1 /* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
3 Written 1999-2000 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
21 Version LK1.01a (jgarzik):
22 - Replace some MII-related magic numbers with constants
24 Version LK1.02 (D-Link):
25 - Add new board to PCI ID list
28 Version LK1.03 (D-Link):
29 - New Rx scheme, reduce Rx congestion
30 - Option to disable flow control
32 Version LK1.04 (D-Link):
34 - More support for ethtool.
37 - Remove unused/constant members from struct pci_id_info
38 (which then allows removal of 'drv_flags' from private struct)
40 - If no phy is found, fail to load that board (jgarzik)
41 - Always start phy id scan at id 1 to avoid problems (Donald Becker)
42 - Autodetect where mii_preable_required is needed,
43 default to not needed. (Donald Becker)
46 - Remove mii_preamble_required module parameter (Donald Becker)
47 - Add per-interface mii_preamble_required (setting is autodetected)
49 - Remove unnecessary cast from void pointer (jgarzik)
50 - Re-align comments in private struct (jgarzik)
52 Version LK1.04c (jgarzik):
53 - Support bitmapped message levels (NETIF_MSG_xxx), and the
54 two ethtool ioctls that get/set them
55 - Don't hand-code MII ethtool support, use standard API/lib
58 - Merge from Donald Becker's sundance.c: (Jason Lunz)
59 * proper support for variably-sized MTUs
60 * default to PIO, to fix chip bugs
61 - Add missing unregister_netdev (Jason Lunz)
62 - Add CONFIG_SUNDANCE_MMIO config option (jgarzik)
63 - Better rx buf size calculation (Donald Becker)
65 Version LK1.05 (D-Link):
66 - Fix DFE-580TX packet drop issue (for DL10050C)
69 Version LK1.06 (D-Link):
70 - Fix crash while unloading driver
72 Versin LK1.06b (D-Link):
73 - New tx scheme, adaptive tx_coalesce
75 Version LK1.07 (D-Link):
76 - Fix tx bugs in big-endian machines
77 - Remove unused max_interrupt_work module parameter, the new
78 NAPI-like rx scheme doesn't need it.
79 - Remove redundancy get_stats() in intr_handler(), those
80 I/O access could affect performance in ARM-based system
81 - Add Linux software VLAN support
83 Version LK1.08 (D-Link):
84 - Fix bug of custom mac address
85 (StationAddr register only accept word write)
87 Version LK1.09 (D-Link):
88 - Fix the flowctrl bug.
89 - Set Pause bit in MII ANAR if flow control enabled.
91 Version LK1.09a (ICPlus):
92 - Add the delay time in reading the contents of EEPROM
96 #define DRV_NAME "sundance"
97 #define DRV_VERSION "1.01+LK1.09a"
98 #define DRV_RELDATE "10-Jul-2003"
101 /* The user-configurable values.
102 These may be modified when a driver module is loaded.*/
103 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
104 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
105 Typical is a 64 element hash table based on the Ethernet CRC. */
106 static int multicast_filter_limit = 32;
108 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
109 Setting to > 1518 effectively disables this feature.
110 This chip can receive into offset buffers, so the Alpha does not
111 need a copy-align. */
112 static int rx_copybreak;
113 static int flowctrl=1;
115 /* media[] specifies the media type the NIC operates at.
116 autosense Autosensing active media.
117 10mbps_hd 10Mbps half duplex.
118 10mbps_fd 10Mbps full duplex.
119 100mbps_hd 100Mbps half duplex.
120 100mbps_fd 100Mbps full duplex.
121 0 Autosensing active media.
122 1 10Mbps half duplex.
123 2 10Mbps full duplex.
124 3 100Mbps half duplex.
125 4 100Mbps full duplex.
128 static char *media[MAX_UNITS];
131 /* Operational parameters that are set at compile time. */
133 /* Keep the ring sizes a power of two for compile efficiency.
134 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
135 Making the Tx ring too large decreases the effectiveness of channel
136 bonding and packet priority, and more than 128 requires modifying the
138 Large receive rings merely waste memory. */
139 #define TX_RING_SIZE 32
140 #define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
141 #define RX_RING_SIZE 64
143 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
144 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
146 /* Operational parameters that usually are not changed. */
147 /* Time in jiffies before concluding the transmitter is hung. */
148 #define TX_TIMEOUT (4*HZ)
149 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
154 #if !defined(__OPTIMIZE__)
155 #warning You must compile this file with the correct options!
156 #warning See the last lines of the source file.
157 #error You must compile this driver with "-O".
160 /* Include files, designed to support most kernel versions 2.0.0 and later. */
161 #include <linux/module.h>
162 #include <linux/kernel.h>
163 #include <linux/string.h>
164 #include <linux/timer.h>
165 #include <linux/errno.h>
166 #include <linux/ioport.h>
167 #include <linux/slab.h>
168 #include <linux/interrupt.h>
169 #include <linux/pci.h>
170 #include <linux/netdevice.h>
171 #include <linux/etherdevice.h>
172 #include <linux/skbuff.h>
173 #include <linux/init.h>
174 #include <asm/uaccess.h>
175 #include <asm/processor.h> /* Processor type for cache alignment. */
176 #include <asm/bitops.h>
178 #include <linux/delay.h>
179 #include <linux/spinlock.h>
180 #ifndef _COMPAT_WITH_OLD_KERNEL
181 #include <linux/crc32.h>
182 #include <linux/ethtool.h>
183 #include <linux/mii.h>
191 /* These identify the driver base version and may not be removed. */
192 static char version[] __devinitdata =
193 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n"
194 KERN_INFO " http://www.scyld.com/network/sundance.html\n";
196 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
197 MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
198 MODULE_LICENSE("GPL");
200 MODULE_PARM(debug, "i");
201 MODULE_PARM(rx_copybreak, "i");
202 MODULE_PARM(media, "1-" __MODULE_STRING(MAX_UNITS) "s");
203 MODULE_PARM(flowctrl, "i");
204 MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
205 MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
206 MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
211 I. Board Compatibility
213 This driver is designed for the Sundance Technologies "Alta" ST201 chip.
215 II. Board-specific settings
217 III. Driver operation
221 This driver uses two statically allocated fixed-size descriptor lists
222 formed into rings by a branch from the final descriptor to the beginning of
223 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
224 Some chips explicitly use only 2^N sized rings, while others use a
225 'next descriptor' pointer that the driver forms into rings.
227 IIIb/c. Transmit/Receive Structure
229 This driver uses a zero-copy receive and transmit scheme.
230 The driver allocates full frame size skbuffs for the Rx ring buffers at
231 open() time and passes the skb->data field to the chip as receive data
232 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
233 a fresh skbuff is allocated and the frame is copied to the new skbuff.
234 When the incoming frame is larger, the skbuff is passed directly up the
235 protocol stack. Buffers consumed this way are replaced by newly allocated
236 skbuffs in a later phase of receives.
238 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
239 using a full-sized skbuff for small frames vs. the copying costs of larger
240 frames. New boards are typically used in generously configured machines
241 and the underfilled buffers have negligible impact compared to the benefit of
242 a single allocation size, so the default value of zero results in never
243 copying packets. When copying is done, the cost is usually mitigated by using
244 a combined copy/checksum routine. Copying also preloads the cache, which is
245 most useful with small frames.
247 A subtle aspect of the operation is that the IP header at offset 14 in an
248 ethernet frame isn't longword aligned for further processing.
249 Unaligned buffers are permitted by the Sundance hardware, so
250 frames are received into the skbuff at an offset of "+2", 16-byte aligning
253 IIId. Synchronization
255 The driver runs as two independent, single-threaded flows of control. One
256 is the send-packet routine, which enforces single-threaded use by the
257 dev->tbusy flag. The other thread is the interrupt handler, which is single
258 threaded by the hardware and interrupt handling software.
260 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
261 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
262 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
263 the 'lp->tx_full' flag.
265 The interrupt handler has exclusive control over the Rx ring and records stats
266 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
267 empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
268 clears both the tx_full and tbusy flags.
274 The Sundance ST201 datasheet, preliminary version.
275 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
276 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
282 /* Work-around for Kendin chip bugs. */
283 #ifndef CONFIG_SUNDANCE_MMIO
287 static struct pci_device_id sundance_pci_tbl[] = {
288 {0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0},
289 {0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1},
290 {0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2},
291 {0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3},
292 {0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4},
293 {0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5},
296 MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
305 static struct pci_id_info pci_id_tbl[] = {
306 {"D-Link DFE-550TX FAST Ethernet Adapter"},
307 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
308 {"D-Link DFE-580TX 4 port Server Adapter"},
309 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
310 {"D-Link DL10050-based FAST Ethernet Adapter"},
311 {"Sundance Technology Alta"},
312 {0,}, /* 0 terminated list. */
315 /* This driver was written to use PCI memory space, however x86-oriented
316 hardware often uses I/O space accesses. */
332 /* Offsets to the device registers.
333 Unlike software-only systems, device drivers interact with complex hardware.
334 It's not useful to define symbolic names for every register bit in the
335 device. The name can only partially document the semantics and make
336 the driver longer and more difficult to read.
337 In general, only the important configuration values or bits changed
338 multiple times should be defined symbolically.
343 TxDMABurstThresh = 0x08,
344 TxDMAUrgentThresh = 0x09,
345 TxDMAPollPeriod = 0x0a,
350 RxDMABurstThresh = 0x14,
351 RxDMAUrgentThresh = 0x15,
352 RxDMAPollPeriod = 0x16,
357 TxStartThresh = 0x3c,
358 RxEarlyThresh = 0x3e,
373 MulticastFilter0 = 0x60,
374 MulticastFilter1 = 0x64,
381 StatsCarrierError = 0x74,
382 StatsLateColl = 0x75,
383 StatsMultiColl = 0x76,
387 StatsTxXSDefer = 0x7a,
393 /* Aliased and bogus values! */
396 enum ASICCtrl_HiWord_bit {
397 GlobalReset = 0x0001,
402 NetworkReset = 0x0020,
407 /* Bits in the interrupt status/mask registers. */
408 enum intr_status_bits {
409 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
410 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
412 StatsMax=0x0080, LinkChange=0x0100,
413 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
416 /* Bits in the RxMode register. */
418 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
419 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
421 /* Bits in MACCtrl. */
422 enum mac_ctrl0_bits {
423 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
424 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
426 enum mac_ctrl1_bits {
427 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
428 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
429 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
432 /* The Rx and Tx buffer descriptors. */
433 /* Note that using only 32 bit fields simplifies conversion to big-endian
438 struct desc_frag { u32 addr, length; } frag[1];
441 /* Bits in netdev_desc.status */
442 enum desc_status_bits {
444 DescEndPacket=0x4000,
448 DescIntrOnDMADone=0x80000000,
449 DisableAlign = 0x00000001,
452 #define PRIV_ALIGN 15 /* Required alignment mask */
453 /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
454 within the structure. */
456 struct netdev_private {
457 /* Descriptor rings first for alignment. */
458 struct netdev_desc *rx_ring;
459 struct netdev_desc *tx_ring;
460 struct sk_buff* rx_skbuff[RX_RING_SIZE];
461 struct sk_buff* tx_skbuff[TX_RING_SIZE];
462 dma_addr_t tx_ring_dma;
463 dma_addr_t rx_ring_dma;
464 struct net_device_stats stats;
465 struct timer_list timer; /* Media monitoring timer. */
466 /* Frequently used values: keep some adjacent for cache effect. */
468 spinlock_t rx_lock; /* Group with Tx control cache line. */
471 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
472 unsigned int rx_buf_sz; /* Based on MTU+slack. */
473 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
474 unsigned int cur_tx, dirty_tx;
475 /* These values are keep track of the transceiver/media in use. */
476 unsigned int flowctrl:1;
477 unsigned int default_port:4; /* Last dev->if_port value. */
478 unsigned int an_enable:1;
480 struct tasklet_struct rx_tasklet;
481 struct tasklet_struct tx_tasklet;
484 /* Multicast and receive mode. */
485 spinlock_t mcastlock; /* SMP lock multicast updates. */
487 /* MII transceiver section. */
488 struct mii_if_info mii_if;
489 int mii_preamble_required;
490 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
491 struct pci_dev *pci_dev;
492 unsigned char pci_rev_id;
495 /* The station address location in the EEPROM. */
496 #define EEPROM_SA_OFFSET 0x10
497 #define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
498 IntrDrvRqst | IntrTxDone | StatsMax | \
501 static int change_mtu(struct net_device *dev, int new_mtu);
502 static int eeprom_read(long ioaddr, int location);
503 static int mdio_read(struct net_device *dev, int phy_id, int location);
504 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
505 static int netdev_open(struct net_device *dev);
506 static void check_duplex(struct net_device *dev);
507 static void netdev_timer(unsigned long data);
508 static void tx_timeout(struct net_device *dev);
509 static void init_ring(struct net_device *dev);
510 static int start_tx(struct sk_buff *skb, struct net_device *dev);
511 static int reset_tx (struct net_device *dev);
512 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
513 static void rx_poll(unsigned long data);
514 static void tx_poll(unsigned long data);
515 static void refill_rx (struct net_device *dev);
516 static void netdev_error(struct net_device *dev, int intr_status);
517 static void netdev_error(struct net_device *dev, int intr_status);
518 static void set_rx_mode(struct net_device *dev);
519 static int __set_mac_addr(struct net_device *dev);
520 static struct net_device_stats *get_stats(struct net_device *dev);
521 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
522 static int netdev_close(struct net_device *dev);
526 static int __devinit sundance_probe1 (struct pci_dev *pdev,
527 const struct pci_device_id *ent)
529 struct net_device *dev;
530 struct netdev_private *np;
532 int chip_idx = ent->driver_data;
541 /* when built into the kernel, we only print version if device is found */
543 static int printed_version;
544 if (!printed_version++)
548 if (pci_enable_device(pdev))
550 pci_set_master(pdev);
554 dev = alloc_etherdev(sizeof(*np));
557 SET_MODULE_OWNER(dev);
558 SET_NETDEV_DEV(dev, &pdev->dev);
560 if (pci_request_regions(pdev, DRV_NAME))
564 ioaddr = pci_resource_start(pdev, 0);
566 ioaddr = pci_resource_start(pdev, 1);
567 ioaddr = (long) ioremap (ioaddr, netdev_io_size);
572 for (i = 0; i < 3; i++)
573 ((u16 *)dev->dev_addr)[i] =
574 le16_to_cpu(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
576 dev->base_addr = ioaddr;
581 np->chip_id = chip_idx;
582 np->msg_enable = (1 << debug) - 1;
583 spin_lock_init(&np->lock);
584 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
585 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
587 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
589 goto err_out_cleardev;
590 np->tx_ring = (struct netdev_desc *)ring_space;
591 np->tx_ring_dma = ring_dma;
593 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
595 goto err_out_unmap_tx;
596 np->rx_ring = (struct netdev_desc *)ring_space;
597 np->rx_ring_dma = ring_dma;
599 np->mii_if.dev = dev;
600 np->mii_if.mdio_read = mdio_read;
601 np->mii_if.mdio_write = mdio_write;
602 np->mii_if.phy_id_mask = 0x1f;
603 np->mii_if.reg_num_mask = 0x1f;
605 /* The chip-specific entries in the device structure. */
606 dev->open = &netdev_open;
607 dev->hard_start_xmit = &start_tx;
608 dev->stop = &netdev_close;
609 dev->get_stats = &get_stats;
610 dev->set_multicast_list = &set_rx_mode;
611 dev->do_ioctl = &netdev_ioctl;
612 dev->tx_timeout = &tx_timeout;
613 dev->watchdog_timeo = TX_TIMEOUT;
614 dev->change_mtu = &change_mtu;
615 pci_set_drvdata(pdev, dev);
617 pci_read_config_byte(pdev, PCI_REVISION_ID, &np->pci_rev_id);
619 i = register_netdev(dev);
621 goto err_out_unmap_rx;
623 printk(KERN_INFO "%s: %s at 0x%lx, ",
624 dev->name, pci_id_tbl[chip_idx].name, ioaddr);
625 for (i = 0; i < 5; i++)
626 printk("%2.2x:", dev->dev_addr[i]);
627 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
630 int phy, phy_idx = 0;
631 np->phys[0] = 1; /* Default setting */
632 np->mii_preamble_required++;
633 for (phy = 1; phy < 32 && phy_idx < MII_CNT; phy++) {
634 int mii_status = mdio_read(dev, phy, MII_BMSR);
635 if (mii_status != 0xffff && mii_status != 0x0000) {
636 np->phys[phy_idx++] = phy;
637 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
638 if ((mii_status & 0x0040) == 0)
639 np->mii_preamble_required++;
640 printk(KERN_INFO "%s: MII PHY found at address %d, status "
641 "0x%4.4x advertising %4.4x.\n",
642 dev->name, phy, mii_status, np->mii_if.advertising);
645 np->mii_preamble_required--;
648 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
649 dev->name, readl(ioaddr + ASICCtrl));
650 goto err_out_unregister;
653 np->mii_if.phy_id = np->phys[0];
656 /* Parse override configuration */
658 if (card_idx < MAX_UNITS) {
659 if (media[card_idx] != NULL) {
661 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
662 strcmp (media[card_idx], "4") == 0) {
664 np->mii_if.full_duplex = 1;
665 } else if (strcmp (media[card_idx], "100mbps_hd") == 0
666 || strcmp (media[card_idx], "3") == 0) {
668 np->mii_if.full_duplex = 0;
669 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
670 strcmp (media[card_idx], "2") == 0) {
672 np->mii_if.full_duplex = 1;
673 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
674 strcmp (media[card_idx], "1") == 0) {
676 np->mii_if.full_duplex = 0;
686 if (readl (ioaddr + ASICCtrl) & 0x80) {
687 /* Default 100Mbps Full */
690 np->mii_if.full_duplex = 1;
695 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
697 /* If flow control enabled, we need to advertise it.*/
699 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
700 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
701 /* Force media type */
702 if (!np->an_enable) {
704 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
705 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
706 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
707 printk (KERN_INFO "Override speed=%d, %s duplex\n",
708 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
712 /* Perhaps move the reset here? */
713 /* Reset the chip to erase previous misconfiguration. */
714 if (netif_msg_hw(np))
715 printk("ASIC Control is %x.\n", readl(ioaddr + ASICCtrl));
716 writew(0x007f, ioaddr + ASICCtrl + 2);
717 if (netif_msg_hw(np))
718 printk("ASIC Control is now %x.\n", readl(ioaddr + ASICCtrl));
724 unregister_netdev(dev);
726 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
728 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
730 pci_set_drvdata(pdev, NULL);
732 iounmap((void *)ioaddr);
735 pci_release_regions(pdev);
741 static int change_mtu(struct net_device *dev, int new_mtu)
743 if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */
745 if (netif_running(dev))
751 #define eeprom_delay(ee_addr) readl(ee_addr)
752 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
753 static int __devinit eeprom_read(long ioaddr, int location)
755 int boguscnt = 10000; /* Typical 1900 ticks. */
756 writew(0x0200 | (location & 0xff), ioaddr + EECtrl);
758 eeprom_delay(ioaddr + EECtrl);
759 if (! (readw(ioaddr + EECtrl) & 0x8000)) {
760 return readw(ioaddr + EEData);
762 } while (--boguscnt > 0);
766 /* MII transceiver control section.
767 Read and write the MII registers using software-generated serial
768 MDIO protocol. See the MII specifications or DP83840A data sheet
771 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
772 met by back-to-back 33Mhz PCI cycles. */
773 #define mdio_delay() readb(mdio_addr)
776 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
778 #define MDIO_EnbIn (0)
779 #define MDIO_WRITE0 (MDIO_EnbOutput)
780 #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
782 /* Generate the preamble required for initial synchronization and
783 a few older transceivers. */
784 static void mdio_sync(long mdio_addr)
788 /* Establish sync by sending at least 32 logic ones. */
789 while (--bits >= 0) {
790 writeb(MDIO_WRITE1, mdio_addr);
792 writeb(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
797 static int mdio_read(struct net_device *dev, int phy_id, int location)
799 struct netdev_private *np = dev->priv;
800 long mdio_addr = dev->base_addr + MIICtrl;
801 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
804 if (np->mii_preamble_required)
805 mdio_sync(mdio_addr);
807 /* Shift the read command bits out. */
808 for (i = 15; i >= 0; i--) {
809 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
811 writeb(dataval, mdio_addr);
813 writeb(dataval | MDIO_ShiftClk, mdio_addr);
816 /* Read the two transition, 16 data, and wire-idle bits. */
817 for (i = 19; i > 0; i--) {
818 writeb(MDIO_EnbIn, mdio_addr);
820 retval = (retval << 1) | ((readb(mdio_addr) & MDIO_Data) ? 1 : 0);
821 writeb(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
824 return (retval>>1) & 0xffff;
827 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
829 struct netdev_private *np = dev->priv;
830 long mdio_addr = dev->base_addr + MIICtrl;
831 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
834 if (np->mii_preamble_required)
835 mdio_sync(mdio_addr);
837 /* Shift the command bits out. */
838 for (i = 31; i >= 0; i--) {
839 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
841 writeb(dataval, mdio_addr);
843 writeb(dataval | MDIO_ShiftClk, mdio_addr);
846 /* Clear out extra bits. */
847 for (i = 2; i > 0; i--) {
848 writeb(MDIO_EnbIn, mdio_addr);
850 writeb(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
856 static int netdev_open(struct net_device *dev)
858 struct netdev_private *np = dev->priv;
859 long ioaddr = dev->base_addr;
862 /* Do we need to reset the chip??? */
864 i = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev);
868 if (netif_msg_ifup(np))
869 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
870 dev->name, dev->irq);
873 writel(np->rx_ring_dma, ioaddr + RxListPtr);
874 /* The Tx list pointer is written as packets are queued. */
876 /* Initialize other registers. */
878 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
879 writew(dev->mtu + 18, ioaddr + MaxFrameSize);
881 writew(dev->mtu + 14, ioaddr + MaxFrameSize);
884 writel(readl(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
886 /* Configure the PCI bus bursts and FIFO thresholds. */
888 if (dev->if_port == 0)
889 dev->if_port = np->default_port;
891 np->mcastlock = (spinlock_t) SPIN_LOCK_UNLOCKED;
894 writew(0, ioaddr + IntrEnable);
895 writew(0, ioaddr + DownCounter);
896 /* Set the chip to poll every N*320nsec. */
897 writeb(100, ioaddr + RxDMAPollPeriod);
898 writeb(127, ioaddr + TxDMAPollPeriod);
899 /* Fix DFE-580TX packet drop issue */
900 if (np->pci_rev_id >= 0x14)
901 writeb(0x01, ioaddr + DebugCtrl1);
902 netif_start_queue(dev);
904 writew (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
906 if (netif_msg_ifup(np))
907 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
908 "MAC Control %x, %4.4x %4.4x.\n",
909 dev->name, readl(ioaddr + RxStatus), readb(ioaddr + TxStatus),
910 readl(ioaddr + MACCtrl0),
911 readw(ioaddr + MACCtrl1), readw(ioaddr + MACCtrl0));
913 /* Set the timer to check for link beat. */
914 init_timer(&np->timer);
915 np->timer.expires = jiffies + 3*HZ;
916 np->timer.data = (unsigned long)dev;
917 np->timer.function = &netdev_timer; /* timer handler */
918 add_timer(&np->timer);
920 /* Enable interrupts by setting the interrupt mask. */
921 writew(DEFAULT_INTR, ioaddr + IntrEnable);
926 static void check_duplex(struct net_device *dev)
928 struct netdev_private *np = dev->priv;
929 long ioaddr = dev->base_addr;
930 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
931 int negotiated = mii_lpa & np->mii_if.advertising;
935 if (!np->an_enable || mii_lpa == 0xffff) {
936 if (np->mii_if.full_duplex)
937 writew (readw (ioaddr + MACCtrl0) | EnbFullDuplex,
942 /* Autonegotiation */
943 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
944 if (np->mii_if.full_duplex != duplex) {
945 np->mii_if.full_duplex = duplex;
946 if (netif_msg_link(np))
947 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
948 "negotiated capability %4.4x.\n", dev->name,
949 duplex ? "full" : "half", np->phys[0], negotiated);
950 writew(readw(ioaddr + MACCtrl0) | duplex ? 0x20 : 0, ioaddr + MACCtrl0);
954 static void netdev_timer(unsigned long data)
956 struct net_device *dev = (struct net_device *)data;
957 struct netdev_private *np = dev->priv;
958 long ioaddr = dev->base_addr;
959 int next_tick = 10*HZ;
961 if (netif_msg_timer(np)) {
962 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
964 dev->name, readw(ioaddr + IntrEnable),
965 readb(ioaddr + TxStatus), readl(ioaddr + RxStatus));
968 np->timer.expires = jiffies + next_tick;
969 add_timer(&np->timer);
972 static void tx_timeout(struct net_device *dev)
974 struct netdev_private *np = dev->priv;
975 long ioaddr = dev->base_addr;
978 netif_stop_queue(dev);
979 tasklet_disable(&np->tx_tasklet);
980 writew(0, ioaddr + IntrEnable);
981 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
983 " resetting...\n", dev->name, readb(ioaddr + TxStatus),
984 readb(ioaddr + TxFrameId));
988 for (i=0; i<TX_RING_SIZE; i++) {
989 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
990 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
991 le32_to_cpu(np->tx_ring[i].next_desc),
992 le32_to_cpu(np->tx_ring[i].status),
993 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
994 le32_to_cpu(np->tx_ring[i].frag[0].addr),
995 le32_to_cpu(np->tx_ring[i].frag[0].length));
997 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
998 readl(dev->base_addr + TxListPtr),
999 netif_queue_stopped(dev));
1000 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1001 np->cur_tx, np->cur_tx % TX_RING_SIZE,
1002 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
1003 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
1004 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
1006 spin_lock_irqsave(&np->lock, flag);
1008 /* Stop and restart the chip's Tx processes . */
1010 spin_unlock_irqrestore(&np->lock, flag);
1014 dev->trans_start = jiffies;
1015 np->stats.tx_errors++;
1016 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1017 netif_wake_queue(dev);
1019 writew(DEFAULT_INTR, ioaddr + IntrEnable);
1020 tasklet_enable(&np->tx_tasklet);
1024 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1025 static void init_ring(struct net_device *dev)
1027 struct netdev_private *np = dev->priv;
1030 np->cur_rx = np->cur_tx = 0;
1031 np->dirty_rx = np->dirty_tx = 0;
1034 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1036 /* Initialize all Rx descriptors. */
1037 for (i = 0; i < RX_RING_SIZE; i++) {
1038 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1039 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1040 np->rx_ring[i].status = 0;
1041 np->rx_ring[i].frag[0].length = 0;
1042 np->rx_skbuff[i] = 0;
1045 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1046 for (i = 0; i < RX_RING_SIZE; i++) {
1047 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1048 np->rx_skbuff[i] = skb;
1051 skb->dev = dev; /* Mark as being used by this device. */
1052 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1053 np->rx_ring[i].frag[0].addr = cpu_to_le32(
1054 pci_map_single(np->pci_dev, skb->tail, np->rx_buf_sz,
1055 PCI_DMA_FROMDEVICE));
1056 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1058 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1060 for (i = 0; i < TX_RING_SIZE; i++) {
1061 np->tx_skbuff[i] = 0;
1062 np->tx_ring[i].status = 0;
1067 static void tx_poll (unsigned long data)
1069 struct net_device *dev = (struct net_device *)data;
1070 struct netdev_private *np = dev->priv;
1071 unsigned head = np->cur_task % TX_RING_SIZE;
1072 struct netdev_desc *txdesc =
1073 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1075 /* Chain the next pointer */
1076 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1077 int entry = np->cur_task % TX_RING_SIZE;
1078 txdesc = &np->tx_ring[entry];
1080 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1081 entry*sizeof(struct netdev_desc));
1083 np->last_tx = txdesc;
1085 /* Indicate the latest descriptor of tx ring */
1086 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1088 if (readl (dev->base_addr + TxListPtr) == 0)
1089 writel (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1090 dev->base_addr + TxListPtr);
1095 start_tx (struct sk_buff *skb, struct net_device *dev)
1097 struct netdev_private *np = dev->priv;
1098 struct netdev_desc *txdesc;
1101 /* Calculate the next Tx descriptor entry. */
1102 entry = np->cur_tx % TX_RING_SIZE;
1103 np->tx_skbuff[entry] = skb;
1104 txdesc = &np->tx_ring[entry];
1106 txdesc->next_desc = 0;
1107 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1108 txdesc->frag[0].addr = cpu_to_le32 (pci_map_single (np->pci_dev, skb->data,
1111 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1113 /* Increment cur_tx before tasklet_schedule() */
1116 /* Schedule a tx_poll() task */
1117 tasklet_schedule(&np->tx_tasklet);
1119 /* On some architectures: explicitly flush cache lines here. */
1120 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1
1121 && !netif_queue_stopped(dev)) {
1124 netif_stop_queue (dev);
1126 dev->trans_start = jiffies;
1127 if (netif_msg_tx_queued(np)) {
1129 "%s: Transmit frame #%d queued in slot %d.\n",
1130 dev->name, np->cur_tx, entry);
1135 /* Reset hardware tx and free all of tx buffers */
1137 reset_tx (struct net_device *dev)
1139 struct netdev_private *np = dev->priv;
1140 long ioaddr = dev->base_addr;
1141 struct sk_buff *skb;
1143 int irq = in_interrupt();
1145 /* Reset tx logic, TxListPtr will be cleaned */
1146 writew (TxDisable, ioaddr + MACCtrl1);
1147 writew (TxReset | DMAReset | FIFOReset | NetworkReset,
1148 ioaddr + ASICCtrl + 2);
1149 for (i=50; i > 0; i--) {
1150 if ((readw(ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
1154 /* free all tx skbuff */
1155 for (i = 0; i < TX_RING_SIZE; i++) {
1156 skb = np->tx_skbuff[i];
1158 pci_unmap_single(np->pci_dev,
1159 np->tx_ring[i].frag[0].addr, skb->len,
1162 dev_kfree_skb_irq (skb);
1164 dev_kfree_skb (skb);
1165 np->tx_skbuff[i] = 0;
1166 np->stats.tx_dropped++;
1169 np->cur_tx = np->dirty_tx = 0;
1171 writew (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1175 /* The interrupt handler cleans up after the Tx thread,
1176 and schedule a Rx thread work */
1177 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
1179 struct net_device *dev = (struct net_device *)dev_instance;
1180 struct netdev_private *np;
1187 ioaddr = dev->base_addr;
1191 int intr_status = readw(ioaddr + IntrStatus);
1192 writew(intr_status, ioaddr + IntrStatus);
1194 if (netif_msg_intr(np))
1195 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1196 dev->name, intr_status);
1198 if (!(intr_status & DEFAULT_INTR))
1203 if (intr_status & (IntrRxDMADone)) {
1204 writew(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1205 ioaddr + IntrEnable);
1207 np->budget = RX_BUDGET;
1208 tasklet_schedule(&np->rx_tasklet);
1210 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1211 tx_status = readw (ioaddr + TxStatus);
1212 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1213 if (netif_msg_tx_done(np))
1215 ("%s: Transmit status is %2.2x.\n",
1216 dev->name, tx_status);
1217 if (tx_status & 0x1e) {
1218 np->stats.tx_errors++;
1219 if (tx_status & 0x10)
1220 np->stats.tx_fifo_errors++;
1221 if (tx_status & 0x08)
1222 np->stats.collisions++;
1223 if (tx_status & 0x02)
1224 np->stats.tx_window_errors++;
1225 /* This reset has not been verified!. */
1226 if (tx_status & 0x10) { /* Reset the Tx. */
1227 np->stats.tx_fifo_errors++;
1228 spin_lock(&np->lock);
1230 spin_unlock(&np->lock);
1232 if (tx_status & 0x1e) /* Restart the Tx. */
1236 /* Yup, this is a documentation bug. It cost me *hours*. */
1237 writew (0, ioaddr + TxStatus);
1238 tx_status = readw (ioaddr + TxStatus);
1242 hw_frame_id = (tx_status >> 8) & 0xff;
1244 hw_frame_id = readb(ioaddr + TxFrameId);
1247 if (np->pci_rev_id >= 0x14) {
1248 spin_lock(&np->lock);
1249 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1250 int entry = np->dirty_tx % TX_RING_SIZE;
1251 struct sk_buff *skb;
1253 sw_frame_id = (le32_to_cpu(
1254 np->tx_ring[entry].status) >> 2) & 0xff;
1255 if (sw_frame_id == hw_frame_id &&
1256 !(le32_to_cpu(np->tx_ring[entry].status)
1259 if (sw_frame_id == (hw_frame_id + 1) %
1262 skb = np->tx_skbuff[entry];
1263 /* Free the original skb. */
1264 pci_unmap_single(np->pci_dev,
1265 np->tx_ring[entry].frag[0].addr,
1266 skb->len, PCI_DMA_TODEVICE);
1267 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1268 np->tx_skbuff[entry] = 0;
1269 np->tx_ring[entry].frag[0].addr = 0;
1270 np->tx_ring[entry].frag[0].length = 0;
1272 spin_unlock(&np->lock);
1274 spin_lock(&np->lock);
1275 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1276 int entry = np->dirty_tx % TX_RING_SIZE;
1277 struct sk_buff *skb;
1278 if (!(le32_to_cpu(np->tx_ring[entry].status)
1281 skb = np->tx_skbuff[entry];
1282 /* Free the original skb. */
1283 pci_unmap_single(np->pci_dev,
1284 np->tx_ring[entry].frag[0].addr,
1285 skb->len, PCI_DMA_TODEVICE);
1286 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1287 np->tx_skbuff[entry] = 0;
1288 np->tx_ring[entry].frag[0].addr = 0;
1289 np->tx_ring[entry].frag[0].length = 0;
1291 spin_unlock(&np->lock);
1294 if (netif_queue_stopped(dev) &&
1295 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1296 /* The ring is no longer full, clear busy flag. */
1297 netif_wake_queue (dev);
1299 /* Abnormal error summary/uncommon events handlers. */
1300 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1301 netdev_error(dev, intr_status);
1303 if (netif_msg_intr(np))
1304 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1305 dev->name, readw(ioaddr + IntrStatus));
1306 writel(5000, ioaddr + DownCounter);
1307 return IRQ_RETVAL(handled);
1310 static void rx_poll(unsigned long data)
1312 struct net_device *dev = (struct net_device *)data;
1313 struct netdev_private *np = dev->priv;
1314 int entry = np->cur_rx % RX_RING_SIZE;
1315 int boguscnt = np->budget;
1316 long ioaddr = dev->base_addr;
1319 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1321 struct netdev_desc *desc = &(np->rx_ring[entry]);
1322 u32 frame_status = le32_to_cpu(desc->status);
1325 if (--boguscnt < 0) {
1328 if (!(frame_status & DescOwn))
1330 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1331 if (netif_msg_rx_status(np))
1332 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1334 if (frame_status & 0x001f4000) {
1335 /* There was a error. */
1336 if (netif_msg_rx_err(np))
1337 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1339 np->stats.rx_errors++;
1340 if (frame_status & 0x00100000) np->stats.rx_length_errors++;
1341 if (frame_status & 0x00010000) np->stats.rx_fifo_errors++;
1342 if (frame_status & 0x00060000) np->stats.rx_frame_errors++;
1343 if (frame_status & 0x00080000) np->stats.rx_crc_errors++;
1344 if (frame_status & 0x00100000) {
1345 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1347 dev->name, frame_status);
1350 struct sk_buff *skb;
1351 #ifndef final_version
1352 if (netif_msg_rx_status(np))
1353 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1354 ", bogus_cnt %d.\n",
1357 /* Check if the packet is long enough to accept without copying
1358 to a minimally-sized skbuff. */
1359 if (pkt_len < rx_copybreak
1360 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1362 skb_reserve(skb, 2); /* 16 byte align the IP header */
1363 pci_dma_sync_single_for_cpu(np->pci_dev,
1366 PCI_DMA_FROMDEVICE);
1368 eth_copy_and_sum(skb, np->rx_skbuff[entry]->tail, pkt_len, 0);
1369 pci_dma_sync_single_for_device(np->pci_dev,
1372 PCI_DMA_FROMDEVICE);
1373 skb_put(skb, pkt_len);
1375 pci_unmap_single(np->pci_dev,
1378 PCI_DMA_FROMDEVICE);
1379 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1380 np->rx_skbuff[entry] = NULL;
1382 skb->protocol = eth_type_trans(skb, dev);
1383 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1385 dev->last_rx = jiffies;
1387 entry = (entry + 1) % RX_RING_SIZE;
1392 np->budget -= received;
1393 writew(DEFAULT_INTR, ioaddr + IntrEnable);
1401 np->budget -= received;
1402 if (np->budget <= 0)
1403 np->budget = RX_BUDGET;
1404 tasklet_schedule(&np->rx_tasklet);
1408 static void refill_rx (struct net_device *dev)
1410 struct netdev_private *np = dev->priv;
1414 /* Refill the Rx ring buffers. */
1415 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1416 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1417 struct sk_buff *skb;
1418 entry = np->dirty_rx % RX_RING_SIZE;
1419 if (np->rx_skbuff[entry] == NULL) {
1420 skb = dev_alloc_skb(np->rx_buf_sz);
1421 np->rx_skbuff[entry] = skb;
1423 break; /* Better luck next round. */
1424 skb->dev = dev; /* Mark as being used by this device. */
1425 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1426 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
1427 pci_map_single(np->pci_dev, skb->tail,
1428 np->rx_buf_sz, PCI_DMA_FROMDEVICE));
1430 /* Perhaps we need not reset this field. */
1431 np->rx_ring[entry].frag[0].length =
1432 cpu_to_le32(np->rx_buf_sz | LastFrag);
1433 np->rx_ring[entry].status = 0;
1438 static void netdev_error(struct net_device *dev, int intr_status)
1440 long ioaddr = dev->base_addr;
1441 struct netdev_private *np = dev->priv;
1442 u16 mii_ctl, mii_advertise, mii_lpa;
1445 if (intr_status & LinkChange) {
1446 if (np->an_enable) {
1447 mii_advertise = mdio_read (dev, np->phys[0], MII_ADVERTISE);
1448 mii_lpa= mdio_read (dev, np->phys[0], MII_LPA);
1449 mii_advertise &= mii_lpa;
1450 printk (KERN_INFO "%s: Link changed: ", dev->name);
1451 if (mii_advertise & ADVERTISE_100FULL) {
1453 printk ("100Mbps, full duplex\n");
1454 } else if (mii_advertise & ADVERTISE_100HALF) {
1456 printk ("100Mbps, half duplex\n");
1457 } else if (mii_advertise & ADVERTISE_10FULL) {
1459 printk ("10Mbps, full duplex\n");
1460 } else if (mii_advertise & ADVERTISE_10HALF) {
1462 printk ("10Mbps, half duplex\n");
1467 mii_ctl = mdio_read (dev, np->phys[0], MII_BMCR);
1468 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1470 printk (KERN_INFO "%s: Link changed: %dMbps ,",
1472 printk ("%s duplex.\n", (mii_ctl & BMCR_FULLDPLX) ?
1476 if (np->flowctrl && np->mii_if.full_duplex) {
1477 writew(readw(ioaddr + MulticastFilter1+2) | 0x0200,
1478 ioaddr + MulticastFilter1+2);
1479 writew(readw(ioaddr + MACCtrl0) | EnbFlowCtrl,
1483 if (intr_status & StatsMax) {
1486 if (intr_status & IntrPCIErr) {
1487 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1488 dev->name, intr_status);
1489 /* We must do a global reset of DMA to continue. */
1493 static struct net_device_stats *get_stats(struct net_device *dev)
1495 struct netdev_private *np = dev->priv;
1496 long ioaddr = dev->base_addr;
1499 /* We should lock this segment of code for SMP eventually, although
1500 the vulnerability window is very small and statistics are
1502 /* The chip only need report frame silently dropped. */
1503 np->stats.rx_missed_errors += readb(ioaddr + RxMissed);
1504 np->stats.tx_packets += readw(ioaddr + TxFramesOK);
1505 np->stats.rx_packets += readw(ioaddr + RxFramesOK);
1506 np->stats.collisions += readb(ioaddr + StatsLateColl);
1507 np->stats.collisions += readb(ioaddr + StatsMultiColl);
1508 np->stats.collisions += readb(ioaddr + StatsOneColl);
1509 np->stats.tx_carrier_errors += readb(ioaddr + StatsCarrierError);
1510 readb(ioaddr + StatsTxDefer);
1511 for (i = StatsTxDefer; i <= StatsMcastRx; i++)
1513 np->stats.tx_bytes += readw(ioaddr + TxOctetsLow);
1514 np->stats.tx_bytes += readw(ioaddr + TxOctetsHigh) << 16;
1515 np->stats.rx_bytes += readw(ioaddr + RxOctetsLow);
1516 np->stats.rx_bytes += readw(ioaddr + RxOctetsHigh) << 16;
1521 static void set_rx_mode(struct net_device *dev)
1523 long ioaddr = dev->base_addr;
1524 struct netdev_private *np = dev->priv;
1525 u16 mc_filter[4]; /* Multicast hash filter */
1529 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1530 /* Unconditionally log net taps. */
1531 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1532 memset(mc_filter, 0xff, sizeof(mc_filter));
1533 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1534 } else if ((dev->mc_count > multicast_filter_limit)
1535 || (dev->flags & IFF_ALLMULTI)) {
1536 /* Too many to match, or accept all multicasts. */
1537 memset(mc_filter, 0xff, sizeof(mc_filter));
1538 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1539 } else if (dev->mc_count) {
1540 struct dev_mc_list *mclist;
1544 memset (mc_filter, 0, sizeof (mc_filter));
1545 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1546 i++, mclist = mclist->next) {
1547 crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1548 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1549 if (crc & 0x80000000) index |= 1 << bit;
1550 mc_filter[index/16] |= (1 << (index % 16));
1552 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1554 writeb(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1557 if (np->mii_if.full_duplex && np->flowctrl)
1558 mc_filter[3] |= 0x0200;
1560 for (i = 0; i < 4; i++)
1561 writew(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1562 writeb(rx_mode, ioaddr + RxMode);
1565 static int __set_mac_addr(struct net_device *dev)
1569 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1570 writew(addr16, dev->base_addr + StationAddr);
1571 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1572 writew(addr16, dev->base_addr + StationAddr+2);
1573 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1574 writew(addr16, dev->base_addr + StationAddr+4);
1579 static int netdev_ethtool_ioctl(struct net_device *dev, void *useraddr)
1581 struct netdev_private *np = dev->priv;
1584 if (copy_from_user(ðcmd, useraddr, sizeof(ethcmd)))
1588 /* get constant driver settings/info */
1589 case ETHTOOL_GDRVINFO: {
1590 struct ethtool_drvinfo info = {ETHTOOL_GDRVINFO};
1591 strcpy(info.driver, DRV_NAME);
1592 strcpy(info.version, DRV_VERSION);
1593 strcpy(info.bus_info, pci_name(np->pci_dev));
1594 memset(&info.fw_version, 0, sizeof(info.fw_version));
1595 if (copy_to_user(useraddr, &info, sizeof(info)))
1600 /* get media settings */
1601 case ETHTOOL_GSET: {
1602 struct ethtool_cmd ecmd = { ETHTOOL_GSET };
1603 spin_lock_irq(&np->lock);
1604 mii_ethtool_gset(&np->mii_if, &ecmd);
1605 spin_unlock_irq(&np->lock);
1606 if (copy_to_user(useraddr, &ecmd, sizeof(ecmd)))
1610 /* set media settings */
1611 case ETHTOOL_SSET: {
1613 struct ethtool_cmd ecmd;
1614 if (copy_from_user(&ecmd, useraddr, sizeof(ecmd)))
1616 spin_lock_irq(&np->lock);
1617 r = mii_ethtool_sset(&np->mii_if, &ecmd);
1618 spin_unlock_irq(&np->lock);
1622 /* restart autonegotiation */
1623 case ETHTOOL_NWAY_RST: {
1624 return mii_nway_restart(&np->mii_if);
1627 /* get link status */
1628 case ETHTOOL_GLINK: {
1629 struct ethtool_value edata = {ETHTOOL_GLINK};
1630 edata.data = mii_link_ok(&np->mii_if);
1631 if (copy_to_user(useraddr, &edata, sizeof(edata)))
1636 /* get message-level */
1637 case ETHTOOL_GMSGLVL: {
1638 struct ethtool_value edata = {ETHTOOL_GMSGLVL};
1639 edata.data = np->msg_enable;
1640 if (copy_to_user(useraddr, &edata, sizeof(edata)))
1644 /* set message-level */
1645 case ETHTOOL_SMSGLVL: {
1646 struct ethtool_value edata;
1647 if (copy_from_user(&edata, useraddr, sizeof(edata)))
1649 np->msg_enable = edata.data;
1659 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1661 struct netdev_private *np = dev->priv;
1662 struct mii_ioctl_data *data = (struct mii_ioctl_data *) & rq->ifr_data;
1665 long ioaddr = dev->base_addr;
1667 if (!netif_running(dev))
1670 if (cmd == SIOCETHTOOL)
1671 rc = netdev_ethtool_ioctl(dev, (void *) rq->ifr_data);
1674 spin_lock_irq(&np->lock);
1675 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1676 spin_unlock_irq(&np->lock);
1679 case SIOCDEVPRIVATE:
1680 for (i=0; i<TX_RING_SIZE; i++) {
1681 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
1682 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
1683 le32_to_cpu(np->tx_ring[i].next_desc),
1684 le32_to_cpu(np->tx_ring[i].status),
1685 (le32_to_cpu(np->tx_ring[i].status) >> 2)
1687 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1688 le32_to_cpu(np->tx_ring[i].frag[0].length));
1690 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
1691 readl(dev->base_addr + TxListPtr),
1692 netif_queue_stopped(dev));
1693 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1694 np->cur_tx, np->cur_tx % TX_RING_SIZE,
1695 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
1696 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
1697 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
1698 printk(KERN_DEBUG "TxStatus=%04x\n", readw(ioaddr + TxStatus));
1706 static int netdev_close(struct net_device *dev)
1708 long ioaddr = dev->base_addr;
1709 struct netdev_private *np = dev->priv;
1710 struct sk_buff *skb;
1713 netif_stop_queue(dev);
1715 if (netif_msg_ifdown(np)) {
1716 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1717 "Rx %4.4x Int %2.2x.\n",
1718 dev->name, readb(ioaddr + TxStatus),
1719 readl(ioaddr + RxStatus), readw(ioaddr + IntrStatus));
1720 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1721 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1724 /* Disable interrupts by clearing the interrupt mask. */
1725 writew(0x0000, ioaddr + IntrEnable);
1727 /* Stop the chip's Tx and Rx processes. */
1728 writew(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1730 /* Wait and kill tasklet */
1731 tasklet_kill(&np->rx_tasklet);
1732 tasklet_kill(&np->tx_tasklet);
1735 if (netif_msg_hw(np)) {
1736 printk("\n"KERN_DEBUG" Tx ring at %8.8x:\n",
1737 (int)(np->tx_ring_dma));
1738 for (i = 0; i < TX_RING_SIZE; i++)
1739 printk(" #%d desc. %4.4x %8.8x %8.8x.\n",
1740 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1741 np->tx_ring[i].frag[0].length);
1742 printk("\n"KERN_DEBUG " Rx ring %8.8x:\n",
1743 (int)(np->rx_ring_dma));
1744 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1745 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1746 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1747 np->rx_ring[i].frag[0].length);
1750 #endif /* __i386__ debugging only */
1752 free_irq(dev->irq, dev);
1754 del_timer_sync(&np->timer);
1756 /* Free all the skbuffs in the Rx queue. */
1757 for (i = 0; i < RX_RING_SIZE; i++) {
1758 np->rx_ring[i].status = 0;
1759 np->rx_ring[i].frag[0].addr = 0xBADF00D0; /* An invalid address. */
1760 skb = np->rx_skbuff[i];
1762 pci_unmap_single(np->pci_dev,
1763 np->rx_ring[i].frag[0].addr, np->rx_buf_sz,
1764 PCI_DMA_FROMDEVICE);
1766 np->rx_skbuff[i] = 0;
1769 for (i = 0; i < TX_RING_SIZE; i++) {
1770 skb = np->tx_skbuff[i];
1772 pci_unmap_single(np->pci_dev,
1773 np->tx_ring[i].frag[0].addr, skb->len,
1776 np->tx_skbuff[i] = 0;
1783 static void __devexit sundance_remove1 (struct pci_dev *pdev)
1785 struct net_device *dev = pci_get_drvdata(pdev);
1788 struct netdev_private *np = dev->priv;
1790 unregister_netdev(dev);
1791 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
1793 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
1795 pci_release_regions(pdev);
1797 iounmap((char *)(dev->base_addr));
1800 pci_set_drvdata(pdev, NULL);
1804 static struct pci_driver sundance_driver = {
1806 .id_table = sundance_pci_tbl,
1807 .probe = sundance_probe1,
1808 .remove = __devexit_p(sundance_remove1),
1811 static int __init sundance_init(void)
1813 /* when a module, this is printed whether or not devices are found in probe */
1817 return pci_module_init(&sundance_driver);
1820 static void __exit sundance_exit(void)
1822 pci_unregister_driver(&sundance_driver);
1825 module_init(sundance_init);
1826 module_exit(sundance_exit);