562                  *      and is interrupting to let us know.
1563                  * or   (3) a spurious interrupt of unknown origin.
1564                  *
1565                  * For PCI, we cannot tell the difference,
1566                  * so in that case we just ignore it and hope it goes away.
1567                  *
1568                  * FIXME: unexpected_intr should be hwif-> then we can
1569                  * remove all the ifdef PCI crap
1570                  */
1571 #ifdef CONFIG_BLK_DEV_IDEPCI
1572                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1573 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1574                 {
1575                         /*
1576                          * Probably not a shared PCI interrupt,
1577                          * so we can safely try to do something about it:
1578                          */
1579                         unexpected_intr(irq, hwgroup);
1580 #ifdef CONFIG_BLK_DEV_IDEPCI
1581                 } else {
1582                         /*
1583                          * Whack the status register, just in case
1584                          * we have a leftover pending IRQ.
1585                          */
1586                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1587 #endif /* CONFIG_BLK_DEV_IDEPCI */
1588                 }
1589                 spin_unlock_irqrestore(&ide_lock, flags);
1590                 return IRQ_NONE;
1591         }
1592         drive = hwgroup->drive;
1593         if (!drive) {
1594                 /*
1595                  * This should NEVER happen, and there isn't much
1596                  * we could do about it here.
1597                  *
1598                  * [Note - this can occur if the drive is hot unplugged]
1599                  */
1600                 spin_unlock_irqrestore(&ide_lock, flags);
1601                 return IRQ_HANDLED;
1602         }
1603         if (!drive_is_ready(drive)) {
1604                 /*
1605                  * This happens regularly when we share a PCI IRQ with
1606                  * another device.  Unfortunately, it can also happen
1607                  * with some buggy drives that trigger the IRQ before
1608                  * their status register is up to date.  Hopefully we have
1609                  * enough advance overhead that the latter isn't a problem.
1610                  */
1611                 spin_unlock_irqrestore(&ide_lock, flags);
1612                 return IRQ_NONE;
1613         }
1614         if (!hwgroup->busy) {
1615                 hwgroup->busy = 1;      /* paranoia */
1616                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1617         }
1618         hwgroup->handler = NULL;
1619         del_timer(&hwgroup->timer);
1620         spin_unlock(&ide_lock);
1621
1622         if (drive->unmask)
1623                 local_irq_enable();
1624         /* service this interrupt, may set handler for next interrupt */
1625         startstop = handler(drive);
1626         spin_lock_irq(&ide_lock);
1627
1628         /*
1629          * Note that handler() may have set things up for another
1630          * interrupt to occur soon, but it cannot happen until
1631          * we exit from this routine, because it will be the
1632          * same irq as is currently being serviced here, and Linux
1633          * won't allow another of the same (on any CPU) until we return.
1634          */
1635         drive->service_time = jiffies - drive->service_start;
1636         if (startstop == ide_stopped) {
1637                 if (hwgroup->handler == NULL) { /* paranoia */
1638                         hwgroup->busy = 0;
1639                         ide_do_request(hwgroup, hwif->irq);
1640                 } else {
1641                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1642                                 "on exit\n", drive->name);
1643                 }
1644         }
1645         spin_unlock_irqrestore(&ide_lock, flags);
1646         return IRQ_HANDLED;
1647 }
1648
1649 /**
1650  *      ide_init_drive_cmd      -       initialize a drive command request
1651  *      @rq: request object
1652  *
1653  *      Initialize a request before we fill it in and send it down to
1654  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1655  *      now it doesn't do a lot, but if that changes abusers will have a
1656  *      nasty suprise.
1657  */
1658
1659 void ide_init_drive_cmd (struct request *rq)
1660 {
1661         memset(rq, 0, sizeof(*rq));
1662         rq->flags = REQ_DRIVE_CMD;
1663         rq->ref_count = 1;
1664 }
1665
1666 EXPORT_SYMBOL(ide_init_drive_cmd);
1667
1668 /**
1669  *      ide_do_drive_cmd        -       issue IDE special command
1670  *      @drive: device to issue command
1671  *      @rq: request to issue
1672  *      @action: action for processing
1673  *
1674  *      This function issues a special IDE device request
1675  *      onto the request queue.
1676  *
1677  *      If action is ide_wait, then the rq is queued at the end of the
1678  *      request queue, and the function sleeps until it has been processed.
1679  *      This is for use when invoked from an ioctl handler.
1680  *
1681  *      If action is ide_preempt, then the rq is queued at the head of
1682  *      the request queue, displacing the currently-being-processed
1683  *      request and this function returns immediately without waiting
1684  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1685  *      intended for careful use by the ATAPI tape/cdrom driver code.
1686  *
1687  *      If action is ide_next, then the rq is queued immediately after
1688  *      the currently-being-processed-request (if any), and the function
1689  *      returns without waiting for the new rq to be completed.  As above,
1690  *      This is VERY DANGEROUS, and is intended for careful use by the
1691  *      ATAPI tape/cdrom driver code.
1692  *
1693  *      If action is ide_end, then the rq is queued at the end of the
1694  *      request queue, and the function returns immediately without waiting
1695  *      for the new rq to be completed. This is again intended for careful
1696  *      use by the ATAPI tape/cdrom driver code.
1697  */
1698  
1699 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1700 {
1701         unsigned long flags;
1702         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1703         DECLARE_COMPLETION(wait);
1704         int where = ELEVATOR_INSERT_BACK, err;
1705         int must_wait = (action == ide_wait || action == ide_head_wait);
1706
1707         rq->errors = 0;
1708         rq->rq_status = RQ_ACTIVE;
1709
1710         /*
1711          * we need to hold an extra reference to request for safe inspection
1712          * after completion
1713          */
1714         if (must_wait) {
1715                 rq->ref_count++;
1716                 rq->waiting = &wait;
1717                 rq->end_io = blk_end_sync_rq;
1718         }
1719
1720         spin_lock_irqsave(&ide_lock, flags);
1721         if (action == ide_preempt)
1722                 hwgroup->rq = NULL;
1723         if (action == ide_preempt || action == ide_head_wait) {
1724                 where = ELEVATOR_INSERT_FRONT;
1725                 rq->flags |= REQ_PREEMPT;
1726         }
1727         __elv_add_request(drive->queue, rq, where, 0);
1728         ide_do_request(hwgroup, IDE_NO_IRQ);
1729         spin_unlock_irqrestore(&ide_lock, flags);
1730
1731         err = 0;
1732         if (must_wait) {
1733                 wait_for_completion(&wait);
1734                 rq->waiting = NULL;
1735                 if (rq->errors)
1736                         err = -EIO;
1737
1738                 blk_put_request(rq);
1739         }
1740
1741         return err;
1742 }
1743
1744 EXPORT_SYMBOL(ide_do_drive_cmd);