This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / fs / ext3 / balloc.c
1 /*
2  *  linux/fs/ext3/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/config.h>
15 #include <linux/time.h>
16 #include <linux/capability.h>
17 #include <linux/fs.h>
18 #include <linux/jbd.h>
19 #include <linux/ext3_fs.h>
20 #include <linux/ext3_jbd.h>
21 #include <linux/quotaops.h>
22 #include <linux/buffer_head.h>
23 #include <linux/vs_dlimit.h>
24
25 /*
26  * balloc.c contains the blocks allocation and deallocation routines
27  */
28
29 /*
30  * The free blocks are managed by bitmaps.  A file system contains several
31  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
32  * block for inodes, N blocks for the inode table and data blocks.
33  *
34  * The file system contains group descriptors which are located after the
35  * super block.  Each descriptor contains the number of the bitmap block and
36  * the free blocks count in the block.  The descriptors are loaded in memory
37  * when a file system is mounted (see ext3_read_super).
38  */
39
40
41 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
42
43 struct ext3_group_desc * ext3_get_group_desc(struct super_block * sb,
44                                              unsigned int block_group,
45                                              struct buffer_head ** bh)
46 {
47         unsigned long group_desc;
48         unsigned long offset;
49         struct ext3_group_desc * desc;
50         struct ext3_sb_info *sbi = EXT3_SB(sb);
51
52         if (block_group >= sbi->s_groups_count) {
53                 ext3_error (sb, "ext3_get_group_desc",
54                             "block_group >= groups_count - "
55                             "block_group = %d, groups_count = %lu",
56                             block_group, sbi->s_groups_count);
57
58                 return NULL;
59         }
60         smp_rmb();
61
62         group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
63         offset = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
64         if (!sbi->s_group_desc[group_desc]) {
65                 ext3_error (sb, "ext3_get_group_desc",
66                             "Group descriptor not loaded - "
67                             "block_group = %d, group_desc = %lu, desc = %lu",
68                              block_group, group_desc, offset);
69                 return NULL;
70         }
71
72         desc = (struct ext3_group_desc *) sbi->s_group_desc[group_desc]->b_data;
73         if (bh)
74                 *bh = sbi->s_group_desc[group_desc];
75         return desc + offset;
76 }
77
78 /*
79  * Read the bitmap for a given block_group, reading into the specified 
80  * slot in the superblock's bitmap cache.
81  *
82  * Return buffer_head on success or NULL in case of failure.
83  */
84 static struct buffer_head *
85 read_block_bitmap(struct super_block *sb, unsigned int block_group)
86 {
87         struct ext3_group_desc * desc;
88         struct buffer_head * bh = NULL;
89
90         desc = ext3_get_group_desc (sb, block_group, NULL);
91         if (!desc)
92                 goto error_out;
93         bh = sb_bread(sb, le32_to_cpu(desc->bg_block_bitmap));
94         if (!bh)
95                 ext3_error (sb, "read_block_bitmap",
96                             "Cannot read block bitmap - "
97                             "block_group = %d, block_bitmap = %u",
98                             block_group, le32_to_cpu(desc->bg_block_bitmap));
99 error_out:
100         return bh;
101 }
102 /*
103  * The reservation window structure operations
104  * --------------------------------------------
105  * Operations include:
106  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
107  *
108  * We use sorted double linked list for the per-filesystem reservation
109  * window list. (like in vm_region).
110  *
111  * Initially, we keep those small operations in the abstract functions,
112  * so later if we need a better searching tree than double linked-list,
113  * we could easily switch to that without changing too much
114  * code.
115  */
116 #if 0
117 static void __rsv_window_dump(struct rb_root *root, int verbose,
118                               const char *fn)
119 {
120         struct rb_node *n;
121         struct ext3_reserve_window_node *rsv, *prev;
122         int bad;
123
124 restart:
125         n = rb_first(root);
126         bad = 0;
127         prev = NULL;
128
129         printk("Block Allocation Reservation Windows Map (%s):\n", fn);
130         while (n) {
131                 rsv = list_entry(n, struct ext3_reserve_window_node, rsv_node);
132                 if (verbose)
133                         printk("reservation window 0x%p "
134                                "start:  %d, end:  %d\n",
135                                rsv, rsv->rsv_start, rsv->rsv_end);
136                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
137                         printk("Bad reservation %p (start >= end)\n",
138                                rsv);
139                         bad = 1;
140                 }
141                 if (prev && prev->rsv_end >= rsv->rsv_start) {
142                         printk("Bad reservation %p (prev->end >= start)\n",
143                                rsv);
144                         bad = 1;
145                 }
146                 if (bad) {
147                         if (!verbose) {
148                                 printk("Restarting reservation walk in verbose mode\n");
149                                 verbose = 1;
150                                 goto restart;
151                         }
152                 }
153                 n = rb_next(n);
154                 prev = rsv;
155         }
156         printk("Window map complete.\n");
157         if (bad)
158                 BUG();
159 }
160 #define rsv_window_dump(root, verbose) \
161         __rsv_window_dump((root), (verbose), __FUNCTION__)
162 #else
163 #define rsv_window_dump(root, verbose) do {} while (0)
164 #endif
165
166 static int
167 goal_in_my_reservation(struct ext3_reserve_window *rsv, int goal,
168                         unsigned int group, struct super_block * sb)
169 {
170         unsigned long group_first_block, group_last_block;
171
172         group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
173                                 group * EXT3_BLOCKS_PER_GROUP(sb);
174         group_last_block = group_first_block + EXT3_BLOCKS_PER_GROUP(sb) - 1;
175
176         if ((rsv->_rsv_start > group_last_block) ||
177             (rsv->_rsv_end < group_first_block))
178                 return 0;
179         if ((goal >= 0) && ((goal + group_first_block < rsv->_rsv_start)
180                 || (goal + group_first_block > rsv->_rsv_end)))
181                 return 0;
182         return 1;
183 }
184
185 /*
186  * Find the reserved window which includes the goal, or the previous one
187  * if the goal is not in any window.
188  * Returns NULL if there are no windows or if all windows start after the goal.
189  */
190 static struct ext3_reserve_window_node *
191 search_reserve_window(struct rb_root *root, unsigned long goal)
192 {
193         struct rb_node *n = root->rb_node;
194         struct ext3_reserve_window_node *rsv;
195
196         if (!n)
197                 return NULL;
198
199         do {
200                 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
201
202                 if (goal < rsv->rsv_start)
203                         n = n->rb_left;
204                 else if (goal > rsv->rsv_end)
205                         n = n->rb_right;
206                 else
207                         return rsv;
208         } while (n);
209         /*
210          * We've fallen off the end of the tree: the goal wasn't inside
211          * any particular node.  OK, the previous node must be to one
212          * side of the interval containing the goal.  If it's the RHS,
213          * we need to back up one.
214          */
215         if (rsv->rsv_start > goal) {
216                 n = rb_prev(&rsv->rsv_node);
217                 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
218         }
219         return rsv;
220 }
221
222 void ext3_rsv_window_add(struct super_block *sb,
223                     struct ext3_reserve_window_node *rsv)
224 {
225         struct rb_root *root = &EXT3_SB(sb)->s_rsv_window_root;
226         struct rb_node *node = &rsv->rsv_node;
227         unsigned int start = rsv->rsv_start;
228
229         struct rb_node ** p = &root->rb_node;
230         struct rb_node * parent = NULL;
231         struct ext3_reserve_window_node *this;
232
233         while (*p)
234         {
235                 parent = *p;
236                 this = rb_entry(parent, struct ext3_reserve_window_node, rsv_node);
237
238                 if (start < this->rsv_start)
239                         p = &(*p)->rb_left;
240                 else if (start > this->rsv_end)
241                         p = &(*p)->rb_right;
242                 else
243                         BUG();
244         }
245
246         rb_link_node(node, parent, p);
247         rb_insert_color(node, root);
248 }
249
250 static void rsv_window_remove(struct super_block *sb,
251                               struct ext3_reserve_window_node *rsv)
252 {
253         rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
254         rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
255         rsv->rsv_alloc_hit = 0;
256         rb_erase(&rsv->rsv_node, &EXT3_SB(sb)->s_rsv_window_root);
257 }
258
259 static inline int rsv_is_empty(struct ext3_reserve_window *rsv)
260 {
261         /* a valid reservation end block could not be 0 */
262         return (rsv->_rsv_end == EXT3_RESERVE_WINDOW_NOT_ALLOCATED);
263 }
264 void ext3_init_block_alloc_info(struct inode *inode)
265 {
266         struct ext3_inode_info *ei = EXT3_I(inode);
267         struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
268         struct super_block *sb = inode->i_sb;
269
270         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
271         if (block_i) {
272                 struct ext3_reserve_window_node *rsv = &block_i->rsv_window_node;
273
274                 rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
275                 rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
276
277                 /*
278                  * if filesystem is mounted with NORESERVATION, the goal
279                  * reservation window size is set to zero to indicate
280                  * block reservation is off
281                  */
282                 if (!test_opt(sb, RESERVATION))
283                         rsv->rsv_goal_size = 0;
284                 else
285                         rsv->rsv_goal_size = EXT3_DEFAULT_RESERVE_BLOCKS;
286                 rsv->rsv_alloc_hit = 0;
287                 block_i->last_alloc_logical_block = 0;
288                 block_i->last_alloc_physical_block = 0;
289         }
290         ei->i_block_alloc_info = block_i;
291 }
292
293 void ext3_discard_reservation(struct inode *inode)
294 {
295         struct ext3_inode_info *ei = EXT3_I(inode);
296         struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
297         struct ext3_reserve_window_node *rsv;
298         spinlock_t *rsv_lock = &EXT3_SB(inode->i_sb)->s_rsv_window_lock;
299
300         if (!block_i)
301                 return;
302
303         rsv = &block_i->rsv_window_node;
304         if (!rsv_is_empty(&rsv->rsv_window)) {
305                 spin_lock(rsv_lock);
306                 if (!rsv_is_empty(&rsv->rsv_window))
307                         rsv_window_remove(inode->i_sb, rsv);
308                 spin_unlock(rsv_lock);
309         }
310 }
311
312 /* Free given blocks, update quota and i_blocks field */
313 void ext3_free_blocks_sb(handle_t *handle, struct super_block *sb,
314                          unsigned long block, unsigned long count,
315                          int *pdquot_freed_blocks)
316 {
317         struct buffer_head *bitmap_bh = NULL;
318         struct buffer_head *gd_bh;
319         unsigned long block_group;
320         unsigned long bit;
321         unsigned long i;
322         unsigned long overflow;
323         struct ext3_group_desc * desc;
324         struct ext3_super_block * es;
325         struct ext3_sb_info *sbi;
326         int err = 0, ret;
327         unsigned group_freed;
328
329         *pdquot_freed_blocks = 0;
330         sbi = EXT3_SB(sb);
331         es = sbi->s_es;
332         if (block < le32_to_cpu(es->s_first_data_block) ||
333             block + count < block ||
334             block + count > le32_to_cpu(es->s_blocks_count)) {
335                 ext3_error (sb, "ext3_free_blocks",
336                             "Freeing blocks not in datazone - "
337                             "block = %lu, count = %lu", block, count);
338                 goto error_return;
339         }
340
341         ext3_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
342
343 do_more:
344         overflow = 0;
345         block_group = (block - le32_to_cpu(es->s_first_data_block)) /
346                       EXT3_BLOCKS_PER_GROUP(sb);
347         bit = (block - le32_to_cpu(es->s_first_data_block)) %
348                       EXT3_BLOCKS_PER_GROUP(sb);
349         /*
350          * Check to see if we are freeing blocks across a group
351          * boundary.
352          */
353         if (bit + count > EXT3_BLOCKS_PER_GROUP(sb)) {
354                 overflow = bit + count - EXT3_BLOCKS_PER_GROUP(sb);
355                 count -= overflow;
356         }
357         brelse(bitmap_bh);
358         bitmap_bh = read_block_bitmap(sb, block_group);
359         if (!bitmap_bh)
360                 goto error_return;
361         desc = ext3_get_group_desc (sb, block_group, &gd_bh);
362         if (!desc)
363                 goto error_return;
364
365         if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
366             in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
367             in_range (block, le32_to_cpu(desc->bg_inode_table),
368                       sbi->s_itb_per_group) ||
369             in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
370                       sbi->s_itb_per_group))
371                 ext3_error (sb, "ext3_free_blocks",
372                             "Freeing blocks in system zones - "
373                             "Block = %lu, count = %lu",
374                             block, count);
375
376         /*
377          * We are about to start releasing blocks in the bitmap,
378          * so we need undo access.
379          */
380         /* @@@ check errors */
381         BUFFER_TRACE(bitmap_bh, "getting undo access");
382         err = ext3_journal_get_undo_access(handle, bitmap_bh);
383         if (err)
384                 goto error_return;
385
386         /*
387          * We are about to modify some metadata.  Call the journal APIs
388          * to unshare ->b_data if a currently-committing transaction is
389          * using it
390          */
391         BUFFER_TRACE(gd_bh, "get_write_access");
392         err = ext3_journal_get_write_access(handle, gd_bh);
393         if (err)
394                 goto error_return;
395
396         jbd_lock_bh_state(bitmap_bh);
397
398         for (i = 0, group_freed = 0; i < count; i++) {
399                 /*
400                  * An HJ special.  This is expensive...
401                  */
402 #ifdef CONFIG_JBD_DEBUG
403                 jbd_unlock_bh_state(bitmap_bh);
404                 {
405                         struct buffer_head *debug_bh;
406                         debug_bh = sb_find_get_block(sb, block + i);
407                         if (debug_bh) {
408                                 BUFFER_TRACE(debug_bh, "Deleted!");
409                                 if (!bh2jh(bitmap_bh)->b_committed_data)
410                                         BUFFER_TRACE(debug_bh,
411                                                 "No commited data in bitmap");
412                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
413                                 __brelse(debug_bh);
414                         }
415                 }
416                 jbd_lock_bh_state(bitmap_bh);
417 #endif
418                 if (need_resched()) {
419                         jbd_unlock_bh_state(bitmap_bh);
420                         cond_resched();
421                         jbd_lock_bh_state(bitmap_bh);
422                 }
423                 /* @@@ This prevents newly-allocated data from being
424                  * freed and then reallocated within the same
425                  * transaction. 
426                  * 
427                  * Ideally we would want to allow that to happen, but to
428                  * do so requires making journal_forget() capable of
429                  * revoking the queued write of a data block, which
430                  * implies blocking on the journal lock.  *forget()
431                  * cannot block due to truncate races.
432                  *
433                  * Eventually we can fix this by making journal_forget()
434                  * return a status indicating whether or not it was able
435                  * to revoke the buffer.  On successful revoke, it is
436                  * safe not to set the allocation bit in the committed
437                  * bitmap, because we know that there is no outstanding
438                  * activity on the buffer any more and so it is safe to
439                  * reallocate it.  
440                  */
441                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
442                 J_ASSERT_BH(bitmap_bh,
443                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
444                 ext3_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
445                                 bh2jh(bitmap_bh)->b_committed_data);
446
447                 /*
448                  * We clear the bit in the bitmap after setting the committed
449                  * data bit, because this is the reverse order to that which
450                  * the allocator uses.
451                  */
452                 BUFFER_TRACE(bitmap_bh, "clear bit");
453                 if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
454                                                 bit + i, bitmap_bh->b_data)) {
455                         jbd_unlock_bh_state(bitmap_bh);
456                         ext3_error(sb, __FUNCTION__,
457                                 "bit already cleared for block %lu", block + i);
458                         jbd_lock_bh_state(bitmap_bh);
459                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
460                 } else {
461                         group_freed++;
462                 }
463         }
464         jbd_unlock_bh_state(bitmap_bh);
465
466         spin_lock(sb_bgl_lock(sbi, block_group));
467         desc->bg_free_blocks_count =
468                 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
469                         group_freed);
470         spin_unlock(sb_bgl_lock(sbi, block_group));
471         percpu_counter_mod(&sbi->s_freeblocks_counter, count);
472
473         /* We dirtied the bitmap block */
474         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
475         err = ext3_journal_dirty_metadata(handle, bitmap_bh);
476
477         /* And the group descriptor block */
478         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
479         ret = ext3_journal_dirty_metadata(handle, gd_bh);
480         if (!err) err = ret;
481         *pdquot_freed_blocks += group_freed;
482
483         if (overflow && !err) {
484                 block += count;
485                 count = overflow;
486                 goto do_more;
487         }
488         sb->s_dirt = 1;
489 error_return:
490         brelse(bitmap_bh);
491         ext3_std_error(sb, err);
492         return;
493 }
494
495 /* Free given blocks, update quota and i_blocks field */
496 void ext3_free_blocks(handle_t *handle, struct inode *inode,
497                         unsigned long block, unsigned long count)
498 {
499         struct super_block * sb;
500         int dquot_freed_blocks;
501
502         sb = inode->i_sb;
503         if (!sb) {
504                 printk ("ext3_free_blocks: nonexistent device");
505                 return;
506         }
507         ext3_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
508         if (dquot_freed_blocks) {
509                 DLIMIT_FREE_BLOCK(inode, dquot_freed_blocks);
510                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
511         }
512         return;
513 }
514
515 /*
516  * For ext3 allocations, we must not reuse any blocks which are
517  * allocated in the bitmap buffer's "last committed data" copy.  This
518  * prevents deletes from freeing up the page for reuse until we have
519  * committed the delete transaction.
520  *
521  * If we didn't do this, then deleting something and reallocating it as
522  * data would allow the old block to be overwritten before the
523  * transaction committed (because we force data to disk before commit).
524  * This would lead to corruption if we crashed between overwriting the
525  * data and committing the delete. 
526  *
527  * @@@ We may want to make this allocation behaviour conditional on
528  * data-writes at some point, and disable it for metadata allocations or
529  * sync-data inodes.
530  */
531 static int ext3_test_allocatable(int nr, struct buffer_head *bh)
532 {
533         int ret;
534         struct journal_head *jh = bh2jh(bh);
535
536         if (ext3_test_bit(nr, bh->b_data))
537                 return 0;
538
539         jbd_lock_bh_state(bh);
540         if (!jh->b_committed_data)
541                 ret = 1;
542         else
543                 ret = !ext3_test_bit(nr, jh->b_committed_data);
544         jbd_unlock_bh_state(bh);
545         return ret;
546 }
547
548 static int
549 bitmap_search_next_usable_block(int start, struct buffer_head *bh,
550                                         int maxblocks)
551 {
552         int next;
553         struct journal_head *jh = bh2jh(bh);
554
555         /*
556          * The bitmap search --- search forward alternately through the actual
557          * bitmap and the last-committed copy until we find a bit free in
558          * both
559          */
560         while (start < maxblocks) {
561                 next = ext3_find_next_zero_bit(bh->b_data, maxblocks, start);
562                 if (next >= maxblocks)
563                         return -1;
564                 if (ext3_test_allocatable(next, bh))
565                         return next;
566                 jbd_lock_bh_state(bh);
567                 if (jh->b_committed_data)
568                         start = ext3_find_next_zero_bit(jh->b_committed_data,
569                                                         maxblocks, next);
570                 jbd_unlock_bh_state(bh);
571         }
572         return -1;
573 }
574
575 /*
576  * Find an allocatable block in a bitmap.  We honour both the bitmap and
577  * its last-committed copy (if that exists), and perform the "most
578  * appropriate allocation" algorithm of looking for a free block near
579  * the initial goal; then for a free byte somewhere in the bitmap; then
580  * for any free bit in the bitmap.
581  */
582 static int
583 find_next_usable_block(int start, struct buffer_head *bh, int maxblocks)
584 {
585         int here, next;
586         char *p, *r;
587
588         if (start > 0) {
589                 /*
590                  * The goal was occupied; search forward for a free 
591                  * block within the next XX blocks.
592                  *
593                  * end_goal is more or less random, but it has to be
594                  * less than EXT3_BLOCKS_PER_GROUP. Aligning up to the
595                  * next 64-bit boundary is simple..
596                  */
597                 int end_goal = (start + 63) & ~63;
598                 if (end_goal > maxblocks)
599                         end_goal = maxblocks;
600                 here = ext3_find_next_zero_bit(bh->b_data, end_goal, start);
601                 if (here < end_goal && ext3_test_allocatable(here, bh))
602                         return here;
603                 ext3_debug("Bit not found near goal\n");
604         }
605
606         here = start;
607         if (here < 0)
608                 here = 0;
609
610         p = ((char *)bh->b_data) + (here >> 3);
611         r = memscan(p, 0, (maxblocks - here + 7) >> 3);
612         next = (r - ((char *)bh->b_data)) << 3;
613
614         if (next < maxblocks && next >= start && ext3_test_allocatable(next, bh))
615                 return next;
616
617         /*
618          * The bitmap search --- search forward alternately through the actual
619          * bitmap and the last-committed copy until we find a bit free in
620          * both
621          */
622         here = bitmap_search_next_usable_block(here, bh, maxblocks);
623         return here;
624 }
625
626 /*
627  * We think we can allocate this block in this bitmap.  Try to set the bit.
628  * If that succeeds then check that nobody has allocated and then freed the
629  * block since we saw that is was not marked in b_committed_data.  If it _was_
630  * allocated and freed then clear the bit in the bitmap again and return
631  * zero (failure).
632  */
633 static inline int
634 claim_block(spinlock_t *lock, int block, struct buffer_head *bh)
635 {
636         struct journal_head *jh = bh2jh(bh);
637         int ret;
638
639         if (ext3_set_bit_atomic(lock, block, bh->b_data))
640                 return 0;
641         jbd_lock_bh_state(bh);
642         if (jh->b_committed_data && ext3_test_bit(block,jh->b_committed_data)) {
643                 ext3_clear_bit_atomic(lock, block, bh->b_data);
644                 ret = 0;
645         } else {
646                 ret = 1;
647         }
648         jbd_unlock_bh_state(bh);
649         return ret;
650 }
651
652 /*
653  * If we failed to allocate the desired block then we may end up crossing to a
654  * new bitmap.  In that case we must release write access to the old one via
655  * ext3_journal_release_buffer(), else we'll run out of credits.
656  */
657 static int
658 ext3_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
659         struct buffer_head *bitmap_bh, int goal, struct ext3_reserve_window *my_rsv)
660 {
661         int group_first_block, start, end;
662
663         /* we do allocation within the reservation window if we have a window */
664         if (my_rsv) {
665                 group_first_block =
666                         le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
667                         group * EXT3_BLOCKS_PER_GROUP(sb);
668                 if (my_rsv->_rsv_start >= group_first_block)
669                         start = my_rsv->_rsv_start - group_first_block;
670                 else
671                         /* reservation window cross group boundary */
672                         start = 0;
673                 end = my_rsv->_rsv_end - group_first_block + 1;
674                 if (end > EXT3_BLOCKS_PER_GROUP(sb))
675                         /* reservation window crosses group boundary */
676                         end = EXT3_BLOCKS_PER_GROUP(sb);
677                 if ((start <= goal) && (goal < end))
678                         start = goal;
679                 else
680                         goal = -1;
681         } else {
682                 if (goal > 0)
683                         start = goal;
684                 else
685                         start = 0;
686                 end = EXT3_BLOCKS_PER_GROUP(sb);
687         }
688
689         BUG_ON(start > EXT3_BLOCKS_PER_GROUP(sb));
690
691 repeat:
692         if (goal < 0 || !ext3_test_allocatable(goal, bitmap_bh)) {
693                 goal = find_next_usable_block(start, bitmap_bh, end);
694                 if (goal < 0)
695                         goto fail_access;
696                 if (!my_rsv) {
697                         int i;
698
699                         for (i = 0; i < 7 && goal > start &&
700                                         ext3_test_allocatable(goal - 1,
701                                                                 bitmap_bh);
702                                         i++, goal--)
703                                 ;
704                 }
705         }
706         start = goal;
707
708         if (!claim_block(sb_bgl_lock(EXT3_SB(sb), group), goal, bitmap_bh)) {
709                 /*
710                  * The block was allocated by another thread, or it was
711                  * allocated and then freed by another thread
712                  */
713                 start++;
714                 goal++;
715                 if (start >= end)
716                         goto fail_access;
717                 goto repeat;
718         }
719         return goal;
720 fail_access:
721         return -1;
722 }
723
724 /**
725  *      find_next_reservable_window():
726  *              find a reservable space within the given range.
727  *              It does not allocate the reservation window for now:
728  *              alloc_new_reservation() will do the work later.
729  *
730  *      @search_head: the head of the searching list;
731  *              This is not necessarily the list head of the whole filesystem
732  *
733  *              We have both head and start_block to assist the search
734  *              for the reservable space. The list starts from head,
735  *              but we will shift to the place where start_block is,
736  *              then start from there, when looking for a reservable space.
737  *
738  *      @size: the target new reservation window size
739  *
740  *      @group_first_block: the first block we consider to start
741  *                      the real search from
742  *
743  *      @last_block:
744  *              the maximum block number that our goal reservable space
745  *              could start from. This is normally the last block in this
746  *              group. The search will end when we found the start of next
747  *              possible reservable space is out of this boundary.
748  *              This could handle the cross boundary reservation window
749  *              request.
750  *
751  *      basically we search from the given range, rather than the whole
752  *      reservation double linked list, (start_block, last_block)
753  *      to find a free region that is of my size and has not
754  *      been reserved.
755  *
756  */
757 static int find_next_reservable_window(
758                                 struct ext3_reserve_window_node *search_head,
759                                 struct ext3_reserve_window_node *my_rsv,
760                                 struct super_block * sb, int start_block,
761                                 int last_block)
762 {
763         struct rb_node *next;
764         struct ext3_reserve_window_node *rsv, *prev;
765         int cur;
766         int size = my_rsv->rsv_goal_size;
767
768         /* TODO: make the start of the reservation window byte-aligned */
769         /* cur = *start_block & ~7;*/
770         cur = start_block;
771         rsv = search_head;
772         if (!rsv)
773                 return -1;
774
775         while (1) {
776                 if (cur <= rsv->rsv_end)
777                         cur = rsv->rsv_end + 1;
778
779                 /* TODO?
780                  * in the case we could not find a reservable space
781                  * that is what is expected, during the re-search, we could
782                  * remember what's the largest reservable space we could have
783                  * and return that one.
784                  *
785                  * For now it will fail if we could not find the reservable
786                  * space with expected-size (or more)...
787                  */
788                 if (cur > last_block)
789                         return -1;              /* fail */
790
791                 prev = rsv;
792                 next = rb_next(&rsv->rsv_node);
793                 rsv = list_entry(next,struct ext3_reserve_window_node,rsv_node);
794
795                 /*
796                  * Reached the last reservation, we can just append to the
797                  * previous one.
798                  */
799                 if (!next)
800                         break;
801
802                 if (cur + size <= rsv->rsv_start) {
803                         /*
804                          * Found a reserveable space big enough.  We could
805                          * have a reservation across the group boundary here
806                          */
807                         break;
808                 }
809         }
810         /*
811          * we come here either :
812          * when we reach the end of the whole list,
813          * and there is empty reservable space after last entry in the list.
814          * append it to the end of the list.
815          *
816          * or we found one reservable space in the middle of the list,
817          * return the reservation window that we could append to.
818          * succeed.
819          */
820
821         if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
822                 rsv_window_remove(sb, my_rsv);
823
824         /*
825          * Let's book the whole avaliable window for now.  We will check the
826          * disk bitmap later and then, if there are free blocks then we adjust
827          * the window size if it's larger than requested.
828          * Otherwise, we will remove this node from the tree next time
829          * call find_next_reservable_window.
830          */
831         my_rsv->rsv_start = cur;
832         my_rsv->rsv_end = cur + size - 1;
833         my_rsv->rsv_alloc_hit = 0;
834
835         if (prev != my_rsv)
836                 ext3_rsv_window_add(sb, my_rsv);
837
838         return 0;
839 }
840
841 /**
842  *      alloc_new_reservation()--allocate a new reservation window
843  *
844  *              To make a new reservation, we search part of the filesystem
845  *              reservation list (the list that inside the group). We try to
846  *              allocate a new reservation window near the allocation goal,
847  *              or the beginning of the group, if there is no goal.
848  *
849  *              We first find a reservable space after the goal, then from
850  *              there, we check the bitmap for the first free block after
851  *              it. If there is no free block until the end of group, then the
852  *              whole group is full, we failed. Otherwise, check if the free
853  *              block is inside the expected reservable space, if so, we
854  *              succeed.
855  *              If the first free block is outside the reservable space, then
856  *              start from the first free block, we search for next available
857  *              space, and go on.
858  *
859  *      on succeed, a new reservation will be found and inserted into the list
860  *      It contains at least one free block, and it does not overlap with other
861  *      reservation windows.
862  *
863  *      failed: we failed to find a reservation window in this group
864  *
865  *      @rsv: the reservation
866  *
867  *      @goal: The goal (group-relative).  It is where the search for a
868  *              free reservable space should start from.
869  *              if we have a goal(goal >0 ), then start from there,
870  *              no goal(goal = -1), we start from the first block
871  *              of the group.
872  *
873  *      @sb: the super block
874  *      @group: the group we are trying to allocate in
875  *      @bitmap_bh: the block group block bitmap
876  *
877  */
878 static int alloc_new_reservation(struct ext3_reserve_window_node *my_rsv,
879                 int goal, struct super_block *sb,
880                 unsigned int group, struct buffer_head *bitmap_bh)
881 {
882         struct ext3_reserve_window_node *search_head;
883         int group_first_block, group_end_block, start_block;
884         int first_free_block;
885         struct rb_root *fs_rsv_root = &EXT3_SB(sb)->s_rsv_window_root;
886         unsigned long size;
887         int ret;
888         spinlock_t *rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock;
889
890         group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
891                                 group * EXT3_BLOCKS_PER_GROUP(sb);
892         group_end_block = group_first_block + EXT3_BLOCKS_PER_GROUP(sb) - 1;
893
894         if (goal < 0)
895                 start_block = group_first_block;
896         else
897                 start_block = goal + group_first_block;
898
899         size = my_rsv->rsv_goal_size;
900
901         if (!rsv_is_empty(&my_rsv->rsv_window)) {
902                 /*
903                  * if the old reservation is cross group boundary
904                  * and if the goal is inside the old reservation window,
905                  * we will come here when we just failed to allocate from
906                  * the first part of the window. We still have another part
907                  * that belongs to the next group. In this case, there is no
908                  * point to discard our window and try to allocate a new one
909                  * in this group(which will fail). we should
910                  * keep the reservation window, just simply move on.
911                  *
912                  * Maybe we could shift the start block of the reservation
913                  * window to the first block of next group.
914                  */
915
916                 if ((my_rsv->rsv_start <= group_end_block) &&
917                                 (my_rsv->rsv_end > group_end_block) &&
918                                 (start_block >= my_rsv->rsv_start))
919                         return -1;
920
921                 if ((my_rsv->rsv_alloc_hit >
922                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
923                         /*
924                          * if we previously allocation hit ration is greater than half
925                          * we double the size of reservation window next time
926                          * otherwise keep the same
927                          */
928                         size = size * 2;
929                         if (size > EXT3_MAX_RESERVE_BLOCKS)
930                                 size = EXT3_MAX_RESERVE_BLOCKS;
931                         my_rsv->rsv_goal_size= size;
932                 }
933         }
934
935         spin_lock(rsv_lock);
936         /*
937          * shift the search start to the window near the goal block
938          */
939         search_head = search_reserve_window(fs_rsv_root, start_block);
940
941         /*
942          * find_next_reservable_window() simply finds a reservable window
943          * inside the given range(start_block, group_end_block).
944          *
945          * To make sure the reservation window has a free bit inside it, we
946          * need to check the bitmap after we found a reservable window.
947          */
948 retry:
949         ret = find_next_reservable_window(search_head, my_rsv, sb,
950                                                 start_block, group_end_block);
951
952         if (ret == -1) {
953                 if (!rsv_is_empty(&my_rsv->rsv_window))
954                         rsv_window_remove(sb, my_rsv);
955                 spin_unlock(rsv_lock);
956                 return -1;
957         }
958
959         /*
960          * On success, find_next_reservable_window() returns the
961          * reservation window where there is a reservable space after it.
962          * Before we reserve this reservable space, we need
963          * to make sure there is at least a free block inside this region.
964          *
965          * searching the first free bit on the block bitmap and copy of
966          * last committed bitmap alternatively, until we found a allocatable
967          * block. Search start from the start block of the reservable space
968          * we just found.
969          */
970         spin_unlock(rsv_lock);
971         first_free_block = bitmap_search_next_usable_block(
972                         my_rsv->rsv_start - group_first_block,
973                         bitmap_bh, group_end_block - group_first_block + 1);
974
975         if (first_free_block < 0) {
976                 /*
977                  * no free block left on the bitmap, no point
978                  * to reserve the space. return failed.
979                  */
980                 spin_lock(rsv_lock);
981                 if (!rsv_is_empty(&my_rsv->rsv_window))
982                         rsv_window_remove(sb, my_rsv);
983                 spin_unlock(rsv_lock);
984                 return -1;              /* failed */
985         }
986
987         start_block = first_free_block + group_first_block;
988         /*
989          * check if the first free block is within the
990          * free space we just reserved
991          */
992         if (start_block >= my_rsv->rsv_start && start_block < my_rsv->rsv_end)
993                 return 0;               /* success */
994         /*
995          * if the first free bit we found is out of the reservable space
996          * continue search for next reservable space,
997          * start from where the free block is,
998          * we also shift the list head to where we stopped last time
999          */
1000         search_head = my_rsv;
1001         spin_lock(rsv_lock);
1002         goto retry;
1003 }
1004
1005 /*
1006  * This is the main function used to allocate a new block and its reservation
1007  * window.
1008  *
1009  * Each time when a new block allocation is need, first try to allocate from
1010  * its own reservation.  If it does not have a reservation window, instead of
1011  * looking for a free bit on bitmap first, then look up the reservation list to
1012  * see if it is inside somebody else's reservation window, we try to allocate a
1013  * reservation window for it starting from the goal first. Then do the block
1014  * allocation within the reservation window.
1015  *
1016  * This will avoid keeping on searching the reservation list again and
1017  * again when somebody is looking for a free block (without
1018  * reservation), and there are lots of free blocks, but they are all
1019  * being reserved.
1020  *
1021  * We use a sorted double linked list for the per-filesystem reservation list.
1022  * The insert, remove and find a free space(non-reserved) operations for the
1023  * sorted double linked list should be fast.
1024  *
1025  */
1026 static int
1027 ext3_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1028                         unsigned int group, struct buffer_head *bitmap_bh,
1029                         int goal, struct ext3_reserve_window_node * my_rsv,
1030                         int *errp)
1031 {
1032         unsigned long group_first_block;
1033         int ret = 0;
1034         int fatal;
1035
1036         *errp = 0;
1037
1038         /*
1039          * Make sure we use undo access for the bitmap, because it is critical
1040          * that we do the frozen_data COW on bitmap buffers in all cases even
1041          * if the buffer is in BJ_Forget state in the committing transaction.
1042          */
1043         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1044         fatal = ext3_journal_get_undo_access(handle, bitmap_bh);
1045         if (fatal) {
1046                 *errp = fatal;
1047                 return -1;
1048         }
1049
1050         /*
1051          * we don't deal with reservation when
1052          * filesystem is mounted without reservation
1053          * or the file is not a regular file
1054          * or last attempt to allocate a block with reservation turned on failed
1055          */
1056         if (my_rsv == NULL ) {
1057                 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh, goal, NULL);
1058                 goto out;
1059         }
1060         /*
1061          * goal is a group relative block number (if there is a goal)
1062          * 0 < goal < EXT3_BLOCKS_PER_GROUP(sb)
1063          * first block is a filesystem wide block number
1064          * first block is the block number of the first block in this group
1065          */
1066         group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
1067                         group * EXT3_BLOCKS_PER_GROUP(sb);
1068
1069         /*
1070          * Basically we will allocate a new block from inode's reservation
1071          * window.
1072          *
1073          * We need to allocate a new reservation window, if:
1074          * a) inode does not have a reservation window; or
1075          * b) last attempt to allocate a block from existing reservation
1076          *    failed; or
1077          * c) we come here with a goal and with a reservation window
1078          *
1079          * We do not need to allocate a new reservation window if we come here
1080          * at the beginning with a goal and the goal is inside the window, or
1081          * we don't have a goal but already have a reservation window.
1082          * then we could go to allocate from the reservation window directly.
1083          */
1084         while (1) {
1085                 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1086                         !goal_in_my_reservation(&my_rsv->rsv_window, goal, group, sb)) {
1087                         ret = alloc_new_reservation(my_rsv, goal, sb,
1088                                                         group, bitmap_bh);
1089                         if (ret < 0)
1090                                 break;                  /* failed */
1091
1092                         if (!goal_in_my_reservation(&my_rsv->rsv_window, goal, group, sb))
1093                                 goal = -1;
1094                 }
1095                 if ((my_rsv->rsv_start >= group_first_block + EXT3_BLOCKS_PER_GROUP(sb))
1096                     || (my_rsv->rsv_end < group_first_block))
1097                         BUG();
1098                 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh, goal,
1099                                            &my_rsv->rsv_window);
1100                 if (ret >= 0) {
1101                         my_rsv->rsv_alloc_hit++;
1102                         break;                          /* succeed */
1103                 }
1104         }
1105 out:
1106         if (ret >= 0) {
1107                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1108                                         "bitmap block");
1109                 fatal = ext3_journal_dirty_metadata(handle, bitmap_bh);
1110                 if (fatal) {
1111                         *errp = fatal;
1112                         return -1;
1113                 }
1114                 return ret;
1115         }
1116
1117         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1118         ext3_journal_release_buffer(handle, bitmap_bh);
1119         return ret;
1120 }
1121
1122 static int ext3_has_free_blocks(struct super_block *sb)
1123 {
1124         struct ext3_sb_info *sbi = EXT3_SB(sb);
1125         int free_blocks, root_blocks, cond;
1126
1127         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1128         root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1129
1130         vxdprintk(VXD_CBIT(dlim, 3),
1131                 "ext3_has_free_blocks(%p): free=%u, root=%u",
1132                 sb, free_blocks, root_blocks);
1133
1134         DLIMIT_ADJUST_BLOCK(sb, vx_current_xid(), &free_blocks, &root_blocks);
1135
1136         cond = (free_blocks < root_blocks + 1 &&
1137                 !capable(CAP_SYS_RESOURCE) &&
1138                 sbi->s_resuid != current->fsuid &&
1139                 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid)));
1140
1141         vxdprintk(VXD_CBIT(dlim, 3),
1142                 "ext3_has_free_blocks(%p): %u<%u+1, %c, %u!=%u r=%d",
1143                 sb, free_blocks, root_blocks,
1144                 !capable(CAP_SYS_RESOURCE)?'1':'0',
1145                 sbi->s_resuid, current->fsuid, cond?0:1);
1146
1147         return (cond ? 0 : 1);
1148 }
1149
1150 /*
1151  * ext3_should_retry_alloc() is called when ENOSPC is returned, and if
1152  * it is profitable to retry the operation, this function will wait
1153  * for the current or commiting transaction to complete, and then
1154  * return TRUE.
1155  */
1156 int ext3_should_retry_alloc(struct super_block *sb, int *retries)
1157 {
1158         if (!ext3_has_free_blocks(sb) || (*retries)++ > 3)
1159                 return 0;
1160
1161         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1162
1163         return journal_force_commit_nested(EXT3_SB(sb)->s_journal);
1164 }
1165
1166 /*
1167  * ext3_new_block uses a goal block to assist allocation.  If the goal is
1168  * free, or there is a free block within 32 blocks of the goal, that block
1169  * is allocated.  Otherwise a forward search is made for a free block; within 
1170  * each block group the search first looks for an entire free byte in the block
1171  * bitmap, and then for any free bit if that fails.
1172  * This function also updates quota and i_blocks field.
1173  */
1174 int ext3_new_block(handle_t *handle, struct inode *inode,
1175                         unsigned long goal, int *errp)
1176 {
1177         struct buffer_head *bitmap_bh = NULL;
1178         struct buffer_head *gdp_bh;
1179         int group_no;
1180         int goal_group;
1181         int ret_block;
1182         int bgi;                        /* blockgroup iteration index */
1183         int target_block;
1184         int fatal = 0, err;
1185         int performed_allocation = 0;
1186         int free_blocks;
1187         struct super_block *sb;
1188         struct ext3_group_desc *gdp;
1189         struct ext3_super_block *es;
1190         struct ext3_sb_info *sbi;
1191         struct ext3_reserve_window_node *my_rsv = NULL;
1192         struct ext3_block_alloc_info *block_i;
1193         unsigned short windowsz = 0;
1194 #ifdef EXT3FS_DEBUG
1195         static int goal_hits, goal_attempts;
1196 #endif
1197         unsigned long ngroups;
1198
1199         *errp = -ENOSPC;
1200         sb = inode->i_sb;
1201         if (!sb) {
1202                 printk("ext3_new_block: nonexistent device");
1203                 return 0;
1204         }
1205
1206         /*
1207          * Check quota for allocation of this block.
1208          */
1209         if (DQUOT_ALLOC_BLOCK(inode, 1)) {
1210                 *errp = -EDQUOT;
1211                 return 0;
1212         }
1213         if (DLIMIT_ALLOC_BLOCK(inode, 1))
1214             goto out_dlimit;
1215
1216         sbi = EXT3_SB(sb);
1217         es = EXT3_SB(sb)->s_es;
1218         ext3_debug("goal=%lu.\n", goal);
1219         /*
1220          * Allocate a block from reservation only when
1221          * filesystem is mounted with reservation(default,-o reservation), and
1222          * it's a regular file, and
1223          * the desired window size is greater than 0 (One could use ioctl
1224          * command EXT3_IOC_SETRSVSZ to set the window size to 0 to turn off
1225          * reservation on that particular file)
1226          */
1227         block_i = EXT3_I(inode)->i_block_alloc_info;
1228         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1229                 my_rsv = &block_i->rsv_window_node;
1230
1231         if (!ext3_has_free_blocks(sb)) {
1232                 *errp = -ENOSPC;
1233                 goto out;
1234         }
1235
1236         /*
1237          * First, test whether the goal block is free.
1238          */
1239         if (goal < le32_to_cpu(es->s_first_data_block) ||
1240             goal >= le32_to_cpu(es->s_blocks_count))
1241                 goal = le32_to_cpu(es->s_first_data_block);
1242         group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
1243                         EXT3_BLOCKS_PER_GROUP(sb);
1244         gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1245         if (!gdp)
1246                 goto io_error;
1247
1248         goal_group = group_no;
1249 retry:
1250         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1251         /*
1252          * if there is not enough free blocks to make a new resevation
1253          * turn off reservation for this allocation
1254          */
1255         if (my_rsv && (free_blocks < windowsz)
1256                 && (rsv_is_empty(&my_rsv->rsv_window)))
1257                 my_rsv = NULL;
1258
1259         if (free_blocks > 0) {
1260                 ret_block = ((goal - le32_to_cpu(es->s_first_data_block)) %
1261                                 EXT3_BLOCKS_PER_GROUP(sb));
1262                 bitmap_bh = read_block_bitmap(sb, group_no);
1263                 if (!bitmap_bh)
1264                         goto io_error;
1265                 ret_block = ext3_try_to_allocate_with_rsv(sb, handle, group_no,
1266                                         bitmap_bh, ret_block, my_rsv, &fatal);
1267                 if (fatal)
1268                         goto out;
1269                 if (ret_block >= 0)
1270                         goto allocated;
1271         }
1272
1273         ngroups = EXT3_SB(sb)->s_groups_count;
1274         smp_rmb();
1275
1276         /*
1277          * Now search the rest of the groups.  We assume that 
1278          * i and gdp correctly point to the last group visited.
1279          */
1280         for (bgi = 0; bgi < ngroups; bgi++) {
1281                 group_no++;
1282                 if (group_no >= ngroups)
1283                         group_no = 0;
1284                 gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1285                 if (!gdp) {
1286                         *errp = -EIO;
1287                         goto out;
1288                 }
1289                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1290                 /*
1291                  * skip this group if the number of
1292                  * free blocks is less than half of the reservation
1293                  * window size.
1294                  */
1295                 if (free_blocks <= (windowsz/2))
1296                         continue;
1297
1298                 brelse(bitmap_bh);
1299                 bitmap_bh = read_block_bitmap(sb, group_no);
1300                 if (!bitmap_bh)
1301                         goto io_error;
1302                 ret_block = ext3_try_to_allocate_with_rsv(sb, handle, group_no,
1303                                         bitmap_bh, -1, my_rsv, &fatal);
1304                 if (fatal)
1305                         goto out;
1306                 if (ret_block >= 0) 
1307                         goto allocated;
1308         }
1309         /*
1310          * We may end up a bogus ealier ENOSPC error due to
1311          * filesystem is "full" of reservations, but
1312          * there maybe indeed free blocks avaliable on disk
1313          * In this case, we just forget about the reservations
1314          * just do block allocation as without reservations.
1315          */
1316         if (my_rsv) {
1317                 my_rsv = NULL;
1318                 group_no = goal_group;
1319                 goto retry;
1320         }
1321         /* No space left on the device */
1322         *errp = -ENOSPC;
1323         goto out;
1324
1325 allocated:
1326
1327         ext3_debug("using block group %d(%d)\n",
1328                         group_no, gdp->bg_free_blocks_count);
1329
1330         BUFFER_TRACE(gdp_bh, "get_write_access");
1331         fatal = ext3_journal_get_write_access(handle, gdp_bh);
1332         if (fatal)
1333                 goto out;
1334
1335         target_block = ret_block + group_no * EXT3_BLOCKS_PER_GROUP(sb)
1336                                 + le32_to_cpu(es->s_first_data_block);
1337
1338         if (target_block == le32_to_cpu(gdp->bg_block_bitmap) ||
1339             target_block == le32_to_cpu(gdp->bg_inode_bitmap) ||
1340             in_range(target_block, le32_to_cpu(gdp->bg_inode_table),
1341                       EXT3_SB(sb)->s_itb_per_group))
1342                 ext3_error(sb, "ext3_new_block",
1343                             "Allocating block in system zone - "
1344                             "block = %u", target_block);
1345
1346         performed_allocation = 1;
1347
1348 #ifdef CONFIG_JBD_DEBUG
1349         {
1350                 struct buffer_head *debug_bh;
1351
1352                 /* Record bitmap buffer state in the newly allocated block */
1353                 debug_bh = sb_find_get_block(sb, target_block);
1354                 if (debug_bh) {
1355                         BUFFER_TRACE(debug_bh, "state when allocated");
1356                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1357                         brelse(debug_bh);
1358                 }
1359         }
1360         jbd_lock_bh_state(bitmap_bh);
1361         spin_lock(sb_bgl_lock(sbi, group_no));
1362         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1363                 if (ext3_test_bit(ret_block,
1364                                 bh2jh(bitmap_bh)->b_committed_data)) {
1365                         printk("%s: block was unexpectedly set in "
1366                                 "b_committed_data\n", __FUNCTION__);
1367                 }
1368         }
1369         ext3_debug("found bit %d\n", ret_block);
1370         spin_unlock(sb_bgl_lock(sbi, group_no));
1371         jbd_unlock_bh_state(bitmap_bh);
1372 #endif
1373
1374         /* ret_block was blockgroup-relative.  Now it becomes fs-relative */
1375         ret_block = target_block;
1376
1377         if (ret_block >= le32_to_cpu(es->s_blocks_count)) {
1378                 ext3_error(sb, "ext3_new_block",
1379                             "block(%d) >= blocks count(%d) - "
1380                             "block_group = %d, es == %p ", ret_block,
1381                         le32_to_cpu(es->s_blocks_count), group_no, es);
1382                 goto out;
1383         }
1384
1385         /*
1386          * It is up to the caller to add the new buffer to a journal
1387          * list of some description.  We don't know in advance whether
1388          * the caller wants to use it as metadata or data.
1389          */
1390         ext3_debug("allocating block %d. Goal hits %d of %d.\n",
1391                         ret_block, goal_hits, goal_attempts);
1392
1393         spin_lock(sb_bgl_lock(sbi, group_no));
1394         gdp->bg_free_blocks_count =
1395                         cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count) - 1);
1396         spin_unlock(sb_bgl_lock(sbi, group_no));
1397         percpu_counter_mod(&sbi->s_freeblocks_counter, -1);
1398
1399         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1400         err = ext3_journal_dirty_metadata(handle, gdp_bh);
1401         if (!fatal)
1402                 fatal = err;
1403
1404         sb->s_dirt = 1;
1405         if (fatal)
1406                 goto out;
1407
1408         *errp = 0;
1409         brelse(bitmap_bh);
1410         return ret_block;
1411
1412 io_error:
1413         *errp = -EIO;
1414 out:
1415         if (!performed_allocation)
1416                 DLIMIT_FREE_BLOCK(inode, 1);
1417 out_dlimit:
1418         if (fatal) {
1419                 *errp = fatal;
1420                 ext3_std_error(sb, fatal);
1421         }
1422         /*
1423          * Undo the block allocation
1424          */
1425         if (!performed_allocation)
1426                 DQUOT_FREE_BLOCK(inode, 1);
1427         brelse(bitmap_bh);
1428         return 0;
1429 }
1430
1431 unsigned long ext3_count_free_blocks(struct super_block *sb)
1432 {
1433         unsigned long desc_count;
1434         struct ext3_group_desc *gdp;
1435         int i;
1436         unsigned long ngroups = EXT3_SB(sb)->s_groups_count;
1437 #ifdef EXT3FS_DEBUG
1438         struct ext3_super_block *es;
1439         unsigned long bitmap_count, x;
1440         struct buffer_head *bitmap_bh = NULL;
1441
1442         es = EXT3_SB(sb)->s_es;
1443         desc_count = 0;
1444         bitmap_count = 0;
1445         gdp = NULL;
1446
1447         smp_rmb();
1448         for (i = 0; i < ngroups; i++) {
1449                 gdp = ext3_get_group_desc(sb, i, NULL);
1450                 if (!gdp)
1451                         continue;
1452                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1453                 brelse(bitmap_bh);
1454                 bitmap_bh = read_block_bitmap(sb, i);
1455                 if (bitmap_bh == NULL)
1456                         continue;
1457
1458                 x = ext3_count_free(bitmap_bh, sb->s_blocksize);
1459                 printk("group %d: stored = %d, counted = %lu\n",
1460                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1461                 bitmap_count += x;
1462         }
1463         brelse(bitmap_bh);
1464         printk("ext3_count_free_blocks: stored = %u, computed = %lu, %lu\n",
1465                le32_to_cpu(es->s_free_blocks_count), desc_count, bitmap_count);
1466         return bitmap_count;
1467 #else
1468         desc_count = 0;
1469         smp_rmb();
1470         for (i = 0; i < ngroups; i++) {
1471                 gdp = ext3_get_group_desc(sb, i, NULL);
1472                 if (!gdp)
1473                         continue;
1474                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1475         }
1476
1477         return desc_count;
1478 #endif
1479 }
1480
1481 static inline int
1482 block_in_use(unsigned long block, struct super_block *sb, unsigned char *map)
1483 {
1484         return ext3_test_bit ((block -
1485                 le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block)) %
1486                          EXT3_BLOCKS_PER_GROUP(sb), map);
1487 }
1488
1489 static inline int test_root(int a, int b)
1490 {
1491         int num = b;
1492
1493         while (a > num)
1494                 num *= b;
1495         return num == a;
1496 }
1497
1498 static int ext3_group_sparse(int group)
1499 {
1500         if (group <= 1)
1501                 return 1;
1502         if (!(group & 1))
1503                 return 0;
1504         return (test_root(group, 7) || test_root(group, 5) ||
1505                 test_root(group, 3));
1506 }
1507
1508 /**
1509  *      ext3_bg_has_super - number of blocks used by the superblock in group
1510  *      @sb: superblock for filesystem
1511  *      @group: group number to check
1512  *
1513  *      Return the number of blocks used by the superblock (primary or backup)
1514  *      in this group.  Currently this will be only 0 or 1.
1515  */
1516 int ext3_bg_has_super(struct super_block *sb, int group)
1517 {
1518         if (EXT3_HAS_RO_COMPAT_FEATURE(sb,EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER)&&
1519             !ext3_group_sparse(group))
1520                 return 0;
1521         return 1;
1522 }
1523
1524 /**
1525  *      ext3_bg_num_gdb - number of blocks used by the group table in group
1526  *      @sb: superblock for filesystem
1527  *      @group: group number to check
1528  *
1529  *      Return the number of blocks used by the group descriptor table
1530  *      (primary or backup) in this group.  In the future there may be a
1531  *      different number of descriptor blocks in each group.
1532  */
1533 unsigned long ext3_bg_num_gdb(struct super_block *sb, int group)
1534 {
1535         if (EXT3_HAS_RO_COMPAT_FEATURE(sb,EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER)&&
1536             !ext3_group_sparse(group))
1537                 return 0;
1538         return EXT3_SB(sb)->s_gdb_count;
1539 }
1540