upgrade to linux 2.6.10-1.12_FC2
[linux-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 5.3.12       6/7/04
33  * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
34  * - if_mii support and associated kcompat for older kernels
35  * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
36  * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
37  *
38  * 5.3.11       6/4/04
39  * - ethtool register dump reads MANC register conditionally.
40  *
41  * 5.3.10       6/1/04
42  */
43
44 char e1000_driver_name[] = "e1000";
45 char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
46 #ifndef CONFIG_E1000_NAPI
47 #define DRIVERNAPI
48 #else
49 #define DRIVERNAPI "-NAPI"
50 #endif
51 #define DRV_VERSION "5.5.4-k2"DRIVERNAPI;
52 char e1000_driver_version[] = DRV_VERSION;
53 char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
54
55 /* e1000_pci_tbl - PCI Device ID Table
56  *
57  * Last entry must be all 0s
58  *
59  * Macro expands to...
60  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
61  */
62 static struct pci_device_id e1000_pci_tbl[] = {
63         INTEL_E1000_ETHERNET_DEVICE(0x1000),
64         INTEL_E1000_ETHERNET_DEVICE(0x1001),
65         INTEL_E1000_ETHERNET_DEVICE(0x1004),
66         INTEL_E1000_ETHERNET_DEVICE(0x1008),
67         INTEL_E1000_ETHERNET_DEVICE(0x1009),
68         INTEL_E1000_ETHERNET_DEVICE(0x100C),
69         INTEL_E1000_ETHERNET_DEVICE(0x100D),
70         INTEL_E1000_ETHERNET_DEVICE(0x100E),
71         INTEL_E1000_ETHERNET_DEVICE(0x100F),
72         INTEL_E1000_ETHERNET_DEVICE(0x1010),
73         INTEL_E1000_ETHERNET_DEVICE(0x1011),
74         INTEL_E1000_ETHERNET_DEVICE(0x1012),
75         INTEL_E1000_ETHERNET_DEVICE(0x1013),
76         INTEL_E1000_ETHERNET_DEVICE(0x1015),
77         INTEL_E1000_ETHERNET_DEVICE(0x1016),
78         INTEL_E1000_ETHERNET_DEVICE(0x1017),
79         INTEL_E1000_ETHERNET_DEVICE(0x1018),
80         INTEL_E1000_ETHERNET_DEVICE(0x1019),
81         INTEL_E1000_ETHERNET_DEVICE(0x101D),
82         INTEL_E1000_ETHERNET_DEVICE(0x101E),
83         INTEL_E1000_ETHERNET_DEVICE(0x1026),
84         INTEL_E1000_ETHERNET_DEVICE(0x1027),
85         INTEL_E1000_ETHERNET_DEVICE(0x1028),
86         INTEL_E1000_ETHERNET_DEVICE(0x1075),
87         INTEL_E1000_ETHERNET_DEVICE(0x1076),
88         INTEL_E1000_ETHERNET_DEVICE(0x1077),
89         INTEL_E1000_ETHERNET_DEVICE(0x1078),
90         INTEL_E1000_ETHERNET_DEVICE(0x1079),
91         INTEL_E1000_ETHERNET_DEVICE(0x107A),
92         INTEL_E1000_ETHERNET_DEVICE(0x107B),
93         INTEL_E1000_ETHERNET_DEVICE(0x107C),
94         /* required last entry */
95         {0,}
96 };
97
98 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
99
100 int e1000_up(struct e1000_adapter *adapter);
101 void e1000_down(struct e1000_adapter *adapter);
102 void e1000_reset(struct e1000_adapter *adapter);
103 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
104 int e1000_setup_tx_resources(struct e1000_adapter *adapter);
105 int e1000_setup_rx_resources(struct e1000_adapter *adapter);
106 void e1000_free_tx_resources(struct e1000_adapter *adapter);
107 void e1000_free_rx_resources(struct e1000_adapter *adapter);
108 void e1000_update_stats(struct e1000_adapter *adapter);
109
110 /* Local Function Prototypes */
111
112 static int e1000_init_module(void);
113 static void e1000_exit_module(void);
114 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
115 static void __devexit e1000_remove(struct pci_dev *pdev);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
123 static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
124 static void e1000_set_multi(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static void e1000_irq_disable(struct e1000_adapter *adapter);
133 static void e1000_irq_enable(struct e1000_adapter *adapter);
134 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
135 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
136 #ifdef CONFIG_E1000_NAPI
137 static int e1000_clean(struct net_device *netdev, int *budget);
138 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
139                                     int *work_done, int work_to_do);
140 #else
141 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
142 #endif
143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
144 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
145 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
146                            int cmd);
147 void set_ethtool_ops(struct net_device *netdev);
148 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
149 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
150 static void e1000_rx_checksum(struct e1000_adapter *adapter,
151                                 struct e1000_rx_desc *rx_desc,
152                                 struct sk_buff *skb);
153 static void e1000_tx_timeout(struct net_device *dev);
154 static void e1000_tx_timeout_task(struct net_device *dev);
155 static void e1000_smartspeed(struct e1000_adapter *adapter);
156 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
157                                               struct sk_buff *skb);
158
159 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
160 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
161 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
162 static void e1000_restore_vlan(struct e1000_adapter *adapter);
163
164 static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
165 static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
166 #ifdef CONFIG_PM
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
169
170 #ifdef CONFIG_NET_POLL_CONTROLLER
171 /* for netdump / net console */
172 static void e1000_netpoll (struct net_device *netdev);
173 #endif
174
175 struct notifier_block e1000_notifier_reboot = {
176         .notifier_call  = e1000_notify_reboot,
177         .next           = NULL,
178         .priority       = 0
179 };
180
181 /* Exported from other modules */
182
183 extern void e1000_check_options(struct e1000_adapter *adapter);
184
185 static struct pci_driver e1000_driver = {
186         .name     = e1000_driver_name,
187         .id_table = e1000_pci_tbl,
188         .probe    = e1000_probe,
189         .remove   = __devexit_p(e1000_remove),
190         /* Power Managment Hooks */
191 #ifdef CONFIG_PM
192         .suspend  = e1000_suspend,
193         .resume   = e1000_resume
194 #endif
195 };
196
197 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
198 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
199 MODULE_LICENSE("GPL");
200 MODULE_VERSION(DRV_VERSION);
201
202 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
203 module_param(debug, int, 0);
204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
205
206 /**
207  * e1000_init_module - Driver Registration Routine
208  *
209  * e1000_init_module is the first routine called when the driver is
210  * loaded. All it does is register with the PCI subsystem.
211  **/
212
213 static int __init
214 e1000_init_module(void)
215 {
216         int ret;
217         printk(KERN_INFO "%s - version %s\n",
218                e1000_driver_string, e1000_driver_version);
219
220         printk(KERN_INFO "%s\n", e1000_copyright);
221
222         ret = pci_module_init(&e1000_driver);
223         if(ret >= 0) {
224                 register_reboot_notifier(&e1000_notifier_reboot);
225         }
226         return ret;
227 }
228
229 module_init(e1000_init_module);
230
231 /**
232  * e1000_exit_module - Driver Exit Cleanup Routine
233  *
234  * e1000_exit_module is called just before the driver is removed
235  * from memory.
236  **/
237
238 static void __exit
239 e1000_exit_module(void)
240 {
241         unregister_reboot_notifier(&e1000_notifier_reboot);
242         pci_unregister_driver(&e1000_driver);
243 }
244
245 module_exit(e1000_exit_module);
246
247
248 int
249 e1000_up(struct e1000_adapter *adapter)
250 {
251         struct net_device *netdev = adapter->netdev;
252         int err;
253
254         /* hardware has been reset, we need to reload some things */
255
256         /* Reset the PHY if it was previously powered down */
257         if(adapter->hw.media_type == e1000_media_type_copper) {
258                 uint16_t mii_reg;
259                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
260                 if(mii_reg & MII_CR_POWER_DOWN)
261                         e1000_phy_reset(&adapter->hw);
262         }
263
264         e1000_set_multi(netdev);
265
266         e1000_restore_vlan(adapter);
267
268         e1000_configure_tx(adapter);
269         e1000_setup_rctl(adapter);
270         e1000_configure_rx(adapter);
271         e1000_alloc_rx_buffers(adapter);
272
273         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
274                               SA_SHIRQ | SA_SAMPLE_RANDOM,
275                               netdev->name, netdev)))
276                 return err;
277
278         mod_timer(&adapter->watchdog_timer, jiffies);
279         e1000_irq_enable(adapter);
280
281         return 0;
282 }
283
284 void
285 e1000_down(struct e1000_adapter *adapter)
286 {
287         struct net_device *netdev = adapter->netdev;
288
289         e1000_irq_disable(adapter);
290         free_irq(adapter->pdev->irq, netdev);
291         del_timer_sync(&adapter->tx_fifo_stall_timer);
292         del_timer_sync(&adapter->watchdog_timer);
293         del_timer_sync(&adapter->phy_info_timer);
294         adapter->link_speed = 0;
295         adapter->link_duplex = 0;
296         netif_carrier_off(netdev);
297         netif_stop_queue(netdev);
298
299         e1000_reset(adapter);
300         e1000_clean_tx_ring(adapter);
301         e1000_clean_rx_ring(adapter);
302
303         /* If WoL is not enabled
304          * Power down the PHY so no link is implied when interface is down */
305         if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) {
306                 uint16_t mii_reg;
307                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
308                 mii_reg |= MII_CR_POWER_DOWN;
309                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
310         }
311 }
312
313 void
314 e1000_reset(struct e1000_adapter *adapter)
315 {
316         uint32_t pba;
317
318         /* Repartition Pba for greater than 9k mtu
319          * To take effect CTRL.RST is required.
320          */
321
322         if(adapter->hw.mac_type < e1000_82547) {
323                 if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
324                         pba = E1000_PBA_40K;
325                 else
326                         pba = E1000_PBA_48K;
327         } else {
328                 if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
329                         pba = E1000_PBA_22K;
330                 else
331                         pba = E1000_PBA_30K;
332                 adapter->tx_fifo_head = 0;
333                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
334                 adapter->tx_fifo_size =
335                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
336                 atomic_set(&adapter->tx_fifo_stall, 0);
337         }
338         E1000_WRITE_REG(&adapter->hw, PBA, pba);
339
340         /* flow control settings */
341         adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
342                                     E1000_FC_HIGH_DIFF;
343         adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
344                                    E1000_FC_LOW_DIFF;
345         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
346         adapter->hw.fc_send_xon = 1;
347         adapter->hw.fc = adapter->hw.original_fc;
348
349         e1000_reset_hw(&adapter->hw);
350         if(adapter->hw.mac_type >= e1000_82544)
351                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
352         if(e1000_init_hw(&adapter->hw))
353                 DPRINTK(PROBE, ERR, "Hardware Error\n");
354
355         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
356         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
357
358         e1000_reset_adaptive(&adapter->hw);
359         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
360 }
361
362 /**
363  * e1000_probe - Device Initialization Routine
364  * @pdev: PCI device information struct
365  * @ent: entry in e1000_pci_tbl
366  *
367  * Returns 0 on success, negative on failure
368  *
369  * e1000_probe initializes an adapter identified by a pci_dev structure.
370  * The OS initialization, configuring of the adapter private structure,
371  * and a hardware reset occur.
372  **/
373
374 static int __devinit
375 e1000_probe(struct pci_dev *pdev,
376             const struct pci_device_id *ent)
377 {
378         struct net_device *netdev;
379         struct e1000_adapter *adapter;
380         static int cards_found = 0;
381         unsigned long mmio_start;
382         int mmio_len;
383         int pci_using_dac;
384         int i;
385         int err;
386         uint16_t eeprom_data;
387
388         if((err = pci_enable_device(pdev)))
389                 return err;
390
391         if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
392                 pci_using_dac = 1;
393         } else {
394                 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
395                         E1000_ERR("No usable DMA configuration, aborting\n");
396                         return err;
397                 }
398                 pci_using_dac = 0;
399         }
400
401         if((err = pci_request_regions(pdev, e1000_driver_name)))
402                 return err;
403
404         pci_set_master(pdev);
405
406         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
407         if(!netdev) {
408                 err = -ENOMEM;
409                 goto err_alloc_etherdev;
410         }
411
412         SET_MODULE_OWNER(netdev);
413         SET_NETDEV_DEV(netdev, &pdev->dev);
414
415         pci_set_drvdata(pdev, netdev);
416         adapter = netdev->priv;
417         adapter->netdev = netdev;
418         adapter->pdev = pdev;
419         adapter->hw.back = adapter;
420         adapter->msg_enable = (1 << debug) - 1;
421
422         mmio_start = pci_resource_start(pdev, BAR_0);
423         mmio_len = pci_resource_len(pdev, BAR_0);
424
425         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
426         if(!adapter->hw.hw_addr) {
427                 err = -EIO;
428                 goto err_ioremap;
429         }
430
431         for(i = BAR_1; i <= BAR_5; i++) {
432                 if(pci_resource_len(pdev, i) == 0)
433                         continue;
434                 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
435                         adapter->hw.io_base = pci_resource_start(pdev, i);
436                         break;
437                 }
438         }
439
440         netdev->open = &e1000_open;
441         netdev->stop = &e1000_close;
442         netdev->hard_start_xmit = &e1000_xmit_frame;
443         netdev->get_stats = &e1000_get_stats;
444         netdev->set_multicast_list = &e1000_set_multi;
445         netdev->set_mac_address = &e1000_set_mac;
446         netdev->change_mtu = &e1000_change_mtu;
447         netdev->do_ioctl = &e1000_ioctl;
448         set_ethtool_ops(netdev);
449         netdev->tx_timeout = &e1000_tx_timeout;
450         netdev->watchdog_timeo = 5 * HZ;
451 #ifdef CONFIG_E1000_NAPI
452         netdev->poll = &e1000_clean;
453         netdev->weight = 64;
454 #endif
455         netdev->vlan_rx_register = e1000_vlan_rx_register;
456         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
457         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
458 #ifdef CONFIG_NET_POLL_CONTROLLER
459         netdev->poll_controller = e1000_netpoll;
460 #endif
461         strcpy(netdev->name, pci_name(pdev));
462
463         netdev->mem_start = mmio_start;
464         netdev->mem_end = mmio_start + mmio_len;
465         netdev->base_addr = adapter->hw.io_base;
466
467         adapter->bd_number = cards_found;
468
469         /* setup the private structure */
470
471         if((err = e1000_sw_init(adapter)))
472                 goto err_sw_init;
473
474         if(adapter->hw.mac_type >= e1000_82543) {
475                 netdev->features = NETIF_F_SG |
476                                    NETIF_F_HW_CSUM |
477                                    NETIF_F_HW_VLAN_TX |
478                                    NETIF_F_HW_VLAN_RX |
479                                    NETIF_F_HW_VLAN_FILTER;
480         } else {
481                 netdev->features = NETIF_F_SG;
482         }
483
484 #ifdef NETIF_F_TSO
485         /* Disbaled for now until root-cause is found for
486          * hangs reported against non-IA archs.  TSO can be
487          * enabled using ethtool -K eth<x> tso on */
488         if((adapter->hw.mac_type >= e1000_82544) &&
489            (adapter->hw.mac_type != e1000_82547))
490                 netdev->features |= NETIF_F_TSO;
491 #endif
492         if(pci_using_dac)
493                 netdev->features |= NETIF_F_HIGHDMA;
494
495         /* hard_start_xmit is safe against parallel locking */
496         netdev->features |= NETIF_F_LLTX; 
497  
498         /* before reading the EEPROM, reset the controller to 
499          * put the device in a known good starting state */
500         
501         e1000_reset_hw(&adapter->hw);
502
503         /* make sure the EEPROM is good */
504
505         if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
506                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
507                 err = -EIO;
508                 goto err_eeprom;
509         }
510
511         /* copy the MAC address out of the EEPROM */
512
513         if (e1000_read_mac_addr(&adapter->hw))
514                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
515         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
516
517         if(!is_valid_ether_addr(netdev->dev_addr)) {
518                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
519                 err = -EIO;
520                 goto err_eeprom;
521         }
522
523         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
524
525         e1000_get_bus_info(&adapter->hw);
526
527         init_timer(&adapter->tx_fifo_stall_timer);
528         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
529         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
530
531         init_timer(&adapter->watchdog_timer);
532         adapter->watchdog_timer.function = &e1000_watchdog;
533         adapter->watchdog_timer.data = (unsigned long) adapter;
534
535         init_timer(&adapter->phy_info_timer);
536         adapter->phy_info_timer.function = &e1000_update_phy_info;
537         adapter->phy_info_timer.data = (unsigned long) adapter;
538
539         INIT_WORK(&adapter->tx_timeout_task,
540                 (void (*)(void *))e1000_tx_timeout_task, netdev);
541
542         /* we're going to reset, so assume we have no link for now */
543
544         netif_carrier_off(netdev);
545         netif_stop_queue(netdev);
546
547         e1000_check_options(adapter);
548
549         /* Initial Wake on LAN setting
550          * If APM wake is enabled in the EEPROM,
551          * enable the ACPI Magic Packet filter
552          */
553
554         switch(adapter->hw.mac_type) {
555         case e1000_82542_rev2_0:
556         case e1000_82542_rev2_1:
557         case e1000_82543:
558                 break;
559         case e1000_82546:
560         case e1000_82546_rev_3:
561                 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
562                    && (adapter->hw.media_type == e1000_media_type_copper)) {
563                         e1000_read_eeprom(&adapter->hw,
564                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
565                         break;
566                 }
567                 /* Fall Through */
568         default:
569                 e1000_read_eeprom(&adapter->hw,
570                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
571                 break;
572         }
573         if(eeprom_data & E1000_EEPROM_APME)
574                 adapter->wol |= E1000_WUFC_MAG;
575
576         /* reset the hardware with the new settings */
577         e1000_reset(adapter);
578
579         strcpy(netdev->name, "eth%d");
580         if((err = register_netdev(netdev)))
581                 goto err_register;
582
583         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
584
585         cards_found++;
586         return 0;
587
588 err_register:
589 err_sw_init:
590 err_eeprom:
591         iounmap(adapter->hw.hw_addr);
592 err_ioremap:
593         free_netdev(netdev);
594 err_alloc_etherdev:
595         pci_release_regions(pdev);
596         return err;
597 }
598
599 /**
600  * e1000_remove - Device Removal Routine
601  * @pdev: PCI device information struct
602  *
603  * e1000_remove is called by the PCI subsystem to alert the driver
604  * that it should release a PCI device.  The could be caused by a
605  * Hot-Plug event, or because the driver is going to be removed from
606  * memory.
607  **/
608
609 static void __devexit
610 e1000_remove(struct pci_dev *pdev)
611 {
612         struct net_device *netdev = pci_get_drvdata(pdev);
613         struct e1000_adapter *adapter = netdev->priv;
614         uint32_t manc;
615
616         if(adapter->hw.mac_type >= e1000_82540 &&
617            adapter->hw.media_type == e1000_media_type_copper) {
618                 manc = E1000_READ_REG(&adapter->hw, MANC);
619                 if(manc & E1000_MANC_SMBUS_EN) {
620                         manc |= E1000_MANC_ARP_EN;
621                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
622                 }
623         }
624
625         unregister_netdev(netdev);
626
627         e1000_phy_hw_reset(&adapter->hw);
628
629         iounmap(adapter->hw.hw_addr);
630         pci_release_regions(pdev);
631
632         free_netdev(netdev);
633
634         pci_disable_device(pdev);
635 }
636
637 /**
638  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
639  * @adapter: board private structure to initialize
640  *
641  * e1000_sw_init initializes the Adapter private data structure.
642  * Fields are initialized based on PCI device information and
643  * OS network device settings (MTU size).
644  **/
645
646 static int __devinit
647 e1000_sw_init(struct e1000_adapter *adapter)
648 {
649         struct e1000_hw *hw = &adapter->hw;
650         struct net_device *netdev = adapter->netdev;
651         struct pci_dev *pdev = adapter->pdev;
652
653         /* PCI config space info */
654
655         hw->vendor_id = pdev->vendor;
656         hw->device_id = pdev->device;
657         hw->subsystem_vendor_id = pdev->subsystem_vendor;
658         hw->subsystem_id = pdev->subsystem_device;
659
660         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
661
662         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
663
664         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
665         hw->max_frame_size = netdev->mtu +
666                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
667         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
668
669         /* identify the MAC */
670
671         if(e1000_set_mac_type(hw)) {
672                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
673                 return -EIO;
674         }
675
676         /* initialize eeprom parameters */
677
678         e1000_init_eeprom_params(hw);
679
680         switch(hw->mac_type) {
681         default:
682                 break;
683         case e1000_82541:
684         case e1000_82547:
685         case e1000_82541_rev_2:
686         case e1000_82547_rev_2:
687                 hw->phy_init_script = 1;
688                 break;
689         }
690
691         e1000_set_media_type(hw);
692
693         hw->wait_autoneg_complete = FALSE;
694         hw->tbi_compatibility_en = TRUE;
695         hw->adaptive_ifs = TRUE;
696
697         /* Copper options */
698
699         if(hw->media_type == e1000_media_type_copper) {
700                 hw->mdix = AUTO_ALL_MODES;
701                 hw->disable_polarity_correction = FALSE;
702                 hw->master_slave = E1000_MASTER_SLAVE;
703         }
704
705         atomic_set(&adapter->irq_sem, 1);
706         spin_lock_init(&adapter->stats_lock);
707         spin_lock_init(&adapter->tx_lock);
708
709         return 0;
710 }
711
712 /**
713  * e1000_open - Called when a network interface is made active
714  * @netdev: network interface device structure
715  *
716  * Returns 0 on success, negative value on failure
717  *
718  * The open entry point is called when a network interface is made
719  * active by the system (IFF_UP).  At this point all resources needed
720  * for transmit and receive operations are allocated, the interrupt
721  * handler is registered with the OS, the watchdog timer is started,
722  * and the stack is notified that the interface is ready.
723  **/
724
725 static int
726 e1000_open(struct net_device *netdev)
727 {
728         struct e1000_adapter *adapter = netdev->priv;
729         int err;
730
731         /* allocate transmit descriptors */
732
733         if((err = e1000_setup_tx_resources(adapter)))
734                 goto err_setup_tx;
735
736         /* allocate receive descriptors */
737
738         if((err = e1000_setup_rx_resources(adapter)))
739                 goto err_setup_rx;
740
741         if((err = e1000_up(adapter)))
742                 goto err_up;
743
744         return E1000_SUCCESS;
745
746 err_up:
747         e1000_free_rx_resources(adapter);
748 err_setup_rx:
749         e1000_free_tx_resources(adapter);
750 err_setup_tx:
751         e1000_reset(adapter);
752
753         return err;
754 }
755
756 /**
757  * e1000_close - Disables a network interface
758  * @netdev: network interface device structure
759  *
760  * Returns 0, this is not allowed to fail
761  *
762  * The close entry point is called when an interface is de-activated
763  * by the OS.  The hardware is still under the drivers control, but
764  * needs to be disabled.  A global MAC reset is issued to stop the
765  * hardware, and all transmit and receive resources are freed.
766  **/
767
768 static int
769 e1000_close(struct net_device *netdev)
770 {
771         struct e1000_adapter *adapter = netdev->priv;
772
773         e1000_down(adapter);
774
775         e1000_free_tx_resources(adapter);
776         e1000_free_rx_resources(adapter);
777
778         return 0;
779 }
780
781 /**
782  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
783  * @adapter: address of board private structure
784  * @begin: address of beginning of memory
785  * @end: address of end of memory
786  **/
787 static inline boolean_t
788 e1000_check_64k_bound(struct e1000_adapter *adapter,
789                       void *start, unsigned long len)
790 {
791         unsigned long begin = (unsigned long) start;
792         unsigned long end = begin + len;
793
794         /* first rev 82545 and 82546 need to not allow any memory
795          * write location to cross a 64k boundary due to errata 23 */
796         if (adapter->hw.mac_type == e1000_82545 ||
797             adapter->hw.mac_type == e1000_82546
798             ) {
799                 /* check buffer doesn't cross 64kB */
800                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
801         }
802
803         return TRUE;
804 }
805
806 /**
807  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
808  * @adapter: board private structure
809  *
810  * Return 0 on success, negative on failure
811  **/
812
813 int
814 e1000_setup_tx_resources(struct e1000_adapter *adapter)
815 {
816         struct e1000_desc_ring *txdr = &adapter->tx_ring;
817         struct pci_dev *pdev = adapter->pdev;
818         int size;
819
820         size = sizeof(struct e1000_buffer) * txdr->count;
821         txdr->buffer_info = vmalloc(size);
822         if(!txdr->buffer_info) {
823                 DPRINTK(PROBE, ERR, 
824                 "Unable to Allocate Memory for the Transmit descriptor ring\n");
825                 return -ENOMEM;
826         }
827         memset(txdr->buffer_info, 0, size);
828
829         /* round up to nearest 4K */
830
831         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
832         E1000_ROUNDUP(txdr->size, 4096);
833
834         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
835         if(!txdr->desc) {
836 setup_tx_desc_die:
837                 DPRINTK(PROBE, ERR, 
838                 "Unable to Allocate Memory for the Transmit descriptor ring\n");
839                 vfree(txdr->buffer_info);
840                 return -ENOMEM;
841         }
842
843         /* fix for errata 23, cant cross 64kB boundary */
844         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
845                 void *olddesc = txdr->desc;
846                 dma_addr_t olddma = txdr->dma;
847                 DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
848                         txdr->size, txdr->desc);
849                 /* try again, without freeing the previous */
850                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
851                 /* failed allocation, critial failure */
852                 if(!txdr->desc) {
853                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
854                         goto setup_tx_desc_die;
855                 }
856
857                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
858                         /* give up */
859                         pci_free_consistent(pdev, txdr->size,
860                              txdr->desc, txdr->dma);
861                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
862                         DPRINTK(PROBE, ERR,
863                          "Unable to Allocate aligned Memory for the Transmit"
864                          " descriptor ring\n");
865                         vfree(txdr->buffer_info);
866                         return -ENOMEM;
867                 } else {
868                         /* free old, move on with the new one since its okay */
869                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
870                 }
871         }
872         memset(txdr->desc, 0, txdr->size);
873
874         txdr->next_to_use = 0;
875         txdr->next_to_clean = 0;
876
877         return 0;
878 }
879
880 /**
881  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
882  * @adapter: board private structure
883  *
884  * Configure the Tx unit of the MAC after a reset.
885  **/
886
887 static void
888 e1000_configure_tx(struct e1000_adapter *adapter)
889 {
890         uint64_t tdba = adapter->tx_ring.dma;
891         uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
892         uint32_t tctl, tipg;
893
894         E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
895         E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
896
897         E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
898
899         /* Setup the HW Tx Head and Tail descriptor pointers */
900
901         E1000_WRITE_REG(&adapter->hw, TDH, 0);
902         E1000_WRITE_REG(&adapter->hw, TDT, 0);
903
904         /* Set the default values for the Tx Inter Packet Gap timer */
905
906         switch (adapter->hw.mac_type) {
907         case e1000_82542_rev2_0:
908         case e1000_82542_rev2_1:
909                 tipg = DEFAULT_82542_TIPG_IPGT;
910                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
911                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
912                 break;
913         default:
914                 if(adapter->hw.media_type == e1000_media_type_fiber ||
915                    adapter->hw.media_type == e1000_media_type_internal_serdes)
916                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
917                 else
918                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
919                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
920                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
921         }
922         E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
923
924         /* Set the Tx Interrupt Delay register */
925
926         E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
927         if(adapter->hw.mac_type >= e1000_82540)
928                 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
929
930         /* Program the Transmit Control Register */
931
932         tctl = E1000_READ_REG(&adapter->hw, TCTL);
933
934         tctl &= ~E1000_TCTL_CT;
935         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
936                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
937
938         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
939
940         e1000_config_collision_dist(&adapter->hw);
941
942         /* Setup Transmit Descriptor Settings for eop descriptor */
943         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
944                 E1000_TXD_CMD_IFCS;
945
946         if(adapter->hw.mac_type < e1000_82543)
947                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
948         else
949                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
950
951         /* Cache if we're 82544 running in PCI-X because we'll
952          * need this to apply a workaround later in the send path. */
953         if(adapter->hw.mac_type == e1000_82544 &&
954            adapter->hw.bus_type == e1000_bus_type_pcix)
955                 adapter->pcix_82544 = 1;
956 }
957
958 /**
959  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
960  * @adapter: board private structure
961  *
962  * Returns 0 on success, negative on failure
963  **/
964
965 int
966 e1000_setup_rx_resources(struct e1000_adapter *adapter)
967 {
968         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
969         struct pci_dev *pdev = adapter->pdev;
970         int size;
971
972         size = sizeof(struct e1000_buffer) * rxdr->count;
973         rxdr->buffer_info = vmalloc(size);
974         if(!rxdr->buffer_info) {
975                 DPRINTK(PROBE, ERR, 
976                 "Unable to Allocate Memory for the Recieve descriptor ring\n");
977                 return -ENOMEM;
978         }
979         memset(rxdr->buffer_info, 0, size);
980
981         /* Round up to nearest 4K */
982
983         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
984         E1000_ROUNDUP(rxdr->size, 4096);
985
986         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
987
988         if(!rxdr->desc) {
989 setup_rx_desc_die:
990                 DPRINTK(PROBE, ERR, 
991                 "Unable to Allocate Memory for the Recieve descriptor ring\n");
992                 vfree(rxdr->buffer_info);
993                 return -ENOMEM;
994         }
995         /* fix for errata 23, cant cross 64kB boundary */
996         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
997                 void *olddesc = rxdr->desc;
998                 dma_addr_t olddma = rxdr->dma;
999                 DPRINTK(RX_ERR,ERR,
1000                         "rxdr align check failed: %u bytes at %p\n",
1001                         rxdr->size, rxdr->desc);
1002                 /* try again, without freeing the previous */
1003                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1004                 /* failed allocation, critial failure */
1005                 if(!rxdr->desc) {
1006                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1007                         goto setup_rx_desc_die;
1008                 }
1009
1010                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1011                         /* give up */
1012                         pci_free_consistent(pdev, rxdr->size,
1013                              rxdr->desc, rxdr->dma);
1014                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1015                         DPRINTK(PROBE, ERR, 
1016                                 "Unable to Allocate aligned Memory for the"
1017                                 " Receive descriptor ring\n");
1018                         vfree(rxdr->buffer_info);
1019                         return -ENOMEM;
1020                 } else {
1021                         /* free old, move on with the new one since its okay */
1022                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1023                 }
1024         }
1025         memset(rxdr->desc, 0, rxdr->size);
1026
1027         rxdr->next_to_clean = 0;
1028         rxdr->next_to_use = 0;
1029
1030         return 0;
1031 }
1032
1033 /**
1034  * e1000_setup_rctl - configure the receive control register
1035  * @adapter: Board private structure
1036  **/
1037
1038 static void
1039 e1000_setup_rctl(struct e1000_adapter *adapter)
1040 {
1041         uint32_t rctl;
1042
1043         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1044
1045         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1046
1047         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1048                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1049                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1050
1051         if(adapter->hw.tbi_compatibility_on == 1)
1052                 rctl |= E1000_RCTL_SBP;
1053         else
1054                 rctl &= ~E1000_RCTL_SBP;
1055
1056         /* Setup buffer sizes */
1057         rctl &= ~(E1000_RCTL_SZ_4096);
1058         rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE);
1059         switch (adapter->rx_buffer_len) {
1060         case E1000_RXBUFFER_2048:
1061         default:
1062                 rctl |= E1000_RCTL_SZ_2048;
1063                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
1064                 break;
1065         case E1000_RXBUFFER_4096:
1066                 rctl |= E1000_RCTL_SZ_4096;
1067                 break;
1068         case E1000_RXBUFFER_8192:
1069                 rctl |= E1000_RCTL_SZ_8192;
1070                 break;
1071         case E1000_RXBUFFER_16384:
1072                 rctl |= E1000_RCTL_SZ_16384;
1073                 break;
1074         }
1075
1076         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1077 }
1078
1079 /**
1080  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1081  * @adapter: board private structure
1082  *
1083  * Configure the Rx unit of the MAC after a reset.
1084  **/
1085
1086 static void
1087 e1000_configure_rx(struct e1000_adapter *adapter)
1088 {
1089         uint64_t rdba = adapter->rx_ring.dma;
1090         uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1091         uint32_t rctl;
1092         uint32_t rxcsum;
1093
1094         /* disable receives while setting up the descriptors */
1095         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1096         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1097
1098         /* set the Receive Delay Timer Register */
1099         E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1100
1101         if(adapter->hw.mac_type >= e1000_82540) {
1102                 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1103                 if(adapter->itr > 1)
1104                         E1000_WRITE_REG(&adapter->hw, ITR,
1105                                 1000000000 / (adapter->itr * 256));
1106         }
1107
1108         /* Setup the Base and Length of the Rx Descriptor Ring */
1109         E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1110         E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1111
1112         E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1113
1114         /* Setup the HW Rx Head and Tail Descriptor Pointers */
1115         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1116         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1117
1118         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1119         if((adapter->hw.mac_type >= e1000_82543) &&
1120            (adapter->rx_csum == TRUE)) {
1121                 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
1122                 rxcsum |= E1000_RXCSUM_TUOFL;
1123                 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1124         }
1125
1126         /* Enable Receives */
1127         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1128 }
1129
1130 /**
1131  * e1000_free_tx_resources - Free Tx Resources
1132  * @adapter: board private structure
1133  *
1134  * Free all transmit software resources
1135  **/
1136
1137 void
1138 e1000_free_tx_resources(struct e1000_adapter *adapter)
1139 {
1140         struct pci_dev *pdev = adapter->pdev;
1141
1142         e1000_clean_tx_ring(adapter);
1143
1144         vfree(adapter->tx_ring.buffer_info);
1145         adapter->tx_ring.buffer_info = NULL;
1146
1147         pci_free_consistent(pdev, adapter->tx_ring.size,
1148                             adapter->tx_ring.desc, adapter->tx_ring.dma);
1149
1150         adapter->tx_ring.desc = NULL;
1151 }
1152
1153 static inline void
1154 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1155                         struct e1000_buffer *buffer_info)
1156 {
1157         struct pci_dev *pdev = adapter->pdev;
1158         
1159         if(buffer_info->dma) {
1160                 pci_unmap_page(pdev,
1161                                buffer_info->dma,
1162                                buffer_info->length,
1163                                PCI_DMA_TODEVICE);
1164                 buffer_info->dma = 0;
1165         }
1166         if(buffer_info->skb) {
1167                 dev_kfree_skb_any(buffer_info->skb);
1168                 buffer_info->skb = NULL;
1169         }
1170 }
1171
1172 /**
1173  * e1000_clean_tx_ring - Free Tx Buffers
1174  * @adapter: board private structure
1175  **/
1176
1177 static void
1178 e1000_clean_tx_ring(struct e1000_adapter *adapter)
1179 {
1180         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1181         struct e1000_buffer *buffer_info;
1182         unsigned long size;
1183         unsigned int i;
1184
1185         /* Free all the Tx ring sk_buffs */
1186
1187         if (likely(adapter->previous_buffer_info.skb != NULL)) {
1188                 e1000_unmap_and_free_tx_resource(adapter, 
1189                                 &adapter->previous_buffer_info);
1190         }
1191
1192         for(i = 0; i < tx_ring->count; i++) {
1193                 buffer_info = &tx_ring->buffer_info[i];
1194                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1195         }
1196
1197         size = sizeof(struct e1000_buffer) * tx_ring->count;
1198         memset(tx_ring->buffer_info, 0, size);
1199
1200         /* Zero out the descriptor ring */
1201
1202         memset(tx_ring->desc, 0, tx_ring->size);
1203
1204         tx_ring->next_to_use = 0;
1205         tx_ring->next_to_clean = 0;
1206
1207         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1208         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1209 }
1210
1211 /**
1212  * e1000_free_rx_resources - Free Rx Resources
1213  * @adapter: board private structure
1214  *
1215  * Free all receive software resources
1216  **/
1217
1218 void
1219 e1000_free_rx_resources(struct e1000_adapter *adapter)
1220 {
1221         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1222         struct pci_dev *pdev = adapter->pdev;
1223
1224         e1000_clean_rx_ring(adapter);
1225
1226         vfree(rx_ring->buffer_info);
1227         rx_ring->buffer_info = NULL;
1228
1229         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1230
1231         rx_ring->desc = NULL;
1232 }
1233
1234 /**
1235  * e1000_clean_rx_ring - Free Rx Buffers
1236  * @adapter: board private structure
1237  **/
1238
1239 static void
1240 e1000_clean_rx_ring(struct e1000_adapter *adapter)
1241 {
1242         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1243         struct e1000_buffer *buffer_info;
1244         struct pci_dev *pdev = adapter->pdev;
1245         unsigned long size;
1246         unsigned int i;
1247
1248         /* Free all the Rx ring sk_buffs */
1249
1250         for(i = 0; i < rx_ring->count; i++) {
1251                 buffer_info = &rx_ring->buffer_info[i];
1252                 if(buffer_info->skb) {
1253
1254                         pci_unmap_single(pdev,
1255                                          buffer_info->dma,
1256                                          buffer_info->length,
1257                                          PCI_DMA_FROMDEVICE);
1258
1259                         dev_kfree_skb(buffer_info->skb);
1260                         buffer_info->skb = NULL;
1261                 }
1262         }
1263
1264         size = sizeof(struct e1000_buffer) * rx_ring->count;
1265         memset(rx_ring->buffer_info, 0, size);
1266
1267         /* Zero out the descriptor ring */
1268
1269         memset(rx_ring->desc, 0, rx_ring->size);
1270
1271         rx_ring->next_to_clean = 0;
1272         rx_ring->next_to_use = 0;
1273
1274         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1275         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1276 }
1277
1278 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1279  * and memory write and invalidate disabled for certain operations
1280  */
1281 static void
1282 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1283 {
1284         struct net_device *netdev = adapter->netdev;
1285         uint32_t rctl;
1286
1287         e1000_pci_clear_mwi(&adapter->hw);
1288
1289         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1290         rctl |= E1000_RCTL_RST;
1291         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1292         E1000_WRITE_FLUSH(&adapter->hw);
1293         mdelay(5);
1294
1295         if(netif_running(netdev))
1296                 e1000_clean_rx_ring(adapter);
1297 }
1298
1299 static void
1300 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1301 {
1302         struct net_device *netdev = adapter->netdev;
1303         uint32_t rctl;
1304
1305         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1306         rctl &= ~E1000_RCTL_RST;
1307         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1308         E1000_WRITE_FLUSH(&adapter->hw);
1309         mdelay(5);
1310
1311         if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1312                 e1000_pci_set_mwi(&adapter->hw);
1313
1314         if(netif_running(netdev)) {
1315                 e1000_configure_rx(adapter);
1316                 e1000_alloc_rx_buffers(adapter);
1317         }
1318 }
1319
1320 /**
1321  * e1000_set_mac - Change the Ethernet Address of the NIC
1322  * @netdev: network interface device structure
1323  * @p: pointer to an address structure
1324  *
1325  * Returns 0 on success, negative on failure
1326  **/
1327
1328 static int
1329 e1000_set_mac(struct net_device *netdev, void *p)
1330 {
1331         struct e1000_adapter *adapter = netdev->priv;
1332         struct sockaddr *addr = p;
1333
1334         if(!is_valid_ether_addr(addr->sa_data))
1335                 return -EADDRNOTAVAIL;
1336
1337         /* 82542 2.0 needs to be in reset to write receive address registers */
1338
1339         if(adapter->hw.mac_type == e1000_82542_rev2_0)
1340                 e1000_enter_82542_rst(adapter);
1341
1342         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1343         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1344
1345         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1346
1347         if(adapter->hw.mac_type == e1000_82542_rev2_0)
1348                 e1000_leave_82542_rst(adapter);
1349
1350         return 0;
1351 }
1352
1353 /**
1354  * e1000_set_multi - Multicast and Promiscuous mode set
1355  * @netdev: network interface device structure
1356  *
1357  * The set_multi entry point is called whenever the multicast address
1358  * list or the network interface flags are updated.  This routine is
1359  * responsible for configuring the hardware for proper multicast,
1360  * promiscuous mode, and all-multi behavior.
1361  **/
1362
1363 static void
1364 e1000_set_multi(struct net_device *netdev)
1365 {
1366         struct e1000_adapter *adapter = netdev->priv;
1367         struct e1000_hw *hw = &adapter->hw;
1368         struct dev_mc_list *mc_ptr;
1369         uint32_t rctl;
1370         uint32_t hash_value;
1371         int i;
1372         unsigned long flags;
1373
1374         /* Check for Promiscuous and All Multicast modes */
1375
1376         spin_lock_irqsave(&adapter->tx_lock, flags);
1377
1378         rctl = E1000_READ_REG(hw, RCTL);
1379
1380         if(netdev->flags & IFF_PROMISC) {
1381                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1382         } else if(netdev->flags & IFF_ALLMULTI) {
1383                 rctl |= E1000_RCTL_MPE;
1384                 rctl &= ~E1000_RCTL_UPE;
1385         } else {
1386                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1387         }
1388
1389         E1000_WRITE_REG(hw, RCTL, rctl);
1390
1391         /* 82542 2.0 needs to be in reset to write receive address registers */
1392
1393         if(hw->mac_type == e1000_82542_rev2_0)
1394                 e1000_enter_82542_rst(adapter);
1395
1396         /* load the first 14 multicast address into the exact filters 1-14
1397          * RAR 0 is used for the station MAC adddress
1398          * if there are not 14 addresses, go ahead and clear the filters
1399          */
1400         mc_ptr = netdev->mc_list;
1401
1402         for(i = 1; i < E1000_RAR_ENTRIES; i++) {
1403                 if(mc_ptr) {
1404                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1405                         mc_ptr = mc_ptr->next;
1406                 } else {
1407                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1408                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1409                 }
1410         }
1411
1412         /* clear the old settings from the multicast hash table */
1413
1414         for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1415                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1416
1417         /* load any remaining addresses into the hash table */
1418
1419         for(; mc_ptr; mc_ptr = mc_ptr->next) {
1420                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1421                 e1000_mta_set(hw, hash_value);
1422         }
1423
1424         if(hw->mac_type == e1000_82542_rev2_0)
1425                 e1000_leave_82542_rst(adapter);
1426
1427         spin_unlock_irqrestore(&adapter->tx_lock, flags);
1428 }
1429
1430 /* Need to wait a few seconds after link up to get diagnostic information from
1431  * the phy */
1432
1433 static void
1434 e1000_update_phy_info(unsigned long data)
1435 {
1436         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1437         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1438 }
1439
1440 /**
1441  * e1000_82547_tx_fifo_stall - Timer Call-back
1442  * @data: pointer to adapter cast into an unsigned long
1443  **/
1444
1445 static void
1446 e1000_82547_tx_fifo_stall(unsigned long data)
1447 {
1448         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1449         struct net_device *netdev = adapter->netdev;
1450         uint32_t tctl;
1451
1452         if(atomic_read(&adapter->tx_fifo_stall)) {
1453                 if((E1000_READ_REG(&adapter->hw, TDT) ==
1454                     E1000_READ_REG(&adapter->hw, TDH)) &&
1455                    (E1000_READ_REG(&adapter->hw, TDFT) ==
1456                     E1000_READ_REG(&adapter->hw, TDFH)) &&
1457                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
1458                     E1000_READ_REG(&adapter->hw, TDFHS))) {
1459                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
1460                         E1000_WRITE_REG(&adapter->hw, TCTL,
1461                                         tctl & ~E1000_TCTL_EN);
1462                         E1000_WRITE_REG(&adapter->hw, TDFT,
1463                                         adapter->tx_head_addr);
1464                         E1000_WRITE_REG(&adapter->hw, TDFH,
1465                                         adapter->tx_head_addr);
1466                         E1000_WRITE_REG(&adapter->hw, TDFTS,
1467                                         adapter->tx_head_addr);
1468                         E1000_WRITE_REG(&adapter->hw, TDFHS,
1469                                         adapter->tx_head_addr);
1470                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1471                         E1000_WRITE_FLUSH(&adapter->hw);
1472
1473                         adapter->tx_fifo_head = 0;
1474                         atomic_set(&adapter->tx_fifo_stall, 0);
1475                         netif_wake_queue(netdev);
1476                 } else {
1477                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1478                 }
1479         }
1480 }
1481
1482 /**
1483  * e1000_watchdog - Timer Call-back
1484  * @data: pointer to netdev cast into an unsigned long
1485  **/
1486
1487 static void
1488 e1000_watchdog(unsigned long data)
1489 {
1490         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1491         struct net_device *netdev = adapter->netdev;
1492         struct e1000_desc_ring *txdr = &adapter->tx_ring;
1493         unsigned int i;
1494         uint32_t link;
1495
1496         e1000_check_for_link(&adapter->hw);
1497
1498         if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1499            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1500                 link = !adapter->hw.serdes_link_down;
1501         else
1502                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1503
1504         if(link) {
1505                 if(!netif_carrier_ok(netdev)) {
1506                         e1000_get_speed_and_duplex(&adapter->hw,
1507                                                    &adapter->link_speed,
1508                                                    &adapter->link_duplex);
1509
1510                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1511                                adapter->link_speed,
1512                                adapter->link_duplex == FULL_DUPLEX ?
1513                                "Full Duplex" : "Half Duplex");
1514
1515                         netif_carrier_on(netdev);
1516                         netif_wake_queue(netdev);
1517                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1518                         adapter->smartspeed = 0;
1519                 }
1520         } else {
1521                 if(netif_carrier_ok(netdev)) {
1522                         adapter->link_speed = 0;
1523                         adapter->link_duplex = 0;
1524                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
1525                         netif_carrier_off(netdev);
1526                         netif_stop_queue(netdev);
1527                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1528                 }
1529
1530                 e1000_smartspeed(adapter);
1531         }
1532
1533         e1000_update_stats(adapter);
1534
1535         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1536         adapter->tpt_old = adapter->stats.tpt;
1537         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1538         adapter->colc_old = adapter->stats.colc;
1539
1540         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1541         adapter->gorcl_old = adapter->stats.gorcl;
1542         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1543         adapter->gotcl_old = adapter->stats.gotcl;
1544
1545         e1000_update_adaptive(&adapter->hw);
1546
1547         if(!netif_carrier_ok(netdev)) {
1548                 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1549                         /* We've lost link, so the controller stops DMA,
1550                          * but we've got queued Tx work that's never going
1551                          * to get done, so reset controller to flush Tx.
1552                          * (Do the reset outside of interrupt context). */
1553                         schedule_work(&adapter->tx_timeout_task);
1554                 }
1555         }
1556
1557         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1558         if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1559                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1560                  * asymmetrical Tx or Rx gets ITR=8000; everyone
1561                  * else is between 2000-8000. */
1562                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1563                 uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
1564                         adapter->gotcl - adapter->gorcl :
1565                         adapter->gorcl - adapter->gotcl) / 10000;
1566                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1567                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1568         }
1569
1570         /* Cause software interrupt to ensure rx ring is cleaned */
1571         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1572
1573         /* Early detection of hung controller */
1574         i = txdr->next_to_clean;
1575         if(txdr->buffer_info[i].dma &&
1576            time_after(jiffies, txdr->buffer_info[i].time_stamp + HZ) &&
1577            !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF))
1578                 netif_stop_queue(netdev);
1579
1580         /* Reset the timer */
1581         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1582 }
1583
1584 #define E1000_TX_FLAGS_CSUM             0x00000001
1585 #define E1000_TX_FLAGS_VLAN             0x00000002
1586 #define E1000_TX_FLAGS_TSO              0x00000004
1587 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
1588 #define E1000_TX_FLAGS_VLAN_SHIFT       16
1589
1590 static inline boolean_t
1591 e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1592 {
1593 #ifdef NETIF_F_TSO
1594         struct e1000_context_desc *context_desc;
1595         unsigned int i;
1596         uint32_t cmd_length = 0;
1597         uint16_t ipcse, tucse, mss;
1598         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1599
1600         if(skb_shinfo(skb)->tso_size) {
1601                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1602                 mss = skb_shinfo(skb)->tso_size;
1603                 skb->nh.iph->tot_len = 0;
1604                 skb->nh.iph->check = 0;
1605                 skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr,
1606                                                       skb->nh.iph->daddr,
1607                                                       0,
1608                                                       IPPROTO_TCP,
1609                                                       0);
1610                 ipcss = skb->nh.raw - skb->data;
1611                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
1612                 ipcse = skb->h.raw - skb->data - 1;
1613                 tucss = skb->h.raw - skb->data;
1614                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1615                 tucse = 0;
1616
1617                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
1618                                E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
1619                                (skb->len - (hdr_len)));
1620
1621                 i = adapter->tx_ring.next_to_use;
1622                 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1623
1624                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
1625                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
1626                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
1627                 context_desc->upper_setup.tcp_fields.tucss = tucss;
1628                 context_desc->upper_setup.tcp_fields.tucso = tucso;
1629                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1630                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
1631                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1632                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1633
1634                 if(++i == adapter->tx_ring.count) i = 0;
1635                 adapter->tx_ring.next_to_use = i;
1636
1637                 return TRUE;
1638         }
1639 #endif
1640
1641         return FALSE;
1642 }
1643
1644 static inline boolean_t
1645 e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1646 {
1647         struct e1000_context_desc *context_desc;
1648         unsigned int i;
1649         uint8_t css;
1650
1651         if(likely(skb->ip_summed == CHECKSUM_HW)) {
1652                 css = skb->h.raw - skb->data;
1653
1654                 i = adapter->tx_ring.next_to_use;
1655                 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1656
1657                 context_desc->upper_setup.tcp_fields.tucss = css;
1658                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1659                 context_desc->upper_setup.tcp_fields.tucse = 0;
1660                 context_desc->tcp_seg_setup.data = 0;
1661                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1662
1663                 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
1664                 adapter->tx_ring.next_to_use = i;
1665
1666                 return TRUE;
1667         }
1668
1669         return FALSE;
1670 }
1671
1672 #define E1000_MAX_TXD_PWR       12
1673 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
1674
1675 static inline int
1676 e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
1677         unsigned int first, unsigned int max_per_txd,
1678         unsigned int nr_frags, unsigned int mss)
1679 {
1680         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1681         struct e1000_buffer *buffer_info;
1682         unsigned int len = skb->len;
1683         unsigned int offset = 0, size, count = 0, i;
1684         unsigned int f;
1685         len -= skb->data_len;
1686
1687         i = tx_ring->next_to_use;
1688
1689         while(len) {
1690                 buffer_info = &tx_ring->buffer_info[i];
1691                 size = min(len, max_per_txd);
1692 #ifdef NETIF_F_TSO
1693                 /* Workaround for premature desc write-backs
1694                  * in TSO mode.  Append 4-byte sentinel desc */
1695                 if(unlikely(mss && !nr_frags && size == len && size > 8))
1696                         size -= 4;
1697 #endif
1698                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
1699                  * terminating buffers within evenly-aligned dwords. */
1700                 if(unlikely(adapter->pcix_82544 &&
1701                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
1702                    size > 4))
1703                         size -= 4;
1704
1705                 buffer_info->length = size;
1706                 buffer_info->dma =
1707                         pci_map_single(adapter->pdev,
1708                                 skb->data + offset,
1709                                 size,
1710                                 PCI_DMA_TODEVICE);
1711                 buffer_info->time_stamp = jiffies;
1712
1713                 len -= size;
1714                 offset += size;
1715                 count++;
1716                 if(unlikely(++i == tx_ring->count)) i = 0;
1717         }
1718
1719         for(f = 0; f < nr_frags; f++) {
1720                 struct skb_frag_struct *frag;
1721
1722                 frag = &skb_shinfo(skb)->frags[f];
1723                 len = frag->size;
1724                 offset = frag->page_offset;
1725
1726                 while(len) {
1727                         buffer_info = &tx_ring->buffer_info[i];
1728                         size = min(len, max_per_txd);
1729 #ifdef NETIF_F_TSO
1730                         /* Workaround for premature desc write-backs
1731                          * in TSO mode.  Append 4-byte sentinel desc */
1732                         if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
1733                                 size -= 4;
1734 #endif
1735                         /* Workaround for potential 82544 hang in PCI-X.
1736                          * Avoid terminating buffers within evenly-aligned
1737                          * dwords. */
1738                         if(unlikely(adapter->pcix_82544 &&
1739                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
1740                            size > 4))
1741                                 size -= 4;
1742
1743                         buffer_info->length = size;
1744                         buffer_info->dma =
1745                                 pci_map_page(adapter->pdev,
1746                                         frag->page,
1747                                         offset,
1748                                         size,
1749                                         PCI_DMA_TODEVICE);
1750                         buffer_info->time_stamp = jiffies;
1751
1752                         len -= size;
1753                         offset += size;
1754                         count++;
1755                         if(unlikely(++i == tx_ring->count)) i = 0;
1756                 }
1757         }
1758
1759         i = (i == 0) ? tx_ring->count - 1 : i - 1;
1760         tx_ring->buffer_info[i].skb = skb;
1761         tx_ring->buffer_info[first].next_to_watch = i;
1762
1763         return count;
1764 }
1765
1766 static inline void
1767 e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
1768 {
1769         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1770         struct e1000_tx_desc *tx_desc = NULL;
1771         struct e1000_buffer *buffer_info;
1772         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
1773         unsigned int i;
1774
1775         if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
1776                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
1777                              E1000_TXD_CMD_TSE;
1778                 txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
1779         }
1780
1781         if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
1782                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
1783                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
1784         }
1785
1786         if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
1787                 txd_lower |= E1000_TXD_CMD_VLE;
1788                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
1789         }
1790
1791         i = tx_ring->next_to_use;
1792
1793         while(count--) {
1794                 buffer_info = &tx_ring->buffer_info[i];
1795                 tx_desc = E1000_TX_DESC(*tx_ring, i);
1796                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1797                 tx_desc->lower.data =
1798                         cpu_to_le32(txd_lower | buffer_info->length);
1799                 tx_desc->upper.data = cpu_to_le32(txd_upper);
1800                 if(unlikely(++i == tx_ring->count)) i = 0;
1801         }
1802
1803         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
1804
1805         /* Force memory writes to complete before letting h/w
1806          * know there are new descriptors to fetch.  (Only
1807          * applicable for weak-ordered memory model archs,
1808          * such as IA-64). */
1809         wmb();
1810
1811         tx_ring->next_to_use = i;
1812         E1000_WRITE_REG(&adapter->hw, TDT, i);
1813 }
1814
1815 /**
1816  * 82547 workaround to avoid controller hang in half-duplex environment.
1817  * The workaround is to avoid queuing a large packet that would span
1818  * the internal Tx FIFO ring boundary by notifying the stack to resend
1819  * the packet at a later time.  This gives the Tx FIFO an opportunity to
1820  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
1821  * to the beginning of the Tx FIFO.
1822  **/
1823
1824 #define E1000_FIFO_HDR                  0x10
1825 #define E1000_82547_PAD_LEN             0x3E0
1826
1827 static inline int
1828 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
1829 {
1830         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1831         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
1832
1833         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
1834
1835         if(adapter->link_duplex != HALF_DUPLEX)
1836                 goto no_fifo_stall_required;
1837
1838         if(atomic_read(&adapter->tx_fifo_stall))
1839                 return 1;
1840
1841         if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
1842                 atomic_set(&adapter->tx_fifo_stall, 1);
1843                 return 1;
1844         }
1845
1846 no_fifo_stall_required:
1847         adapter->tx_fifo_head += skb_fifo_len;
1848         if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
1849                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1850         return 0;
1851 }
1852
1853 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
1854 static int
1855 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1856 {
1857         struct e1000_adapter *adapter = netdev->priv;
1858         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
1859         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
1860         unsigned int tx_flags = 0;
1861         unsigned int len = skb->len;
1862         unsigned long flags;
1863         unsigned int nr_frags = 0;
1864         unsigned int mss = 0;
1865         int count = 0;
1866         unsigned int f;
1867         nr_frags = skb_shinfo(skb)->nr_frags;
1868         len -= skb->data_len;
1869
1870         if(unlikely(skb->len <= 0)) {
1871                 dev_kfree_skb_any(skb);
1872                 return NETDEV_TX_OK;
1873         }
1874
1875 #ifdef NETIF_F_TSO
1876         mss = skb_shinfo(skb)->tso_size;
1877         /* The controller does a simple calculation to
1878          * make sure there is enough room in the FIFO before
1879          * initiating the DMA for each buffer.  The calc is:
1880          * 4 = ceil(buffer len/mss).  To make sure we don't
1881          * overrun the FIFO, adjust the max buffer len if mss
1882          * drops. */
1883         if(mss) {
1884                 max_per_txd = min(mss << 2, max_per_txd);
1885                 max_txd_pwr = fls(max_per_txd) - 1;
1886         }
1887
1888         if((mss) || (skb->ip_summed == CHECKSUM_HW))
1889                 count++;
1890         count++;        /* for sentinel desc */
1891 #else
1892         if(skb->ip_summed == CHECKSUM_HW)
1893                 count++;
1894 #endif
1895         count += TXD_USE_COUNT(len, max_txd_pwr);
1896
1897         if(adapter->pcix_82544)
1898                 count++;
1899
1900         nr_frags = skb_shinfo(skb)->nr_frags;
1901         for(f = 0; f < nr_frags; f++)
1902                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
1903                                        max_txd_pwr);
1904         if(adapter->pcix_82544)
1905                 count += nr_frags;
1906
1907         local_irq_save(flags); 
1908         if (!spin_trylock(&adapter->tx_lock)) { 
1909                 /* Collision - tell upper layer to requeue */ 
1910                 local_irq_restore(flags); 
1911                 return NETDEV_TX_LOCKED; 
1912         } 
1913
1914         /* need: count + 2 desc gap to keep tail from touching
1915          * head, otherwise try next time */
1916         if(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2) {
1917                 netif_stop_queue(netdev);
1918                 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1919                 return NETDEV_TX_BUSY;
1920         }
1921
1922         if(unlikely(adapter->hw.mac_type == e1000_82547)) {
1923                 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
1924                         netif_stop_queue(netdev);
1925                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
1926                         spin_unlock_irqrestore(&adapter->tx_lock, flags);
1927                         return NETDEV_TX_BUSY;
1928                 }
1929         }
1930
1931         if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
1932                 tx_flags |= E1000_TX_FLAGS_VLAN;
1933                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
1934         }
1935
1936         first = adapter->tx_ring.next_to_use;
1937         
1938         if(likely(e1000_tso(adapter, skb)))
1939                 tx_flags |= E1000_TX_FLAGS_TSO;
1940         else if(likely(e1000_tx_csum(adapter, skb)))
1941                 tx_flags |= E1000_TX_FLAGS_CSUM;
1942
1943         e1000_tx_queue(adapter,
1944                 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
1945                 tx_flags);
1946
1947         netdev->trans_start = jiffies;
1948
1949         spin_unlock_irqrestore(&adapter->tx_lock, flags);
1950         return NETDEV_TX_OK;
1951 }
1952
1953 /**
1954  * e1000_tx_timeout - Respond to a Tx Hang
1955  * @netdev: network interface device structure
1956  **/
1957
1958 static void
1959 e1000_tx_timeout(struct net_device *netdev)
1960 {
1961         struct e1000_adapter *adapter = netdev->priv;
1962
1963         /* Do the reset outside of interrupt context */
1964         schedule_work(&adapter->tx_timeout_task);
1965 }
1966
1967 static void
1968 e1000_tx_timeout_task(struct net_device *netdev)
1969 {
1970         struct e1000_adapter *adapter = netdev->priv;
1971
1972         e1000_down(adapter);
1973         e1000_up(adapter);
1974 }
1975
1976 /**
1977  * e1000_get_stats - Get System Network Statistics
1978  * @netdev: network interface device structure
1979  *
1980  * Returns the address of the device statistics structure.
1981  * The statistics are actually updated from the timer callback.
1982  **/
1983
1984 static struct net_device_stats *
1985 e1000_get_stats(struct net_device *netdev)
1986 {
1987         struct e1000_adapter *adapter = netdev->priv;
1988
1989         e1000_update_stats(adapter);
1990         return &adapter->net_stats;
1991 }
1992
1993 /**
1994  * e1000_change_mtu - Change the Maximum Transfer Unit
1995  * @netdev: network interface device structure
1996  * @new_mtu: new value for maximum frame size
1997  *
1998  * Returns 0 on success, negative on failure
1999  **/
2000
2001 static int
2002 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2003 {
2004         struct e1000_adapter *adapter = netdev->priv;
2005         int old_mtu = adapter->rx_buffer_len;
2006         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2007
2008         if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2009            (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2010                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2011                 return -EINVAL;
2012         }
2013
2014         if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) {
2015                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2016
2017         } else if(adapter->hw.mac_type < e1000_82543) {
2018                 DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n");
2019                 return -EINVAL;
2020
2021         } else if(max_frame <= E1000_RXBUFFER_4096) {
2022                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2023
2024         } else if(max_frame <= E1000_RXBUFFER_8192) {
2025                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2026
2027         } else {
2028                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2029         }
2030
2031         if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
2032                 e1000_down(adapter);
2033                 e1000_up(adapter);
2034         }
2035
2036         netdev->mtu = new_mtu;
2037         adapter->hw.max_frame_size = max_frame;
2038
2039         return 0;
2040 }
2041
2042 /**
2043  * e1000_update_stats - Update the board statistics counters
2044  * @adapter: board private structure
2045  **/
2046
2047 void
2048 e1000_update_stats(struct e1000_adapter *adapter)
2049 {
2050         struct e1000_hw *hw = &adapter->hw;
2051         unsigned long flags;
2052         uint16_t phy_tmp;
2053
2054 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2055
2056         spin_lock_irqsave(&adapter->stats_lock, flags);
2057
2058         /* these counters are modified from e1000_adjust_tbi_stats,
2059          * called from the interrupt context, so they must only
2060          * be written while holding adapter->stats_lock
2061          */
2062
2063         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2064         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2065         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2066         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2067         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2068         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2069         adapter->stats.roc += E1000_READ_REG(hw, ROC);
2070         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2071         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2072         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2073         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2074         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2075         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2076
2077         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2078         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2079         adapter->stats.scc += E1000_READ_REG(hw, SCC);
2080         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2081         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2082         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2083         adapter->stats.dc += E1000_READ_REG(hw, DC);
2084         adapter->stats.sec += E1000_READ_REG(hw, SEC);
2085         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2086         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2087         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2088         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2089         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2090         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2091         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2092         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2093         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2094         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2095         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2096         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2097         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2098         adapter->stats.torl += E1000_READ_REG(hw, TORL);
2099         adapter->stats.torh += E1000_READ_REG(hw, TORH);
2100         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2101         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2102         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2103         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2104         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2105         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2106         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2107         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2108         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2109         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2110         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2111
2112         /* used for adaptive IFS */
2113
2114         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2115         adapter->stats.tpt += hw->tx_packet_delta;
2116         hw->collision_delta = E1000_READ_REG(hw, COLC);
2117         adapter->stats.colc += hw->collision_delta;
2118
2119         if(hw->mac_type >= e1000_82543) {
2120                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2121                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2122                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2123                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2124                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2125                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2126         }
2127
2128         /* Fill out the OS statistics structure */
2129
2130         adapter->net_stats.rx_packets = adapter->stats.gprc;
2131         adapter->net_stats.tx_packets = adapter->stats.gptc;
2132         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2133         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2134         adapter->net_stats.multicast = adapter->stats.mprc;
2135         adapter->net_stats.collisions = adapter->stats.colc;
2136
2137         /* Rx Errors */
2138
2139         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2140                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2141                 adapter->stats.rlec + adapter->stats.rnbc +
2142                 adapter->stats.mpc + adapter->stats.cexterr;
2143         adapter->net_stats.rx_dropped = adapter->stats.rnbc;
2144         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2145         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2146         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2147         adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2148         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2149
2150         /* Tx Errors */
2151
2152         adapter->net_stats.tx_errors = adapter->stats.ecol +
2153                                        adapter->stats.latecol;
2154         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2155         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2156         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2157
2158         /* Tx Dropped needs to be maintained elsewhere */
2159
2160         /* Phy Stats */
2161
2162         if(hw->media_type == e1000_media_type_copper) {
2163                 if((adapter->link_speed == SPEED_1000) &&
2164                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2165                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2166                         adapter->phy_stats.idle_errors += phy_tmp;
2167                 }
2168
2169                 if((hw->mac_type <= e1000_82546) &&
2170                    (hw->phy_type == e1000_phy_m88) &&
2171                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2172                         adapter->phy_stats.receive_errors += phy_tmp;
2173         }
2174
2175         spin_unlock_irqrestore(&adapter->stats_lock, flags);
2176 }
2177
2178 /**
2179  * e1000_irq_disable - Mask off interrupt generation on the NIC
2180  * @adapter: board private structure
2181  **/
2182
2183 static void
2184 e1000_irq_disable(struct e1000_adapter *adapter)
2185 {
2186         atomic_inc(&adapter->irq_sem);
2187         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
2188         E1000_WRITE_FLUSH(&adapter->hw);
2189         synchronize_irq(adapter->pdev->irq);
2190 }
2191
2192 /**
2193  * e1000_irq_enable - Enable default interrupt generation settings
2194  * @adapter: board private structure
2195  **/
2196
2197 static void
2198 e1000_irq_enable(struct e1000_adapter *adapter)
2199 {
2200         if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
2201                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
2202                 E1000_WRITE_FLUSH(&adapter->hw);
2203         }
2204 }
2205
2206 /**
2207  * e1000_intr - Interrupt Handler
2208  * @irq: interrupt number
2209  * @data: pointer to a network interface device structure
2210  * @pt_regs: CPU registers structure
2211  **/
2212
2213 static irqreturn_t
2214 e1000_intr(int irq, void *data, struct pt_regs *regs)
2215 {
2216         struct net_device *netdev = data;
2217         struct e1000_adapter *adapter = netdev->priv;
2218         struct e1000_hw *hw = &adapter->hw;
2219         uint32_t icr = E1000_READ_REG(hw, ICR);
2220 #ifndef CONFIG_E1000_NAPI
2221         unsigned int i;
2222 #endif
2223
2224         if(unlikely(!icr))
2225                 return IRQ_NONE;  /* Not our interrupt */
2226
2227         if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2228                 hw->get_link_status = 1;
2229                 mod_timer(&adapter->watchdog_timer, jiffies);
2230         }
2231
2232 #ifdef CONFIG_E1000_NAPI
2233         if(likely(netif_rx_schedule_prep(netdev))) {
2234
2235                 /* Disable interrupts and register for poll. The flush 
2236                   of the posted write is intentionally left out.
2237                 */
2238
2239                 atomic_inc(&adapter->irq_sem);
2240                 E1000_WRITE_REG(hw, IMC, ~0);
2241                 __netif_rx_schedule(netdev);
2242         }
2243 #else
2244         for(i = 0; i < E1000_MAX_INTR; i++)
2245                 if(unlikely(!e1000_clean_rx_irq(adapter) &
2246                    !e1000_clean_tx_irq(adapter)))
2247                         break;
2248 #endif
2249
2250         return IRQ_HANDLED;
2251 }
2252
2253 #ifdef CONFIG_E1000_NAPI
2254 /**
2255  * e1000_clean - NAPI Rx polling callback
2256  * @adapter: board private structure
2257  **/
2258
2259 static int
2260 e1000_clean(struct net_device *netdev, int *budget)
2261 {
2262         struct e1000_adapter *adapter = netdev->priv;
2263         int work_to_do = min(*budget, netdev->quota);
2264         int tx_cleaned;
2265         int work_done = 0;
2266         
2267         tx_cleaned = e1000_clean_tx_irq(adapter);
2268         e1000_clean_rx_irq(adapter, &work_done, work_to_do);
2269
2270         *budget -= work_done;
2271         netdev->quota -= work_done;
2272         
2273         /* if no Rx and Tx cleanup work was done, exit the polling mode */
2274         if(!tx_cleaned || (work_done < work_to_do) || 
2275                                 !netif_running(netdev)) {
2276                 netif_rx_complete(netdev);
2277                 e1000_irq_enable(adapter);
2278                 return 0;
2279         }
2280
2281         return (work_done >= work_to_do);
2282 }
2283
2284 #endif
2285 /**
2286  * e1000_clean_tx_irq - Reclaim resources after transmit completes
2287  * @adapter: board private structure
2288  **/
2289
2290 static boolean_t
2291 e1000_clean_tx_irq(struct e1000_adapter *adapter)
2292 {
2293         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2294         struct net_device *netdev = adapter->netdev;
2295         struct e1000_tx_desc *tx_desc, *eop_desc;
2296         struct e1000_buffer *buffer_info;
2297         unsigned int i, eop;
2298         boolean_t cleaned = FALSE;
2299
2300         i = tx_ring->next_to_clean;
2301         eop = tx_ring->buffer_info[i].next_to_watch;
2302         eop_desc = E1000_TX_DESC(*tx_ring, eop);
2303
2304         while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
2305                 /* pre-mature writeback of Tx descriptors     */
2306                 /* clear (free buffers and unmap pci_mapping) */
2307                 /* previous_buffer_info                       */
2308                 if (likely(adapter->previous_buffer_info.skb != NULL)) {
2309                         e1000_unmap_and_free_tx_resource(adapter, 
2310                                         &adapter->previous_buffer_info);
2311                 }
2312
2313                 for(cleaned = FALSE; !cleaned; ) {
2314                         tx_desc = E1000_TX_DESC(*tx_ring, i);
2315                         buffer_info = &tx_ring->buffer_info[i];
2316
2317                         cleaned = (i == eop);
2318
2319                         /* pre-mature writeback of Tx descriptors */
2320                         /* save the cleaning of the this for the  */
2321                         /* next iteration                         */
2322                         if (cleaned) {
2323                                 memcpy(&adapter->previous_buffer_info,
2324                                         buffer_info,
2325                                         sizeof(struct e1000_buffer));
2326                                 memset(buffer_info,
2327                                         0,
2328                                         sizeof(struct e1000_buffer));
2329                         } else {
2330                                 e1000_unmap_and_free_tx_resource(adapter, 
2331                                                         buffer_info);
2332                         }
2333                         tx_desc->buffer_addr = 0;
2334                         tx_desc->lower.data = 0;
2335                         tx_desc->upper.data = 0;
2336
2337                         cleaned = (i == eop);
2338                         if(unlikely(++i == tx_ring->count)) i = 0;
2339                 }
2340                 
2341                 eop = tx_ring->buffer_info[i].next_to_watch;
2342                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2343         }
2344
2345         tx_ring->next_to_clean = i;
2346
2347         spin_lock(&adapter->tx_lock);
2348
2349         if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2350                     netif_carrier_ok(netdev)))
2351                 netif_wake_queue(netdev);
2352
2353         spin_unlock(&adapter->tx_lock);
2354
2355         return cleaned;
2356 }
2357
2358 /**
2359  * e1000_clean_rx_irq - Send received data up the network stack
2360  * @adapter: board private structure
2361  **/
2362
2363 static boolean_t
2364 #ifdef CONFIG_E1000_NAPI
2365 e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2366                    int work_to_do)
2367 #else
2368 e1000_clean_rx_irq(struct e1000_adapter *adapter)
2369 #endif
2370 {
2371         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2372         struct net_device *netdev = adapter->netdev;
2373         struct pci_dev *pdev = adapter->pdev;
2374         struct e1000_rx_desc *rx_desc;
2375         struct e1000_buffer *buffer_info;
2376         struct sk_buff *skb;
2377         unsigned long flags;
2378         uint32_t length;
2379         uint8_t last_byte;
2380         unsigned int i;
2381         boolean_t cleaned = FALSE;
2382
2383         i = rx_ring->next_to_clean;
2384         rx_desc = E1000_RX_DESC(*rx_ring, i);
2385
2386         while(rx_desc->status & E1000_RXD_STAT_DD) {
2387                 buffer_info = &rx_ring->buffer_info[i];
2388 #ifdef CONFIG_E1000_NAPI
2389                 if(*work_done >= work_to_do)
2390                         break;
2391                 (*work_done)++;
2392 #endif
2393                 cleaned = TRUE;
2394
2395                 pci_unmap_single(pdev,
2396                                  buffer_info->dma,
2397                                  buffer_info->length,
2398                                  PCI_DMA_FROMDEVICE);
2399
2400                 skb = buffer_info->skb;
2401                 length = le16_to_cpu(rx_desc->length);
2402
2403                 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2404                         /* All receives must fit into a single buffer */
2405                         E1000_DBG("%s: Receive packet consumed multiple"
2406                                   " buffers\n", netdev->name);
2407                         dev_kfree_skb_irq(skb);
2408                         goto next_desc;
2409                 }
2410
2411                 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2412                         last_byte = *(skb->data + length - 1);
2413                         if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2414                                       rx_desc->errors, length, last_byte)) {
2415                                 spin_lock_irqsave(&adapter->stats_lock, flags);
2416                                 e1000_tbi_adjust_stats(&adapter->hw,
2417                                                        &adapter->stats,
2418                                                        length, skb->data);
2419                                 spin_unlock_irqrestore(&adapter->stats_lock,
2420                                                        flags);
2421                                 length--;
2422                         } else {
2423                                 dev_kfree_skb_irq(skb);
2424                                 goto next_desc;
2425                         }
2426                 }
2427
2428                 /* Good Receive */
2429                 skb_put(skb, length - ETHERNET_FCS_SIZE);
2430
2431                 /* Receive Checksum Offload */
2432                 e1000_rx_checksum(adapter, rx_desc, skb);
2433
2434                 skb->protocol = eth_type_trans(skb, netdev);
2435 #ifdef CONFIG_E1000_NAPI
2436                 if(unlikely(adapter->vlgrp &&
2437                             (rx_desc->status & E1000_RXD_STAT_VP))) {
2438                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
2439                                         le16_to_cpu(rx_desc->special) &
2440                                         E1000_RXD_SPC_VLAN_MASK);
2441                 } else {
2442                         netif_receive_skb(skb);
2443                 }
2444 #else /* CONFIG_E1000_NAPI */
2445                 if(unlikely(adapter->vlgrp &&
2446                             (rx_desc->status & E1000_RXD_STAT_VP))) {
2447                         vlan_hwaccel_rx(skb, adapter->vlgrp,
2448                                         le16_to_cpu(rx_desc->special) &
2449                                         E1000_RXD_SPC_VLAN_MASK);
2450                 } else {
2451                         netif_rx(skb);
2452                 }
2453 #endif /* CONFIG_E1000_NAPI */
2454                 netdev->last_rx = jiffies;
2455
2456 next_desc:
2457                 rx_desc->status = 0;
2458                 buffer_info->skb = NULL;
2459                 if(unlikely(++i == rx_ring->count)) i = 0;
2460
2461                 rx_desc = E1000_RX_DESC(*rx_ring, i);
2462         }
2463
2464         rx_ring->next_to_clean = i;
2465
2466         e1000_alloc_rx_buffers(adapter);
2467
2468         return cleaned;
2469 }
2470
2471 /**
2472  * e1000_alloc_rx_buffers - Replace used receive buffers
2473  * @adapter: address of board private structure
2474  **/
2475
2476 static void
2477 e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
2478 {
2479         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2480         struct net_device *netdev = adapter->netdev;
2481         struct pci_dev *pdev = adapter->pdev;
2482         struct e1000_rx_desc *rx_desc;
2483         struct e1000_buffer *buffer_info;
2484         struct sk_buff *skb;
2485         unsigned int i, bufsz;
2486
2487         i = rx_ring->next_to_use;
2488         buffer_info = &rx_ring->buffer_info[i];
2489
2490         while(!buffer_info->skb) {
2491                 bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
2492
2493                 skb = dev_alloc_skb(bufsz);
2494                 if(unlikely(!skb)) {
2495                         /* Better luck next round */
2496                         break;
2497                 }
2498
2499                 /* fix for errata 23, cant cross 64kB boundary */
2500                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
2501                         struct sk_buff *oldskb = skb;
2502                         DPRINTK(RX_ERR,ERR,
2503                                 "skb align check failed: %u bytes at %p\n",
2504                                 bufsz, skb->data);
2505                         /* try again, without freeing the previous */
2506                         skb = dev_alloc_skb(bufsz);
2507                         if (!skb) {
2508                                 dev_kfree_skb(oldskb);
2509                                 break;
2510                         }
2511                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
2512                                 /* give up */
2513                                 dev_kfree_skb(skb);
2514                                 dev_kfree_skb(oldskb);
2515                                 break; /* while !buffer_info->skb */
2516                         } else {
2517                                 /* move on with the new one */
2518                                 dev_kfree_skb(oldskb);
2519                         }
2520                 }
2521
2522                 /* Make buffer alignment 2 beyond a 16 byte boundary
2523                  * this will result in a 16 byte aligned IP header after
2524                  * the 14 byte MAC header is removed
2525                  */
2526                 skb_reserve(skb, NET_IP_ALIGN);
2527
2528                 skb->dev = netdev;
2529
2530                 buffer_info->skb = skb;
2531                 buffer_info->length = adapter->rx_buffer_len;
2532                 buffer_info->dma = pci_map_single(pdev,
2533                                                   skb->data,
2534                                                   adapter->rx_buffer_len,
2535                                                   PCI_DMA_FROMDEVICE);
2536
2537                 /* fix for errata 23, cant cross 64kB boundary */
2538                 if (!e1000_check_64k_bound(adapter, (void *)buffer_info->dma, adapter->rx_buffer_len)) {
2539                         DPRINTK(RX_ERR,ERR,
2540                                 "dma align check failed: %u bytes at %ld\n",
2541                                 adapter->rx_buffer_len, buffer_info->dma);
2542
2543                         dev_kfree_skb(skb);
2544                         buffer_info->skb = NULL;
2545
2546                         pci_unmap_single(pdev,
2547                                          buffer_info->dma,
2548                                          adapter->rx_buffer_len,
2549                                          PCI_DMA_FROMDEVICE);
2550
2551                         break; /* while !buffer_info->skb */
2552                 }
2553
2554                 rx_desc = E1000_RX_DESC(*rx_ring, i);
2555                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2556
2557                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
2558                         /* Force memory writes to complete before letting h/w
2559                          * know there are new descriptors to fetch.  (Only
2560                          * applicable for weak-ordered memory model archs,
2561                          * such as IA-64). */
2562                         wmb();
2563
2564                         E1000_WRITE_REG(&adapter->hw, RDT, i);
2565                 }
2566
2567                 if(unlikely(++i == rx_ring->count)) i = 0;
2568                 buffer_info = &rx_ring->buffer_info[i];
2569         }
2570
2571         rx_ring->next_to_use = i;
2572 }
2573
2574 /**
2575  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
2576  * @adapter:
2577  **/
2578
2579 static void
2580 e1000_smartspeed(struct e1000_adapter *adapter)
2581 {
2582         uint16_t phy_status;
2583         uint16_t phy_ctrl;
2584
2585         if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
2586            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2587                 return;
2588
2589         if(adapter->smartspeed == 0) {
2590                 /* If Master/Slave config fault is asserted twice,
2591                  * we assume back-to-back */
2592                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
2593                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
2594                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
2595                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
2596                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
2597                 if(phy_ctrl & CR_1000T_MS_ENABLE) {
2598                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
2599                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
2600                                             phy_ctrl);
2601                         adapter->smartspeed++;
2602                         if(!e1000_phy_setup_autoneg(&adapter->hw) &&
2603                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
2604                                                &phy_ctrl)) {
2605                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2606                                              MII_CR_RESTART_AUTO_NEG);
2607                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
2608                                                     phy_ctrl);
2609                         }
2610                 }
2611                 return;
2612         } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
2613                 /* If still no link, perhaps using 2/3 pair cable */
2614                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
2615                 phy_ctrl |= CR_1000T_MS_ENABLE;
2616                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
2617                 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
2618                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
2619                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2620                                      MII_CR_RESTART_AUTO_NEG);
2621                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
2622                 }
2623         }
2624         /* Restart process after E1000_SMARTSPEED_MAX iterations */
2625         if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
2626                 adapter->smartspeed = 0;
2627 }
2628
2629 /**
2630  * e1000_ioctl -
2631  * @netdev:
2632  * @ifreq:
2633  * @cmd:
2634  **/
2635
2636 static int
2637 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2638 {
2639         switch (cmd) {
2640         case SIOCGMIIPHY:
2641         case SIOCGMIIREG:
2642         case SIOCSMIIREG:
2643                 return e1000_mii_ioctl(netdev, ifr, cmd);
2644         default:
2645                 return -EOPNOTSUPP;
2646         }
2647 }
2648
2649 /**
2650  * e1000_mii_ioctl -
2651  * @netdev:
2652  * @ifreq:
2653  * @cmd:
2654  **/
2655
2656 static int
2657 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2658 {
2659         struct e1000_adapter *adapter = netdev->priv;
2660         struct mii_ioctl_data *data = if_mii(ifr);
2661         int retval;
2662         uint16_t mii_reg;
2663         uint16_t spddplx;
2664
2665         if(adapter->hw.media_type != e1000_media_type_copper)
2666                 return -EOPNOTSUPP;
2667
2668         switch (cmd) {
2669         case SIOCGMIIPHY:
2670                 data->phy_id = adapter->hw.phy_addr;
2671                 break;
2672         case SIOCGMIIREG:
2673                 if (!capable(CAP_NET_ADMIN))
2674                         return -EPERM;
2675                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
2676                                    &data->val_out))
2677                         return -EIO;
2678                 break;
2679         case SIOCSMIIREG:
2680                 if (!capable(CAP_NET_ADMIN))
2681                         return -EPERM;
2682                 if (data->reg_num & ~(0x1F))
2683                         return -EFAULT;
2684                 mii_reg = data->val_in;
2685                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
2686                                         mii_reg))
2687                         return -EIO;
2688                 if (adapter->hw.phy_type == e1000_phy_m88) {
2689                         switch (data->reg_num) {
2690                         case PHY_CTRL:
2691                                 if(mii_reg & MII_CR_POWER_DOWN)
2692                                         break;
2693                                 if(mii_reg & MII_CR_AUTO_NEG_EN) {
2694                                         adapter->hw.autoneg = 1;
2695                                         adapter->hw.autoneg_advertised = 0x2F;
2696                                 } else {
2697                                         if (mii_reg & 0x40)
2698                                                 spddplx = SPEED_1000;
2699                                         else if (mii_reg & 0x2000)
2700                                                 spddplx = SPEED_100;
2701                                         else
2702                                                 spddplx = SPEED_10;
2703                                         spddplx += (mii_reg & 0x100)
2704                                                    ? FULL_DUPLEX :
2705                                                    HALF_DUPLEX;
2706                                         retval = e1000_set_spd_dplx(adapter,
2707                                                                     spddplx);
2708                                         if(retval)
2709                                                 return retval;
2710                                 }
2711                                 if(netif_running(adapter->netdev)) {
2712                                         e1000_down(adapter);
2713                                         e1000_up(adapter);
2714                                 } else
2715                                         e1000_reset(adapter);
2716                                 break;
2717                         case M88E1000_PHY_SPEC_CTRL:
2718                         case M88E1000_EXT_PHY_SPEC_CTRL:
2719                                 if (e1000_phy_reset(&adapter->hw))
2720                                         return -EIO;
2721                                 break;
2722                         }
2723                 } else {
2724                         switch (data->reg_num) {
2725                         case PHY_CTRL:
2726                                 if(mii_reg & MII_CR_POWER_DOWN)
2727                                         break;
2728                                 if(netif_running(adapter->netdev)) {
2729                                         e1000_down(adapter);
2730                                         e1000_up(adapter);
2731                                 } else
2732                                         e1000_reset(adapter);
2733                                 break;
2734                         }
2735                 }
2736                 break;
2737         default:
2738                 return -EOPNOTSUPP;
2739         }
2740         return E1000_SUCCESS;
2741 }
2742
2743 /**
2744  * e1000_rx_checksum - Receive Checksum Offload for 82543
2745  * @adapter: board private structure
2746  * @rx_desc: receive descriptor
2747  * @sk_buff: socket buffer with received data
2748  **/
2749
2750 static void
2751 e1000_rx_checksum(struct e1000_adapter *adapter,
2752                   struct e1000_rx_desc *rx_desc,
2753                   struct sk_buff *skb)
2754 {
2755         /* 82543 or newer only */
2756         if(unlikely((adapter->hw.mac_type < e1000_82543) ||
2757         /* Ignore Checksum bit is set */
2758         (rx_desc->status & E1000_RXD_STAT_IXSM) ||
2759         /* TCP Checksum has not been calculated */
2760         (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) {
2761                 skb->ip_summed = CHECKSUM_NONE;
2762                 return;
2763         }
2764
2765         /* At this point we know the hardware did the TCP checksum */
2766         /* now look at the TCP checksum error bit */
2767         if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
2768                 /* let the stack verify checksum errors */
2769                 skb->ip_summed = CHECKSUM_NONE;
2770                 adapter->hw_csum_err++;
2771         } else {
2772                 /* TCP checksum is good */
2773                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2774                 adapter->hw_csum_good++;
2775         }
2776 }
2777
2778 void
2779 e1000_pci_set_mwi(struct e1000_hw *hw)
2780 {
2781         struct e1000_adapter *adapter = hw->back;
2782
2783         int ret;
2784         ret = pci_set_mwi(adapter->pdev);
2785 }
2786
2787 void
2788 e1000_pci_clear_mwi(struct e1000_hw *hw)
2789 {
2790         struct e1000_adapter *adapter = hw->back;
2791
2792         pci_clear_mwi(adapter->pdev);
2793 }
2794
2795 void
2796 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
2797 {
2798         struct e1000_adapter *adapter = hw->back;
2799
2800         pci_read_config_word(adapter->pdev, reg, value);
2801 }
2802
2803 void
2804 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
2805 {
2806         struct e1000_adapter *adapter = hw->back;
2807
2808         pci_write_config_word(adapter->pdev, reg, *value);
2809 }
2810
2811 uint32_t
2812 e1000_io_read(struct e1000_hw *hw, unsigned long port)
2813 {
2814         return inl(port);
2815 }
2816
2817 void
2818 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
2819 {
2820         outl(value, port);
2821 }
2822
2823 static void
2824 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
2825 {
2826         struct e1000_adapter *adapter = netdev->priv;
2827         uint32_t ctrl, rctl;
2828
2829         e1000_irq_disable(adapter);
2830         adapter->vlgrp = grp;
2831
2832         if(grp) {
2833                 /* enable VLAN tag insert/strip */
2834                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2835                 ctrl |= E1000_CTRL_VME;
2836                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2837
2838                 /* enable VLAN receive filtering */
2839                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2840                 rctl |= E1000_RCTL_VFE;
2841                 rctl &= ~E1000_RCTL_CFIEN;
2842                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2843         } else {
2844                 /* disable VLAN tag insert/strip */
2845                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2846                 ctrl &= ~E1000_CTRL_VME;
2847                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2848
2849                 /* disable VLAN filtering */
2850                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2851                 rctl &= ~E1000_RCTL_VFE;
2852                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2853         }
2854
2855         e1000_irq_enable(adapter);
2856 }
2857
2858 static void
2859 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
2860 {
2861         struct e1000_adapter *adapter = netdev->priv;
2862         uint32_t vfta, index;
2863
2864         /* add VID to filter table */
2865         index = (vid >> 5) & 0x7F;
2866         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
2867         vfta |= (1 << (vid & 0x1F));
2868         e1000_write_vfta(&adapter->hw, index, vfta);
2869 }
2870
2871 static void
2872 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
2873 {
2874         struct e1000_adapter *adapter = netdev->priv;
2875         uint32_t vfta, index;
2876
2877         e1000_irq_disable(adapter);
2878
2879         if(adapter->vlgrp)
2880                 adapter->vlgrp->vlan_devices[vid] = NULL;
2881
2882         e1000_irq_enable(adapter);
2883
2884         /* remove VID from filter table */
2885         index = (vid >> 5) & 0x7F;
2886         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
2887         vfta &= ~(1 << (vid & 0x1F));
2888         e1000_write_vfta(&adapter->hw, index, vfta);
2889 }
2890
2891 static void
2892 e1000_restore_vlan(struct e1000_adapter *adapter)
2893 {
2894         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2895
2896         if(adapter->vlgrp) {
2897                 uint16_t vid;
2898                 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2899                         if(!adapter->vlgrp->vlan_devices[vid])
2900                                 continue;
2901                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
2902                 }
2903         }
2904 }
2905
2906 int
2907 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
2908 {
2909         adapter->hw.autoneg = 0;
2910
2911         switch(spddplx) {
2912         case SPEED_10 + DUPLEX_HALF:
2913                 adapter->hw.forced_speed_duplex = e1000_10_half;
2914                 break;
2915         case SPEED_10 + DUPLEX_FULL:
2916                 adapter->hw.forced_speed_duplex = e1000_10_full;
2917                 break;
2918         case SPEED_100 + DUPLEX_HALF:
2919                 adapter->hw.forced_speed_duplex = e1000_100_half;
2920                 break;
2921         case SPEED_100 + DUPLEX_FULL:
2922                 adapter->hw.forced_speed_duplex = e1000_100_full;
2923                 break;
2924         case SPEED_1000 + DUPLEX_FULL:
2925                 adapter->hw.autoneg = 1;
2926                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
2927                 break;
2928         case SPEED_1000 + DUPLEX_HALF: /* not supported */
2929         default:
2930                 DPRINTK(PROBE, ERR, 
2931                         "Unsupported Speed/Duplexity configuration\n");
2932                 return -EINVAL;
2933         }
2934         return 0;
2935 }
2936
2937 static int
2938 e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
2939 {
2940         struct pci_dev *pdev = NULL;
2941
2942         switch(event) {
2943         case SYS_DOWN:
2944         case SYS_HALT:
2945         case SYS_POWER_OFF:
2946                 while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
2947                         if(pci_dev_driver(pdev) == &e1000_driver)
2948                                 e1000_suspend(pdev, 3);
2949                 }
2950         }
2951         return NOTIFY_DONE;
2952 }
2953
2954 static int
2955 e1000_suspend(struct pci_dev *pdev, uint32_t state)
2956 {
2957         struct net_device *netdev = pci_get_drvdata(pdev);
2958         struct e1000_adapter *adapter = netdev->priv;
2959         uint32_t ctrl, ctrl_ext, rctl, manc, status;
2960         uint32_t wufc = adapter->wol;
2961
2962         netif_device_detach(netdev);
2963
2964         if(netif_running(netdev))
2965                 e1000_down(adapter);
2966
2967         status = E1000_READ_REG(&adapter->hw, STATUS);
2968         if(status & E1000_STATUS_LU)
2969                 wufc &= ~E1000_WUFC_LNKC;
2970
2971         if(wufc) {
2972                 e1000_setup_rctl(adapter);
2973                 e1000_set_multi(netdev);
2974
2975                 /* turn on all-multi mode if wake on multicast is enabled */
2976                 if(adapter->wol & E1000_WUFC_MC) {
2977                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2978                         rctl |= E1000_RCTL_MPE;
2979                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2980                 }
2981
2982                 if(adapter->hw.mac_type >= e1000_82540) {
2983                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2984                         /* advertise wake from D3Cold */
2985                         #define E1000_CTRL_ADVD3WUC 0x00100000
2986                         /* phy power management enable */
2987                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
2988                         ctrl |= E1000_CTRL_ADVD3WUC |
2989                                 E1000_CTRL_EN_PHY_PWR_MGMT;
2990                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2991                 }
2992
2993                 if(adapter->hw.media_type == e1000_media_type_fiber ||
2994                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
2995                         /* keep the laser running in D3 */
2996                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
2997                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
2998                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
2999                 }
3000
3001                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
3002                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
3003                 pci_enable_wake(pdev, 3, 1);
3004                 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3005         } else {
3006                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
3007                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
3008                 pci_enable_wake(pdev, 3, 0);
3009                 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3010         }
3011
3012         pci_save_state(pdev);
3013
3014         if(adapter->hw.mac_type >= e1000_82540 &&
3015            adapter->hw.media_type == e1000_media_type_copper) {
3016                 manc = E1000_READ_REG(&adapter->hw, MANC);
3017                 if(manc & E1000_MANC_SMBUS_EN) {
3018                         manc |= E1000_MANC_ARP_EN;
3019                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
3020                         pci_enable_wake(pdev, 3, 1);
3021                         pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3022                 }
3023         }
3024
3025         pci_disable_device(pdev);
3026
3027         state = (state > 0) ? 3 : 0;
3028         pci_set_power_state(pdev, state);
3029
3030         return 0;
3031 }
3032
3033 #ifdef CONFIG_PM
3034 static int
3035 e1000_resume(struct pci_dev *pdev)
3036 {
3037         struct net_device *netdev = pci_get_drvdata(pdev);
3038         struct e1000_adapter *adapter = netdev->priv;
3039         uint32_t manc, ret;
3040
3041         pci_set_power_state(pdev, 0);
3042         pci_restore_state(pdev);
3043         ret = pci_enable_device(pdev);
3044         if (pdev->is_busmaster)
3045                 pci_set_master(pdev);
3046
3047         pci_enable_wake(pdev, 3, 0);
3048         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3049
3050         e1000_reset(adapter);
3051         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
3052
3053         if(netif_running(netdev))
3054                 e1000_up(adapter);
3055
3056         netif_device_attach(netdev);
3057
3058         if(adapter->hw.mac_type >= e1000_82540 &&
3059            adapter->hw.media_type == e1000_media_type_copper) {
3060                 manc = E1000_READ_REG(&adapter->hw, MANC);
3061                 manc &= ~(E1000_MANC_ARP_EN);
3062                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3063         }
3064
3065         return 0;
3066 }
3067 #endif
3068
3069 #ifdef CONFIG_NET_POLL_CONTROLLER
3070 /*
3071  * Polling 'interrupt' - used by things like netconsole to send skbs
3072  * without having to re-enable interrupts. It's not called while
3073  * the interrupt routine is executing.
3074  */
3075 static void
3076 e1000_netpoll (struct net_device *netdev)
3077 {
3078         struct e1000_adapter *adapter = netdev->priv;
3079         disable_irq(adapter->pdev->irq);
3080         e1000_intr(adapter->pdev->irq, netdev, NULL);
3081         enable_irq(adapter->pdev->irq);
3082 }
3083 #endif
3084
3085 /* e1000_main.c */