linux 2.6.16.38 w/ vs2.0.3-rc1
[linux-2.6.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
84         { "rx_long_length_errors", E1000_STAT(stats.roc) },
85         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
86         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
87         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
88         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
89         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
90         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
91         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
92         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
93         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
94         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
95         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
96         { "rx_header_split", E1000_STAT(rx_hdr_split) },
97         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
98 };
99
100 #ifdef CONFIG_E1000_MQ
101 #define E1000_QUEUE_STATS_LEN \
102         (((struct e1000_adapter *)netdev->priv)->num_tx_queues + \
103          ((struct e1000_adapter *)netdev->priv)->num_rx_queues) \
104         * (sizeof(struct e1000_queue_stats) / sizeof(uint64_t))
105 #else
106 #define E1000_QUEUE_STATS_LEN 0
107 #endif
108 #define E1000_GLOBAL_STATS_LEN  \
109         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
110 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
111 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
112         "Register test  (offline)", "Eeprom test    (offline)",
113         "Interrupt test (offline)", "Loopback test  (offline)",
114         "Link test   (on/offline)"
115 };
116 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
117
118 static int
119 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
120 {
121         struct e1000_adapter *adapter = netdev_priv(netdev);
122         struct e1000_hw *hw = &adapter->hw;
123
124         if (hw->media_type == e1000_media_type_copper) {
125
126                 ecmd->supported = (SUPPORTED_10baseT_Half |
127                                    SUPPORTED_10baseT_Full |
128                                    SUPPORTED_100baseT_Half |
129                                    SUPPORTED_100baseT_Full |
130                                    SUPPORTED_1000baseT_Full|
131                                    SUPPORTED_Autoneg |
132                                    SUPPORTED_TP);
133
134                 ecmd->advertising = ADVERTISED_TP;
135
136                 if (hw->autoneg == 1) {
137                         ecmd->advertising |= ADVERTISED_Autoneg;
138
139                         /* the e1000 autoneg seems to match ethtool nicely */
140
141                         ecmd->advertising |= hw->autoneg_advertised;
142                 }
143
144                 ecmd->port = PORT_TP;
145                 ecmd->phy_address = hw->phy_addr;
146
147                 if (hw->mac_type == e1000_82543)
148                         ecmd->transceiver = XCVR_EXTERNAL;
149                 else
150                         ecmd->transceiver = XCVR_INTERNAL;
151
152         } else {
153                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
154                                      SUPPORTED_FIBRE |
155                                      SUPPORTED_Autoneg);
156
157                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
158                                      ADVERTISED_FIBRE |
159                                      ADVERTISED_Autoneg);
160
161                 ecmd->port = PORT_FIBRE;
162
163                 if (hw->mac_type >= e1000_82545)
164                         ecmd->transceiver = XCVR_INTERNAL;
165                 else
166                         ecmd->transceiver = XCVR_EXTERNAL;
167         }
168
169         if (netif_carrier_ok(adapter->netdev)) {
170
171                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
172                                                    &adapter->link_duplex);
173                 ecmd->speed = adapter->link_speed;
174
175                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
176                  *          and HALF_DUPLEX != DUPLEX_HALF */
177
178                 if (adapter->link_duplex == FULL_DUPLEX)
179                         ecmd->duplex = DUPLEX_FULL;
180                 else
181                         ecmd->duplex = DUPLEX_HALF;
182         } else {
183                 ecmd->speed = -1;
184                 ecmd->duplex = -1;
185         }
186
187         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
188                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
189         return 0;
190 }
191
192 static int
193 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
194 {
195         struct e1000_adapter *adapter = netdev_priv(netdev);
196         struct e1000_hw *hw = &adapter->hw;
197
198         /* When SoL/IDER sessions are active, autoneg/speed/duplex
199          * cannot be changed */
200         if (e1000_check_phy_reset_block(hw)) {
201                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
202                         "when SoL/IDER is active.\n");
203                 return -EINVAL;
204         }
205
206         if (ecmd->autoneg == AUTONEG_ENABLE) {
207                 hw->autoneg = 1;
208                 if (hw->media_type == e1000_media_type_fiber)
209                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
210                                      ADVERTISED_FIBRE |
211                                      ADVERTISED_Autoneg;
212                 else
213                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
214                                                   ADVERTISED_10baseT_Full |
215                                                   ADVERTISED_100baseT_Half |
216                                                   ADVERTISED_100baseT_Full |
217                                                   ADVERTISED_1000baseT_Full|
218                                                   ADVERTISED_Autoneg |
219                                                   ADVERTISED_TP;
220                 ecmd->advertising = hw->autoneg_advertised;
221         } else
222                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
223                         return -EINVAL;
224
225         /* reset the link */
226
227         if (netif_running(adapter->netdev)) {
228                 e1000_down(adapter);
229                 e1000_reset(adapter);
230                 e1000_up(adapter);
231         } else
232                 e1000_reset(adapter);
233
234         return 0;
235 }
236
237 static void
238 e1000_get_pauseparam(struct net_device *netdev,
239                      struct ethtool_pauseparam *pause)
240 {
241         struct e1000_adapter *adapter = netdev_priv(netdev);
242         struct e1000_hw *hw = &adapter->hw;
243
244         pause->autoneg =
245                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
246
247         if (hw->fc == e1000_fc_rx_pause)
248                 pause->rx_pause = 1;
249         else if (hw->fc == e1000_fc_tx_pause)
250                 pause->tx_pause = 1;
251         else if (hw->fc == e1000_fc_full) {
252                 pause->rx_pause = 1;
253                 pause->tx_pause = 1;
254         }
255 }
256
257 static int
258 e1000_set_pauseparam(struct net_device *netdev,
259                      struct ethtool_pauseparam *pause)
260 {
261         struct e1000_adapter *adapter = netdev_priv(netdev);
262         struct e1000_hw *hw = &adapter->hw;
263
264         adapter->fc_autoneg = pause->autoneg;
265
266         if (pause->rx_pause && pause->tx_pause)
267                 hw->fc = e1000_fc_full;
268         else if (pause->rx_pause && !pause->tx_pause)
269                 hw->fc = e1000_fc_rx_pause;
270         else if (!pause->rx_pause && pause->tx_pause)
271                 hw->fc = e1000_fc_tx_pause;
272         else if (!pause->rx_pause && !pause->tx_pause)
273                 hw->fc = e1000_fc_none;
274
275         hw->original_fc = hw->fc;
276
277         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
278                 if (netif_running(adapter->netdev)) {
279                         e1000_down(adapter);
280                         e1000_up(adapter);
281                 } else
282                         e1000_reset(adapter);
283         } else
284                 return ((hw->media_type == e1000_media_type_fiber) ?
285                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
286
287         return 0;
288 }
289
290 static uint32_t
291 e1000_get_rx_csum(struct net_device *netdev)
292 {
293         struct e1000_adapter *adapter = netdev_priv(netdev);
294         return adapter->rx_csum;
295 }
296
297 static int
298 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
299 {
300         struct e1000_adapter *adapter = netdev_priv(netdev);
301         adapter->rx_csum = data;
302
303         if (netif_running(netdev)) {
304                 e1000_down(adapter);
305                 e1000_up(adapter);
306         } else
307                 e1000_reset(adapter);
308         return 0;
309 }
310
311 static uint32_t
312 e1000_get_tx_csum(struct net_device *netdev)
313 {
314         return (netdev->features & NETIF_F_HW_CSUM) != 0;
315 }
316
317 static int
318 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
319 {
320         struct e1000_adapter *adapter = netdev_priv(netdev);
321
322         if (adapter->hw.mac_type < e1000_82543) {
323                 if (!data)
324                         return -EINVAL;
325                 return 0;
326         }
327
328         if (data)
329                 netdev->features |= NETIF_F_HW_CSUM;
330         else
331                 netdev->features &= ~NETIF_F_HW_CSUM;
332
333         return 0;
334 }
335
336 #ifdef NETIF_F_TSO
337 static int
338 e1000_set_tso(struct net_device *netdev, uint32_t data)
339 {
340         struct e1000_adapter *adapter = netdev_priv(netdev);
341         if ((adapter->hw.mac_type < e1000_82544) ||
342             (adapter->hw.mac_type == e1000_82547))
343                 return data ? -EINVAL : 0;
344
345         if (data)
346                 netdev->features |= NETIF_F_TSO;
347         else
348                 netdev->features &= ~NETIF_F_TSO;
349         return 0;
350 }
351 #endif /* NETIF_F_TSO */
352
353 static uint32_t
354 e1000_get_msglevel(struct net_device *netdev)
355 {
356         struct e1000_adapter *adapter = netdev_priv(netdev);
357         return adapter->msg_enable;
358 }
359
360 static void
361 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
362 {
363         struct e1000_adapter *adapter = netdev_priv(netdev);
364         adapter->msg_enable = data;
365 }
366
367 static int
368 e1000_get_regs_len(struct net_device *netdev)
369 {
370 #define E1000_REGS_LEN 32
371         return E1000_REGS_LEN * sizeof(uint32_t);
372 }
373
374 static void
375 e1000_get_regs(struct net_device *netdev,
376                struct ethtool_regs *regs, void *p)
377 {
378         struct e1000_adapter *adapter = netdev_priv(netdev);
379         struct e1000_hw *hw = &adapter->hw;
380         uint32_t *regs_buff = p;
381         uint16_t phy_data;
382
383         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
384
385         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
386
387         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
388         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
389
390         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
391         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
392         regs_buff[4]  = E1000_READ_REG(hw, RDH);
393         regs_buff[5]  = E1000_READ_REG(hw, RDT);
394         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
395
396         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
397         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
398         regs_buff[9]  = E1000_READ_REG(hw, TDH);
399         regs_buff[10] = E1000_READ_REG(hw, TDT);
400         regs_buff[11] = E1000_READ_REG(hw, TIDV);
401
402         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
403         if (hw->phy_type == e1000_phy_igp) {
404                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
405                                     IGP01E1000_PHY_AGC_A);
406                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
407                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
408                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
409                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
410                                     IGP01E1000_PHY_AGC_B);
411                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
412                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
413                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
414                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
415                                     IGP01E1000_PHY_AGC_C);
416                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
417                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
418                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
419                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
420                                     IGP01E1000_PHY_AGC_D);
421                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
422                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
423                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
424                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
425                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
426                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
427                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
428                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
429                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
430                                     IGP01E1000_PHY_PCS_INIT_REG);
431                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
432                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
433                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
434                 regs_buff[20] = 0; /* polarity correction enabled (always) */
435                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
436                 regs_buff[23] = regs_buff[18]; /* mdix mode */
437                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
438         } else {
439                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
440                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
441                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
442                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
443                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
444                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
445                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
446                 regs_buff[18] = regs_buff[13]; /* cable polarity */
447                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
448                 regs_buff[20] = regs_buff[17]; /* polarity correction */
449                 /* phy receive errors */
450                 regs_buff[22] = adapter->phy_stats.receive_errors;
451                 regs_buff[23] = regs_buff[13]; /* mdix mode */
452         }
453         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
454         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
455         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
456         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
457         if (hw->mac_type >= e1000_82540 &&
458            hw->media_type == e1000_media_type_copper) {
459                 regs_buff[26] = E1000_READ_REG(hw, MANC);
460         }
461 }
462
463 static int
464 e1000_get_eeprom_len(struct net_device *netdev)
465 {
466         struct e1000_adapter *adapter = netdev_priv(netdev);
467         return adapter->hw.eeprom.word_size * 2;
468 }
469
470 static int
471 e1000_get_eeprom(struct net_device *netdev,
472                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
473 {
474         struct e1000_adapter *adapter = netdev_priv(netdev);
475         struct e1000_hw *hw = &adapter->hw;
476         uint16_t *eeprom_buff;
477         int first_word, last_word;
478         int ret_val = 0;
479         uint16_t i;
480
481         if (eeprom->len == 0)
482                 return -EINVAL;
483
484         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
485
486         first_word = eeprom->offset >> 1;
487         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
488
489         eeprom_buff = kmalloc(sizeof(uint16_t) *
490                         (last_word - first_word + 1), GFP_KERNEL);
491         if (!eeprom_buff)
492                 return -ENOMEM;
493
494         if (hw->eeprom.type == e1000_eeprom_spi)
495                 ret_val = e1000_read_eeprom(hw, first_word,
496                                             last_word - first_word + 1,
497                                             eeprom_buff);
498         else {
499                 for (i = 0; i < last_word - first_word + 1; i++)
500                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
501                                                         &eeprom_buff[i])))
502                                 break;
503         }
504
505         /* Device's eeprom is always little-endian, word addressable */
506         for (i = 0; i < last_word - first_word + 1; i++)
507                 le16_to_cpus(&eeprom_buff[i]);
508
509         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
510                         eeprom->len);
511         kfree(eeprom_buff);
512
513         return ret_val;
514 }
515
516 static int
517 e1000_set_eeprom(struct net_device *netdev,
518                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
519 {
520         struct e1000_adapter *adapter = netdev_priv(netdev);
521         struct e1000_hw *hw = &adapter->hw;
522         uint16_t *eeprom_buff;
523         void *ptr;
524         int max_len, first_word, last_word, ret_val = 0;
525         uint16_t i;
526
527         if (eeprom->len == 0)
528                 return -EOPNOTSUPP;
529
530         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
531                 return -EFAULT;
532
533         max_len = hw->eeprom.word_size * 2;
534
535         first_word = eeprom->offset >> 1;
536         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
537         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
538         if (!eeprom_buff)
539                 return -ENOMEM;
540
541         ptr = (void *)eeprom_buff;
542
543         if (eeprom->offset & 1) {
544                 /* need read/modify/write of first changed EEPROM word */
545                 /* only the second byte of the word is being modified */
546                 ret_val = e1000_read_eeprom(hw, first_word, 1,
547                                             &eeprom_buff[0]);
548                 ptr++;
549         }
550         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
551                 /* need read/modify/write of last changed EEPROM word */
552                 /* only the first byte of the word is being modified */
553                 ret_val = e1000_read_eeprom(hw, last_word, 1,
554                                   &eeprom_buff[last_word - first_word]);
555         }
556
557         /* Device's eeprom is always little-endian, word addressable */
558         for (i = 0; i < last_word - first_word + 1; i++)
559                 le16_to_cpus(&eeprom_buff[i]);
560
561         memcpy(ptr, bytes, eeprom->len);
562
563         for (i = 0; i < last_word - first_word + 1; i++)
564                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
565
566         ret_val = e1000_write_eeprom(hw, first_word,
567                                      last_word - first_word + 1, eeprom_buff);
568
569         /* Update the checksum over the first part of the EEPROM if needed
570          * and flush shadow RAM for 82573 conrollers */
571         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
572                                 (hw->mac_type == e1000_82573)))
573                 e1000_update_eeprom_checksum(hw);
574
575         kfree(eeprom_buff);
576         return ret_val;
577 }
578
579 static void
580 e1000_get_drvinfo(struct net_device *netdev,
581                        struct ethtool_drvinfo *drvinfo)
582 {
583         struct e1000_adapter *adapter = netdev_priv(netdev);
584         char firmware_version[32];
585         uint16_t eeprom_data;
586
587         strncpy(drvinfo->driver,  e1000_driver_name, 32);
588         strncpy(drvinfo->version, e1000_driver_version, 32);
589
590         /* EEPROM image version # is reported as firmware version # for
591          * 8257{1|2|3} controllers */
592         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
593         switch (adapter->hw.mac_type) {
594         case e1000_82571:
595         case e1000_82572:
596         case e1000_82573:
597                 sprintf(firmware_version, "%d.%d-%d",
598                         (eeprom_data & 0xF000) >> 12,
599                         (eeprom_data & 0x0FF0) >> 4,
600                         eeprom_data & 0x000F);
601                 break;
602         default:
603                 sprintf(firmware_version, "N/A");
604         }
605
606         strncpy(drvinfo->fw_version, firmware_version, 32);
607         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
608         drvinfo->n_stats = E1000_STATS_LEN;
609         drvinfo->testinfo_len = E1000_TEST_LEN;
610         drvinfo->regdump_len = e1000_get_regs_len(netdev);
611         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
612 }
613
614 static void
615 e1000_get_ringparam(struct net_device *netdev,
616                     struct ethtool_ringparam *ring)
617 {
618         struct e1000_adapter *adapter = netdev_priv(netdev);
619         e1000_mac_type mac_type = adapter->hw.mac_type;
620         struct e1000_tx_ring *txdr = adapter->tx_ring;
621         struct e1000_rx_ring *rxdr = adapter->rx_ring;
622
623         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
624                 E1000_MAX_82544_RXD;
625         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
626                 E1000_MAX_82544_TXD;
627         ring->rx_mini_max_pending = 0;
628         ring->rx_jumbo_max_pending = 0;
629         ring->rx_pending = rxdr->count;
630         ring->tx_pending = txdr->count;
631         ring->rx_mini_pending = 0;
632         ring->rx_jumbo_pending = 0;
633 }
634
635 static int
636 e1000_set_ringparam(struct net_device *netdev,
637                     struct ethtool_ringparam *ring)
638 {
639         struct e1000_adapter *adapter = netdev_priv(netdev);
640         e1000_mac_type mac_type = adapter->hw.mac_type;
641         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
642         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
643         int i, err, tx_ring_size, rx_ring_size;
644
645         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
646         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
647
648         if (netif_running(adapter->netdev))
649                 e1000_down(adapter);
650
651         tx_old = adapter->tx_ring;
652         rx_old = adapter->rx_ring;
653
654         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
655         if (!adapter->tx_ring) {
656                 err = -ENOMEM;
657                 goto err_setup_rx;
658         }
659         memset(adapter->tx_ring, 0, tx_ring_size);
660
661         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
662         if (!adapter->rx_ring) {
663                 kfree(adapter->tx_ring);
664                 err = -ENOMEM;
665                 goto err_setup_rx;
666         }
667         memset(adapter->rx_ring, 0, rx_ring_size);
668
669         txdr = adapter->tx_ring;
670         rxdr = adapter->rx_ring;
671
672         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
673                 return -EINVAL;
674
675         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
676         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
677                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
678         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
679
680         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
681         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
682                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
683         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
684
685         for (i = 0; i < adapter->num_tx_queues; i++)
686                 txdr[i].count = txdr->count;
687         for (i = 0; i < adapter->num_rx_queues; i++)
688                 rxdr[i].count = rxdr->count;
689
690         if (netif_running(adapter->netdev)) {
691                 /* Try to get new resources before deleting old */
692                 if ((err = e1000_setup_all_rx_resources(adapter)))
693                         goto err_setup_rx;
694                 if ((err = e1000_setup_all_tx_resources(adapter)))
695                         goto err_setup_tx;
696
697                 /* save the new, restore the old in order to free it,
698                  * then restore the new back again */
699
700                 rx_new = adapter->rx_ring;
701                 tx_new = adapter->tx_ring;
702                 adapter->rx_ring = rx_old;
703                 adapter->tx_ring = tx_old;
704                 e1000_free_all_rx_resources(adapter);
705                 e1000_free_all_tx_resources(adapter);
706                 kfree(tx_old);
707                 kfree(rx_old);
708                 adapter->rx_ring = rx_new;
709                 adapter->tx_ring = tx_new;
710                 if ((err = e1000_up(adapter)))
711                         return err;
712         }
713
714         return 0;
715 err_setup_tx:
716         e1000_free_all_rx_resources(adapter);
717 err_setup_rx:
718         adapter->rx_ring = rx_old;
719         adapter->tx_ring = tx_old;
720         e1000_up(adapter);
721         return err;
722 }
723
724 #define REG_PATTERN_TEST(R, M, W)                                              \
725 {                                                                              \
726         uint32_t pat, value;                                                   \
727         uint32_t test[] =                                                      \
728                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
729         for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
730                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
731                 value = E1000_READ_REG(&adapter->hw, R);                       \
732                 if (value != (test[pat] & W & M)) {                             \
733                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
734                                 "0x%08X expected 0x%08X\n",                    \
735                                 E1000_##R, value, (test[pat] & W & M));        \
736                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
737                                 E1000_82542_##R : E1000_##R;                   \
738                         return 1;                                              \
739                 }                                                              \
740         }                                                                      \
741 }
742
743 #define REG_SET_AND_CHECK(R, M, W)                                             \
744 {                                                                              \
745         uint32_t value;                                                        \
746         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
747         value = E1000_READ_REG(&adapter->hw, R);                               \
748         if ((W & M) != (value & M)) {                                          \
749                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
750                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
751                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
752                         E1000_82542_##R : E1000_##R;                           \
753                 return 1;                                                      \
754         }                                                                      \
755 }
756
757 static int
758 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
759 {
760         uint32_t value, before, after;
761         uint32_t i, toggle;
762
763         /* The status register is Read Only, so a write should fail.
764          * Some bits that get toggled are ignored.
765          */
766         switch (adapter->hw.mac_type) {
767         /* there are several bits on newer hardware that are r/w */
768         case e1000_82571:
769         case e1000_82572:
770                 toggle = 0x7FFFF3FF;
771                 break;
772         case e1000_82573:
773                 toggle = 0x7FFFF033;
774                 break;
775         default:
776                 toggle = 0xFFFFF833;
777                 break;
778         }
779
780         before = E1000_READ_REG(&adapter->hw, STATUS);
781         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
782         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
783         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
784         if (value != after) {
785                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
786                         "0x%08X expected: 0x%08X\n", after, value);
787                 *data = 1;
788                 return 1;
789         }
790         /* restore previous status */
791         E1000_WRITE_REG(&adapter->hw, STATUS, before);
792
793         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
794         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
795         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
796         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
797         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
798         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
799         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
800         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
801         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
802         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
803         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
804         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
805         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
806         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
807
808         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
809         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
810         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
811
812         if (adapter->hw.mac_type >= e1000_82543) {
813
814                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
815                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
816                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
817                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
818                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
819
820                 for (i = 0; i < E1000_RAR_ENTRIES; i++) {
821                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
822                                          0xFFFFFFFF);
823                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
824                                          0xFFFFFFFF);
825                 }
826
827         } else {
828
829                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
830                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
831                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
832                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
833
834         }
835
836         for (i = 0; i < E1000_MC_TBL_SIZE; i++)
837                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
838
839         *data = 0;
840         return 0;
841 }
842
843 static int
844 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
845 {
846         uint16_t temp;
847         uint16_t checksum = 0;
848         uint16_t i;
849
850         *data = 0;
851         /* Read and add up the contents of the EEPROM */
852         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
853                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
854                         *data = 1;
855                         break;
856                 }
857                 checksum += temp;
858         }
859
860         /* If Checksum is not Correct return error else test passed */
861         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
862                 *data = 2;
863
864         return *data;
865 }
866
867 static irqreturn_t
868 e1000_test_intr(int irq,
869                 void *data,
870                 struct pt_regs *regs)
871 {
872         struct net_device *netdev = (struct net_device *) data;
873         struct e1000_adapter *adapter = netdev_priv(netdev);
874
875         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
876
877         return IRQ_HANDLED;
878 }
879
880 static int
881 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
882 {
883         struct net_device *netdev = adapter->netdev;
884         uint32_t mask, i=0, shared_int = TRUE;
885         uint32_t irq = adapter->pdev->irq;
886
887         *data = 0;
888
889         /* Hook up test interrupt handler just for this test */
890         if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
891                 shared_int = FALSE;
892         } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
893                               netdev->name, netdev)){
894                 *data = 1;
895                 return -1;
896         }
897
898         /* Disable all the interrupts */
899         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
900         msec_delay(10);
901
902         /* Test each interrupt */
903         for (; i < 10; i++) {
904
905                 /* Interrupt to test */
906                 mask = 1 << i;
907
908                 if (!shared_int) {
909                         /* Disable the interrupt to be reported in
910                          * the cause register and then force the same
911                          * interrupt and see if one gets posted.  If
912                          * an interrupt was posted to the bus, the
913                          * test failed.
914                          */
915                         adapter->test_icr = 0;
916                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
917                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
918                         msec_delay(10);
919
920                         if (adapter->test_icr & mask) {
921                                 *data = 3;
922                                 break;
923                         }
924                 }
925
926                 /* Enable the interrupt to be reported in
927                  * the cause register and then force the same
928                  * interrupt and see if one gets posted.  If
929                  * an interrupt was not posted to the bus, the
930                  * test failed.
931                  */
932                 adapter->test_icr = 0;
933                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
934                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
935                 msec_delay(10);
936
937                 if (!(adapter->test_icr & mask)) {
938                         *data = 4;
939                         break;
940                 }
941
942                 if (!shared_int) {
943                         /* Disable the other interrupts to be reported in
944                          * the cause register and then force the other
945                          * interrupts and see if any get posted.  If
946                          * an interrupt was posted to the bus, the
947                          * test failed.
948                          */
949                         adapter->test_icr = 0;
950                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
951                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
952                         msec_delay(10);
953
954                         if (adapter->test_icr) {
955                                 *data = 5;
956                                 break;
957                         }
958                 }
959         }
960
961         /* Disable all the interrupts */
962         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
963         msec_delay(10);
964
965         /* Unhook test interrupt handler */
966         free_irq(irq, netdev);
967
968         return *data;
969 }
970
971 static void
972 e1000_free_desc_rings(struct e1000_adapter *adapter)
973 {
974         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
975         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
976         struct pci_dev *pdev = adapter->pdev;
977         int i;
978
979         if (txdr->desc && txdr->buffer_info) {
980                 for (i = 0; i < txdr->count; i++) {
981                         if (txdr->buffer_info[i].dma)
982                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
983                                                  txdr->buffer_info[i].length,
984                                                  PCI_DMA_TODEVICE);
985                         if (txdr->buffer_info[i].skb)
986                                 dev_kfree_skb(txdr->buffer_info[i].skb);
987                 }
988         }
989
990         if (rxdr->desc && rxdr->buffer_info) {
991                 for (i = 0; i < rxdr->count; i++) {
992                         if (rxdr->buffer_info[i].dma)
993                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
994                                                  rxdr->buffer_info[i].length,
995                                                  PCI_DMA_FROMDEVICE);
996                         if (rxdr->buffer_info[i].skb)
997                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
998                 }
999         }
1000
1001         if (txdr->desc) {
1002                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1003                 txdr->desc = NULL;
1004         }
1005         if (rxdr->desc) {
1006                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1007                 rxdr->desc = NULL;
1008         }
1009
1010         kfree(txdr->buffer_info);
1011         txdr->buffer_info = NULL;
1012         kfree(rxdr->buffer_info);
1013         rxdr->buffer_info = NULL;
1014
1015         return;
1016 }
1017
1018 static int
1019 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1020 {
1021         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1022         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1023         struct pci_dev *pdev = adapter->pdev;
1024         uint32_t rctl;
1025         int size, i, ret_val;
1026
1027         /* Setup Tx descriptor ring and Tx buffers */
1028
1029         if (!txdr->count)
1030                 txdr->count = E1000_DEFAULT_TXD;
1031
1032         size = txdr->count * sizeof(struct e1000_buffer);
1033         if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1034                 ret_val = 1;
1035                 goto err_nomem;
1036         }
1037         memset(txdr->buffer_info, 0, size);
1038
1039         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1040         E1000_ROUNDUP(txdr->size, 4096);
1041         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1042                 ret_val = 2;
1043                 goto err_nomem;
1044         }
1045         memset(txdr->desc, 0, txdr->size);
1046         txdr->next_to_use = txdr->next_to_clean = 0;
1047
1048         E1000_WRITE_REG(&adapter->hw, TDBAL,
1049                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1050         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1051         E1000_WRITE_REG(&adapter->hw, TDLEN,
1052                         txdr->count * sizeof(struct e1000_tx_desc));
1053         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1054         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1055         E1000_WRITE_REG(&adapter->hw, TCTL,
1056                         E1000_TCTL_PSP | E1000_TCTL_EN |
1057                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1058                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1059
1060         for (i = 0; i < txdr->count; i++) {
1061                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1062                 struct sk_buff *skb;
1063                 unsigned int size = 1024;
1064
1065                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1066                         ret_val = 3;
1067                         goto err_nomem;
1068                 }
1069                 skb_put(skb, size);
1070                 txdr->buffer_info[i].skb = skb;
1071                 txdr->buffer_info[i].length = skb->len;
1072                 txdr->buffer_info[i].dma =
1073                         pci_map_single(pdev, skb->data, skb->len,
1074                                        PCI_DMA_TODEVICE);
1075                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1076                 tx_desc->lower.data = cpu_to_le32(skb->len);
1077                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1078                                                    E1000_TXD_CMD_IFCS |
1079                                                    E1000_TXD_CMD_RPS);
1080                 tx_desc->upper.data = 0;
1081         }
1082
1083         /* Setup Rx descriptor ring and Rx buffers */
1084
1085         if (!rxdr->count)
1086                 rxdr->count = E1000_DEFAULT_RXD;
1087
1088         size = rxdr->count * sizeof(struct e1000_buffer);
1089         if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1090                 ret_val = 4;
1091                 goto err_nomem;
1092         }
1093         memset(rxdr->buffer_info, 0, size);
1094
1095         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1096         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1097                 ret_val = 5;
1098                 goto err_nomem;
1099         }
1100         memset(rxdr->desc, 0, rxdr->size);
1101         rxdr->next_to_use = rxdr->next_to_clean = 0;
1102
1103         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1104         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1105         E1000_WRITE_REG(&adapter->hw, RDBAL,
1106                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1107         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1108         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1109         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1110         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1111         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1112                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1113                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1114         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1115
1116         for (i = 0; i < rxdr->count; i++) {
1117                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1118                 struct sk_buff *skb;
1119
1120                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1121                                 GFP_KERNEL))) {
1122                         ret_val = 6;
1123                         goto err_nomem;
1124                 }
1125                 skb_reserve(skb, NET_IP_ALIGN);
1126                 rxdr->buffer_info[i].skb = skb;
1127                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1128                 rxdr->buffer_info[i].dma =
1129                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1130                                        PCI_DMA_FROMDEVICE);
1131                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1132                 memset(skb->data, 0x00, skb->len);
1133         }
1134
1135         return 0;
1136
1137 err_nomem:
1138         e1000_free_desc_rings(adapter);
1139         return ret_val;
1140 }
1141
1142 static void
1143 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1144 {
1145         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1146         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1147         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1148         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1149         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1150 }
1151
1152 static void
1153 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1154 {
1155         uint16_t phy_reg;
1156
1157         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1158          * Extended PHY Specific Control Register to 25MHz clock.  This
1159          * value defaults back to a 2.5MHz clock when the PHY is reset.
1160          */
1161         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1162         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1163         e1000_write_phy_reg(&adapter->hw,
1164                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1165
1166         /* In addition, because of the s/w reset above, we need to enable
1167          * CRS on TX.  This must be set for both full and half duplex
1168          * operation.
1169          */
1170         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1171         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1172         e1000_write_phy_reg(&adapter->hw,
1173                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1174 }
1175
1176 static int
1177 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1178 {
1179         uint32_t ctrl_reg;
1180         uint16_t phy_reg;
1181
1182         /* Setup the Device Control Register for PHY loopback test. */
1183
1184         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1185         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1186                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1187                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1188                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1189                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1190
1191         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1192
1193         /* Read the PHY Specific Control Register (0x10) */
1194         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1195
1196         /* Clear Auto-Crossover bits in PHY Specific Control Register
1197          * (bits 6:5).
1198          */
1199         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1200         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1201
1202         /* Perform software reset on the PHY */
1203         e1000_phy_reset(&adapter->hw);
1204
1205         /* Have to setup TX_CLK and TX_CRS after software reset */
1206         e1000_phy_reset_clk_and_crs(adapter);
1207
1208         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1209
1210         /* Wait for reset to complete. */
1211         udelay(500);
1212
1213         /* Have to setup TX_CLK and TX_CRS after software reset */
1214         e1000_phy_reset_clk_and_crs(adapter);
1215
1216         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1217         e1000_phy_disable_receiver(adapter);
1218
1219         /* Set the loopback bit in the PHY control register. */
1220         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1221         phy_reg |= MII_CR_LOOPBACK;
1222         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1223
1224         /* Setup TX_CLK and TX_CRS one more time. */
1225         e1000_phy_reset_clk_and_crs(adapter);
1226
1227         /* Check Phy Configuration */
1228         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1229         if (phy_reg != 0x4100)
1230                  return 9;
1231
1232         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1233         if (phy_reg != 0x0070)
1234                 return 10;
1235
1236         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1237         if (phy_reg != 0x001A)
1238                 return 11;
1239
1240         return 0;
1241 }
1242
1243 static int
1244 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1245 {
1246         uint32_t ctrl_reg = 0;
1247         uint32_t stat_reg = 0;
1248
1249         adapter->hw.autoneg = FALSE;
1250
1251         if (adapter->hw.phy_type == e1000_phy_m88) {
1252                 /* Auto-MDI/MDIX Off */
1253                 e1000_write_phy_reg(&adapter->hw,
1254                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1255                 /* reset to update Auto-MDI/MDIX */
1256                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1257                 /* autoneg off */
1258                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1259         }
1260         /* force 1000, set loopback */
1261         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1262
1263         /* Now set up the MAC to the same speed/duplex as the PHY. */
1264         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1265         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1266         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1267                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1268                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1269                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1270
1271         if (adapter->hw.media_type == e1000_media_type_copper &&
1272            adapter->hw.phy_type == e1000_phy_m88) {
1273                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1274         } else {
1275                 /* Set the ILOS bit on the fiber Nic is half
1276                  * duplex link is detected. */
1277                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1278                 if ((stat_reg & E1000_STATUS_FD) == 0)
1279                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1280         }
1281
1282         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1283
1284         /* Disable the receiver on the PHY so when a cable is plugged in, the
1285          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1286          */
1287         if (adapter->hw.phy_type == e1000_phy_m88)
1288                 e1000_phy_disable_receiver(adapter);
1289
1290         udelay(500);
1291
1292         return 0;
1293 }
1294
1295 static int
1296 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1297 {
1298         uint16_t phy_reg = 0;
1299         uint16_t count = 0;
1300
1301         switch (adapter->hw.mac_type) {
1302         case e1000_82543:
1303                 if (adapter->hw.media_type == e1000_media_type_copper) {
1304                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1305                          * Some PHY registers get corrupted at random, so
1306                          * attempt this 10 times.
1307                          */
1308                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1309                               count++ < 10);
1310                         if (count < 11)
1311                                 return 0;
1312                 }
1313                 break;
1314
1315         case e1000_82544:
1316         case e1000_82540:
1317         case e1000_82545:
1318         case e1000_82545_rev_3:
1319         case e1000_82546:
1320         case e1000_82546_rev_3:
1321         case e1000_82541:
1322         case e1000_82541_rev_2:
1323         case e1000_82547:
1324         case e1000_82547_rev_2:
1325         case e1000_82571:
1326         case e1000_82572:
1327         case e1000_82573:
1328                 return e1000_integrated_phy_loopback(adapter);
1329                 break;
1330
1331         default:
1332                 /* Default PHY loopback work is to read the MII
1333                  * control register and assert bit 14 (loopback mode).
1334                  */
1335                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1336                 phy_reg |= MII_CR_LOOPBACK;
1337                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1338                 return 0;
1339                 break;
1340         }
1341
1342         return 8;
1343 }
1344
1345 static int
1346 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1347 {
1348         struct e1000_hw *hw = &adapter->hw;
1349         uint32_t rctl;
1350
1351         if (hw->media_type == e1000_media_type_fiber ||
1352             hw->media_type == e1000_media_type_internal_serdes) {
1353                 switch (hw->mac_type) {
1354                 case e1000_82545:
1355                 case e1000_82546:
1356                 case e1000_82545_rev_3:
1357                 case e1000_82546_rev_3:
1358                         return e1000_set_phy_loopback(adapter);
1359                         break;
1360                 case e1000_82571:
1361                 case e1000_82572:
1362 #define E1000_SERDES_LB_ON 0x410
1363                         e1000_set_phy_loopback(adapter);
1364                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1365                         msec_delay(10);
1366                         return 0;
1367                         break;
1368                 default:
1369                         rctl = E1000_READ_REG(hw, RCTL);
1370                         rctl |= E1000_RCTL_LBM_TCVR;
1371                         E1000_WRITE_REG(hw, RCTL, rctl);
1372                         return 0;
1373                 }
1374         } else if (hw->media_type == e1000_media_type_copper)
1375                 return e1000_set_phy_loopback(adapter);
1376
1377         return 7;
1378 }
1379
1380 static void
1381 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1382 {
1383         struct e1000_hw *hw = &adapter->hw;
1384         uint32_t rctl;
1385         uint16_t phy_reg;
1386
1387         rctl = E1000_READ_REG(hw, RCTL);
1388         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1389         E1000_WRITE_REG(hw, RCTL, rctl);
1390
1391         switch (hw->mac_type) {
1392         case e1000_82571:
1393         case e1000_82572:
1394                 if (hw->media_type == e1000_media_type_fiber ||
1395                     hw->media_type == e1000_media_type_internal_serdes) {
1396 #define E1000_SERDES_LB_OFF 0x400
1397                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1398                         msec_delay(10);
1399                         break;
1400                 }
1401                 /* Fall Through */
1402         case e1000_82545:
1403         case e1000_82546:
1404         case e1000_82545_rev_3:
1405         case e1000_82546_rev_3:
1406         default:
1407                 hw->autoneg = TRUE;
1408                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1409                 if (phy_reg & MII_CR_LOOPBACK) {
1410                         phy_reg &= ~MII_CR_LOOPBACK;
1411                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1412                         e1000_phy_reset(hw);
1413                 }
1414                 break;
1415         }
1416 }
1417
1418 static void
1419 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1420 {
1421         memset(skb->data, 0xFF, frame_size);
1422         frame_size &= ~1;
1423         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1424         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1425         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1426 }
1427
1428 static int
1429 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1430 {
1431         frame_size &= ~1;
1432         if (*(skb->data + 3) == 0xFF) {
1433                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1434                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1435                         return 0;
1436                 }
1437         }
1438         return 13;
1439 }
1440
1441 static int
1442 e1000_run_loopback_test(struct e1000_adapter *adapter)
1443 {
1444         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1445         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1446         struct pci_dev *pdev = adapter->pdev;
1447         int i, j, k, l, lc, good_cnt, ret_val=0;
1448         unsigned long time;
1449
1450         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1451
1452         /* Calculate the loop count based on the largest descriptor ring
1453          * The idea is to wrap the largest ring a number of times using 64
1454          * send/receive pairs during each loop
1455          */
1456
1457         if (rxdr->count <= txdr->count)
1458                 lc = ((txdr->count / 64) * 2) + 1;
1459         else
1460                 lc = ((rxdr->count / 64) * 2) + 1;
1461
1462         k = l = 0;
1463         for (j = 0; j <= lc; j++) { /* loop count loop */
1464                 for (i = 0; i < 64; i++) { /* send the packets */
1465                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1466                                         1024);
1467                         pci_dma_sync_single_for_device(pdev,
1468                                         txdr->buffer_info[k].dma,
1469                                         txdr->buffer_info[k].length,
1470                                         PCI_DMA_TODEVICE);
1471                         if (unlikely(++k == txdr->count)) k = 0;
1472                 }
1473                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1474                 msec_delay(200);
1475                 time = jiffies; /* set the start time for the receive */
1476                 good_cnt = 0;
1477                 do { /* receive the sent packets */
1478                         pci_dma_sync_single_for_cpu(pdev,
1479                                         rxdr->buffer_info[l].dma,
1480                                         rxdr->buffer_info[l].length,
1481                                         PCI_DMA_FROMDEVICE);
1482
1483                         ret_val = e1000_check_lbtest_frame(
1484                                         rxdr->buffer_info[l].skb,
1485                                         1024);
1486                         if (!ret_val)
1487                                 good_cnt++;
1488                         if (unlikely(++l == rxdr->count)) l = 0;
1489                         /* time + 20 msecs (200 msecs on 2.4) is more than
1490                          * enough time to complete the receives, if it's
1491                          * exceeded, break and error off
1492                          */
1493                 } while (good_cnt < 64 && jiffies < (time + 20));
1494                 if (good_cnt != 64) {
1495                         ret_val = 13; /* ret_val is the same as mis-compare */
1496                         break;
1497                 }
1498                 if (jiffies >= (time + 2)) {
1499                         ret_val = 14; /* error code for time out error */
1500                         break;
1501                 }
1502         } /* end loop count loop */
1503         return ret_val;
1504 }
1505
1506 static int
1507 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1508 {
1509         /* PHY loopback cannot be performed if SoL/IDER
1510          * sessions are active */
1511         if (e1000_check_phy_reset_block(&adapter->hw)) {
1512                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1513                         "when SoL/IDER is active.\n");
1514                 *data = 0;
1515                 goto out;
1516         }
1517
1518         if ((*data = e1000_setup_desc_rings(adapter)))
1519                 goto out;
1520         if ((*data = e1000_setup_loopback_test(adapter)))
1521                 goto err_loopback;
1522         *data = e1000_run_loopback_test(adapter);
1523         e1000_loopback_cleanup(adapter);
1524
1525 err_loopback:
1526         e1000_free_desc_rings(adapter);
1527 out:
1528         return *data;
1529 }
1530
1531 static int
1532 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1533 {
1534         *data = 0;
1535         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1536                 int i = 0;
1537                 adapter->hw.serdes_link_down = TRUE;
1538
1539                 /* On some blade server designs, link establishment
1540                  * could take as long as 2-3 minutes */
1541                 do {
1542                         e1000_check_for_link(&adapter->hw);
1543                         if (adapter->hw.serdes_link_down == FALSE)
1544                                 return *data;
1545                         msec_delay(20);
1546                 } while (i++ < 3750);
1547
1548                 *data = 1;
1549         } else {
1550                 e1000_check_for_link(&adapter->hw);
1551                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1552                         msec_delay(4000);
1553
1554                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1555                         *data = 1;
1556                 }
1557         }
1558         return *data;
1559 }
1560
1561 static int
1562 e1000_diag_test_count(struct net_device *netdev)
1563 {
1564         return E1000_TEST_LEN;
1565 }
1566
1567 static void
1568 e1000_diag_test(struct net_device *netdev,
1569                    struct ethtool_test *eth_test, uint64_t *data)
1570 {
1571         struct e1000_adapter *adapter = netdev_priv(netdev);
1572         boolean_t if_running = netif_running(netdev);
1573
1574         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1575                 /* Offline tests */
1576
1577                 /* save speed, duplex, autoneg settings */
1578                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1579                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1580                 uint8_t autoneg = adapter->hw.autoneg;
1581
1582                 /* Link test performed before hardware reset so autoneg doesn't
1583                  * interfere with test result */
1584                 if (e1000_link_test(adapter, &data[4]))
1585                         eth_test->flags |= ETH_TEST_FL_FAILED;
1586
1587                 if (if_running)
1588                         e1000_down(adapter);
1589                 else
1590                         e1000_reset(adapter);
1591
1592                 if (e1000_reg_test(adapter, &data[0]))
1593                         eth_test->flags |= ETH_TEST_FL_FAILED;
1594
1595                 e1000_reset(adapter);
1596                 if (e1000_eeprom_test(adapter, &data[1]))
1597                         eth_test->flags |= ETH_TEST_FL_FAILED;
1598
1599                 e1000_reset(adapter);
1600                 if (e1000_intr_test(adapter, &data[2]))
1601                         eth_test->flags |= ETH_TEST_FL_FAILED;
1602
1603                 e1000_reset(adapter);
1604                 if (e1000_loopback_test(adapter, &data[3]))
1605                         eth_test->flags |= ETH_TEST_FL_FAILED;
1606
1607                 /* restore speed, duplex, autoneg settings */
1608                 adapter->hw.autoneg_advertised = autoneg_advertised;
1609                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1610                 adapter->hw.autoneg = autoneg;
1611
1612                 e1000_reset(adapter);
1613                 if (if_running)
1614                         e1000_up(adapter);
1615         } else {
1616                 /* Online tests */
1617                 if (e1000_link_test(adapter, &data[4]))
1618                         eth_test->flags |= ETH_TEST_FL_FAILED;
1619
1620                 /* Offline tests aren't run; pass by default */
1621                 data[0] = 0;
1622                 data[1] = 0;
1623                 data[2] = 0;
1624                 data[3] = 0;
1625         }
1626         msleep_interruptible(4 * 1000);
1627 }
1628
1629 static void
1630 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1631 {
1632         struct e1000_adapter *adapter = netdev_priv(netdev);
1633         struct e1000_hw *hw = &adapter->hw;
1634
1635         switch (adapter->hw.device_id) {
1636         case E1000_DEV_ID_82542:
1637         case E1000_DEV_ID_82543GC_FIBER:
1638         case E1000_DEV_ID_82543GC_COPPER:
1639         case E1000_DEV_ID_82544EI_FIBER:
1640         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1641         case E1000_DEV_ID_82545EM_FIBER:
1642         case E1000_DEV_ID_82545EM_COPPER:
1643                 wol->supported = 0;
1644                 wol->wolopts   = 0;
1645                 return;
1646
1647         case E1000_DEV_ID_82546EB_FIBER:
1648         case E1000_DEV_ID_82546GB_FIBER:
1649         case E1000_DEV_ID_82571EB_FIBER:
1650                 /* Wake events only supported on port A for dual fiber */
1651                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1652                         wol->supported = 0;
1653                         wol->wolopts   = 0;
1654                         return;
1655                 }
1656                 /* Fall Through */
1657
1658         default:
1659                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1660                                  WAKE_BCAST | WAKE_MAGIC;
1661
1662                 wol->wolopts = 0;
1663                 if (adapter->wol & E1000_WUFC_EX)
1664                         wol->wolopts |= WAKE_UCAST;
1665                 if (adapter->wol & E1000_WUFC_MC)
1666                         wol->wolopts |= WAKE_MCAST;
1667                 if (adapter->wol & E1000_WUFC_BC)
1668                         wol->wolopts |= WAKE_BCAST;
1669                 if (adapter->wol & E1000_WUFC_MAG)
1670                         wol->wolopts |= WAKE_MAGIC;
1671                 return;
1672         }
1673 }
1674
1675 static int
1676 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1677 {
1678         struct e1000_adapter *adapter = netdev_priv(netdev);
1679         struct e1000_hw *hw = &adapter->hw;
1680
1681         switch (adapter->hw.device_id) {
1682         case E1000_DEV_ID_82542:
1683         case E1000_DEV_ID_82543GC_FIBER:
1684         case E1000_DEV_ID_82543GC_COPPER:
1685         case E1000_DEV_ID_82544EI_FIBER:
1686         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1687         case E1000_DEV_ID_82545EM_FIBER:
1688         case E1000_DEV_ID_82545EM_COPPER:
1689                 return wol->wolopts ? -EOPNOTSUPP : 0;
1690
1691         case E1000_DEV_ID_82546EB_FIBER:
1692         case E1000_DEV_ID_82546GB_FIBER:
1693         case E1000_DEV_ID_82571EB_FIBER:
1694                 /* Wake events only supported on port A for dual fiber */
1695                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1696                         return wol->wolopts ? -EOPNOTSUPP : 0;
1697                 /* Fall Through */
1698
1699         default:
1700                 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1701                         return -EOPNOTSUPP;
1702
1703                 adapter->wol = 0;
1704
1705                 if (wol->wolopts & WAKE_UCAST)
1706                         adapter->wol |= E1000_WUFC_EX;
1707                 if (wol->wolopts & WAKE_MCAST)
1708                         adapter->wol |= E1000_WUFC_MC;
1709                 if (wol->wolopts & WAKE_BCAST)
1710                         adapter->wol |= E1000_WUFC_BC;
1711                 if (wol->wolopts & WAKE_MAGIC)
1712                         adapter->wol |= E1000_WUFC_MAG;
1713         }
1714
1715         return 0;
1716 }
1717
1718 /* toggle LED 4 times per second = 2 "blinks" per second */
1719 #define E1000_ID_INTERVAL       (HZ/4)
1720
1721 /* bit defines for adapter->led_status */
1722 #define E1000_LED_ON            0
1723
1724 static void
1725 e1000_led_blink_callback(unsigned long data)
1726 {
1727         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1728
1729         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1730                 e1000_led_off(&adapter->hw);
1731         else
1732                 e1000_led_on(&adapter->hw);
1733
1734         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1735 }
1736
1737 static int
1738 e1000_phys_id(struct net_device *netdev, uint32_t data)
1739 {
1740         struct e1000_adapter *adapter = netdev_priv(netdev);
1741
1742         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1743                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1744
1745         if (adapter->hw.mac_type < e1000_82571) {
1746                 if (!adapter->blink_timer.function) {
1747                         init_timer(&adapter->blink_timer);
1748                         adapter->blink_timer.function = e1000_led_blink_callback;
1749                         adapter->blink_timer.data = (unsigned long) adapter;
1750                 }
1751                 e1000_setup_led(&adapter->hw);
1752                 mod_timer(&adapter->blink_timer, jiffies);
1753                 msleep_interruptible(data * 1000);
1754                 del_timer_sync(&adapter->blink_timer);
1755         } else if (adapter->hw.mac_type < e1000_82573) {
1756                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1757                         (E1000_LEDCTL_LED2_BLINK_RATE |
1758                          E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1759                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1760                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1761                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1762                 msleep_interruptible(data * 1000);
1763         } else {
1764                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1765                         (E1000_LEDCTL_LED2_BLINK_RATE |
1766                          E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1767                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1768                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1769                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1770                 msleep_interruptible(data * 1000);
1771         }
1772
1773         e1000_led_off(&adapter->hw);
1774         clear_bit(E1000_LED_ON, &adapter->led_status);
1775         e1000_cleanup_led(&adapter->hw);
1776
1777         return 0;
1778 }
1779
1780 static int
1781 e1000_nway_reset(struct net_device *netdev)
1782 {
1783         struct e1000_adapter *adapter = netdev_priv(netdev);
1784         if (netif_running(netdev)) {
1785                 e1000_down(adapter);
1786                 e1000_up(adapter);
1787         }
1788         return 0;
1789 }
1790
1791 static int
1792 e1000_get_stats_count(struct net_device *netdev)
1793 {
1794         return E1000_STATS_LEN;
1795 }
1796
1797 static void
1798 e1000_get_ethtool_stats(struct net_device *netdev,
1799                 struct ethtool_stats *stats, uint64_t *data)
1800 {
1801         struct e1000_adapter *adapter = netdev_priv(netdev);
1802 #ifdef CONFIG_E1000_MQ
1803         uint64_t *queue_stat;
1804         int stat_count = sizeof(struct e1000_queue_stats) / sizeof(uint64_t);
1805         int j, k;
1806 #endif
1807         int i;
1808
1809         e1000_update_stats(adapter);
1810         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1811                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1812                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1813                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1814         }
1815 #ifdef CONFIG_E1000_MQ
1816         for (j = 0; j < adapter->num_tx_queues; j++) {
1817                 queue_stat = (uint64_t *)&adapter->tx_ring[j].tx_stats;
1818                 for (k = 0; k < stat_count; k++)
1819                         data[i + k] = queue_stat[k];
1820                 i += k;
1821         }
1822         for (j = 0; j < adapter->num_rx_queues; j++) {
1823                 queue_stat = (uint64_t *)&adapter->rx_ring[j].rx_stats;
1824                 for (k = 0; k < stat_count; k++)
1825                         data[i + k] = queue_stat[k];
1826                 i += k;
1827         }
1828 #endif
1829 /*      BUG_ON(i != E1000_STATS_LEN); */
1830 }
1831
1832 static void
1833 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1834 {
1835 #ifdef CONFIG_E1000_MQ
1836         struct e1000_adapter *adapter = netdev_priv(netdev);
1837 #endif
1838         uint8_t *p = data;
1839         int i;
1840
1841         switch (stringset) {
1842         case ETH_SS_TEST:
1843                 memcpy(data, *e1000_gstrings_test,
1844                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1845                 break;
1846         case ETH_SS_STATS:
1847                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1848                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1849                                ETH_GSTRING_LEN);
1850                         p += ETH_GSTRING_LEN;
1851                 }
1852 #ifdef CONFIG_E1000_MQ
1853                 for (i = 0; i < adapter->num_tx_queues; i++) {
1854                         sprintf(p, "tx_queue_%u_packets", i);
1855                         p += ETH_GSTRING_LEN;
1856                         sprintf(p, "tx_queue_%u_bytes", i);
1857                         p += ETH_GSTRING_LEN;
1858                 }
1859                 for (i = 0; i < adapter->num_rx_queues; i++) {
1860                         sprintf(p, "rx_queue_%u_packets", i);
1861                         p += ETH_GSTRING_LEN;
1862                         sprintf(p, "rx_queue_%u_bytes", i);
1863                         p += ETH_GSTRING_LEN;
1864                 }
1865 #endif
1866 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1867                 break;
1868         }
1869 }
1870
1871 static struct ethtool_ops e1000_ethtool_ops = {
1872         .get_settings           = e1000_get_settings,
1873         .set_settings           = e1000_set_settings,
1874         .get_drvinfo            = e1000_get_drvinfo,
1875         .get_regs_len           = e1000_get_regs_len,
1876         .get_regs               = e1000_get_regs,
1877         .get_wol                = e1000_get_wol,
1878         .set_wol                = e1000_set_wol,
1879         .get_msglevel           = e1000_get_msglevel,
1880         .set_msglevel           = e1000_set_msglevel,
1881         .nway_reset             = e1000_nway_reset,
1882         .get_link               = ethtool_op_get_link,
1883         .get_eeprom_len         = e1000_get_eeprom_len,
1884         .get_eeprom             = e1000_get_eeprom,
1885         .set_eeprom             = e1000_set_eeprom,
1886         .get_ringparam          = e1000_get_ringparam,
1887         .set_ringparam          = e1000_set_ringparam,
1888         .get_pauseparam         = e1000_get_pauseparam,
1889         .set_pauseparam         = e1000_set_pauseparam,
1890         .get_rx_csum            = e1000_get_rx_csum,
1891         .set_rx_csum            = e1000_set_rx_csum,
1892         .get_tx_csum            = e1000_get_tx_csum,
1893         .set_tx_csum            = e1000_set_tx_csum,
1894         .get_sg                 = ethtool_op_get_sg,
1895         .set_sg                 = ethtool_op_set_sg,
1896 #ifdef NETIF_F_TSO
1897         .get_tso                = ethtool_op_get_tso,
1898         .set_tso                = e1000_set_tso,
1899 #endif
1900         .self_test_count        = e1000_diag_test_count,
1901         .self_test              = e1000_diag_test,
1902         .get_strings            = e1000_get_strings,
1903         .phys_id                = e1000_phys_id,
1904         .get_stats_count        = e1000_get_stats_count,
1905         .get_ethtool_stats      = e1000_get_ethtool_stats,
1906         .get_perm_addr          = ethtool_op_get_perm_addr,
1907 };
1908
1909 void e1000_set_ethtool_ops(struct net_device *netdev)
1910 {
1911         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1912 }