kernel.org linux-2.6.10
[linux-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 5.3.12       6/7/04
33  * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
34  * - if_mii support and associated kcompat for older kernels
35  * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
36  * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
37  *
38  * 5.3.11       6/4/04
39  * - ethtool register dump reads MANC register conditionally.
40  *
41  * 5.3.10       6/1/04
42  */
43
44 char e1000_driver_name[] = "e1000";
45 char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
46 #ifndef CONFIG_E1000_NAPI
47 #define DRIVERNAPI
48 #else
49 #define DRIVERNAPI "-NAPI"
50 #endif
51 char e1000_driver_version[] = "5.5.4-k2"DRIVERNAPI;
52 char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
53
54 /* e1000_pci_tbl - PCI Device ID Table
55  *
56  * Last entry must be all 0s
57  *
58  * Macro expands to...
59  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
60  */
61 static struct pci_device_id e1000_pci_tbl[] = {
62         INTEL_E1000_ETHERNET_DEVICE(0x1000),
63         INTEL_E1000_ETHERNET_DEVICE(0x1001),
64         INTEL_E1000_ETHERNET_DEVICE(0x1004),
65         INTEL_E1000_ETHERNET_DEVICE(0x1008),
66         INTEL_E1000_ETHERNET_DEVICE(0x1009),
67         INTEL_E1000_ETHERNET_DEVICE(0x100C),
68         INTEL_E1000_ETHERNET_DEVICE(0x100D),
69         INTEL_E1000_ETHERNET_DEVICE(0x100E),
70         INTEL_E1000_ETHERNET_DEVICE(0x100F),
71         INTEL_E1000_ETHERNET_DEVICE(0x1010),
72         INTEL_E1000_ETHERNET_DEVICE(0x1011),
73         INTEL_E1000_ETHERNET_DEVICE(0x1012),
74         INTEL_E1000_ETHERNET_DEVICE(0x1013),
75         INTEL_E1000_ETHERNET_DEVICE(0x1015),
76         INTEL_E1000_ETHERNET_DEVICE(0x1016),
77         INTEL_E1000_ETHERNET_DEVICE(0x1017),
78         INTEL_E1000_ETHERNET_DEVICE(0x1018),
79         INTEL_E1000_ETHERNET_DEVICE(0x1019),
80         INTEL_E1000_ETHERNET_DEVICE(0x101D),
81         INTEL_E1000_ETHERNET_DEVICE(0x101E),
82         INTEL_E1000_ETHERNET_DEVICE(0x1026),
83         INTEL_E1000_ETHERNET_DEVICE(0x1027),
84         INTEL_E1000_ETHERNET_DEVICE(0x1028),
85         INTEL_E1000_ETHERNET_DEVICE(0x1075),
86         INTEL_E1000_ETHERNET_DEVICE(0x1076),
87         INTEL_E1000_ETHERNET_DEVICE(0x1077),
88         INTEL_E1000_ETHERNET_DEVICE(0x1078),
89         INTEL_E1000_ETHERNET_DEVICE(0x1079),
90         INTEL_E1000_ETHERNET_DEVICE(0x107A),
91         INTEL_E1000_ETHERNET_DEVICE(0x107B),
92         INTEL_E1000_ETHERNET_DEVICE(0x107C),
93         /* required last entry */
94         {0,}
95 };
96
97 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
98
99 int e1000_up(struct e1000_adapter *adapter);
100 void e1000_down(struct e1000_adapter *adapter);
101 void e1000_reset(struct e1000_adapter *adapter);
102 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
103 int e1000_setup_tx_resources(struct e1000_adapter *adapter);
104 int e1000_setup_rx_resources(struct e1000_adapter *adapter);
105 void e1000_free_tx_resources(struct e1000_adapter *adapter);
106 void e1000_free_rx_resources(struct e1000_adapter *adapter);
107 void e1000_update_stats(struct e1000_adapter *adapter);
108
109 /* Local Function Prototypes */
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void __devexit e1000_remove(struct pci_dev *pdev);
115 static int e1000_sw_init(struct e1000_adapter *adapter);
116 static int e1000_open(struct net_device *netdev);
117 static int e1000_close(struct net_device *netdev);
118 static void e1000_configure_tx(struct e1000_adapter *adapter);
119 static void e1000_configure_rx(struct e1000_adapter *adapter);
120 static void e1000_setup_rctl(struct e1000_adapter *adapter);
121 static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
123 static void e1000_set_multi(struct net_device *netdev);
124 static void e1000_update_phy_info(unsigned long data);
125 static void e1000_watchdog(unsigned long data);
126 static void e1000_82547_tx_fifo_stall(unsigned long data);
127 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
128 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
129 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
130 static int e1000_set_mac(struct net_device *netdev, void *p);
131 static void e1000_irq_disable(struct e1000_adapter *adapter);
132 static void e1000_irq_enable(struct e1000_adapter *adapter);
133 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
134 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
135 #ifdef CONFIG_E1000_NAPI
136 static int e1000_clean(struct net_device *netdev, int *budget);
137 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                     int *work_done, int work_to_do);
139 #else
140 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
141 #endif
142 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145                            int cmd);
146 void set_ethtool_ops(struct net_device *netdev);
147 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
149 static void e1000_rx_checksum(struct e1000_adapter *adapter,
150                                 struct e1000_rx_desc *rx_desc,
151                                 struct sk_buff *skb);
152 static void e1000_tx_timeout(struct net_device *dev);
153 static void e1000_tx_timeout_task(struct net_device *dev);
154 static void e1000_smartspeed(struct e1000_adapter *adapter);
155 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
156                                               struct sk_buff *skb);
157
158 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
159 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
160 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
161 static void e1000_restore_vlan(struct e1000_adapter *adapter);
162
163 static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
164 static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
165 #ifdef CONFIG_PM
166 static int e1000_resume(struct pci_dev *pdev);
167 #endif
168
169 #ifdef CONFIG_NET_POLL_CONTROLLER
170 /* for netdump / net console */
171 static void e1000_netpoll (struct net_device *netdev);
172 #endif
173
174 struct notifier_block e1000_notifier_reboot = {
175         .notifier_call  = e1000_notify_reboot,
176         .next           = NULL,
177         .priority       = 0
178 };
179
180 /* Exported from other modules */
181
182 extern void e1000_check_options(struct e1000_adapter *adapter);
183
184 static struct pci_driver e1000_driver = {
185         .name     = e1000_driver_name,
186         .id_table = e1000_pci_tbl,
187         .probe    = e1000_probe,
188         .remove   = __devexit_p(e1000_remove),
189         /* Power Managment Hooks */
190 #ifdef CONFIG_PM
191         .suspend  = e1000_suspend,
192         .resume   = e1000_resume
193 #endif
194 };
195
196 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
197 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
198 MODULE_LICENSE("GPL");
199
200 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
201 module_param(debug, int, 0);
202 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
203
204 /**
205  * e1000_init_module - Driver Registration Routine
206  *
207  * e1000_init_module is the first routine called when the driver is
208  * loaded. All it does is register with the PCI subsystem.
209  **/
210
211 static int __init
212 e1000_init_module(void)
213 {
214         int ret;
215         printk(KERN_INFO "%s - version %s\n",
216                e1000_driver_string, e1000_driver_version);
217
218         printk(KERN_INFO "%s\n", e1000_copyright);
219
220         ret = pci_module_init(&e1000_driver);
221         if(ret >= 0) {
222                 register_reboot_notifier(&e1000_notifier_reboot);
223         }
224         return ret;
225 }
226
227 module_init(e1000_init_module);
228
229 /**
230  * e1000_exit_module - Driver Exit Cleanup Routine
231  *
232  * e1000_exit_module is called just before the driver is removed
233  * from memory.
234  **/
235
236 static void __exit
237 e1000_exit_module(void)
238 {
239         unregister_reboot_notifier(&e1000_notifier_reboot);
240         pci_unregister_driver(&e1000_driver);
241 }
242
243 module_exit(e1000_exit_module);
244
245
246 int
247 e1000_up(struct e1000_adapter *adapter)
248 {
249         struct net_device *netdev = adapter->netdev;
250         int err;
251
252         /* hardware has been reset, we need to reload some things */
253
254         /* Reset the PHY if it was previously powered down */
255         if(adapter->hw.media_type == e1000_media_type_copper) {
256                 uint16_t mii_reg;
257                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
258                 if(mii_reg & MII_CR_POWER_DOWN)
259                         e1000_phy_reset(&adapter->hw);
260         }
261
262         e1000_set_multi(netdev);
263
264         e1000_restore_vlan(adapter);
265
266         e1000_configure_tx(adapter);
267         e1000_setup_rctl(adapter);
268         e1000_configure_rx(adapter);
269         e1000_alloc_rx_buffers(adapter);
270
271         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
272                               SA_SHIRQ | SA_SAMPLE_RANDOM,
273                               netdev->name, netdev)))
274                 return err;
275
276         mod_timer(&adapter->watchdog_timer, jiffies);
277         e1000_irq_enable(adapter);
278
279         return 0;
280 }
281
282 void
283 e1000_down(struct e1000_adapter *adapter)
284 {
285         struct net_device *netdev = adapter->netdev;
286
287         e1000_irq_disable(adapter);
288         free_irq(adapter->pdev->irq, netdev);
289         del_timer_sync(&adapter->tx_fifo_stall_timer);
290         del_timer_sync(&adapter->watchdog_timer);
291         del_timer_sync(&adapter->phy_info_timer);
292         adapter->link_speed = 0;
293         adapter->link_duplex = 0;
294         netif_carrier_off(netdev);
295         netif_stop_queue(netdev);
296
297         e1000_reset(adapter);
298         e1000_clean_tx_ring(adapter);
299         e1000_clean_rx_ring(adapter);
300
301         /* If WoL is not enabled
302          * Power down the PHY so no link is implied when interface is down */
303         if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) {
304                 uint16_t mii_reg;
305                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
306                 mii_reg |= MII_CR_POWER_DOWN;
307                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
308         }
309 }
310
311 void
312 e1000_reset(struct e1000_adapter *adapter)
313 {
314         uint32_t pba;
315
316         /* Repartition Pba for greater than 9k mtu
317          * To take effect CTRL.RST is required.
318          */
319
320         if(adapter->hw.mac_type < e1000_82547) {
321                 if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
322                         pba = E1000_PBA_40K;
323                 else
324                         pba = E1000_PBA_48K;
325         } else {
326                 if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
327                         pba = E1000_PBA_22K;
328                 else
329                         pba = E1000_PBA_30K;
330                 adapter->tx_fifo_head = 0;
331                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
332                 adapter->tx_fifo_size =
333                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
334                 atomic_set(&adapter->tx_fifo_stall, 0);
335         }
336         E1000_WRITE_REG(&adapter->hw, PBA, pba);
337
338         /* flow control settings */
339         adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
340                                     E1000_FC_HIGH_DIFF;
341         adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
342                                    E1000_FC_LOW_DIFF;
343         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
344         adapter->hw.fc_send_xon = 1;
345         adapter->hw.fc = adapter->hw.original_fc;
346
347         e1000_reset_hw(&adapter->hw);
348         if(adapter->hw.mac_type >= e1000_82544)
349                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
350         if(e1000_init_hw(&adapter->hw))
351                 DPRINTK(PROBE, ERR, "Hardware Error\n");
352
353         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
354         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
355
356         e1000_reset_adaptive(&adapter->hw);
357         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
358 }
359
360 /**
361  * e1000_probe - Device Initialization Routine
362  * @pdev: PCI device information struct
363  * @ent: entry in e1000_pci_tbl
364  *
365  * Returns 0 on success, negative on failure
366  *
367  * e1000_probe initializes an adapter identified by a pci_dev structure.
368  * The OS initialization, configuring of the adapter private structure,
369  * and a hardware reset occur.
370  **/
371
372 static int __devinit
373 e1000_probe(struct pci_dev *pdev,
374             const struct pci_device_id *ent)
375 {
376         struct net_device *netdev;
377         struct e1000_adapter *adapter;
378         static int cards_found = 0;
379         unsigned long mmio_start;
380         int mmio_len;
381         int pci_using_dac;
382         int i;
383         int err;
384         uint16_t eeprom_data;
385
386         if((err = pci_enable_device(pdev)))
387                 return err;
388
389         if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
390                 pci_using_dac = 1;
391         } else {
392                 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
393                         E1000_ERR("No usable DMA configuration, aborting\n");
394                         return err;
395                 }
396                 pci_using_dac = 0;
397         }
398
399         if((err = pci_request_regions(pdev, e1000_driver_name)))
400                 return err;
401
402         pci_set_master(pdev);
403
404         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
405         if(!netdev) {
406                 err = -ENOMEM;
407                 goto err_alloc_etherdev;
408         }
409
410         SET_MODULE_OWNER(netdev);
411         SET_NETDEV_DEV(netdev, &pdev->dev);
412
413         pci_set_drvdata(pdev, netdev);
414         adapter = netdev->priv;
415         adapter->netdev = netdev;
416         adapter->pdev = pdev;
417         adapter->hw.back = adapter;
418         adapter->msg_enable = (1 << debug) - 1;
419
420         mmio_start = pci_resource_start(pdev, BAR_0);
421         mmio_len = pci_resource_len(pdev, BAR_0);
422
423         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
424         if(!adapter->hw.hw_addr) {
425                 err = -EIO;
426                 goto err_ioremap;
427         }
428
429         for(i = BAR_1; i <= BAR_5; i++) {
430                 if(pci_resource_len(pdev, i) == 0)
431                         continue;
432                 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
433                         adapter->hw.io_base = pci_resource_start(pdev, i);
434                         break;
435                 }
436         }
437
438         netdev->open = &e1000_open;
439         netdev->stop = &e1000_close;
440         netdev->hard_start_xmit = &e1000_xmit_frame;
441         netdev->get_stats = &e1000_get_stats;
442         netdev->set_multicast_list = &e1000_set_multi;
443         netdev->set_mac_address = &e1000_set_mac;
444         netdev->change_mtu = &e1000_change_mtu;
445         netdev->do_ioctl = &e1000_ioctl;
446         set_ethtool_ops(netdev);
447         netdev->tx_timeout = &e1000_tx_timeout;
448         netdev->watchdog_timeo = 5 * HZ;
449 #ifdef CONFIG_E1000_NAPI
450         netdev->poll = &e1000_clean;
451         netdev->weight = 64;
452 #endif
453         netdev->vlan_rx_register = e1000_vlan_rx_register;
454         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
455         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
456 #ifdef CONFIG_NET_POLL_CONTROLLER
457         netdev->poll_controller = e1000_netpoll;
458 #endif
459         strcpy(netdev->name, pci_name(pdev));
460
461         netdev->mem_start = mmio_start;
462         netdev->mem_end = mmio_start + mmio_len;
463         netdev->base_addr = adapter->hw.io_base;
464
465         adapter->bd_number = cards_found;
466
467         /* setup the private structure */
468
469         if((err = e1000_sw_init(adapter)))
470                 goto err_sw_init;
471
472         if(adapter->hw.mac_type >= e1000_82543) {
473                 netdev->features = NETIF_F_SG |
474                                    NETIF_F_HW_CSUM |
475                                    NETIF_F_HW_VLAN_TX |
476                                    NETIF_F_HW_VLAN_RX |
477                                    NETIF_F_HW_VLAN_FILTER;
478         } else {
479                 netdev->features = NETIF_F_SG;
480         }
481
482 #ifdef NETIF_F_TSO
483         /* Disbaled for now until root-cause is found for
484          * hangs reported against non-IA archs.  TSO can be
485          * enabled using ethtool -K eth<x> tso on */
486         if((adapter->hw.mac_type >= e1000_82544) &&
487            (adapter->hw.mac_type != e1000_82547))
488                 netdev->features |= NETIF_F_TSO;
489 #endif
490         if(pci_using_dac)
491                 netdev->features |= NETIF_F_HIGHDMA;
492
493         /* hard_start_xmit is safe against parallel locking */
494         netdev->features |= NETIF_F_LLTX; 
495  
496         /* before reading the EEPROM, reset the controller to 
497          * put the device in a known good starting state */
498         
499         e1000_reset_hw(&adapter->hw);
500
501         /* make sure the EEPROM is good */
502
503         if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
504                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
505                 err = -EIO;
506                 goto err_eeprom;
507         }
508
509         /* copy the MAC address out of the EEPROM */
510
511         if (e1000_read_mac_addr(&adapter->hw))
512                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
513         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
514
515         if(!is_valid_ether_addr(netdev->dev_addr)) {
516                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
517                 err = -EIO;
518                 goto err_eeprom;
519         }
520
521         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
522
523         e1000_get_bus_info(&adapter->hw);
524
525         init_timer(&adapter->tx_fifo_stall_timer);
526         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
527         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
528
529         init_timer(&adapter->watchdog_timer);
530         adapter->watchdog_timer.function = &e1000_watchdog;
531         adapter->watchdog_timer.data = (unsigned long) adapter;
532
533         init_timer(&adapter->phy_info_timer);
534         adapter->phy_info_timer.function = &e1000_update_phy_info;
535         adapter->phy_info_timer.data = (unsigned long) adapter;
536
537         INIT_WORK(&adapter->tx_timeout_task,
538                 (void (*)(void *))e1000_tx_timeout_task, netdev);
539
540         /* we're going to reset, so assume we have no link for now */
541
542         netif_carrier_off(netdev);
543         netif_stop_queue(netdev);
544
545         e1000_check_options(adapter);
546
547         /* Initial Wake on LAN setting
548          * If APM wake is enabled in the EEPROM,
549          * enable the ACPI Magic Packet filter
550          */
551
552         switch(adapter->hw.mac_type) {
553         case e1000_82542_rev2_0:
554         case e1000_82542_rev2_1:
555         case e1000_82543:
556                 break;
557         case e1000_82546:
558         case e1000_82546_rev_3:
559                 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
560                    && (adapter->hw.media_type == e1000_media_type_copper)) {
561                         e1000_read_eeprom(&adapter->hw,
562                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
563                         break;
564                 }
565                 /* Fall Through */
566         default:
567                 e1000_read_eeprom(&adapter->hw,
568                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
569                 break;
570         }
571         if(eeprom_data & E1000_EEPROM_APME)
572                 adapter->wol |= E1000_WUFC_MAG;
573
574         /* reset the hardware with the new settings */
575         e1000_reset(adapter);
576
577         strcpy(netdev->name, "eth%d");
578         if((err = register_netdev(netdev)))
579                 goto err_register;
580
581         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
582
583         cards_found++;
584         return 0;
585
586 err_register:
587 err_sw_init:
588 err_eeprom:
589         iounmap(adapter->hw.hw_addr);
590 err_ioremap:
591         free_netdev(netdev);
592 err_alloc_etherdev:
593         pci_release_regions(pdev);
594         return err;
595 }
596
597 /**
598  * e1000_remove - Device Removal Routine
599  * @pdev: PCI device information struct
600  *
601  * e1000_remove is called by the PCI subsystem to alert the driver
602  * that it should release a PCI device.  The could be caused by a
603  * Hot-Plug event, or because the driver is going to be removed from
604  * memory.
605  **/
606
607 static void __devexit
608 e1000_remove(struct pci_dev *pdev)
609 {
610         struct net_device *netdev = pci_get_drvdata(pdev);
611         struct e1000_adapter *adapter = netdev->priv;
612         uint32_t manc;
613
614         if(adapter->hw.mac_type >= e1000_82540 &&
615            adapter->hw.media_type == e1000_media_type_copper) {
616                 manc = E1000_READ_REG(&adapter->hw, MANC);
617                 if(manc & E1000_MANC_SMBUS_EN) {
618                         manc |= E1000_MANC_ARP_EN;
619                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
620                 }
621         }
622
623         unregister_netdev(netdev);
624
625         e1000_phy_hw_reset(&adapter->hw);
626
627         iounmap(adapter->hw.hw_addr);
628         pci_release_regions(pdev);
629
630         free_netdev(netdev);
631
632         pci_disable_device(pdev);
633 }
634
635 /**
636  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
637  * @adapter: board private structure to initialize
638  *
639  * e1000_sw_init initializes the Adapter private data structure.
640  * Fields are initialized based on PCI device information and
641  * OS network device settings (MTU size).
642  **/
643
644 static int __devinit
645 e1000_sw_init(struct e1000_adapter *adapter)
646 {
647         struct e1000_hw *hw = &adapter->hw;
648         struct net_device *netdev = adapter->netdev;
649         struct pci_dev *pdev = adapter->pdev;
650
651         /* PCI config space info */
652
653         hw->vendor_id = pdev->vendor;
654         hw->device_id = pdev->device;
655         hw->subsystem_vendor_id = pdev->subsystem_vendor;
656         hw->subsystem_id = pdev->subsystem_device;
657
658         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
659
660         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
661
662         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
663         hw->max_frame_size = netdev->mtu +
664                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
665         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
666
667         /* identify the MAC */
668
669         if(e1000_set_mac_type(hw)) {
670                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
671                 return -EIO;
672         }
673
674         /* initialize eeprom parameters */
675
676         e1000_init_eeprom_params(hw);
677
678         switch(hw->mac_type) {
679         default:
680                 break;
681         case e1000_82541:
682         case e1000_82547:
683         case e1000_82541_rev_2:
684         case e1000_82547_rev_2:
685                 hw->phy_init_script = 1;
686                 break;
687         }
688
689         e1000_set_media_type(hw);
690
691         hw->wait_autoneg_complete = FALSE;
692         hw->tbi_compatibility_en = TRUE;
693         hw->adaptive_ifs = TRUE;
694
695         /* Copper options */
696
697         if(hw->media_type == e1000_media_type_copper) {
698                 hw->mdix = AUTO_ALL_MODES;
699                 hw->disable_polarity_correction = FALSE;
700                 hw->master_slave = E1000_MASTER_SLAVE;
701         }
702
703         atomic_set(&adapter->irq_sem, 1);
704         spin_lock_init(&adapter->stats_lock);
705         spin_lock_init(&adapter->tx_lock);
706
707         return 0;
708 }
709
710 /**
711  * e1000_open - Called when a network interface is made active
712  * @netdev: network interface device structure
713  *
714  * Returns 0 on success, negative value on failure
715  *
716  * The open entry point is called when a network interface is made
717  * active by the system (IFF_UP).  At this point all resources needed
718  * for transmit and receive operations are allocated, the interrupt
719  * handler is registered with the OS, the watchdog timer is started,
720  * and the stack is notified that the interface is ready.
721  **/
722
723 static int
724 e1000_open(struct net_device *netdev)
725 {
726         struct e1000_adapter *adapter = netdev->priv;
727         int err;
728
729         /* allocate transmit descriptors */
730
731         if((err = e1000_setup_tx_resources(adapter)))
732                 goto err_setup_tx;
733
734         /* allocate receive descriptors */
735
736         if((err = e1000_setup_rx_resources(adapter)))
737                 goto err_setup_rx;
738
739         if((err = e1000_up(adapter)))
740                 goto err_up;
741
742         return E1000_SUCCESS;
743
744 err_up:
745         e1000_free_rx_resources(adapter);
746 err_setup_rx:
747         e1000_free_tx_resources(adapter);
748 err_setup_tx:
749         e1000_reset(adapter);
750
751         return err;
752 }
753
754 /**
755  * e1000_close - Disables a network interface
756  * @netdev: network interface device structure
757  *
758  * Returns 0, this is not allowed to fail
759  *
760  * The close entry point is called when an interface is de-activated
761  * by the OS.  The hardware is still under the drivers control, but
762  * needs to be disabled.  A global MAC reset is issued to stop the
763  * hardware, and all transmit and receive resources are freed.
764  **/
765
766 static int
767 e1000_close(struct net_device *netdev)
768 {
769         struct e1000_adapter *adapter = netdev->priv;
770
771         e1000_down(adapter);
772
773         e1000_free_tx_resources(adapter);
774         e1000_free_rx_resources(adapter);
775
776         return 0;
777 }
778
779 /**
780  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
781  * @adapter: board private structure
782  *
783  * Return 0 on success, negative on failure
784  **/
785
786 int
787 e1000_setup_tx_resources(struct e1000_adapter *adapter)
788 {
789         struct e1000_desc_ring *txdr = &adapter->tx_ring;
790         struct pci_dev *pdev = adapter->pdev;
791         int size;
792
793         size = sizeof(struct e1000_buffer) * txdr->count;
794         txdr->buffer_info = vmalloc(size);
795         if(!txdr->buffer_info) {
796                 DPRINTK(PROBE, ERR, 
797                 "Unble to Allocate Memory for the Transmit descriptor ring\n");
798                 return -ENOMEM;
799         }
800         memset(txdr->buffer_info, 0, size);
801
802         /* round up to nearest 4K */
803
804         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
805         E1000_ROUNDUP(txdr->size, 4096);
806
807         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
808         if(!txdr->desc) {
809                 DPRINTK(PROBE, ERR, 
810                 "Unble to Allocate Memory for the Transmit descriptor ring\n");
811                 vfree(txdr->buffer_info);
812                 return -ENOMEM;
813         }
814         memset(txdr->desc, 0, txdr->size);
815
816         txdr->next_to_use = 0;
817         txdr->next_to_clean = 0;
818
819         return 0;
820 }
821
822 /**
823  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
824  * @adapter: board private structure
825  *
826  * Configure the Tx unit of the MAC after a reset.
827  **/
828
829 static void
830 e1000_configure_tx(struct e1000_adapter *adapter)
831 {
832         uint64_t tdba = adapter->tx_ring.dma;
833         uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
834         uint32_t tctl, tipg;
835
836         E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
837         E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
838
839         E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
840
841         /* Setup the HW Tx Head and Tail descriptor pointers */
842
843         E1000_WRITE_REG(&adapter->hw, TDH, 0);
844         E1000_WRITE_REG(&adapter->hw, TDT, 0);
845
846         /* Set the default values for the Tx Inter Packet Gap timer */
847
848         switch (adapter->hw.mac_type) {
849         case e1000_82542_rev2_0:
850         case e1000_82542_rev2_1:
851                 tipg = DEFAULT_82542_TIPG_IPGT;
852                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
853                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
854                 break;
855         default:
856                 if(adapter->hw.media_type == e1000_media_type_fiber ||
857                    adapter->hw.media_type == e1000_media_type_internal_serdes)
858                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
859                 else
860                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
861                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
862                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
863         }
864         E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
865
866         /* Set the Tx Interrupt Delay register */
867
868         E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
869         if(adapter->hw.mac_type >= e1000_82540)
870                 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
871
872         /* Program the Transmit Control Register */
873
874         tctl = E1000_READ_REG(&adapter->hw, TCTL);
875
876         tctl &= ~E1000_TCTL_CT;
877         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
878                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
879
880         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
881
882         e1000_config_collision_dist(&adapter->hw);
883
884         /* Setup Transmit Descriptor Settings for eop descriptor */
885         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
886                 E1000_TXD_CMD_IFCS;
887
888         if(adapter->hw.mac_type < e1000_82543)
889                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
890         else
891                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
892
893         /* Cache if we're 82544 running in PCI-X because we'll
894          * need this to apply a workaround later in the send path. */
895         if(adapter->hw.mac_type == e1000_82544 &&
896            adapter->hw.bus_type == e1000_bus_type_pcix)
897                 adapter->pcix_82544 = 1;
898 }
899
900 /**
901  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
902  * @adapter: board private structure
903  *
904  * Returns 0 on success, negative on failure
905  **/
906
907 int
908 e1000_setup_rx_resources(struct e1000_adapter *adapter)
909 {
910         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
911         struct pci_dev *pdev = adapter->pdev;
912         int size;
913
914         size = sizeof(struct e1000_buffer) * rxdr->count;
915         rxdr->buffer_info = vmalloc(size);
916         if(!rxdr->buffer_info) {
917                 DPRINTK(PROBE, ERR, 
918                 "Unble to Allocate Memory for the Recieve descriptor ring\n");
919                 return -ENOMEM;
920         }
921         memset(rxdr->buffer_info, 0, size);
922
923         /* Round up to nearest 4K */
924
925         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
926         E1000_ROUNDUP(rxdr->size, 4096);
927
928         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
929
930         if(!rxdr->desc) {
931                 DPRINTK(PROBE, ERR, 
932                 "Unble to Allocate Memory for the Recieve descriptor ring\n");
933                 vfree(rxdr->buffer_info);
934                 return -ENOMEM;
935         }
936         memset(rxdr->desc, 0, rxdr->size);
937
938         rxdr->next_to_clean = 0;
939         rxdr->next_to_use = 0;
940
941         return 0;
942 }
943
944 /**
945  * e1000_setup_rctl - configure the receive control register
946  * @adapter: Board private structure
947  **/
948
949 static void
950 e1000_setup_rctl(struct e1000_adapter *adapter)
951 {
952         uint32_t rctl;
953
954         rctl = E1000_READ_REG(&adapter->hw, RCTL);
955
956         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
957
958         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
959                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
960                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
961
962         if(adapter->hw.tbi_compatibility_on == 1)
963                 rctl |= E1000_RCTL_SBP;
964         else
965                 rctl &= ~E1000_RCTL_SBP;
966
967         /* Setup buffer sizes */
968         rctl &= ~(E1000_RCTL_SZ_4096);
969         rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE);
970         switch (adapter->rx_buffer_len) {
971         case E1000_RXBUFFER_2048:
972         default:
973                 rctl |= E1000_RCTL_SZ_2048;
974                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
975                 break;
976         case E1000_RXBUFFER_4096:
977                 rctl |= E1000_RCTL_SZ_4096;
978                 break;
979         case E1000_RXBUFFER_8192:
980                 rctl |= E1000_RCTL_SZ_8192;
981                 break;
982         case E1000_RXBUFFER_16384:
983                 rctl |= E1000_RCTL_SZ_16384;
984                 break;
985         }
986
987         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
988 }
989
990 /**
991  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
992  * @adapter: board private structure
993  *
994  * Configure the Rx unit of the MAC after a reset.
995  **/
996
997 static void
998 e1000_configure_rx(struct e1000_adapter *adapter)
999 {
1000         uint64_t rdba = adapter->rx_ring.dma;
1001         uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1002         uint32_t rctl;
1003         uint32_t rxcsum;
1004
1005         /* disable receives while setting up the descriptors */
1006         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1007         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1008
1009         /* set the Receive Delay Timer Register */
1010         E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1011
1012         if(adapter->hw.mac_type >= e1000_82540) {
1013                 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1014                 if(adapter->itr > 1)
1015                         E1000_WRITE_REG(&adapter->hw, ITR,
1016                                 1000000000 / (adapter->itr * 256));
1017         }
1018
1019         /* Setup the Base and Length of the Rx Descriptor Ring */
1020         E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1021         E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1022
1023         E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1024
1025         /* Setup the HW Rx Head and Tail Descriptor Pointers */
1026         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1027         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1028
1029         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1030         if((adapter->hw.mac_type >= e1000_82543) &&
1031            (adapter->rx_csum == TRUE)) {
1032                 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
1033                 rxcsum |= E1000_RXCSUM_TUOFL;
1034                 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1035         }
1036
1037         /* Enable Receives */
1038         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1039 }
1040
1041 /**
1042  * e1000_free_tx_resources - Free Tx Resources
1043  * @adapter: board private structure
1044  *
1045  * Free all transmit software resources
1046  **/
1047
1048 void
1049 e1000_free_tx_resources(struct e1000_adapter *adapter)
1050 {
1051         struct pci_dev *pdev = adapter->pdev;
1052
1053         e1000_clean_tx_ring(adapter);
1054
1055         vfree(adapter->tx_ring.buffer_info);
1056         adapter->tx_ring.buffer_info = NULL;
1057
1058         pci_free_consistent(pdev, adapter->tx_ring.size,
1059                             adapter->tx_ring.desc, adapter->tx_ring.dma);
1060
1061         adapter->tx_ring.desc = NULL;
1062 }
1063
1064 /**
1065  * e1000_clean_tx_ring - Free Tx Buffers
1066  * @adapter: board private structure
1067  **/
1068
1069 static void
1070 e1000_clean_tx_ring(struct e1000_adapter *adapter)
1071 {
1072         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1073         struct e1000_buffer *buffer_info;
1074         struct pci_dev *pdev = adapter->pdev;
1075         unsigned long size;
1076         unsigned int i;
1077
1078         /* Free all the Tx ring sk_buffs */
1079
1080         for(i = 0; i < tx_ring->count; i++) {
1081                 buffer_info = &tx_ring->buffer_info[i];
1082                 if(buffer_info->skb) {
1083
1084                         pci_unmap_page(pdev,
1085                                        buffer_info->dma,
1086                                        buffer_info->length,
1087                                        PCI_DMA_TODEVICE);
1088
1089                         dev_kfree_skb(buffer_info->skb);
1090
1091                         buffer_info->skb = NULL;
1092                 }
1093         }
1094
1095         size = sizeof(struct e1000_buffer) * tx_ring->count;
1096         memset(tx_ring->buffer_info, 0, size);
1097
1098         /* Zero out the descriptor ring */
1099
1100         memset(tx_ring->desc, 0, tx_ring->size);
1101
1102         tx_ring->next_to_use = 0;
1103         tx_ring->next_to_clean = 0;
1104
1105         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1106         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1107 }
1108
1109 /**
1110  * e1000_free_rx_resources - Free Rx Resources
1111  * @adapter: board private structure
1112  *
1113  * Free all receive software resources
1114  **/
1115
1116 void
1117 e1000_free_rx_resources(struct e1000_adapter *adapter)
1118 {
1119         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1120         struct pci_dev *pdev = adapter->pdev;
1121
1122         e1000_clean_rx_ring(adapter);
1123
1124         vfree(rx_ring->buffer_info);
1125         rx_ring->buffer_info = NULL;
1126
1127         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1128
1129         rx_ring->desc = NULL;
1130 }
1131
1132 /**
1133  * e1000_clean_rx_ring - Free Rx Buffers
1134  * @adapter: board private structure
1135  **/
1136
1137 static void
1138 e1000_clean_rx_ring(struct e1000_adapter *adapter)
1139 {
1140         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1141         struct e1000_buffer *buffer_info;
1142         struct pci_dev *pdev = adapter->pdev;
1143         unsigned long size;
1144         unsigned int i;
1145
1146         /* Free all the Rx ring sk_buffs */
1147
1148         for(i = 0; i < rx_ring->count; i++) {
1149                 buffer_info = &rx_ring->buffer_info[i];
1150                 if(buffer_info->skb) {
1151
1152                         pci_unmap_single(pdev,
1153                                          buffer_info->dma,
1154                                          buffer_info->length,
1155                                          PCI_DMA_FROMDEVICE);
1156
1157                         dev_kfree_skb(buffer_info->skb);
1158                         buffer_info->skb = NULL;
1159                 }
1160         }
1161
1162         size = sizeof(struct e1000_buffer) * rx_ring->count;
1163         memset(rx_ring->buffer_info, 0, size);
1164
1165         /* Zero out the descriptor ring */
1166
1167         memset(rx_ring->desc, 0, rx_ring->size);
1168
1169         rx_ring->next_to_clean = 0;
1170         rx_ring->next_to_use = 0;
1171
1172         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1173         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1174 }
1175
1176 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1177  * and memory write and invalidate disabled for certain operations
1178  */
1179 static void
1180 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1181 {
1182         struct net_device *netdev = adapter->netdev;
1183         uint32_t rctl;
1184
1185         e1000_pci_clear_mwi(&adapter->hw);
1186
1187         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1188         rctl |= E1000_RCTL_RST;
1189         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1190         E1000_WRITE_FLUSH(&adapter->hw);
1191         mdelay(5);
1192
1193         if(netif_running(netdev))
1194                 e1000_clean_rx_ring(adapter);
1195 }
1196
1197 static void
1198 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1199 {
1200         struct net_device *netdev = adapter->netdev;
1201         uint32_t rctl;
1202
1203         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1204         rctl &= ~E1000_RCTL_RST;
1205         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1206         E1000_WRITE_FLUSH(&adapter->hw);
1207         mdelay(5);
1208
1209         if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1210                 e1000_pci_set_mwi(&adapter->hw);
1211
1212         if(netif_running(netdev)) {
1213                 e1000_configure_rx(adapter);
1214                 e1000_alloc_rx_buffers(adapter);
1215         }
1216 }
1217
1218 /**
1219  * e1000_set_mac - Change the Ethernet Address of the NIC
1220  * @netdev: network interface device structure
1221  * @p: pointer to an address structure
1222  *
1223  * Returns 0 on success, negative on failure
1224  **/
1225
1226 static int
1227 e1000_set_mac(struct net_device *netdev, void *p)
1228 {
1229         struct e1000_adapter *adapter = netdev->priv;
1230         struct sockaddr *addr = p;
1231
1232         if(!is_valid_ether_addr(addr->sa_data))
1233                 return -EADDRNOTAVAIL;
1234
1235         /* 82542 2.0 needs to be in reset to write receive address registers */
1236
1237         if(adapter->hw.mac_type == e1000_82542_rev2_0)
1238                 e1000_enter_82542_rst(adapter);
1239
1240         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1241         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1242
1243         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1244
1245         if(adapter->hw.mac_type == e1000_82542_rev2_0)
1246                 e1000_leave_82542_rst(adapter);
1247
1248         return 0;
1249 }
1250
1251 /**
1252  * e1000_set_multi - Multicast and Promiscuous mode set
1253  * @netdev: network interface device structure
1254  *
1255  * The set_multi entry point is called whenever the multicast address
1256  * list or the network interface flags are updated.  This routine is
1257  * responsible for configuring the hardware for proper multicast,
1258  * promiscuous mode, and all-multi behavior.
1259  **/
1260
1261 static void
1262 e1000_set_multi(struct net_device *netdev)
1263 {
1264         struct e1000_adapter *adapter = netdev->priv;
1265         struct e1000_hw *hw = &adapter->hw;
1266         struct dev_mc_list *mc_ptr;
1267         uint32_t rctl;
1268         uint32_t hash_value;
1269         int i;
1270         unsigned long flags;
1271
1272         /* Check for Promiscuous and All Multicast modes */
1273
1274         spin_lock_irqsave(&adapter->tx_lock, flags);
1275
1276         rctl = E1000_READ_REG(hw, RCTL);
1277
1278         if(netdev->flags & IFF_PROMISC) {
1279                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1280         } else if(netdev->flags & IFF_ALLMULTI) {
1281                 rctl |= E1000_RCTL_MPE;
1282                 rctl &= ~E1000_RCTL_UPE;
1283         } else {
1284                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1285         }
1286
1287         E1000_WRITE_REG(hw, RCTL, rctl);
1288
1289         /* 82542 2.0 needs to be in reset to write receive address registers */
1290
1291         if(hw->mac_type == e1000_82542_rev2_0)
1292                 e1000_enter_82542_rst(adapter);
1293
1294         /* load the first 14 multicast address into the exact filters 1-14
1295          * RAR 0 is used for the station MAC adddress
1296          * if there are not 14 addresses, go ahead and clear the filters
1297          */
1298         mc_ptr = netdev->mc_list;
1299
1300         for(i = 1; i < E1000_RAR_ENTRIES; i++) {
1301                 if(mc_ptr) {
1302                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1303                         mc_ptr = mc_ptr->next;
1304                 } else {
1305                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1306                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1307                 }
1308         }
1309
1310         /* clear the old settings from the multicast hash table */
1311
1312         for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1313                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1314
1315         /* load any remaining addresses into the hash table */
1316
1317         for(; mc_ptr; mc_ptr = mc_ptr->next) {
1318                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1319                 e1000_mta_set(hw, hash_value);
1320         }
1321
1322         if(hw->mac_type == e1000_82542_rev2_0)
1323                 e1000_leave_82542_rst(adapter);
1324
1325         spin_unlock_irqrestore(&adapter->tx_lock, flags);
1326 }
1327
1328 /* Need to wait a few seconds after link up to get diagnostic information from
1329  * the phy */
1330
1331 static void
1332 e1000_update_phy_info(unsigned long data)
1333 {
1334         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1335         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1336 }
1337
1338 /**
1339  * e1000_82547_tx_fifo_stall - Timer Call-back
1340  * @data: pointer to adapter cast into an unsigned long
1341  **/
1342
1343 static void
1344 e1000_82547_tx_fifo_stall(unsigned long data)
1345 {
1346         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1347         struct net_device *netdev = adapter->netdev;
1348         uint32_t tctl;
1349
1350         if(atomic_read(&adapter->tx_fifo_stall)) {
1351                 if((E1000_READ_REG(&adapter->hw, TDT) ==
1352                     E1000_READ_REG(&adapter->hw, TDH)) &&
1353                    (E1000_READ_REG(&adapter->hw, TDFT) ==
1354                     E1000_READ_REG(&adapter->hw, TDFH)) &&
1355                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
1356                     E1000_READ_REG(&adapter->hw, TDFHS))) {
1357                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
1358                         E1000_WRITE_REG(&adapter->hw, TCTL,
1359                                         tctl & ~E1000_TCTL_EN);
1360                         E1000_WRITE_REG(&adapter->hw, TDFT,
1361                                         adapter->tx_head_addr);
1362                         E1000_WRITE_REG(&adapter->hw, TDFH,
1363                                         adapter->tx_head_addr);
1364                         E1000_WRITE_REG(&adapter->hw, TDFTS,
1365                                         adapter->tx_head_addr);
1366                         E1000_WRITE_REG(&adapter->hw, TDFHS,
1367                                         adapter->tx_head_addr);
1368                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1369                         E1000_WRITE_FLUSH(&adapter->hw);
1370
1371                         adapter->tx_fifo_head = 0;
1372                         atomic_set(&adapter->tx_fifo_stall, 0);
1373                         netif_wake_queue(netdev);
1374                 } else {
1375                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1376                 }
1377         }
1378 }
1379
1380 /**
1381  * e1000_watchdog - Timer Call-back
1382  * @data: pointer to netdev cast into an unsigned long
1383  **/
1384
1385 static void
1386 e1000_watchdog(unsigned long data)
1387 {
1388         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1389         struct net_device *netdev = adapter->netdev;
1390         struct e1000_desc_ring *txdr = &adapter->tx_ring;
1391         unsigned int i;
1392         uint32_t link;
1393
1394         e1000_check_for_link(&adapter->hw);
1395
1396         if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1397            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1398                 link = !adapter->hw.serdes_link_down;
1399         else
1400                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1401
1402         if(link) {
1403                 if(!netif_carrier_ok(netdev)) {
1404                         e1000_get_speed_and_duplex(&adapter->hw,
1405                                                    &adapter->link_speed,
1406                                                    &adapter->link_duplex);
1407
1408                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1409                                adapter->link_speed,
1410                                adapter->link_duplex == FULL_DUPLEX ?
1411                                "Full Duplex" : "Half Duplex");
1412
1413                         netif_carrier_on(netdev);
1414                         netif_wake_queue(netdev);
1415                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1416                         adapter->smartspeed = 0;
1417                 }
1418         } else {
1419                 if(netif_carrier_ok(netdev)) {
1420                         adapter->link_speed = 0;
1421                         adapter->link_duplex = 0;
1422                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
1423                         netif_carrier_off(netdev);
1424                         netif_stop_queue(netdev);
1425                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1426                 }
1427
1428                 e1000_smartspeed(adapter);
1429         }
1430
1431         e1000_update_stats(adapter);
1432
1433         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1434         adapter->tpt_old = adapter->stats.tpt;
1435         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1436         adapter->colc_old = adapter->stats.colc;
1437
1438         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1439         adapter->gorcl_old = adapter->stats.gorcl;
1440         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1441         adapter->gotcl_old = adapter->stats.gotcl;
1442
1443         e1000_update_adaptive(&adapter->hw);
1444
1445         if(!netif_carrier_ok(netdev)) {
1446                 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1447                         /* We've lost link, so the controller stops DMA,
1448                          * but we've got queued Tx work that's never going
1449                          * to get done, so reset controller to flush Tx.
1450                          * (Do the reset outside of interrupt context). */
1451                         schedule_work(&adapter->tx_timeout_task);
1452                 }
1453         }
1454
1455         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1456         if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1457                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1458                  * asymmetrical Tx or Rx gets ITR=8000; everyone
1459                  * else is between 2000-8000. */
1460                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1461                 uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
1462                         adapter->gotcl - adapter->gorcl :
1463                         adapter->gorcl - adapter->gotcl) / 10000;
1464                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1465                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1466         }
1467
1468         /* Cause software interrupt to ensure rx ring is cleaned */
1469         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1470
1471         /* Early detection of hung controller */
1472         i = txdr->next_to_clean;
1473         if(txdr->buffer_info[i].dma &&
1474            time_after(jiffies, txdr->buffer_info[i].time_stamp + HZ) &&
1475            !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF))
1476                 netif_stop_queue(netdev);
1477
1478         /* Reset the timer */
1479         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1480 }
1481
1482 #define E1000_TX_FLAGS_CSUM             0x00000001
1483 #define E1000_TX_FLAGS_VLAN             0x00000002
1484 #define E1000_TX_FLAGS_TSO              0x00000004
1485 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
1486 #define E1000_TX_FLAGS_VLAN_SHIFT       16
1487
1488 static inline boolean_t
1489 e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1490 {
1491 #ifdef NETIF_F_TSO
1492         struct e1000_context_desc *context_desc;
1493         unsigned int i;
1494         uint32_t cmd_length = 0;
1495         uint16_t ipcse, tucse, mss;
1496         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1497
1498         if(skb_shinfo(skb)->tso_size) {
1499                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1500                 mss = skb_shinfo(skb)->tso_size;
1501                 skb->nh.iph->tot_len = 0;
1502                 skb->nh.iph->check = 0;
1503                 skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr,
1504                                                       skb->nh.iph->daddr,
1505                                                       0,
1506                                                       IPPROTO_TCP,
1507                                                       0);
1508                 ipcss = skb->nh.raw - skb->data;
1509                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
1510                 ipcse = skb->h.raw - skb->data - 1;
1511                 tucss = skb->h.raw - skb->data;
1512                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1513                 tucse = 0;
1514
1515                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
1516                                E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
1517                                (skb->len - (hdr_len)));
1518
1519                 i = adapter->tx_ring.next_to_use;
1520                 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1521
1522                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
1523                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
1524                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
1525                 context_desc->upper_setup.tcp_fields.tucss = tucss;
1526                 context_desc->upper_setup.tcp_fields.tucso = tucso;
1527                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1528                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
1529                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1530                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1531
1532                 if(++i == adapter->tx_ring.count) i = 0;
1533                 adapter->tx_ring.next_to_use = i;
1534
1535                 return TRUE;
1536         }
1537 #endif
1538
1539         return FALSE;
1540 }
1541
1542 static inline boolean_t
1543 e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1544 {
1545         struct e1000_context_desc *context_desc;
1546         unsigned int i;
1547         uint8_t css;
1548
1549         if(likely(skb->ip_summed == CHECKSUM_HW)) {
1550                 css = skb->h.raw - skb->data;
1551
1552                 i = adapter->tx_ring.next_to_use;
1553                 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1554
1555                 context_desc->upper_setup.tcp_fields.tucss = css;
1556                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1557                 context_desc->upper_setup.tcp_fields.tucse = 0;
1558                 context_desc->tcp_seg_setup.data = 0;
1559                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1560
1561                 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
1562                 adapter->tx_ring.next_to_use = i;
1563
1564                 return TRUE;
1565         }
1566
1567         return FALSE;
1568 }
1569
1570 #define E1000_MAX_TXD_PWR       12
1571 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
1572
1573 static inline int
1574 e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
1575         unsigned int first, unsigned int max_per_txd,
1576         unsigned int nr_frags, unsigned int mss)
1577 {
1578         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1579         struct e1000_buffer *buffer_info;
1580         unsigned int len = skb->len;
1581         unsigned int offset = 0, size, count = 0, i;
1582         unsigned int f;
1583         len -= skb->data_len;
1584
1585         i = tx_ring->next_to_use;
1586
1587         while(len) {
1588                 buffer_info = &tx_ring->buffer_info[i];
1589                 size = min(len, max_per_txd);
1590 #ifdef NETIF_F_TSO
1591                 /* Workaround for premature desc write-backs
1592                  * in TSO mode.  Append 4-byte sentinel desc */
1593                 if(unlikely(mss && !nr_frags && size == len && size > 8))
1594                         size -= 4;
1595 #endif
1596                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
1597                  * terminating buffers within evenly-aligned dwords. */
1598                 if(unlikely(adapter->pcix_82544 &&
1599                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
1600                    size > 4))
1601                         size -= 4;
1602
1603                 buffer_info->length = size;
1604                 buffer_info->dma =
1605                         pci_map_single(adapter->pdev,
1606                                 skb->data + offset,
1607                                 size,
1608                                 PCI_DMA_TODEVICE);
1609                 buffer_info->time_stamp = jiffies;
1610
1611                 len -= size;
1612                 offset += size;
1613                 count++;
1614                 if(unlikely(++i == tx_ring->count)) i = 0;
1615         }
1616
1617         for(f = 0; f < nr_frags; f++) {
1618                 struct skb_frag_struct *frag;
1619
1620                 frag = &skb_shinfo(skb)->frags[f];
1621                 len = frag->size;
1622                 offset = frag->page_offset;
1623
1624                 while(len) {
1625                         buffer_info = &tx_ring->buffer_info[i];
1626                         size = min(len, max_per_txd);
1627 #ifdef NETIF_F_TSO
1628                         /* Workaround for premature desc write-backs
1629                          * in TSO mode.  Append 4-byte sentinel desc */
1630                         if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
1631                                 size -= 4;
1632 #endif
1633                         /* Workaround for potential 82544 hang in PCI-X.
1634                          * Avoid terminating buffers within evenly-aligned
1635                          * dwords. */
1636                         if(unlikely(adapter->pcix_82544 &&
1637                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
1638                            size > 4))
1639                                 size -= 4;
1640
1641                         buffer_info->length = size;
1642                         buffer_info->dma =
1643                                 pci_map_page(adapter->pdev,
1644                                         frag->page,
1645                                         offset,
1646                                         size,
1647                                         PCI_DMA_TODEVICE);
1648                         buffer_info->time_stamp = jiffies;
1649
1650                         len -= size;
1651                         offset += size;
1652                         count++;
1653                         if(unlikely(++i == tx_ring->count)) i = 0;
1654                 }
1655         }
1656
1657         i = (i == 0) ? tx_ring->count - 1 : i - 1;
1658         tx_ring->buffer_info[i].skb = skb;
1659         tx_ring->buffer_info[first].next_to_watch = i;
1660
1661         return count;
1662 }
1663
1664 static inline void
1665 e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
1666 {
1667         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1668         struct e1000_tx_desc *tx_desc = NULL;
1669         struct e1000_buffer *buffer_info;
1670         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
1671         unsigned int i;
1672
1673         if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
1674                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
1675                              E1000_TXD_CMD_TSE;
1676                 txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
1677         }
1678
1679         if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
1680                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
1681                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
1682         }
1683
1684         if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
1685                 txd_lower |= E1000_TXD_CMD_VLE;
1686                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
1687         }
1688
1689         i = tx_ring->next_to_use;
1690
1691         while(count--) {
1692                 buffer_info = &tx_ring->buffer_info[i];
1693                 tx_desc = E1000_TX_DESC(*tx_ring, i);
1694                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1695                 tx_desc->lower.data =
1696                         cpu_to_le32(txd_lower | buffer_info->length);
1697                 tx_desc->upper.data = cpu_to_le32(txd_upper);
1698                 if(unlikely(++i == tx_ring->count)) i = 0;
1699         }
1700
1701         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
1702
1703         /* Force memory writes to complete before letting h/w
1704          * know there are new descriptors to fetch.  (Only
1705          * applicable for weak-ordered memory model archs,
1706          * such as IA-64). */
1707         wmb();
1708
1709         tx_ring->next_to_use = i;
1710         E1000_WRITE_REG(&adapter->hw, TDT, i);
1711 }
1712
1713 /**
1714  * 82547 workaround to avoid controller hang in half-duplex environment.
1715  * The workaround is to avoid queuing a large packet that would span
1716  * the internal Tx FIFO ring boundary by notifying the stack to resend
1717  * the packet at a later time.  This gives the Tx FIFO an opportunity to
1718  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
1719  * to the beginning of the Tx FIFO.
1720  **/
1721
1722 #define E1000_FIFO_HDR                  0x10
1723 #define E1000_82547_PAD_LEN             0x3E0
1724
1725 static inline int
1726 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
1727 {
1728         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1729         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
1730
1731         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
1732
1733         if(adapter->link_duplex != HALF_DUPLEX)
1734                 goto no_fifo_stall_required;
1735
1736         if(atomic_read(&adapter->tx_fifo_stall))
1737                 return 1;
1738
1739         if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
1740                 atomic_set(&adapter->tx_fifo_stall, 1);
1741                 return 1;
1742         }
1743
1744 no_fifo_stall_required:
1745         adapter->tx_fifo_head += skb_fifo_len;
1746         if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
1747                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1748         return 0;
1749 }
1750
1751 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
1752 static int
1753 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1754 {
1755         struct e1000_adapter *adapter = netdev->priv;
1756         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
1757         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
1758         unsigned int tx_flags = 0;
1759         unsigned int len = skb->len;
1760         unsigned long flags;
1761         unsigned int nr_frags = 0;
1762         unsigned int mss = 0;
1763         int count = 0;
1764         unsigned int f;
1765         nr_frags = skb_shinfo(skb)->nr_frags;
1766         len -= skb->data_len;
1767
1768         if(unlikely(skb->len <= 0)) {
1769                 dev_kfree_skb_any(skb);
1770                 return NETDEV_TX_OK;
1771         }
1772
1773 #ifdef NETIF_F_TSO
1774         mss = skb_shinfo(skb)->tso_size;
1775         /* The controller does a simple calculation to
1776          * make sure there is enough room in the FIFO before
1777          * initiating the DMA for each buffer.  The calc is:
1778          * 4 = ceil(buffer len/mss).  To make sure we don't
1779          * overrun the FIFO, adjust the max buffer len if mss
1780          * drops. */
1781         if(mss) {
1782                 max_per_txd = min(mss << 2, max_per_txd);
1783                 max_txd_pwr = fls(max_per_txd) - 1;
1784         }
1785
1786         if((mss) || (skb->ip_summed == CHECKSUM_HW))
1787                 count++;
1788         count++;        /* for sentinel desc */
1789 #else
1790         if(skb->ip_summed == CHECKSUM_HW)
1791                 count++;
1792 #endif
1793         count += TXD_USE_COUNT(len, max_txd_pwr);
1794
1795         if(adapter->pcix_82544)
1796                 count++;
1797
1798         nr_frags = skb_shinfo(skb)->nr_frags;
1799         for(f = 0; f < nr_frags; f++)
1800                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
1801                                        max_txd_pwr);
1802         if(adapter->pcix_82544)
1803                 count += nr_frags;
1804
1805         local_irq_save(flags); 
1806         if (!spin_trylock(&adapter->tx_lock)) { 
1807                 /* Collision - tell upper layer to requeue */ 
1808                 local_irq_restore(flags); 
1809                 return NETDEV_TX_LOCKED; 
1810         } 
1811
1812         /* need: count + 2 desc gap to keep tail from touching
1813          * head, otherwise try next time */
1814         if(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2) {
1815                 netif_stop_queue(netdev);
1816                 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1817                 return NETDEV_TX_BUSY;
1818         }
1819
1820         if(unlikely(adapter->hw.mac_type == e1000_82547)) {
1821                 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
1822                         netif_stop_queue(netdev);
1823                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
1824                         spin_unlock_irqrestore(&adapter->tx_lock, flags);
1825                         return NETDEV_TX_BUSY;
1826                 }
1827         }
1828
1829         if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
1830                 tx_flags |= E1000_TX_FLAGS_VLAN;
1831                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
1832         }
1833
1834         first = adapter->tx_ring.next_to_use;
1835         
1836         if(likely(e1000_tso(adapter, skb)))
1837                 tx_flags |= E1000_TX_FLAGS_TSO;
1838         else if(likely(e1000_tx_csum(adapter, skb)))
1839                 tx_flags |= E1000_TX_FLAGS_CSUM;
1840
1841         e1000_tx_queue(adapter,
1842                 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
1843                 tx_flags);
1844
1845         netdev->trans_start = jiffies;
1846
1847         spin_unlock_irqrestore(&adapter->tx_lock, flags);
1848         return NETDEV_TX_OK;
1849 }
1850
1851 /**
1852  * e1000_tx_timeout - Respond to a Tx Hang
1853  * @netdev: network interface device structure
1854  **/
1855
1856 static void
1857 e1000_tx_timeout(struct net_device *netdev)
1858 {
1859         struct e1000_adapter *adapter = netdev->priv;
1860
1861         /* Do the reset outside of interrupt context */
1862         schedule_work(&adapter->tx_timeout_task);
1863 }
1864
1865 static void
1866 e1000_tx_timeout_task(struct net_device *netdev)
1867 {
1868         struct e1000_adapter *adapter = netdev->priv;
1869
1870         e1000_down(adapter);
1871         e1000_up(adapter);
1872 }
1873
1874 /**
1875  * e1000_get_stats - Get System Network Statistics
1876  * @netdev: network interface device structure
1877  *
1878  * Returns the address of the device statistics structure.
1879  * The statistics are actually updated from the timer callback.
1880  **/
1881
1882 static struct net_device_stats *
1883 e1000_get_stats(struct net_device *netdev)
1884 {
1885         struct e1000_adapter *adapter = netdev->priv;
1886
1887         e1000_update_stats(adapter);
1888         return &adapter->net_stats;
1889 }
1890
1891 /**
1892  * e1000_change_mtu - Change the Maximum Transfer Unit
1893  * @netdev: network interface device structure
1894  * @new_mtu: new value for maximum frame size
1895  *
1896  * Returns 0 on success, negative on failure
1897  **/
1898
1899 static int
1900 e1000_change_mtu(struct net_device *netdev, int new_mtu)
1901 {
1902         struct e1000_adapter *adapter = netdev->priv;
1903         int old_mtu = adapter->rx_buffer_len;
1904         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1905
1906         if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
1907            (max_frame > MAX_JUMBO_FRAME_SIZE)) {
1908                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
1909                 return -EINVAL;
1910         }
1911
1912         if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) {
1913                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
1914
1915         } else if(adapter->hw.mac_type < e1000_82543) {
1916                 DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n");
1917                 return -EINVAL;
1918
1919         } else if(max_frame <= E1000_RXBUFFER_4096) {
1920                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
1921
1922         } else if(max_frame <= E1000_RXBUFFER_8192) {
1923                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
1924
1925         } else {
1926                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
1927         }
1928
1929         if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
1930                 e1000_down(adapter);
1931                 e1000_up(adapter);
1932         }
1933
1934         netdev->mtu = new_mtu;
1935         adapter->hw.max_frame_size = max_frame;
1936
1937         return 0;
1938 }
1939
1940 /**
1941  * e1000_update_stats - Update the board statistics counters
1942  * @adapter: board private structure
1943  **/
1944
1945 void
1946 e1000_update_stats(struct e1000_adapter *adapter)
1947 {
1948         struct e1000_hw *hw = &adapter->hw;
1949         unsigned long flags;
1950         uint16_t phy_tmp;
1951
1952 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
1953
1954         spin_lock_irqsave(&adapter->stats_lock, flags);
1955
1956         /* these counters are modified from e1000_adjust_tbi_stats,
1957          * called from the interrupt context, so they must only
1958          * be written while holding adapter->stats_lock
1959          */
1960
1961         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
1962         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
1963         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
1964         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
1965         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
1966         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
1967         adapter->stats.roc += E1000_READ_REG(hw, ROC);
1968         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
1969         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
1970         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
1971         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
1972         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
1973         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
1974
1975         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
1976         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
1977         adapter->stats.scc += E1000_READ_REG(hw, SCC);
1978         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
1979         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
1980         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
1981         adapter->stats.dc += E1000_READ_REG(hw, DC);
1982         adapter->stats.sec += E1000_READ_REG(hw, SEC);
1983         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
1984         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
1985         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
1986         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
1987         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
1988         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
1989         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
1990         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
1991         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
1992         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
1993         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
1994         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
1995         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
1996         adapter->stats.torl += E1000_READ_REG(hw, TORL);
1997         adapter->stats.torh += E1000_READ_REG(hw, TORH);
1998         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
1999         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2000         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2001         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2002         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2003         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2004         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2005         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2006         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2007         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2008         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2009
2010         /* used for adaptive IFS */
2011
2012         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2013         adapter->stats.tpt += hw->tx_packet_delta;
2014         hw->collision_delta = E1000_READ_REG(hw, COLC);
2015         adapter->stats.colc += hw->collision_delta;
2016
2017         if(hw->mac_type >= e1000_82543) {
2018                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2019                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2020                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2021                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2022                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2023                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2024         }
2025
2026         /* Fill out the OS statistics structure */
2027
2028         adapter->net_stats.rx_packets = adapter->stats.gprc;
2029         adapter->net_stats.tx_packets = adapter->stats.gptc;
2030         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2031         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2032         adapter->net_stats.multicast = adapter->stats.mprc;
2033         adapter->net_stats.collisions = adapter->stats.colc;
2034
2035         /* Rx Errors */
2036
2037         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2038                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2039                 adapter->stats.rlec + adapter->stats.rnbc +
2040                 adapter->stats.mpc + adapter->stats.cexterr;
2041         adapter->net_stats.rx_dropped = adapter->stats.rnbc;
2042         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2043         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2044         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2045         adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2046         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2047
2048         /* Tx Errors */
2049
2050         adapter->net_stats.tx_errors = adapter->stats.ecol +
2051                                        adapter->stats.latecol;
2052         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2053         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2054         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2055
2056         /* Tx Dropped needs to be maintained elsewhere */
2057
2058         /* Phy Stats */
2059
2060         if(hw->media_type == e1000_media_type_copper) {
2061                 if((adapter->link_speed == SPEED_1000) &&
2062                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2063                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2064                         adapter->phy_stats.idle_errors += phy_tmp;
2065                 }
2066
2067                 if((hw->mac_type <= e1000_82546) &&
2068                    (hw->phy_type == e1000_phy_m88) &&
2069                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2070                         adapter->phy_stats.receive_errors += phy_tmp;
2071         }
2072
2073         spin_unlock_irqrestore(&adapter->stats_lock, flags);
2074 }
2075
2076 /**
2077  * e1000_irq_disable - Mask off interrupt generation on the NIC
2078  * @adapter: board private structure
2079  **/
2080
2081 static void
2082 e1000_irq_disable(struct e1000_adapter *adapter)
2083 {
2084         atomic_inc(&adapter->irq_sem);
2085         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
2086         E1000_WRITE_FLUSH(&adapter->hw);
2087         synchronize_irq(adapter->pdev->irq);
2088 }
2089
2090 /**
2091  * e1000_irq_enable - Enable default interrupt generation settings
2092  * @adapter: board private structure
2093  **/
2094
2095 static void
2096 e1000_irq_enable(struct e1000_adapter *adapter)
2097 {
2098         if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
2099                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
2100                 E1000_WRITE_FLUSH(&adapter->hw);
2101         }
2102 }
2103
2104 /**
2105  * e1000_intr - Interrupt Handler
2106  * @irq: interrupt number
2107  * @data: pointer to a network interface device structure
2108  * @pt_regs: CPU registers structure
2109  **/
2110
2111 static irqreturn_t
2112 e1000_intr(int irq, void *data, struct pt_regs *regs)
2113 {
2114         struct net_device *netdev = data;
2115         struct e1000_adapter *adapter = netdev->priv;
2116         struct e1000_hw *hw = &adapter->hw;
2117         uint32_t icr = E1000_READ_REG(hw, ICR);
2118 #ifndef CONFIG_E1000_NAPI
2119         unsigned int i;
2120 #endif
2121
2122         if(unlikely(!icr))
2123                 return IRQ_NONE;  /* Not our interrupt */
2124
2125         if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2126                 hw->get_link_status = 1;
2127                 mod_timer(&adapter->watchdog_timer, jiffies);
2128         }
2129
2130 #ifdef CONFIG_E1000_NAPI
2131         if(likely(netif_rx_schedule_prep(netdev))) {
2132
2133                 /* Disable interrupts and register for poll. The flush 
2134                   of the posted write is intentionally left out.
2135                 */
2136
2137                 atomic_inc(&adapter->irq_sem);
2138                 E1000_WRITE_REG(hw, IMC, ~0);
2139                 __netif_rx_schedule(netdev);
2140         }
2141 #else
2142         for(i = 0; i < E1000_MAX_INTR; i++)
2143                 if(unlikely(!e1000_clean_rx_irq(adapter) &
2144                    !e1000_clean_tx_irq(adapter)))
2145                         break;
2146 #endif
2147
2148         return IRQ_HANDLED;
2149 }
2150
2151 #ifdef CONFIG_E1000_NAPI
2152 /**
2153  * e1000_clean - NAPI Rx polling callback
2154  * @adapter: board private structure
2155  **/
2156
2157 static int
2158 e1000_clean(struct net_device *netdev, int *budget)
2159 {
2160         struct e1000_adapter *adapter = netdev->priv;
2161         int work_to_do = min(*budget, netdev->quota);
2162         int tx_cleaned;
2163         int work_done = 0;
2164         
2165         tx_cleaned = e1000_clean_tx_irq(adapter);
2166         e1000_clean_rx_irq(adapter, &work_done, work_to_do);
2167
2168         *budget -= work_done;
2169         netdev->quota -= work_done;
2170         
2171         /* if no Rx and Tx cleanup work was done, exit the polling mode */
2172         if(!tx_cleaned || (work_done < work_to_do) || 
2173                                 !netif_running(netdev)) {
2174                 netif_rx_complete(netdev);
2175                 e1000_irq_enable(adapter);
2176                 return 0;
2177         }
2178
2179         return (work_done >= work_to_do);
2180 }
2181
2182 #endif
2183 /**
2184  * e1000_clean_tx_irq - Reclaim resources after transmit completes
2185  * @adapter: board private structure
2186  **/
2187
2188 static boolean_t
2189 e1000_clean_tx_irq(struct e1000_adapter *adapter)
2190 {
2191         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2192         struct net_device *netdev = adapter->netdev;
2193         struct pci_dev *pdev = adapter->pdev;
2194         struct e1000_tx_desc *tx_desc, *eop_desc;
2195         struct e1000_buffer *buffer_info;
2196         unsigned int i, eop;
2197         boolean_t cleaned = FALSE;
2198
2199         i = tx_ring->next_to_clean;
2200         eop = tx_ring->buffer_info[i].next_to_watch;
2201         eop_desc = E1000_TX_DESC(*tx_ring, eop);
2202
2203         while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
2204                 for(cleaned = FALSE; !cleaned; ) {
2205                         tx_desc = E1000_TX_DESC(*tx_ring, i);
2206                         buffer_info = &tx_ring->buffer_info[i];
2207
2208                         if(likely(buffer_info->dma)) {
2209                                 pci_unmap_page(pdev,
2210                                                buffer_info->dma,
2211                                                buffer_info->length,
2212                                                PCI_DMA_TODEVICE);
2213                                 buffer_info->dma = 0;
2214                         }
2215
2216                         if(buffer_info->skb) {
2217                                 dev_kfree_skb_any(buffer_info->skb);
2218                                 buffer_info->skb = NULL;
2219                         }
2220
2221                         tx_desc->buffer_addr = 0;
2222                         tx_desc->lower.data = 0;
2223                         tx_desc->upper.data = 0;
2224
2225                         cleaned = (i == eop);
2226                         if(unlikely(++i == tx_ring->count)) i = 0;
2227                 }
2228                 
2229                 eop = tx_ring->buffer_info[i].next_to_watch;
2230                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2231         }
2232
2233         tx_ring->next_to_clean = i;
2234
2235         spin_lock(&adapter->tx_lock);
2236
2237         if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2238                     netif_carrier_ok(netdev)))
2239                 netif_wake_queue(netdev);
2240
2241         spin_unlock(&adapter->tx_lock);
2242
2243         return cleaned;
2244 }
2245
2246 /**
2247  * e1000_clean_rx_irq - Send received data up the network stack
2248  * @adapter: board private structure
2249  **/
2250
2251 static boolean_t
2252 #ifdef CONFIG_E1000_NAPI
2253 e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2254                    int work_to_do)
2255 #else
2256 e1000_clean_rx_irq(struct e1000_adapter *adapter)
2257 #endif
2258 {
2259         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2260         struct net_device *netdev = adapter->netdev;
2261         struct pci_dev *pdev = adapter->pdev;
2262         struct e1000_rx_desc *rx_desc;
2263         struct e1000_buffer *buffer_info;
2264         struct sk_buff *skb;
2265         unsigned long flags;
2266         uint32_t length;
2267         uint8_t last_byte;
2268         unsigned int i;
2269         boolean_t cleaned = FALSE;
2270
2271         i = rx_ring->next_to_clean;
2272         rx_desc = E1000_RX_DESC(*rx_ring, i);
2273
2274         while(rx_desc->status & E1000_RXD_STAT_DD) {
2275                 buffer_info = &rx_ring->buffer_info[i];
2276 #ifdef CONFIG_E1000_NAPI
2277                 if(*work_done >= work_to_do)
2278                         break;
2279                 (*work_done)++;
2280 #endif
2281                 cleaned = TRUE;
2282
2283                 pci_unmap_single(pdev,
2284                                  buffer_info->dma,
2285                                  buffer_info->length,
2286                                  PCI_DMA_FROMDEVICE);
2287
2288                 skb = buffer_info->skb;
2289                 length = le16_to_cpu(rx_desc->length);
2290
2291                 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2292                         /* All receives must fit into a single buffer */
2293                         E1000_DBG("%s: Receive packet consumed multiple"
2294                                   " buffers\n", netdev->name);
2295                         dev_kfree_skb_irq(skb);
2296                         goto next_desc;
2297                 }
2298
2299                 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2300                         last_byte = *(skb->data + length - 1);
2301                         if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2302                                       rx_desc->errors, length, last_byte)) {
2303                                 spin_lock_irqsave(&adapter->stats_lock, flags);
2304                                 e1000_tbi_adjust_stats(&adapter->hw,
2305                                                        &adapter->stats,
2306                                                        length, skb->data);
2307                                 spin_unlock_irqrestore(&adapter->stats_lock,
2308                                                        flags);
2309                                 length--;
2310                         } else {
2311                                 dev_kfree_skb_irq(skb);
2312                                 goto next_desc;
2313                         }
2314                 }
2315
2316                 /* Good Receive */
2317                 skb_put(skb, length - ETHERNET_FCS_SIZE);
2318
2319                 /* Receive Checksum Offload */
2320                 e1000_rx_checksum(adapter, rx_desc, skb);
2321
2322                 skb->protocol = eth_type_trans(skb, netdev);
2323 #ifdef CONFIG_E1000_NAPI
2324                 if(unlikely(adapter->vlgrp &&
2325                             (rx_desc->status & E1000_RXD_STAT_VP))) {
2326                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
2327                                         le16_to_cpu(rx_desc->special) &
2328                                         E1000_RXD_SPC_VLAN_MASK);
2329                 } else {
2330                         netif_receive_skb(skb);
2331                 }
2332 #else /* CONFIG_E1000_NAPI */
2333                 if(unlikely(adapter->vlgrp &&
2334                             (rx_desc->status & E1000_RXD_STAT_VP))) {
2335                         vlan_hwaccel_rx(skb, adapter->vlgrp,
2336                                         le16_to_cpu(rx_desc->special) &
2337                                         E1000_RXD_SPC_VLAN_MASK);
2338                 } else {
2339                         netif_rx(skb);
2340                 }
2341 #endif /* CONFIG_E1000_NAPI */
2342                 netdev->last_rx = jiffies;
2343
2344 next_desc:
2345                 rx_desc->status = 0;
2346                 buffer_info->skb = NULL;
2347                 if(unlikely(++i == rx_ring->count)) i = 0;
2348
2349                 rx_desc = E1000_RX_DESC(*rx_ring, i);
2350         }
2351
2352         rx_ring->next_to_clean = i;
2353
2354         e1000_alloc_rx_buffers(adapter);
2355
2356         return cleaned;
2357 }
2358
2359 /**
2360  * e1000_alloc_rx_buffers - Replace used receive buffers
2361  * @adapter: address of board private structure
2362  **/
2363
2364 static void
2365 e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
2366 {
2367         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2368         struct net_device *netdev = adapter->netdev;
2369         struct pci_dev *pdev = adapter->pdev;
2370         struct e1000_rx_desc *rx_desc;
2371         struct e1000_buffer *buffer_info;
2372         struct sk_buff *skb;
2373         unsigned int i;
2374
2375         i = rx_ring->next_to_use;
2376         buffer_info = &rx_ring->buffer_info[i];
2377
2378         while(!buffer_info->skb) {
2379
2380                 skb = dev_alloc_skb(adapter->rx_buffer_len + NET_IP_ALIGN);
2381                 if(unlikely(!skb)) {
2382                         /* Better luck next round */
2383                         break;
2384                 }
2385
2386                 /* Make buffer alignment 2 beyond a 16 byte boundary
2387                  * this will result in a 16 byte aligned IP header after
2388                  * the 14 byte MAC header is removed
2389                  */
2390                 skb_reserve(skb, NET_IP_ALIGN);
2391
2392                 skb->dev = netdev;
2393
2394                 buffer_info->skb = skb;
2395                 buffer_info->length = adapter->rx_buffer_len;
2396                 buffer_info->dma = pci_map_single(pdev,
2397                                                   skb->data,
2398                                                   adapter->rx_buffer_len,
2399                                                   PCI_DMA_FROMDEVICE);
2400
2401                 rx_desc = E1000_RX_DESC(*rx_ring, i);
2402                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2403
2404                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
2405                         /* Force memory writes to complete before letting h/w
2406                          * know there are new descriptors to fetch.  (Only
2407                          * applicable for weak-ordered memory model archs,
2408                          * such as IA-64). */
2409                         wmb();
2410
2411                         E1000_WRITE_REG(&adapter->hw, RDT, i);
2412                 }
2413
2414                 if(unlikely(++i == rx_ring->count)) i = 0;
2415                 buffer_info = &rx_ring->buffer_info[i];
2416         }
2417
2418         rx_ring->next_to_use = i;
2419 }
2420
2421 /**
2422  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
2423  * @adapter:
2424  **/
2425
2426 static void
2427 e1000_smartspeed(struct e1000_adapter *adapter)
2428 {
2429         uint16_t phy_status;
2430         uint16_t phy_ctrl;
2431
2432         if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
2433            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2434                 return;
2435
2436         if(adapter->smartspeed == 0) {
2437                 /* If Master/Slave config fault is asserted twice,
2438                  * we assume back-to-back */
2439                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
2440                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
2441                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
2442                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
2443                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
2444                 if(phy_ctrl & CR_1000T_MS_ENABLE) {
2445                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
2446                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
2447                                             phy_ctrl);
2448                         adapter->smartspeed++;
2449                         if(!e1000_phy_setup_autoneg(&adapter->hw) &&
2450                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
2451                                                &phy_ctrl)) {
2452                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2453                                              MII_CR_RESTART_AUTO_NEG);
2454                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
2455                                                     phy_ctrl);
2456                         }
2457                 }
2458                 return;
2459         } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
2460                 /* If still no link, perhaps using 2/3 pair cable */
2461                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
2462                 phy_ctrl |= CR_1000T_MS_ENABLE;
2463                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
2464                 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
2465                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
2466                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2467                                      MII_CR_RESTART_AUTO_NEG);
2468                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
2469                 }
2470         }
2471         /* Restart process after E1000_SMARTSPEED_MAX iterations */
2472         if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
2473                 adapter->smartspeed = 0;
2474 }
2475
2476 /**
2477  * e1000_ioctl -
2478  * @netdev:
2479  * @ifreq:
2480  * @cmd:
2481  **/
2482
2483 static int
2484 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2485 {
2486         switch (cmd) {
2487         case SIOCGMIIPHY:
2488         case SIOCGMIIREG:
2489         case SIOCSMIIREG:
2490                 return e1000_mii_ioctl(netdev, ifr, cmd);
2491         default:
2492                 return -EOPNOTSUPP;
2493         }
2494 }
2495
2496 /**
2497  * e1000_mii_ioctl -
2498  * @netdev:
2499  * @ifreq:
2500  * @cmd:
2501  **/
2502
2503 static int
2504 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2505 {
2506         struct e1000_adapter *adapter = netdev->priv;
2507         struct mii_ioctl_data *data = if_mii(ifr);
2508         int retval;
2509         uint16_t mii_reg;
2510         uint16_t spddplx;
2511
2512         if(adapter->hw.media_type != e1000_media_type_copper)
2513                 return -EOPNOTSUPP;
2514
2515         switch (cmd) {
2516         case SIOCGMIIPHY:
2517                 data->phy_id = adapter->hw.phy_addr;
2518                 break;
2519         case SIOCGMIIREG:
2520                 if (!capable(CAP_NET_ADMIN))
2521                         return -EPERM;
2522                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
2523                                    &data->val_out))
2524                         return -EIO;
2525                 break;
2526         case SIOCSMIIREG:
2527                 if (!capable(CAP_NET_ADMIN))
2528                         return -EPERM;
2529                 if (data->reg_num & ~(0x1F))
2530                         return -EFAULT;
2531                 mii_reg = data->val_in;
2532                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
2533                                         mii_reg))
2534                         return -EIO;
2535                 if (adapter->hw.phy_type == e1000_phy_m88) {
2536                         switch (data->reg_num) {
2537                         case PHY_CTRL:
2538                                 if(mii_reg & MII_CR_POWER_DOWN)
2539                                         break;
2540                                 if(mii_reg & MII_CR_AUTO_NEG_EN) {
2541                                         adapter->hw.autoneg = 1;
2542                                         adapter->hw.autoneg_advertised = 0x2F;
2543                                 } else {
2544                                         if (mii_reg & 0x40)
2545                                                 spddplx = SPEED_1000;
2546                                         else if (mii_reg & 0x2000)
2547                                                 spddplx = SPEED_100;
2548                                         else
2549                                                 spddplx = SPEED_10;
2550                                         spddplx += (mii_reg & 0x100)
2551                                                    ? FULL_DUPLEX :
2552                                                    HALF_DUPLEX;
2553                                         retval = e1000_set_spd_dplx(adapter,
2554                                                                     spddplx);
2555                                         if(retval)
2556                                                 return retval;
2557                                 }
2558                                 if(netif_running(adapter->netdev)) {
2559                                         e1000_down(adapter);
2560                                         e1000_up(adapter);
2561                                 } else
2562                                         e1000_reset(adapter);
2563                                 break;
2564                         case M88E1000_PHY_SPEC_CTRL:
2565                         case M88E1000_EXT_PHY_SPEC_CTRL:
2566                                 if (e1000_phy_reset(&adapter->hw))
2567                                         return -EIO;
2568                                 break;
2569                         }
2570                 } else {
2571                         switch (data->reg_num) {
2572                         case PHY_CTRL:
2573                                 if(mii_reg & MII_CR_POWER_DOWN)
2574                                         break;
2575                                 if(netif_running(adapter->netdev)) {
2576                                         e1000_down(adapter);
2577                                         e1000_up(adapter);
2578                                 } else
2579                                         e1000_reset(adapter);
2580                                 break;
2581                         }
2582                 }
2583                 break;
2584         default:
2585                 return -EOPNOTSUPP;
2586         }
2587         return E1000_SUCCESS;
2588 }
2589
2590 /**
2591  * e1000_rx_checksum - Receive Checksum Offload for 82543
2592  * @adapter: board private structure
2593  * @rx_desc: receive descriptor
2594  * @sk_buff: socket buffer with received data
2595  **/
2596
2597 static void
2598 e1000_rx_checksum(struct e1000_adapter *adapter,
2599                   struct e1000_rx_desc *rx_desc,
2600                   struct sk_buff *skb)
2601 {
2602         /* 82543 or newer only */
2603         if(unlikely((adapter->hw.mac_type < e1000_82543) ||
2604         /* Ignore Checksum bit is set */
2605         (rx_desc->status & E1000_RXD_STAT_IXSM) ||
2606         /* TCP Checksum has not been calculated */
2607         (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) {
2608                 skb->ip_summed = CHECKSUM_NONE;
2609                 return;
2610         }
2611
2612         /* At this point we know the hardware did the TCP checksum */
2613         /* now look at the TCP checksum error bit */
2614         if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
2615                 /* let the stack verify checksum errors */
2616                 skb->ip_summed = CHECKSUM_NONE;
2617                 adapter->hw_csum_err++;
2618         } else {
2619                 /* TCP checksum is good */
2620                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2621                 adapter->hw_csum_good++;
2622         }
2623 }
2624
2625 void
2626 e1000_pci_set_mwi(struct e1000_hw *hw)
2627 {
2628         struct e1000_adapter *adapter = hw->back;
2629
2630         int ret;
2631         ret = pci_set_mwi(adapter->pdev);
2632 }
2633
2634 void
2635 e1000_pci_clear_mwi(struct e1000_hw *hw)
2636 {
2637         struct e1000_adapter *adapter = hw->back;
2638
2639         pci_clear_mwi(adapter->pdev);
2640 }
2641
2642 void
2643 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
2644 {
2645         struct e1000_adapter *adapter = hw->back;
2646
2647         pci_read_config_word(adapter->pdev, reg, value);
2648 }
2649
2650 void
2651 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
2652 {
2653         struct e1000_adapter *adapter = hw->back;
2654
2655         pci_write_config_word(adapter->pdev, reg, *value);
2656 }
2657
2658 uint32_t
2659 e1000_io_read(struct e1000_hw *hw, unsigned long port)
2660 {
2661         return inl(port);
2662 }
2663
2664 void
2665 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
2666 {
2667         outl(value, port);
2668 }
2669
2670 static void
2671 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
2672 {
2673         struct e1000_adapter *adapter = netdev->priv;
2674         uint32_t ctrl, rctl;
2675
2676         e1000_irq_disable(adapter);
2677         adapter->vlgrp = grp;
2678
2679         if(grp) {
2680                 /* enable VLAN tag insert/strip */
2681                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2682                 ctrl |= E1000_CTRL_VME;
2683                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2684
2685                 /* enable VLAN receive filtering */
2686                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2687                 rctl |= E1000_RCTL_VFE;
2688                 rctl &= ~E1000_RCTL_CFIEN;
2689                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2690         } else {
2691                 /* disable VLAN tag insert/strip */
2692                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2693                 ctrl &= ~E1000_CTRL_VME;
2694                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2695
2696                 /* disable VLAN filtering */
2697                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2698                 rctl &= ~E1000_RCTL_VFE;
2699                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2700         }
2701
2702         e1000_irq_enable(adapter);
2703 }
2704
2705 static void
2706 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
2707 {
2708         struct e1000_adapter *adapter = netdev->priv;
2709         uint32_t vfta, index;
2710
2711         /* add VID to filter table */
2712         index = (vid >> 5) & 0x7F;
2713         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
2714         vfta |= (1 << (vid & 0x1F));
2715         e1000_write_vfta(&adapter->hw, index, vfta);
2716 }
2717
2718 static void
2719 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
2720 {
2721         struct e1000_adapter *adapter = netdev->priv;
2722         uint32_t vfta, index;
2723
2724         e1000_irq_disable(adapter);
2725
2726         if(adapter->vlgrp)
2727                 adapter->vlgrp->vlan_devices[vid] = NULL;
2728
2729         e1000_irq_enable(adapter);
2730
2731         /* remove VID from filter table */
2732         index = (vid >> 5) & 0x7F;
2733         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
2734         vfta &= ~(1 << (vid & 0x1F));
2735         e1000_write_vfta(&adapter->hw, index, vfta);
2736 }
2737
2738 static void
2739 e1000_restore_vlan(struct e1000_adapter *adapter)
2740 {
2741         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2742
2743         if(adapter->vlgrp) {
2744                 uint16_t vid;
2745                 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2746                         if(!adapter->vlgrp->vlan_devices[vid])
2747                                 continue;
2748                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
2749                 }
2750         }
2751 }
2752
2753 int
2754 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
2755 {
2756         adapter->hw.autoneg = 0;
2757
2758         switch(spddplx) {
2759         case SPEED_10 + DUPLEX_HALF:
2760                 adapter->hw.forced_speed_duplex = e1000_10_half;
2761                 break;
2762         case SPEED_10 + DUPLEX_FULL:
2763                 adapter->hw.forced_speed_duplex = e1000_10_full;
2764                 break;
2765         case SPEED_100 + DUPLEX_HALF:
2766                 adapter->hw.forced_speed_duplex = e1000_100_half;
2767                 break;
2768         case SPEED_100 + DUPLEX_FULL:
2769                 adapter->hw.forced_speed_duplex = e1000_100_full;
2770                 break;
2771         case SPEED_1000 + DUPLEX_FULL:
2772                 adapter->hw.autoneg = 1;
2773                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
2774                 break;
2775         case SPEED_1000 + DUPLEX_HALF: /* not supported */
2776         default:
2777                 DPRINTK(PROBE, ERR, 
2778                         "Unsupported Speed/Duplexity configuration\n");
2779                 return -EINVAL;
2780         }
2781         return 0;
2782 }
2783
2784 static int
2785 e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
2786 {
2787         struct pci_dev *pdev = NULL;
2788
2789         switch(event) {
2790         case SYS_DOWN:
2791         case SYS_HALT:
2792         case SYS_POWER_OFF:
2793                 while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
2794                         if(pci_dev_driver(pdev) == &e1000_driver)
2795                                 e1000_suspend(pdev, 3);
2796                 }
2797         }
2798         return NOTIFY_DONE;
2799 }
2800
2801 static int
2802 e1000_suspend(struct pci_dev *pdev, uint32_t state)
2803 {
2804         struct net_device *netdev = pci_get_drvdata(pdev);
2805         struct e1000_adapter *adapter = netdev->priv;
2806         uint32_t ctrl, ctrl_ext, rctl, manc, status;
2807         uint32_t wufc = adapter->wol;
2808
2809         netif_device_detach(netdev);
2810
2811         if(netif_running(netdev))
2812                 e1000_down(adapter);
2813
2814         status = E1000_READ_REG(&adapter->hw, STATUS);
2815         if(status & E1000_STATUS_LU)
2816                 wufc &= ~E1000_WUFC_LNKC;
2817
2818         if(wufc) {
2819                 e1000_setup_rctl(adapter);
2820                 e1000_set_multi(netdev);
2821
2822                 /* turn on all-multi mode if wake on multicast is enabled */
2823                 if(adapter->wol & E1000_WUFC_MC) {
2824                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2825                         rctl |= E1000_RCTL_MPE;
2826                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2827                 }
2828
2829                 if(adapter->hw.mac_type >= e1000_82540) {
2830                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2831                         /* advertise wake from D3Cold */
2832                         #define E1000_CTRL_ADVD3WUC 0x00100000
2833                         /* phy power management enable */
2834                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
2835                         ctrl |= E1000_CTRL_ADVD3WUC |
2836                                 E1000_CTRL_EN_PHY_PWR_MGMT;
2837                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2838                 }
2839
2840                 if(adapter->hw.media_type == e1000_media_type_fiber ||
2841                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
2842                         /* keep the laser running in D3 */
2843                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
2844                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
2845                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
2846                 }
2847
2848                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
2849                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
2850                 pci_enable_wake(pdev, 3, 1);
2851                 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
2852         } else {
2853                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
2854                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
2855                 pci_enable_wake(pdev, 3, 0);
2856                 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
2857         }
2858
2859         pci_save_state(pdev);
2860
2861         if(adapter->hw.mac_type >= e1000_82540 &&
2862            adapter->hw.media_type == e1000_media_type_copper) {
2863                 manc = E1000_READ_REG(&adapter->hw, MANC);
2864                 if(manc & E1000_MANC_SMBUS_EN) {
2865                         manc |= E1000_MANC_ARP_EN;
2866                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
2867                         pci_enable_wake(pdev, 3, 1);
2868                         pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
2869                 }
2870         }
2871
2872         pci_disable_device(pdev);
2873
2874         state = (state > 0) ? 3 : 0;
2875         pci_set_power_state(pdev, state);
2876
2877         return 0;
2878 }
2879
2880 #ifdef CONFIG_PM
2881 static int
2882 e1000_resume(struct pci_dev *pdev)
2883 {
2884         struct net_device *netdev = pci_get_drvdata(pdev);
2885         struct e1000_adapter *adapter = netdev->priv;
2886         uint32_t manc, ret;
2887
2888         pci_set_power_state(pdev, 0);
2889         pci_restore_state(pdev);
2890         ret = pci_enable_device(pdev);
2891         if (pdev->is_busmaster)
2892                 pci_set_master(pdev);
2893
2894         pci_enable_wake(pdev, 3, 0);
2895         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
2896
2897         e1000_reset(adapter);
2898         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
2899
2900         if(netif_running(netdev))
2901                 e1000_up(adapter);
2902
2903         netif_device_attach(netdev);
2904
2905         if(adapter->hw.mac_type >= e1000_82540 &&
2906            adapter->hw.media_type == e1000_media_type_copper) {
2907                 manc = E1000_READ_REG(&adapter->hw, MANC);
2908                 manc &= ~(E1000_MANC_ARP_EN);
2909                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
2910         }
2911
2912         return 0;
2913 }
2914 #endif
2915
2916 #ifdef CONFIG_NET_POLL_CONTROLLER
2917 /*
2918  * Polling 'interrupt' - used by things like netconsole to send skbs
2919  * without having to re-enable interrupts. It's not called while
2920  * the interrupt routine is executing.
2921  */
2922 static void
2923 e1000_netpoll (struct net_device *netdev)
2924 {
2925         struct e1000_adapter *adapter = netdev->priv;
2926         disable_irq(adapter->pdev->irq);
2927         e1000_intr(adapter->pdev->irq, netdev, NULL);
2928         enable_irq(adapter->pdev->irq);
2929 }
2930 #endif
2931
2932 /* e1000_main.c */