upgrade to linux 2.6.10-1.12_FC2
[linux-2.6.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/smp_lock.h>
31 #include <linux/highuid.h>
32 #include <linux/pagemap.h>
33 #include <linux/quotaops.h>
34 #include <linux/string.h>
35 #include <linux/buffer_head.h>
36 #include <linux/writeback.h>
37 #include <linux/mpage.h>
38 #include <linux/uio.h>
39 #include <linux/vserver/xid.h>
40 #include "xattr.h"
41 #include "acl.h"
42
43 /*
44  * Test whether an inode is a fast symlink.
45  */
46 static inline int ext3_inode_is_fast_symlink(struct inode *inode)
47 {
48         int ea_blocks = EXT3_I(inode)->i_file_acl ?
49                 (inode->i_sb->s_blocksize >> 9) : 0;
50
51         return (S_ISLNK(inode->i_mode) &&
52                 inode->i_blocks - ea_blocks == 0);
53 }
54
55 /* The ext3 forget function must perform a revoke if we are freeing data
56  * which has been journaled.  Metadata (eg. indirect blocks) must be
57  * revoked in all cases. 
58  *
59  * "bh" may be NULL: a metadata block may have been freed from memory
60  * but there may still be a record of it in the journal, and that record
61  * still needs to be revoked.
62  */
63
64 int ext3_forget(handle_t *handle, int is_metadata,
65                        struct inode *inode, struct buffer_head *bh,
66                        int blocknr)
67 {
68         int err;
69
70         might_sleep();
71
72         BUFFER_TRACE(bh, "enter");
73
74         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
75                   "data mode %lx\n",
76                   bh, is_metadata, inode->i_mode,
77                   test_opt(inode->i_sb, DATA_FLAGS));
78
79         /* Never use the revoke function if we are doing full data
80          * journaling: there is no need to, and a V1 superblock won't
81          * support it.  Otherwise, only skip the revoke on un-journaled
82          * data blocks. */
83
84         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
85             (!is_metadata && !ext3_should_journal_data(inode))) {
86                 if (bh) {
87                         BUFFER_TRACE(bh, "call journal_forget");
88                         return ext3_journal_forget(handle, bh);
89                 }
90                 return 0;
91         }
92
93         /*
94          * data!=journal && (is_metadata || should_journal_data(inode))
95          */
96         BUFFER_TRACE(bh, "call ext3_journal_revoke");
97         err = ext3_journal_revoke(handle, blocknr, bh);
98         if (err)
99                 ext3_abort(inode->i_sb, __FUNCTION__,
100                            "error %d when attempting revoke", err);
101         BUFFER_TRACE(bh, "exit");
102         return err;
103 }
104
105 /*
106  * Work out how many blocks we need to progress with the next chunk of a
107  * truncate transaction.
108  */
109
110 static unsigned long blocks_for_truncate(struct inode *inode) 
111 {
112         unsigned long needed;
113
114         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115
116         /* Give ourselves just enough room to cope with inodes in which
117          * i_blocks is corrupt: we've seen disk corruptions in the past
118          * which resulted in random data in an inode which looked enough
119          * like a regular file for ext3 to try to delete it.  Things
120          * will go a bit crazy if that happens, but at least we should
121          * try not to panic the whole kernel. */
122         if (needed < 2)
123                 needed = 2;
124
125         /* But we need to bound the transaction so we don't overflow the
126          * journal. */
127         if (needed > EXT3_MAX_TRANS_DATA) 
128                 needed = EXT3_MAX_TRANS_DATA;
129
130         return EXT3_DATA_TRANS_BLOCKS + needed;
131 }
132
133 /* 
134  * Truncate transactions can be complex and absolutely huge.  So we need to
135  * be able to restart the transaction at a conventient checkpoint to make
136  * sure we don't overflow the journal.
137  *
138  * start_transaction gets us a new handle for a truncate transaction,
139  * and extend_transaction tries to extend the existing one a bit.  If
140  * extend fails, we need to propagate the failure up and restart the
141  * transaction in the top-level truncate loop. --sct 
142  */
143
144 static handle_t *start_transaction(struct inode *inode) 
145 {
146         handle_t *result;
147
148         result = ext3_journal_start(inode, blocks_for_truncate(inode));
149         if (!IS_ERR(result))
150                 return result;
151
152         ext3_std_error(inode->i_sb, PTR_ERR(result));
153         return result;
154 }
155
156 /*
157  * Try to extend this transaction for the purposes of truncation.
158  *
159  * Returns 0 if we managed to create more room.  If we can't create more
160  * room, and the transaction must be restarted we return 1.
161  */
162 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
163 {
164         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
165                 return 0;
166         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
167                 return 0;
168         return 1;
169 }
170
171 /*
172  * Restart the transaction associated with *handle.  This does a commit,
173  * so before we call here everything must be consistently dirtied against
174  * this transaction.
175  */
176 static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
177 {
178         jbd_debug(2, "restarting handle %p\n", handle);
179         return ext3_journal_restart(handle, blocks_for_truncate(inode));
180 }
181
182 static void ext3_truncate_nocheck (struct inode *inode);
183
184 /*
185  * Called at the last iput() if i_nlink is zero.
186  */
187 void ext3_delete_inode (struct inode * inode)
188 {
189         handle_t *handle;
190
191         if (is_bad_inode(inode))
192                 goto no_delete;
193
194         handle = start_transaction(inode);
195         if (IS_ERR(handle)) {
196                 /* If we're going to skip the normal cleanup, we still
197                  * need to make sure that the in-core orphan linked list
198                  * is properly cleaned up. */
199                 ext3_orphan_del(NULL, inode);
200                 goto no_delete;
201         }
202
203         if (IS_SYNC(inode))
204                 handle->h_sync = 1;
205         inode->i_size = 0;
206         if (inode->i_blocks)
207                 ext3_truncate_nocheck(inode);
208         /*
209          * Kill off the orphan record which ext3_truncate created.
210          * AKPM: I think this can be inside the above `if'.
211          * Note that ext3_orphan_del() has to be able to cope with the
212          * deletion of a non-existent orphan - this is because we don't
213          * know if ext3_truncate() actually created an orphan record.
214          * (Well, we could do this if we need to, but heck - it works)
215          */
216         ext3_orphan_del(handle, inode);
217         EXT3_I(inode)->i_dtime  = get_seconds();
218
219         /* 
220          * One subtle ordering requirement: if anything has gone wrong
221          * (transaction abort, IO errors, whatever), then we can still
222          * do these next steps (the fs will already have been marked as
223          * having errors), but we can't free the inode if the mark_dirty
224          * fails.  
225          */
226         if (ext3_mark_inode_dirty(handle, inode))
227                 /* If that failed, just do the required in-core inode clear. */
228                 clear_inode(inode);
229         else
230                 ext3_free_inode(handle, inode);
231         ext3_journal_stop(handle);
232         return;
233 no_delete:
234         clear_inode(inode);     /* We must guarantee clearing of inode... */
235 }
236
237 static int ext3_alloc_block (handle_t *handle,
238                         struct inode * inode, unsigned long goal, int *err)
239 {
240         unsigned long result;
241
242         result = ext3_new_block(handle, inode, goal, err);
243         return result;
244 }
245
246
247 typedef struct {
248         __le32  *p;
249         __le32  key;
250         struct buffer_head *bh;
251 } Indirect;
252
253 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
254 {
255         p->key = *(p->p = v);
256         p->bh = bh;
257 }
258
259 static inline int verify_chain(Indirect *from, Indirect *to)
260 {
261         while (from <= to && from->key == *from->p)
262                 from++;
263         return (from > to);
264 }
265
266 /**
267  *      ext3_block_to_path - parse the block number into array of offsets
268  *      @inode: inode in question (we are only interested in its superblock)
269  *      @i_block: block number to be parsed
270  *      @offsets: array to store the offsets in
271  *      @boundary: set this non-zero if the referred-to block is likely to be
272  *             followed (on disk) by an indirect block.
273  *
274  *      To store the locations of file's data ext3 uses a data structure common
275  *      for UNIX filesystems - tree of pointers anchored in the inode, with
276  *      data blocks at leaves and indirect blocks in intermediate nodes.
277  *      This function translates the block number into path in that tree -
278  *      return value is the path length and @offsets[n] is the offset of
279  *      pointer to (n+1)th node in the nth one. If @block is out of range
280  *      (negative or too large) warning is printed and zero returned.
281  *
282  *      Note: function doesn't find node addresses, so no IO is needed. All
283  *      we need to know is the capacity of indirect blocks (taken from the
284  *      inode->i_sb).
285  */
286
287 /*
288  * Portability note: the last comparison (check that we fit into triple
289  * indirect block) is spelled differently, because otherwise on an
290  * architecture with 32-bit longs and 8Kb pages we might get into trouble
291  * if our filesystem had 8Kb blocks. We might use long long, but that would
292  * kill us on x86. Oh, well, at least the sign propagation does not matter -
293  * i_block would have to be negative in the very beginning, so we would not
294  * get there at all.
295  */
296
297 static int ext3_block_to_path(struct inode *inode,
298                         long i_block, int offsets[4], int *boundary)
299 {
300         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
301         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
302         const long direct_blocks = EXT3_NDIR_BLOCKS,
303                 indirect_blocks = ptrs,
304                 double_blocks = (1 << (ptrs_bits * 2));
305         int n = 0;
306         int final = 0;
307
308         if (i_block < 0) {
309                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
310         } else if (i_block < direct_blocks) {
311                 offsets[n++] = i_block;
312                 final = direct_blocks;
313         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
314                 offsets[n++] = EXT3_IND_BLOCK;
315                 offsets[n++] = i_block;
316                 final = ptrs;
317         } else if ((i_block -= indirect_blocks) < double_blocks) {
318                 offsets[n++] = EXT3_DIND_BLOCK;
319                 offsets[n++] = i_block >> ptrs_bits;
320                 offsets[n++] = i_block & (ptrs - 1);
321                 final = ptrs;
322         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
323                 offsets[n++] = EXT3_TIND_BLOCK;
324                 offsets[n++] = i_block >> (ptrs_bits * 2);
325                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
326                 offsets[n++] = i_block & (ptrs - 1);
327                 final = ptrs;
328         } else {
329                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block > big");
330         }
331         if (boundary)
332                 *boundary = (i_block & (ptrs - 1)) == (final - 1);
333         return n;
334 }
335
336 /**
337  *      ext3_get_branch - read the chain of indirect blocks leading to data
338  *      @inode: inode in question
339  *      @depth: depth of the chain (1 - direct pointer, etc.)
340  *      @offsets: offsets of pointers in inode/indirect blocks
341  *      @chain: place to store the result
342  *      @err: here we store the error value
343  *
344  *      Function fills the array of triples <key, p, bh> and returns %NULL
345  *      if everything went OK or the pointer to the last filled triple
346  *      (incomplete one) otherwise. Upon the return chain[i].key contains
347  *      the number of (i+1)-th block in the chain (as it is stored in memory,
348  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
349  *      number (it points into struct inode for i==0 and into the bh->b_data
350  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
351  *      block for i>0 and NULL for i==0. In other words, it holds the block
352  *      numbers of the chain, addresses they were taken from (and where we can
353  *      verify that chain did not change) and buffer_heads hosting these
354  *      numbers.
355  *
356  *      Function stops when it stumbles upon zero pointer (absent block)
357  *              (pointer to last triple returned, *@err == 0)
358  *      or when it gets an IO error reading an indirect block
359  *              (ditto, *@err == -EIO)
360  *      or when it notices that chain had been changed while it was reading
361  *              (ditto, *@err == -EAGAIN)
362  *      or when it reads all @depth-1 indirect blocks successfully and finds
363  *      the whole chain, all way to the data (returns %NULL, *err == 0).
364  */
365 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
366                                  Indirect chain[4], int *err)
367 {
368         struct super_block *sb = inode->i_sb;
369         Indirect *p = chain;
370         struct buffer_head *bh;
371
372         *err = 0;
373         /* i_data is not going away, no lock needed */
374         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
375         if (!p->key)
376                 goto no_block;
377         while (--depth) {
378                 bh = sb_bread(sb, le32_to_cpu(p->key));
379                 if (!bh)
380                         goto failure;
381                 /* Reader: pointers */
382                 if (!verify_chain(chain, p))
383                         goto changed;
384                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
385                 /* Reader: end */
386                 if (!p->key)
387                         goto no_block;
388         }
389         return NULL;
390
391 changed:
392         brelse(bh);
393         *err = -EAGAIN;
394         goto no_block;
395 failure:
396         *err = -EIO;
397 no_block:
398         return p;
399 }
400
401 /**
402  *      ext3_find_near - find a place for allocation with sufficient locality
403  *      @inode: owner
404  *      @ind: descriptor of indirect block.
405  *
406  *      This function returns the prefered place for block allocation.
407  *      It is used when heuristic for sequential allocation fails.
408  *      Rules are:
409  *        + if there is a block to the left of our position - allocate near it.
410  *        + if pointer will live in indirect block - allocate near that block.
411  *        + if pointer will live in inode - allocate in the same
412  *          cylinder group. 
413  *
414  * In the latter case we colour the starting block by the callers PID to
415  * prevent it from clashing with concurrent allocations for a different inode
416  * in the same block group.   The PID is used here so that functionally related
417  * files will be close-by on-disk.
418  *
419  *      Caller must make sure that @ind is valid and will stay that way.
420  */
421
422 static unsigned long ext3_find_near(struct inode *inode, Indirect *ind)
423 {
424         struct ext3_inode_info *ei = EXT3_I(inode);
425         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
426         __le32 *p;
427         unsigned long bg_start;
428         unsigned long colour;
429
430         /* Try to find previous block */
431         for (p = ind->p - 1; p >= start; p--)
432                 if (*p)
433                         return le32_to_cpu(*p);
434
435         /* No such thing, so let's try location of indirect block */
436         if (ind->bh)
437                 return ind->bh->b_blocknr;
438
439         /*
440          * It is going to be refered from inode itself? OK, just put it into
441          * the same cylinder group then.
442          */
443         bg_start = (ei->i_block_group * EXT3_BLOCKS_PER_GROUP(inode->i_sb)) +
444                 le32_to_cpu(EXT3_SB(inode->i_sb)->s_es->s_first_data_block);
445         colour = (current->pid % 16) *
446                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
447         return bg_start + colour;
448 }
449
450 /**
451  *      ext3_find_goal - find a prefered place for allocation.
452  *      @inode: owner
453  *      @block:  block we want
454  *      @chain:  chain of indirect blocks
455  *      @partial: pointer to the last triple within a chain
456  *      @goal:  place to store the result.
457  *
458  *      Normally this function find the prefered place for block allocation,
459  *      stores it in *@goal and returns zero. If the branch had been changed
460  *      under us we return -EAGAIN.
461  */
462
463 static int ext3_find_goal(struct inode *inode, long block, Indirect chain[4],
464                           Indirect *partial, unsigned long *goal)
465 {
466         struct ext3_inode_info *ei = EXT3_I(inode);
467         /* Writer: ->i_next_alloc* */
468         if (block == ei->i_next_alloc_block + 1) {
469                 ei->i_next_alloc_block++;
470                 ei->i_next_alloc_goal++;
471         }
472         /* Writer: end */
473         /* Reader: pointers, ->i_next_alloc* */
474         if (verify_chain(chain, partial)) {
475                 /*
476                  * try the heuristic for sequential allocation,
477                  * failing that at least try to get decent locality.
478                  */
479                 if (block == ei->i_next_alloc_block)
480                         *goal = ei->i_next_alloc_goal;
481                 if (!*goal)
482                         *goal = ext3_find_near(inode, partial);
483                 return 0;
484         }
485         /* Reader: end */
486         return -EAGAIN;
487 }
488
489 /**
490  *      ext3_alloc_branch - allocate and set up a chain of blocks.
491  *      @inode: owner
492  *      @num: depth of the chain (number of blocks to allocate)
493  *      @offsets: offsets (in the blocks) to store the pointers to next.
494  *      @branch: place to store the chain in.
495  *
496  *      This function allocates @num blocks, zeroes out all but the last one,
497  *      links them into chain and (if we are synchronous) writes them to disk.
498  *      In other words, it prepares a branch that can be spliced onto the
499  *      inode. It stores the information about that chain in the branch[], in
500  *      the same format as ext3_get_branch() would do. We are calling it after
501  *      we had read the existing part of chain and partial points to the last
502  *      triple of that (one with zero ->key). Upon the exit we have the same
503  *      picture as after the successful ext3_get_block(), excpet that in one
504  *      place chain is disconnected - *branch->p is still zero (we did not
505  *      set the last link), but branch->key contains the number that should
506  *      be placed into *branch->p to fill that gap.
507  *
508  *      If allocation fails we free all blocks we've allocated (and forget
509  *      their buffer_heads) and return the error value the from failed
510  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
511  *      as described above and return 0.
512  */
513
514 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
515                              int num,
516                              unsigned long goal,
517                              int *offsets,
518                              Indirect *branch)
519 {
520         int blocksize = inode->i_sb->s_blocksize;
521         int n = 0, keys = 0;
522         int err = 0;
523         int i;
524         int parent = ext3_alloc_block(handle, inode, goal, &err);
525
526         branch[0].key = cpu_to_le32(parent);
527         if (parent) {
528                 for (n = 1; n < num; n++) {
529                         struct buffer_head *bh;
530                         /* Allocate the next block */
531                         int nr = ext3_alloc_block(handle, inode, parent, &err);
532                         if (!nr)
533                                 break;
534                         branch[n].key = cpu_to_le32(nr);
535                         keys = n+1;
536
537                         /*
538                          * Get buffer_head for parent block, zero it out
539                          * and set the pointer to new one, then send
540                          * parent to disk.  
541                          */
542                         bh = sb_getblk(inode->i_sb, parent);
543                         branch[n].bh = bh;
544                         lock_buffer(bh);
545                         BUFFER_TRACE(bh, "call get_create_access");
546                         err = ext3_journal_get_create_access(handle, bh);
547                         if (err) {
548                                 unlock_buffer(bh);
549                                 brelse(bh);
550                                 break;
551                         }
552
553                         memset(bh->b_data, 0, blocksize);
554                         branch[n].p = (__le32*) bh->b_data + offsets[n];
555                         *branch[n].p = branch[n].key;
556                         BUFFER_TRACE(bh, "marking uptodate");
557                         set_buffer_uptodate(bh);
558                         unlock_buffer(bh);
559
560                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
561                         err = ext3_journal_dirty_metadata(handle, bh);
562                         if (err)
563                                 break;
564
565                         parent = nr;
566                 }
567         }
568         if (n == num)
569                 return 0;
570
571         /* Allocation failed, free what we already allocated */
572         for (i = 1; i < keys; i++) {
573                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
574                 ext3_journal_forget(handle, branch[i].bh);
575         }
576         for (i = 0; i < keys; i++)
577                 ext3_free_blocks(handle, inode, le32_to_cpu(branch[i].key), 1);
578         return err;
579 }
580
581 /**
582  *      ext3_splice_branch - splice the allocated branch onto inode.
583  *      @inode: owner
584  *      @block: (logical) number of block we are adding
585  *      @chain: chain of indirect blocks (with a missing link - see
586  *              ext3_alloc_branch)
587  *      @where: location of missing link
588  *      @num:   number of blocks we are adding
589  *
590  *      This function verifies that chain (up to the missing link) had not
591  *      changed, fills the missing link and does all housekeeping needed in
592  *      inode (->i_blocks, etc.). In case of success we end up with the full
593  *      chain to new block and return 0. Otherwise (== chain had been changed)
594  *      we free the new blocks (forgetting their buffer_heads, indeed) and
595  *      return -EAGAIN.
596  */
597
598 static int ext3_splice_branch(handle_t *handle, struct inode *inode, long block,
599                               Indirect chain[4], Indirect *where, int num)
600 {
601         int i;
602         int err = 0;
603         struct ext3_inode_info *ei = EXT3_I(inode);
604
605         /*
606          * If we're splicing into a [td]indirect block (as opposed to the
607          * inode) then we need to get write access to the [td]indirect block
608          * before the splice.
609          */
610         if (where->bh) {
611                 BUFFER_TRACE(where->bh, "get_write_access");
612                 err = ext3_journal_get_write_access(handle, where->bh);
613                 if (err)
614                         goto err_out;
615         }
616         /* Verify that place we are splicing to is still there and vacant */
617
618         /* Writer: pointers, ->i_next_alloc* */
619         if (!verify_chain(chain, where-1) || *where->p)
620                 /* Writer: end */
621                 goto changed;
622
623         /* That's it */
624
625         *where->p = where->key;
626         ei->i_next_alloc_block = block;
627         ei->i_next_alloc_goal = le32_to_cpu(where[num-1].key);
628         /* Writer: end */
629
630         /* We are done with atomic stuff, now do the rest of housekeeping */
631
632         inode->i_ctime = CURRENT_TIME;
633         ext3_mark_inode_dirty(handle, inode);
634
635         /* had we spliced it onto indirect block? */
636         if (where->bh) {
637                 /*
638                  * akpm: If we spliced it onto an indirect block, we haven't
639                  * altered the inode.  Note however that if it is being spliced
640                  * onto an indirect block at the very end of the file (the
641                  * file is growing) then we *will* alter the inode to reflect
642                  * the new i_size.  But that is not done here - it is done in
643                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
644                  */
645                 jbd_debug(5, "splicing indirect only\n");
646                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
647                 err = ext3_journal_dirty_metadata(handle, where->bh);
648                 if (err) 
649                         goto err_out;
650         } else {
651                 /*
652                  * OK, we spliced it into the inode itself on a direct block.
653                  * Inode was dirtied above.
654                  */
655                 jbd_debug(5, "splicing direct\n");
656         }
657         return err;
658
659 changed:
660         /*
661          * AKPM: if where[i].bh isn't part of the current updating
662          * transaction then we explode nastily.  Test this code path.
663          */
664         jbd_debug(1, "the chain changed: try again\n");
665         err = -EAGAIN;
666
667 err_out:
668         for (i = 1; i < num; i++) {
669                 BUFFER_TRACE(where[i].bh, "call journal_forget");
670                 ext3_journal_forget(handle, where[i].bh);
671         }
672         /* For the normal collision cleanup case, we free up the blocks.
673          * On genuine filesystem errors we don't even think about doing
674          * that. */
675         if (err == -EAGAIN)
676                 for (i = 0; i < num; i++)
677                         ext3_free_blocks(handle, inode, 
678                                          le32_to_cpu(where[i].key), 1);
679         return err;
680 }
681
682 /*
683  * Allocation strategy is simple: if we have to allocate something, we will
684  * have to go the whole way to leaf. So let's do it before attaching anything
685  * to tree, set linkage between the newborn blocks, write them if sync is
686  * required, recheck the path, free and repeat if check fails, otherwise
687  * set the last missing link (that will protect us from any truncate-generated
688  * removals - all blocks on the path are immune now) and possibly force the
689  * write on the parent block.
690  * That has a nice additional property: no special recovery from the failed
691  * allocations is needed - we simply release blocks and do not touch anything
692  * reachable from inode.
693  *
694  * akpm: `handle' can be NULL if create == 0.
695  *
696  * The BKL may not be held on entry here.  Be sure to take it early.
697  */
698
699 static int
700 ext3_get_block_handle(handle_t *handle, struct inode *inode, sector_t iblock,
701                 struct buffer_head *bh_result, int create, int extend_disksize)
702 {
703         int err = -EIO;
704         int offsets[4];
705         Indirect chain[4];
706         Indirect *partial;
707         unsigned long goal;
708         int left;
709         int boundary = 0;
710         int depth = ext3_block_to_path(inode, iblock, offsets, &boundary);
711         struct ext3_inode_info *ei = EXT3_I(inode);
712
713         J_ASSERT(handle != NULL || create == 0);
714
715         if (depth == 0)
716                 goto out;
717
718 reread:
719         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
720
721         /* Simplest case - block found, no allocation needed */
722         if (!partial) {
723                 clear_buffer_new(bh_result);
724 got_it:
725                 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
726                 if (boundary)
727                         set_buffer_boundary(bh_result);
728                 /* Clean up and exit */
729                 partial = chain+depth-1; /* the whole chain */
730                 goto cleanup;
731         }
732
733         /* Next simple case - plain lookup or failed read of indirect block */
734         if (!create || err == -EIO) {
735 cleanup:
736                 while (partial > chain) {
737                         BUFFER_TRACE(partial->bh, "call brelse");
738                         brelse(partial->bh);
739                         partial--;
740                 }
741                 BUFFER_TRACE(bh_result, "returned");
742 out:
743                 return err;
744         }
745
746         /*
747          * Indirect block might be removed by truncate while we were
748          * reading it. Handling of that case (forget what we've got and
749          * reread) is taken out of the main path.
750          */
751         if (err == -EAGAIN)
752                 goto changed;
753
754         goal = 0;
755         down(&ei->truncate_sem);
756         if (ext3_find_goal(inode, iblock, chain, partial, &goal) < 0) {
757                 up(&ei->truncate_sem);
758                 goto changed;
759         }
760
761         left = (chain + depth) - partial;
762
763         /*
764          * Block out ext3_truncate while we alter the tree
765          */
766         err = ext3_alloc_branch(handle, inode, left, goal,
767                                         offsets+(partial-chain), partial);
768
769         /* The ext3_splice_branch call will free and forget any buffers
770          * on the new chain if there is a failure, but that risks using
771          * up transaction credits, especially for bitmaps where the
772          * credits cannot be returned.  Can we handle this somehow?  We
773          * may need to return -EAGAIN upwards in the worst case.  --sct */
774         if (!err)
775                 err = ext3_splice_branch(handle, inode, iblock, chain,
776                                          partial, left);
777         /* i_disksize growing is protected by truncate_sem
778          * don't forget to protect it if you're about to implement
779          * concurrent ext3_get_block() -bzzz */
780         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
781                 ei->i_disksize = inode->i_size;
782         up(&ei->truncate_sem);
783         if (err == -EAGAIN)
784                 goto changed;
785         if (err)
786                 goto cleanup;
787
788         set_buffer_new(bh_result);
789         goto got_it;
790
791 changed:
792         while (partial > chain) {
793                 jbd_debug(1, "buffer chain changed, retrying\n");
794                 BUFFER_TRACE(partial->bh, "brelsing");
795                 brelse(partial->bh);
796                 partial--;
797         }
798         goto reread;
799 }
800
801 static int ext3_get_block(struct inode *inode, sector_t iblock,
802                         struct buffer_head *bh_result, int create)
803 {
804         handle_t *handle = NULL;
805         int ret;
806
807         if (create) {
808                 handle = ext3_journal_current_handle();
809                 J_ASSERT(handle != 0);
810         }
811         ret = ext3_get_block_handle(handle, inode, iblock,
812                                 bh_result, create, 1);
813         return ret;
814 }
815
816 #define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
817
818 static int
819 ext3_direct_io_get_blocks(struct inode *inode, sector_t iblock,
820                 unsigned long max_blocks, struct buffer_head *bh_result,
821                 int create)
822 {
823         handle_t *handle = journal_current_handle();
824         int ret = 0;
825
826         if (!handle)
827                 goto get_block;         /* A read */
828
829         if (handle->h_transaction->t_state == T_LOCKED) {
830                 /*
831                  * Huge direct-io writes can hold off commits for long
832                  * periods of time.  Let this commit run.
833                  */
834                 ext3_journal_stop(handle);
835                 handle = ext3_journal_start(inode, DIO_CREDITS);
836                 if (IS_ERR(handle))
837                         ret = PTR_ERR(handle);
838                 goto get_block;
839         }
840
841         if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
842                 /*
843                  * Getting low on buffer credits...
844                  */
845                 ret = ext3_journal_extend(handle, DIO_CREDITS);
846                 if (ret > 0) {
847                         /*
848                          * Couldn't extend the transaction.  Start a new one.
849                          */
850                         ret = ext3_journal_restart(handle, DIO_CREDITS);
851                 }
852         }
853
854 get_block:
855         if (ret == 0)
856                 ret = ext3_get_block_handle(handle, inode, iblock,
857                                         bh_result, create, 0);
858         bh_result->b_size = (1 << inode->i_blkbits);
859         return ret;
860 }
861
862 /*
863  * `handle' can be NULL if create is zero
864  */
865 struct buffer_head *ext3_getblk(handle_t *handle, struct inode * inode,
866                                 long block, int create, int * errp)
867 {
868         struct buffer_head dummy;
869         int fatal = 0, err;
870
871         J_ASSERT(handle != NULL || create == 0);
872
873         dummy.b_state = 0;
874         dummy.b_blocknr = -1000;
875         buffer_trace_init(&dummy.b_history);
876         *errp = ext3_get_block_handle(handle, inode, block, &dummy, create, 1);
877         if (!*errp && buffer_mapped(&dummy)) {
878                 struct buffer_head *bh;
879                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
880                 if (buffer_new(&dummy)) {
881                         J_ASSERT(create != 0);
882                         J_ASSERT(handle != 0);
883
884                         /* Now that we do not always journal data, we
885                            should keep in mind whether this should
886                            always journal the new buffer as metadata.
887                            For now, regular file writes use
888                            ext3_get_block instead, so it's not a
889                            problem. */
890                         lock_buffer(bh);
891                         BUFFER_TRACE(bh, "call get_create_access");
892                         fatal = ext3_journal_get_create_access(handle, bh);
893                         if (!fatal && !buffer_uptodate(bh)) {
894                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
895                                 set_buffer_uptodate(bh);
896                         }
897                         unlock_buffer(bh);
898                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
899                         err = ext3_journal_dirty_metadata(handle, bh);
900                         if (!fatal)
901                                 fatal = err;
902                 } else {
903                         BUFFER_TRACE(bh, "not a new buffer");
904                 }
905                 if (fatal) {
906                         *errp = fatal;
907                         brelse(bh);
908                         bh = NULL;
909                 }
910                 return bh;
911         }
912         return NULL;
913 }
914
915 struct buffer_head *ext3_bread(handle_t *handle, struct inode * inode,
916                                int block, int create, int *err)
917 {
918         struct buffer_head * bh;
919
920         bh = ext3_getblk(handle, inode, block, create, err);
921         if (!bh)
922                 return bh;
923         if (buffer_uptodate(bh))
924                 return bh;
925         ll_rw_block(READ, 1, &bh);
926         wait_on_buffer(bh);
927         if (buffer_uptodate(bh))
928                 return bh;
929         put_bh(bh);
930         *err = -EIO;
931         return NULL;
932 }
933
934 static int walk_page_buffers(   handle_t *handle,
935                                 struct buffer_head *head,
936                                 unsigned from,
937                                 unsigned to,
938                                 int *partial,
939                                 int (*fn)(      handle_t *handle,
940                                                 struct buffer_head *bh))
941 {
942         struct buffer_head *bh;
943         unsigned block_start, block_end;
944         unsigned blocksize = head->b_size;
945         int err, ret = 0;
946         struct buffer_head *next;
947
948         for (   bh = head, block_start = 0;
949                 ret == 0 && (bh != head || !block_start);
950                 block_start = block_end, bh = next)
951         {
952                 next = bh->b_this_page;
953                 block_end = block_start + blocksize;
954                 if (block_end <= from || block_start >= to) {
955                         if (partial && !buffer_uptodate(bh))
956                                 *partial = 1;
957                         continue;
958                 }
959                 err = (*fn)(handle, bh);
960                 if (!ret)
961                         ret = err;
962         }
963         return ret;
964 }
965
966 /*
967  * To preserve ordering, it is essential that the hole instantiation and
968  * the data write be encapsulated in a single transaction.  We cannot
969  * close off a transaction and start a new one between the ext3_get_block()
970  * and the commit_write().  So doing the journal_start at the start of
971  * prepare_write() is the right place.
972  *
973  * Also, this function can nest inside ext3_writepage() ->
974  * block_write_full_page(). In that case, we *know* that ext3_writepage()
975  * has generated enough buffer credits to do the whole page.  So we won't
976  * block on the journal in that case, which is good, because the caller may
977  * be PF_MEMALLOC.
978  *
979  * By accident, ext3 can be reentered when a transaction is open via
980  * quota file writes.  If we were to commit the transaction while thus
981  * reentered, there can be a deadlock - we would be holding a quota
982  * lock, and the commit would never complete if another thread had a
983  * transaction open and was blocking on the quota lock - a ranking
984  * violation.
985  *
986  * So what we do is to rely on the fact that journal_stop/journal_start
987  * will _not_ run commit under these circumstances because handle->h_ref
988  * is elevated.  We'll still have enough credits for the tiny quotafile
989  * write.  
990  */
991
992 static int do_journal_get_write_access(handle_t *handle, 
993                                        struct buffer_head *bh)
994 {
995         if (!buffer_mapped(bh) || buffer_freed(bh))
996                 return 0;
997         return ext3_journal_get_write_access(handle, bh);
998 }
999
1000 static int ext3_prepare_write(struct file *file, struct page *page,
1001                               unsigned from, unsigned to)
1002 {
1003         struct inode *inode = page->mapping->host;
1004         int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1005         handle_t *handle;
1006         int retries = 0;
1007
1008 retry:
1009         handle = ext3_journal_start(inode, needed_blocks);
1010         if (IS_ERR(handle)) {
1011                 ret = PTR_ERR(handle);
1012                 goto out;
1013         }
1014         ret = block_prepare_write(page, from, to, ext3_get_block);
1015         if (ret)
1016                 goto prepare_write_failed;
1017
1018         if (ext3_should_journal_data(inode)) {
1019                 ret = walk_page_buffers(handle, page_buffers(page),
1020                                 from, to, NULL, do_journal_get_write_access);
1021         }
1022 prepare_write_failed:
1023         if (ret)
1024                 ext3_journal_stop(handle);
1025         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1026                 goto retry;
1027 out:
1028         return ret;
1029 }
1030
1031 static int
1032 ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1033 {
1034         int err = journal_dirty_data(handle, bh);
1035         if (err)
1036                 ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1037                                                 bh, handle,err);
1038         return err;
1039 }
1040
1041 /* For commit_write() in data=journal mode */
1042 static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1043 {
1044         if (!buffer_mapped(bh) || buffer_freed(bh))
1045                 return 0;
1046         set_buffer_uptodate(bh);
1047         return ext3_journal_dirty_metadata(handle, bh);
1048 }
1049
1050 /*
1051  * We need to pick up the new inode size which generic_commit_write gave us
1052  * `file' can be NULL - eg, when called from page_symlink().
1053  *
1054  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1055  * buffers are managed internally.
1056  */
1057
1058 static int ext3_ordered_commit_write(struct file *file, struct page *page,
1059                              unsigned from, unsigned to)
1060 {
1061         handle_t *handle = ext3_journal_current_handle();
1062         struct inode *inode = page->mapping->host;
1063         int ret = 0, ret2;
1064
1065         ret = walk_page_buffers(handle, page_buffers(page),
1066                 from, to, NULL, ext3_journal_dirty_data);
1067
1068         if (ret == 0) {
1069                 /*
1070                  * generic_commit_write() will run mark_inode_dirty() if i_size
1071                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1072                  * into that.
1073                  */
1074                 loff_t new_i_size;
1075
1076                 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1077                 if (new_i_size > EXT3_I(inode)->i_disksize)
1078                         EXT3_I(inode)->i_disksize = new_i_size;
1079                 ret = generic_commit_write(file, page, from, to);
1080         }
1081         ret2 = ext3_journal_stop(handle);
1082         if (!ret)
1083                 ret = ret2;
1084         return ret;
1085 }
1086
1087 static int ext3_writeback_commit_write(struct file *file, struct page *page,
1088                              unsigned from, unsigned to)
1089 {
1090         handle_t *handle = ext3_journal_current_handle();
1091         struct inode *inode = page->mapping->host;
1092         int ret = 0, ret2;
1093         loff_t new_i_size;
1094
1095         new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1096         if (new_i_size > EXT3_I(inode)->i_disksize)
1097                 EXT3_I(inode)->i_disksize = new_i_size;
1098         ret = generic_commit_write(file, page, from, to);
1099         ret2 = ext3_journal_stop(handle);
1100         if (!ret)
1101                 ret = ret2;
1102         return ret;
1103 }
1104
1105 static int ext3_journalled_commit_write(struct file *file,
1106                         struct page *page, unsigned from, unsigned to)
1107 {
1108         handle_t *handle = ext3_journal_current_handle();
1109         struct inode *inode = page->mapping->host;
1110         int ret = 0, ret2;
1111         int partial = 0;
1112         loff_t pos;
1113
1114         /*
1115          * Here we duplicate the generic_commit_write() functionality
1116          */
1117         pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1118
1119         ret = walk_page_buffers(handle, page_buffers(page), from,
1120                                 to, &partial, commit_write_fn);
1121         if (!partial)
1122                 SetPageUptodate(page);
1123         if (pos > inode->i_size)
1124                 i_size_write(inode, pos);
1125         EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1126         if (inode->i_size > EXT3_I(inode)->i_disksize) {
1127                 EXT3_I(inode)->i_disksize = inode->i_size;
1128                 ret2 = ext3_mark_inode_dirty(handle, inode);
1129                 if (!ret) 
1130                         ret = ret2;
1131         }
1132         ret2 = ext3_journal_stop(handle);
1133         if (!ret)
1134                 ret = ret2;
1135         return ret;
1136 }
1137
1138 /* 
1139  * bmap() is special.  It gets used by applications such as lilo and by
1140  * the swapper to find the on-disk block of a specific piece of data.
1141  *
1142  * Naturally, this is dangerous if the block concerned is still in the
1143  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1144  * filesystem and enables swap, then they may get a nasty shock when the
1145  * data getting swapped to that swapfile suddenly gets overwritten by
1146  * the original zero's written out previously to the journal and
1147  * awaiting writeback in the kernel's buffer cache. 
1148  *
1149  * So, if we see any bmap calls here on a modified, data-journaled file,
1150  * take extra steps to flush any blocks which might be in the cache. 
1151  */
1152 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1153 {
1154         struct inode *inode = mapping->host;
1155         journal_t *journal;
1156         int err;
1157
1158         if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1159                 /* 
1160                  * This is a REALLY heavyweight approach, but the use of
1161                  * bmap on dirty files is expected to be extremely rare:
1162                  * only if we run lilo or swapon on a freshly made file
1163                  * do we expect this to happen. 
1164                  *
1165                  * (bmap requires CAP_SYS_RAWIO so this does not
1166                  * represent an unprivileged user DOS attack --- we'd be
1167                  * in trouble if mortal users could trigger this path at
1168                  * will.) 
1169                  *
1170                  * NB. EXT3_STATE_JDATA is not set on files other than
1171                  * regular files.  If somebody wants to bmap a directory
1172                  * or symlink and gets confused because the buffer
1173                  * hasn't yet been flushed to disk, they deserve
1174                  * everything they get.
1175                  */
1176
1177                 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1178                 journal = EXT3_JOURNAL(inode);
1179                 journal_lock_updates(journal);
1180                 err = journal_flush(journal);
1181                 journal_unlock_updates(journal);
1182
1183                 if (err)
1184                         return 0;
1185         }
1186
1187         return generic_block_bmap(mapping,block,ext3_get_block);
1188 }
1189
1190 static int bget_one(handle_t *handle, struct buffer_head *bh)
1191 {
1192         get_bh(bh);
1193         return 0;
1194 }
1195
1196 static int bput_one(handle_t *handle, struct buffer_head *bh)
1197 {
1198         put_bh(bh);
1199         return 0;
1200 }
1201
1202 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1203 {
1204         if (buffer_mapped(bh))
1205                 return ext3_journal_dirty_data(handle, bh);
1206         return 0;
1207 }
1208
1209 /*
1210  * Note that we always start a transaction even if we're not journalling
1211  * data.  This is to preserve ordering: any hole instantiation within
1212  * __block_write_full_page -> ext3_get_block() should be journalled
1213  * along with the data so we don't crash and then get metadata which
1214  * refers to old data.
1215  *
1216  * In all journalling modes block_write_full_page() will start the I/O.
1217  *
1218  * Problem:
1219  *
1220  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1221  *              ext3_writepage()
1222  *
1223  * Similar for:
1224  *
1225  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1226  *
1227  * Same applies to ext3_get_block().  We will deadlock on various things like
1228  * lock_journal and i_truncate_sem.
1229  *
1230  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1231  * allocations fail.
1232  *
1233  * 16May01: If we're reentered then journal_current_handle() will be
1234  *          non-zero. We simply *return*.
1235  *
1236  * 1 July 2001: @@@ FIXME:
1237  *   In journalled data mode, a data buffer may be metadata against the
1238  *   current transaction.  But the same file is part of a shared mapping
1239  *   and someone does a writepage() on it.
1240  *
1241  *   We will move the buffer onto the async_data list, but *after* it has
1242  *   been dirtied. So there's a small window where we have dirty data on
1243  *   BJ_Metadata.
1244  *
1245  *   Note that this only applies to the last partial page in the file.  The
1246  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1247  *   broken code anyway: it's wrong for msync()).
1248  *
1249  *   It's a rare case: affects the final partial page, for journalled data
1250  *   where the file is subject to bith write() and writepage() in the same
1251  *   transction.  To fix it we'll need a custom block_write_full_page().
1252  *   We'll probably need that anyway for journalling writepage() output.
1253  *
1254  * We don't honour synchronous mounts for writepage().  That would be
1255  * disastrous.  Any write() or metadata operation will sync the fs for
1256  * us.
1257  *
1258  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1259  * we don't need to open a transaction here.
1260  */
1261 static int ext3_ordered_writepage(struct page *page,
1262                         struct writeback_control *wbc)
1263 {
1264         struct inode *inode = page->mapping->host;
1265         struct buffer_head *page_bufs;
1266         handle_t *handle = NULL;
1267         int ret = 0;
1268         int err;
1269
1270         J_ASSERT(PageLocked(page));
1271
1272         /*
1273          * We give up here if we're reentered, because it might be for a
1274          * different filesystem.
1275          */
1276         if (ext3_journal_current_handle())
1277                 goto out_fail;
1278
1279         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1280
1281         if (IS_ERR(handle)) {
1282                 ret = PTR_ERR(handle);
1283                 goto out_fail;
1284         }
1285
1286         if (!page_has_buffers(page)) {
1287                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1288                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1289         }
1290         page_bufs = page_buffers(page);
1291         walk_page_buffers(handle, page_bufs, 0,
1292                         PAGE_CACHE_SIZE, NULL, bget_one);
1293
1294         ret = block_write_full_page(page, ext3_get_block, wbc);
1295
1296         /*
1297          * The page can become unlocked at any point now, and
1298          * truncate can then come in and change things.  So we
1299          * can't touch *page from now on.  But *page_bufs is
1300          * safe due to elevated refcount.
1301          */
1302
1303         /*
1304          * And attach them to the current transaction.  But only if 
1305          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1306          * and generally junk.
1307          */
1308         if (ret == 0) {
1309                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1310                                         NULL, journal_dirty_data_fn);
1311                 if (!ret)
1312                         ret = err;
1313         }
1314         walk_page_buffers(handle, page_bufs, 0,
1315                         PAGE_CACHE_SIZE, NULL, bput_one);
1316         err = ext3_journal_stop(handle);
1317         if (!ret)
1318                 ret = err;
1319         return ret;
1320
1321 out_fail:
1322         redirty_page_for_writepage(wbc, page);
1323         unlock_page(page);
1324         return ret;
1325 }
1326
1327 static int ext3_writeback_writepage(struct page *page,
1328                                 struct writeback_control *wbc)
1329 {
1330         struct inode *inode = page->mapping->host;
1331         handle_t *handle = NULL;
1332         int ret = 0;
1333         int err;
1334
1335         if (ext3_journal_current_handle())
1336                 goto out_fail;
1337
1338         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1339         if (IS_ERR(handle)) {
1340                 ret = PTR_ERR(handle);
1341                 goto out_fail;
1342         }
1343
1344         ret = block_write_full_page(page, ext3_get_block, wbc);
1345         err = ext3_journal_stop(handle);
1346         if (!ret)
1347                 ret = err;
1348         return ret;
1349
1350 out_fail:
1351         redirty_page_for_writepage(wbc, page);
1352         unlock_page(page);
1353         return ret;
1354 }
1355
1356 static int ext3_journalled_writepage(struct page *page,
1357                                 struct writeback_control *wbc)
1358 {
1359         struct inode *inode = page->mapping->host;
1360         handle_t *handle = NULL;
1361         int ret = 0;
1362         int err;
1363
1364         if (ext3_journal_current_handle())
1365                 goto no_write;
1366
1367         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1368         if (IS_ERR(handle)) {
1369                 ret = PTR_ERR(handle);
1370                 goto no_write;
1371         }
1372
1373         if (!page_has_buffers(page) || PageChecked(page)) {
1374                 /*
1375                  * It's mmapped pagecache.  Add buffers and journal it.  There
1376                  * doesn't seem much point in redirtying the page here.
1377                  */
1378                 ClearPageChecked(page);
1379                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1380                                         ext3_get_block);
1381                 if (ret != 0)
1382                         goto out_unlock;
1383                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1384                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1385
1386                 err = walk_page_buffers(handle, page_buffers(page), 0,
1387                                 PAGE_CACHE_SIZE, NULL, commit_write_fn);
1388                 if (ret == 0)
1389                         ret = err;
1390                 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1391                 unlock_page(page);
1392         } else {
1393                 /*
1394                  * It may be a page full of checkpoint-mode buffers.  We don't
1395                  * really know unless we go poke around in the buffer_heads.
1396                  * But block_write_full_page will do the right thing.
1397                  */
1398                 ret = block_write_full_page(page, ext3_get_block, wbc);
1399         }
1400         err = ext3_journal_stop(handle);
1401         if (!ret)
1402                 ret = err;
1403 out:
1404         return ret;
1405
1406 no_write:
1407         redirty_page_for_writepage(wbc, page);
1408 out_unlock:
1409         unlock_page(page);
1410         goto out;
1411 }
1412
1413 static int ext3_readpage(struct file *file, struct page *page)
1414 {
1415         return mpage_readpage(page, ext3_get_block);
1416 }
1417
1418 static int
1419 ext3_readpages(struct file *file, struct address_space *mapping,
1420                 struct list_head *pages, unsigned nr_pages)
1421 {
1422         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1423 }
1424
1425 static int ext3_invalidatepage(struct page *page, unsigned long offset)
1426 {
1427         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1428
1429         /*
1430          * If it's a full truncate we just forget about the pending dirtying
1431          */
1432         if (offset == 0)
1433                 ClearPageChecked(page);
1434
1435         return journal_invalidatepage(journal, page, offset);
1436 }
1437
1438 static int ext3_releasepage(struct page *page, int wait)
1439 {
1440         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1441
1442         WARN_ON(PageChecked(page));
1443         return journal_try_to_free_buffers(journal, page, wait);
1444 }
1445
1446 /*
1447  * If the O_DIRECT write will extend the file then add this inode to the
1448  * orphan list.  So recovery will truncate it back to the original size
1449  * if the machine crashes during the write.
1450  *
1451  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1452  * crashes then stale disk data _may_ be exposed inside the file.
1453  */
1454 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1455                         const struct iovec *iov, loff_t offset,
1456                         unsigned long nr_segs)
1457 {
1458         struct file *file = iocb->ki_filp;
1459         struct inode *inode = file->f_mapping->host;
1460         struct ext3_inode_info *ei = EXT3_I(inode);
1461         handle_t *handle = NULL;
1462         ssize_t ret;
1463         int orphan = 0;
1464         size_t count = iov_length(iov, nr_segs);
1465
1466         if (rw == WRITE) {
1467                 loff_t final_size = offset + count;
1468
1469                 handle = ext3_journal_start(inode, DIO_CREDITS);
1470                 if (IS_ERR(handle)) {
1471                         ret = PTR_ERR(handle);
1472                         goto out;
1473                 }
1474                 if (final_size > inode->i_size) {
1475                         ret = ext3_orphan_add(handle, inode);
1476                         if (ret)
1477                                 goto out_stop;
1478                         orphan = 1;
1479                         ei->i_disksize = inode->i_size;
1480                 }
1481         }
1482
1483         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 
1484                                  offset, nr_segs,
1485                                  ext3_direct_io_get_blocks, NULL);
1486
1487         /*
1488          * Reacquire the handle: ext3_direct_io_get_block() can restart the
1489          * transaction
1490          */
1491         handle = journal_current_handle();
1492
1493 out_stop:
1494         if (handle) {
1495                 int err;
1496
1497                 if (orphan && inode->i_nlink)
1498                         ext3_orphan_del(handle, inode);
1499                 if (orphan && ret > 0) {
1500                         loff_t end = offset + ret;
1501                         if (end > inode->i_size) {
1502                                 ei->i_disksize = end;
1503                                 i_size_write(inode, end);
1504                                 /*
1505                                  * We're going to return a positive `ret'
1506                                  * here due to non-zero-length I/O, so there's
1507                                  * no way of reporting error returns from
1508                                  * ext3_mark_inode_dirty() to userspace.  So
1509                                  * ignore it.
1510                                  */
1511                                 ext3_mark_inode_dirty(handle, inode);
1512                         }
1513                 }
1514                 err = ext3_journal_stop(handle);
1515                 if (ret == 0)
1516                         ret = err;
1517         }
1518 out:
1519         return ret;
1520 }
1521
1522 /*
1523  * Pages can be marked dirty completely asynchronously from ext3's journalling
1524  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1525  * much here because ->set_page_dirty is called under VFS locks.  The page is
1526  * not necessarily locked.
1527  *
1528  * We cannot just dirty the page and leave attached buffers clean, because the
1529  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1530  * or jbddirty because all the journalling code will explode.
1531  *
1532  * So what we do is to mark the page "pending dirty" and next time writepage
1533  * is called, propagate that into the buffers appropriately.
1534  */
1535 static int ext3_journalled_set_page_dirty(struct page *page)
1536 {
1537         SetPageChecked(page);
1538         return __set_page_dirty_nobuffers(page);
1539 }
1540
1541 static struct address_space_operations ext3_ordered_aops = {
1542         .readpage       = ext3_readpage,
1543         .readpages      = ext3_readpages,
1544         .writepage      = ext3_ordered_writepage,
1545         .sync_page      = block_sync_page,
1546         .prepare_write  = ext3_prepare_write,
1547         .commit_write   = ext3_ordered_commit_write,
1548         .bmap           = ext3_bmap,
1549         .invalidatepage = ext3_invalidatepage,
1550         .releasepage    = ext3_releasepage,
1551         .direct_IO      = ext3_direct_IO,
1552 };
1553
1554 static struct address_space_operations ext3_writeback_aops = {
1555         .readpage       = ext3_readpage,
1556         .readpages      = ext3_readpages,
1557         .writepage      = ext3_writeback_writepage,
1558         .sync_page      = block_sync_page,
1559         .prepare_write  = ext3_prepare_write,
1560         .commit_write   = ext3_writeback_commit_write,
1561         .bmap           = ext3_bmap,
1562         .invalidatepage = ext3_invalidatepage,
1563         .releasepage    = ext3_releasepage,
1564         .direct_IO      = ext3_direct_IO,
1565 };
1566
1567 static struct address_space_operations ext3_journalled_aops = {
1568         .readpage       = ext3_readpage,
1569         .readpages      = ext3_readpages,
1570         .writepage      = ext3_journalled_writepage,
1571         .sync_page      = block_sync_page,
1572         .prepare_write  = ext3_prepare_write,
1573         .commit_write   = ext3_journalled_commit_write,
1574         .set_page_dirty = ext3_journalled_set_page_dirty,
1575         .bmap           = ext3_bmap,
1576         .invalidatepage = ext3_invalidatepage,
1577         .releasepage    = ext3_releasepage,
1578 };
1579
1580 void ext3_set_aops(struct inode *inode)
1581 {
1582         if (ext3_should_order_data(inode))
1583                 inode->i_mapping->a_ops = &ext3_ordered_aops;
1584         else if (ext3_should_writeback_data(inode))
1585                 inode->i_mapping->a_ops = &ext3_writeback_aops;
1586         else
1587                 inode->i_mapping->a_ops = &ext3_journalled_aops;
1588 }
1589
1590 /*
1591  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1592  * up to the end of the block which corresponds to `from'.
1593  * This required during truncate. We need to physically zero the tail end
1594  * of that block so it doesn't yield old data if the file is later grown.
1595  */
1596 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1597                 struct address_space *mapping, loff_t from)
1598 {
1599         unsigned long index = from >> PAGE_CACHE_SHIFT;
1600         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1601         unsigned blocksize, iblock, length, pos;
1602         struct inode *inode = mapping->host;
1603         struct buffer_head *bh;
1604         int err;
1605         void *kaddr;
1606
1607         blocksize = inode->i_sb->s_blocksize;
1608         length = blocksize - (offset & (blocksize - 1));
1609         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1610
1611         if (!page_has_buffers(page))
1612                 create_empty_buffers(page, blocksize, 0);
1613
1614         /* Find the buffer that contains "offset" */
1615         bh = page_buffers(page);
1616         pos = blocksize;
1617         while (offset >= pos) {
1618                 bh = bh->b_this_page;
1619                 iblock++;
1620                 pos += blocksize;
1621         }
1622
1623         err = 0;
1624         if (buffer_freed(bh)) {
1625                 BUFFER_TRACE(bh, "freed: skip");
1626                 goto unlock;
1627         }
1628
1629         if (!buffer_mapped(bh)) {
1630                 BUFFER_TRACE(bh, "unmapped");
1631                 ext3_get_block(inode, iblock, bh, 0);
1632                 /* unmapped? It's a hole - nothing to do */
1633                 if (!buffer_mapped(bh)) {
1634                         BUFFER_TRACE(bh, "still unmapped");
1635                         goto unlock;
1636                 }
1637         }
1638
1639         /* Ok, it's mapped. Make sure it's up-to-date */
1640         if (PageUptodate(page))
1641                 set_buffer_uptodate(bh);
1642
1643         if (!buffer_uptodate(bh)) {
1644                 err = -EIO;
1645                 ll_rw_block(READ, 1, &bh);
1646                 wait_on_buffer(bh);
1647                 /* Uhhuh. Read error. Complain and punt. */
1648                 if (!buffer_uptodate(bh))
1649                         goto unlock;
1650         }
1651
1652         if (ext3_should_journal_data(inode)) {
1653                 BUFFER_TRACE(bh, "get write access");
1654                 err = ext3_journal_get_write_access(handle, bh);
1655                 if (err)
1656                         goto unlock;
1657         }
1658
1659         kaddr = kmap_atomic(page, KM_USER0);
1660         memset(kaddr + offset, 0, length);
1661         flush_dcache_page(page);
1662         kunmap_atomic(kaddr, KM_USER0);
1663
1664         BUFFER_TRACE(bh, "zeroed end of block");
1665
1666         err = 0;
1667         if (ext3_should_journal_data(inode)) {
1668                 err = ext3_journal_dirty_metadata(handle, bh);
1669         } else {
1670                 if (ext3_should_order_data(inode))
1671                         err = ext3_journal_dirty_data(handle, bh);
1672                 mark_buffer_dirty(bh);
1673         }
1674
1675 unlock:
1676         unlock_page(page);
1677         page_cache_release(page);
1678         return err;
1679 }
1680
1681 /*
1682  * Probably it should be a library function... search for first non-zero word
1683  * or memcmp with zero_page, whatever is better for particular architecture.
1684  * Linus?
1685  */
1686 static inline int all_zeroes(__le32 *p, __le32 *q)
1687 {
1688         while (p < q)
1689                 if (*p++)
1690                         return 0;
1691         return 1;
1692 }
1693
1694 /**
1695  *      ext3_find_shared - find the indirect blocks for partial truncation.
1696  *      @inode:   inode in question
1697  *      @depth:   depth of the affected branch
1698  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1699  *      @chain:   place to store the pointers to partial indirect blocks
1700  *      @top:     place to the (detached) top of branch
1701  *
1702  *      This is a helper function used by ext3_truncate().
1703  *
1704  *      When we do truncate() we may have to clean the ends of several
1705  *      indirect blocks but leave the blocks themselves alive. Block is
1706  *      partially truncated if some data below the new i_size is refered
1707  *      from it (and it is on the path to the first completely truncated
1708  *      data block, indeed).  We have to free the top of that path along
1709  *      with everything to the right of the path. Since no allocation
1710  *      past the truncation point is possible until ext3_truncate()
1711  *      finishes, we may safely do the latter, but top of branch may
1712  *      require special attention - pageout below the truncation point
1713  *      might try to populate it.
1714  *
1715  *      We atomically detach the top of branch from the tree, store the
1716  *      block number of its root in *@top, pointers to buffer_heads of
1717  *      partially truncated blocks - in @chain[].bh and pointers to
1718  *      their last elements that should not be removed - in
1719  *      @chain[].p. Return value is the pointer to last filled element
1720  *      of @chain.
1721  *
1722  *      The work left to caller to do the actual freeing of subtrees:
1723  *              a) free the subtree starting from *@top
1724  *              b) free the subtrees whose roots are stored in
1725  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1726  *              c) free the subtrees growing from the inode past the @chain[0].
1727  *                      (no partially truncated stuff there).  */
1728
1729 static Indirect *ext3_find_shared(struct inode *inode,
1730                                 int depth,
1731                                 int offsets[4],
1732                                 Indirect chain[4],
1733                                 __le32 *top)
1734 {
1735         Indirect *partial, *p;
1736         int k, err;
1737
1738         *top = 0;
1739         /* Make k index the deepest non-null offest + 1 */
1740         for (k = depth; k > 1 && !offsets[k-1]; k--)
1741                 ;
1742         partial = ext3_get_branch(inode, k, offsets, chain, &err);
1743         /* Writer: pointers */
1744         if (!partial)
1745                 partial = chain + k-1;
1746         /*
1747          * If the branch acquired continuation since we've looked at it -
1748          * fine, it should all survive and (new) top doesn't belong to us.
1749          */
1750         if (!partial->key && *partial->p)
1751                 /* Writer: end */
1752                 goto no_top;
1753         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1754                 ;
1755         /*
1756          * OK, we've found the last block that must survive. The rest of our
1757          * branch should be detached before unlocking. However, if that rest
1758          * of branch is all ours and does not grow immediately from the inode
1759          * it's easier to cheat and just decrement partial->p.
1760          */
1761         if (p == chain + k - 1 && p > chain) {
1762                 p->p--;
1763         } else {
1764                 *top = *p->p;
1765                 /* Nope, don't do this in ext3.  Must leave the tree intact */
1766 #if 0
1767                 *p->p = 0;
1768 #endif
1769         }
1770         /* Writer: end */
1771
1772         while(partial > p)
1773         {
1774                 brelse(partial->bh);
1775                 partial--;
1776         }
1777 no_top:
1778         return partial;
1779 }
1780
1781 /*
1782  * Zero a number of block pointers in either an inode or an indirect block.
1783  * If we restart the transaction we must again get write access to the
1784  * indirect block for further modification.
1785  *
1786  * We release `count' blocks on disk, but (last - first) may be greater
1787  * than `count' because there can be holes in there.
1788  */
1789 static void
1790 ext3_clear_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh,
1791                 unsigned long block_to_free, unsigned long count,
1792                 __le32 *first, __le32 *last)
1793 {
1794         __le32 *p;
1795         if (try_to_extend_transaction(handle, inode)) {
1796                 if (bh) {
1797                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1798                         ext3_journal_dirty_metadata(handle, bh);
1799                 }
1800                 ext3_mark_inode_dirty(handle, inode);
1801                 ext3_journal_test_restart(handle, inode);
1802                 if (bh) {
1803                         BUFFER_TRACE(bh, "retaking write access");
1804                         ext3_journal_get_write_access(handle, bh);
1805                 }
1806         }
1807
1808         /*
1809          * Any buffers which are on the journal will be in memory. We find
1810          * them on the hash table so journal_revoke() will run journal_forget()
1811          * on them.  We've already detached each block from the file, so
1812          * bforget() in journal_forget() should be safe.
1813          *
1814          * AKPM: turn on bforget in journal_forget()!!!
1815          */
1816         for (p = first; p < last; p++) {
1817                 u32 nr = le32_to_cpu(*p);
1818                 if (nr) {
1819                         struct buffer_head *bh;
1820
1821                         *p = 0;
1822                         bh = sb_find_get_block(inode->i_sb, nr);
1823                         ext3_forget(handle, 0, inode, bh, nr);
1824                 }
1825         }
1826
1827         ext3_free_blocks(handle, inode, block_to_free, count);
1828 }
1829
1830 /**
1831  * ext3_free_data - free a list of data blocks
1832  * @handle:     handle for this transaction
1833  * @inode:      inode we are dealing with
1834  * @this_bh:    indirect buffer_head which contains *@first and *@last
1835  * @first:      array of block numbers
1836  * @last:       points immediately past the end of array
1837  *
1838  * We are freeing all blocks refered from that array (numbers are stored as
1839  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1840  *
1841  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1842  * blocks are contiguous then releasing them at one time will only affect one
1843  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1844  * actually use a lot of journal space.
1845  *
1846  * @this_bh will be %NULL if @first and @last point into the inode's direct
1847  * block pointers.
1848  */
1849 static void ext3_free_data(handle_t *handle, struct inode *inode,
1850                            struct buffer_head *this_bh,
1851                            __le32 *first, __le32 *last)
1852 {
1853         unsigned long block_to_free = 0;    /* Starting block # of a run */
1854         unsigned long count = 0;            /* Number of blocks in the run */ 
1855         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
1856                                                corresponding to
1857                                                block_to_free */
1858         unsigned long nr;                   /* Current block # */
1859         __le32 *p;                          /* Pointer into inode/ind
1860                                                for current block */
1861         int err;
1862
1863         if (this_bh) {                          /* For indirect block */
1864                 BUFFER_TRACE(this_bh, "get_write_access");
1865                 err = ext3_journal_get_write_access(handle, this_bh);
1866                 /* Important: if we can't update the indirect pointers
1867                  * to the blocks, we can't free them. */
1868                 if (err)
1869                         return;
1870         }
1871
1872         for (p = first; p < last; p++) {
1873                 nr = le32_to_cpu(*p);
1874                 if (nr) {
1875                         /* accumulate blocks to free if they're contiguous */
1876                         if (count == 0) {
1877                                 block_to_free = nr;
1878                                 block_to_free_p = p;
1879                                 count = 1;
1880                         } else if (nr == block_to_free + count) {
1881                                 count++;
1882                         } else {
1883                                 ext3_clear_blocks(handle, inode, this_bh, 
1884                                                   block_to_free,
1885                                                   count, block_to_free_p, p);
1886                                 block_to_free = nr;
1887                                 block_to_free_p = p;
1888                                 count = 1;
1889                         }
1890                 }
1891         }
1892
1893         if (count > 0)
1894                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
1895                                   count, block_to_free_p, p);
1896
1897         if (this_bh) {
1898                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
1899                 ext3_journal_dirty_metadata(handle, this_bh);
1900         }
1901 }
1902
1903 /**
1904  *      ext3_free_branches - free an array of branches
1905  *      @handle: JBD handle for this transaction
1906  *      @inode: inode we are dealing with
1907  *      @parent_bh: the buffer_head which contains *@first and *@last
1908  *      @first: array of block numbers
1909  *      @last:  pointer immediately past the end of array
1910  *      @depth: depth of the branches to free
1911  *
1912  *      We are freeing all blocks refered from these branches (numbers are
1913  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1914  *      appropriately.
1915  */
1916 static void ext3_free_branches(handle_t *handle, struct inode *inode,
1917                                struct buffer_head *parent_bh,
1918                                __le32 *first, __le32 *last, int depth)
1919 {
1920         unsigned long nr;
1921         __le32 *p;
1922
1923         if (is_handle_aborted(handle))
1924                 return;
1925
1926         if (depth--) {
1927                 struct buffer_head *bh;
1928                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
1929                 p = last;
1930                 while (--p >= first) {
1931                         nr = le32_to_cpu(*p);
1932                         if (!nr)
1933                                 continue;               /* A hole */
1934
1935                         /* Go read the buffer for the next level down */
1936                         bh = sb_bread(inode->i_sb, nr);
1937
1938                         /*
1939                          * A read failure? Report error and clear slot
1940                          * (should be rare).
1941                          */
1942                         if (!bh) {
1943                                 ext3_error(inode->i_sb, "ext3_free_branches",
1944                                            "Read failure, inode=%ld, block=%ld",
1945                                            inode->i_ino, nr);
1946                                 continue;
1947                         }
1948
1949                         /* This zaps the entire block.  Bottom up. */
1950                         BUFFER_TRACE(bh, "free child branches");
1951                         ext3_free_branches(handle, inode, bh,
1952                                            (__le32*)bh->b_data,
1953                                            (__le32*)bh->b_data + addr_per_block,
1954                                            depth);
1955
1956                         /*
1957                          * We've probably journalled the indirect block several
1958                          * times during the truncate.  But it's no longer
1959                          * needed and we now drop it from the transaction via
1960                          * journal_revoke().
1961                          *
1962                          * That's easy if it's exclusively part of this
1963                          * transaction.  But if it's part of the committing
1964                          * transaction then journal_forget() will simply
1965                          * brelse() it.  That means that if the underlying
1966                          * block is reallocated in ext3_get_block(),
1967                          * unmap_underlying_metadata() will find this block
1968                          * and will try to get rid of it.  damn, damn.
1969                          *
1970                          * If this block has already been committed to the
1971                          * journal, a revoke record will be written.  And
1972                          * revoke records must be emitted *before* clearing
1973                          * this block's bit in the bitmaps.
1974                          */
1975                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
1976
1977                         /*
1978                          * Everything below this this pointer has been
1979                          * released.  Now let this top-of-subtree go.
1980                          *
1981                          * We want the freeing of this indirect block to be
1982                          * atomic in the journal with the updating of the
1983                          * bitmap block which owns it.  So make some room in
1984                          * the journal.
1985                          *
1986                          * We zero the parent pointer *after* freeing its
1987                          * pointee in the bitmaps, so if extend_transaction()
1988                          * for some reason fails to put the bitmap changes and
1989                          * the release into the same transaction, recovery
1990                          * will merely complain about releasing a free block,
1991                          * rather than leaking blocks.
1992                          */
1993                         if (is_handle_aborted(handle))
1994                                 return;
1995                         if (try_to_extend_transaction(handle, inode)) {
1996                                 ext3_mark_inode_dirty(handle, inode);
1997                                 ext3_journal_test_restart(handle, inode);
1998                         }
1999
2000                         ext3_free_blocks(handle, inode, nr, 1);
2001
2002                         if (parent_bh) {
2003                                 /*
2004                                  * The block which we have just freed is
2005                                  * pointed to by an indirect block: journal it
2006                                  */
2007                                 BUFFER_TRACE(parent_bh, "get_write_access");
2008                                 if (!ext3_journal_get_write_access(handle,
2009                                                                    parent_bh)){
2010                                         *p = 0;
2011                                         BUFFER_TRACE(parent_bh,
2012                                         "call ext3_journal_dirty_metadata");
2013                                         ext3_journal_dirty_metadata(handle, 
2014                                                                     parent_bh);
2015                                 }
2016                         }
2017                 }
2018         } else {
2019                 /* We have reached the bottom of the tree. */
2020                 BUFFER_TRACE(parent_bh, "free data blocks");
2021                 ext3_free_data(handle, inode, parent_bh, first, last);
2022         }
2023 }
2024
2025 /*
2026  * ext3_truncate()
2027  *
2028  * We block out ext3_get_block() block instantiations across the entire
2029  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2030  * simultaneously on behalf of the same inode.
2031  *
2032  * As we work through the truncate and commmit bits of it to the journal there
2033  * is one core, guiding principle: the file's tree must always be consistent on
2034  * disk.  We must be able to restart the truncate after a crash.
2035  *
2036  * The file's tree may be transiently inconsistent in memory (although it
2037  * probably isn't), but whenever we close off and commit a journal transaction,
2038  * the contents of (the filesystem + the journal) must be consistent and
2039  * restartable.  It's pretty simple, really: bottom up, right to left (although
2040  * left-to-right works OK too).
2041  *
2042  * Note that at recovery time, journal replay occurs *before* the restart of
2043  * truncate against the orphan inode list.
2044  *
2045  * The committed inode has the new, desired i_size (which is the same as
2046  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2047  * that this inode's truncate did not complete and it will again call
2048  * ext3_truncate() to have another go.  So there will be instantiated blocks
2049  * to the right of the truncation point in a crashed ext3 filesystem.  But
2050  * that's fine - as long as they are linked from the inode, the post-crash
2051  * ext3_truncate() run will find them and release them.
2052  */
2053
2054 void ext3_truncate_nocheck(struct inode * inode)
2055 {
2056         handle_t *handle;
2057         struct ext3_inode_info *ei = EXT3_I(inode);
2058         __le32 *i_data = ei->i_data;
2059         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2060         struct address_space *mapping = inode->i_mapping;
2061         int offsets[4];
2062         Indirect chain[4];
2063         Indirect *partial;
2064         __le32 nr = 0;
2065         int n;
2066         long last_block;
2067         unsigned blocksize = inode->i_sb->s_blocksize;
2068         struct page *page;
2069
2070         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2071             S_ISLNK(inode->i_mode)))
2072                 return;
2073         if (ext3_inode_is_fast_symlink(inode))
2074                 return;
2075
2076         ext3_discard_reservation(inode);
2077
2078         /*
2079          * We have to lock the EOF page here, because lock_page() nests
2080          * outside journal_start().
2081          */
2082         if ((inode->i_size & (blocksize - 1)) == 0) {
2083                 /* Block boundary? Nothing to do */
2084                 page = NULL;
2085         } else {
2086                 page = grab_cache_page(mapping,
2087                                 inode->i_size >> PAGE_CACHE_SHIFT);
2088                 if (!page)
2089                         return;
2090         }
2091
2092         handle = start_transaction(inode);
2093         if (IS_ERR(handle)) {
2094                 if (page) {
2095                         clear_highpage(page);
2096                         flush_dcache_page(page);
2097                         unlock_page(page);
2098                         page_cache_release(page);
2099                 }
2100                 return;         /* AKPM: return what? */
2101         }
2102
2103         last_block = (inode->i_size + blocksize-1)
2104                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2105
2106         if (page)
2107                 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2108
2109         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2110         if (n == 0)
2111                 goto out_stop;  /* error */
2112
2113         /*
2114          * OK.  This truncate is going to happen.  We add the inode to the
2115          * orphan list, so that if this truncate spans multiple transactions,
2116          * and we crash, we will resume the truncate when the filesystem
2117          * recovers.  It also marks the inode dirty, to catch the new size.
2118          *
2119          * Implication: the file must always be in a sane, consistent
2120          * truncatable state while each transaction commits.
2121          */
2122         if (ext3_orphan_add(handle, inode))
2123                 goto out_stop;
2124
2125         /*
2126          * The orphan list entry will now protect us from any crash which
2127          * occurs before the truncate completes, so it is now safe to propagate
2128          * the new, shorter inode size (held for now in i_size) into the
2129          * on-disk inode. We do this via i_disksize, which is the value which
2130          * ext3 *really* writes onto the disk inode.
2131          */
2132         ei->i_disksize = inode->i_size;
2133
2134         /*
2135          * From here we block out all ext3_get_block() callers who want to
2136          * modify the block allocation tree.
2137          */
2138         down(&ei->truncate_sem);
2139
2140         if (n == 1) {           /* direct blocks */
2141                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2142                                i_data + EXT3_NDIR_BLOCKS);
2143                 goto do_indirects;
2144         }
2145
2146         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2147         /* Kill the top of shared branch (not detached) */
2148         if (nr) {
2149                 if (partial == chain) {
2150                         /* Shared branch grows from the inode */
2151                         ext3_free_branches(handle, inode, NULL,
2152                                            &nr, &nr+1, (chain+n-1) - partial);
2153                         *partial->p = 0;
2154                         /*
2155                          * We mark the inode dirty prior to restart,
2156                          * and prior to stop.  No need for it here.
2157                          */
2158                 } else {
2159                         /* Shared branch grows from an indirect block */
2160                         BUFFER_TRACE(partial->bh, "get_write_access");
2161                         ext3_free_branches(handle, inode, partial->bh,
2162                                         partial->p,
2163                                         partial->p+1, (chain+n-1) - partial);
2164                 }
2165         }
2166         /* Clear the ends of indirect blocks on the shared branch */
2167         while (partial > chain) {
2168                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2169                                    (__le32*)partial->bh->b_data+addr_per_block,
2170                                    (chain+n-1) - partial);
2171                 BUFFER_TRACE(partial->bh, "call brelse");
2172                 brelse (partial->bh);
2173                 partial--;
2174         }
2175 do_indirects:
2176         /* Kill the remaining (whole) subtrees */
2177         switch (offsets[0]) {
2178                 default:
2179                         nr = i_data[EXT3_IND_BLOCK];
2180                         if (nr) {
2181                                 ext3_free_branches(handle, inode, NULL,
2182                                                    &nr, &nr+1, 1);
2183                                 i_data[EXT3_IND_BLOCK] = 0;
2184                         }
2185                 case EXT3_IND_BLOCK:
2186                         nr = i_data[EXT3_DIND_BLOCK];
2187                         if (nr) {
2188                                 ext3_free_branches(handle, inode, NULL,
2189                                                    &nr, &nr+1, 2);
2190                                 i_data[EXT3_DIND_BLOCK] = 0;
2191                         }
2192                 case EXT3_DIND_BLOCK:
2193                         nr = i_data[EXT3_TIND_BLOCK];
2194                         if (nr) {
2195                                 ext3_free_branches(handle, inode, NULL,
2196                                                    &nr, &nr+1, 3);
2197                                 i_data[EXT3_TIND_BLOCK] = 0;
2198                         }
2199                 case EXT3_TIND_BLOCK:
2200                         ;
2201         }
2202         up(&ei->truncate_sem);
2203         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2204         ext3_mark_inode_dirty(handle, inode);
2205
2206         /* In a multi-transaction truncate, we only make the final
2207          * transaction synchronous */
2208         if (IS_SYNC(inode))
2209                 handle->h_sync = 1;
2210 out_stop:
2211         /*
2212          * If this was a simple ftruncate(), and the file will remain alive
2213          * then we need to clear up the orphan record which we created above.
2214          * However, if this was a real unlink then we were called by
2215          * ext3_delete_inode(), and we allow that function to clean up the
2216          * orphan info for us.
2217          */
2218         if (inode->i_nlink)
2219                 ext3_orphan_del(handle, inode);
2220
2221         ext3_journal_stop(handle);
2222 }
2223
2224 static unsigned long ext3_get_inode_block(struct super_block *sb,
2225                 unsigned long ino, struct ext3_iloc *iloc)
2226 {
2227         unsigned long desc, group_desc, block_group;
2228         unsigned long offset, block;
2229         struct buffer_head *bh;
2230         struct ext3_group_desc * gdp;
2231
2232
2233         if ((ino != EXT3_ROOT_INO &&
2234                 ino != EXT3_JOURNAL_INO &&
2235                 ino != EXT3_RESIZE_INO &&
2236                 ino < EXT3_FIRST_INO(sb)) ||
2237                 ino > le32_to_cpu(
2238                         EXT3_SB(sb)->s_es->s_inodes_count)) {
2239                 ext3_error (sb, "ext3_get_inode_block",
2240                             "bad inode number: %lu", ino);
2241                 return 0;
2242         }
2243         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2244         if (block_group >= EXT3_SB(sb)->s_groups_count) {
2245                 ext3_error (sb, "ext3_get_inode_block",
2246                             "group >= groups count");
2247                 return 0;
2248         }
2249         smp_rmb();
2250         group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2251         desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2252         bh = EXT3_SB(sb)->s_group_desc[group_desc];
2253         if (!bh) {
2254                 ext3_error (sb, "ext3_get_inode_block",
2255                             "Descriptor not loaded");
2256                 return 0;
2257         }
2258
2259         gdp = (struct ext3_group_desc *) bh->b_data;
2260         /*
2261          * Figure out the offset within the block group inode table
2262          */
2263         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2264                 EXT3_INODE_SIZE(sb);
2265         block = le32_to_cpu(gdp[desc].bg_inode_table) +
2266                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2267
2268         iloc->block_group = block_group;
2269         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2270         return block;
2271 }
2272
2273 /* 
2274  * ext3_get_inode_loc returns with an extra refcount against the inode's
2275  * underlying buffer_head on success.  If `in_mem' is false then we're purely
2276  * trying to determine the inode's location on-disk and no read need be
2277  * performed.
2278  */
2279 static int ext3_get_inode_loc(struct inode *inode,
2280                                 struct ext3_iloc *iloc, int in_mem)
2281 {
2282         unsigned long block;
2283         struct buffer_head *bh;
2284
2285         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2286         if (!block)
2287                 return -EIO;
2288
2289         bh = sb_getblk(inode->i_sb, block);
2290         if (!bh) {
2291                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2292                                 "unable to read inode block - "
2293                                 "inode=%lu, block=%lu", inode->i_ino, block);
2294                 return -EIO;
2295         }
2296         if (!buffer_uptodate(bh)) {
2297                 lock_buffer(bh);
2298                 if (buffer_uptodate(bh)) {
2299                         /* someone brought it uptodate while we waited */
2300                         unlock_buffer(bh);
2301                         goto has_buffer;
2302                 }
2303
2304                 /* we can't skip I/O if inode is on a disk only */
2305                 if (in_mem) {
2306                         struct buffer_head *bitmap_bh;
2307                         struct ext3_group_desc *desc;
2308                         int inodes_per_buffer;
2309                         int inode_offset, i;
2310                         int block_group;
2311                         int start;
2312
2313                         /*
2314                          * If this is the only valid inode in the block we
2315                          * need not read the block.
2316                          */
2317                         block_group = (inode->i_ino - 1) /
2318                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2319                         inodes_per_buffer = bh->b_size /
2320                                 EXT3_INODE_SIZE(inode->i_sb);
2321                         inode_offset = ((inode->i_ino - 1) %
2322                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2323                         start = inode_offset & ~(inodes_per_buffer - 1);
2324
2325                         /* Is the inode bitmap in cache? */
2326                         desc = ext3_get_group_desc(inode->i_sb,
2327                                                 block_group, NULL);
2328                         if (!desc)
2329                                 goto make_io;
2330
2331                         bitmap_bh = sb_getblk(inode->i_sb,
2332                                         le32_to_cpu(desc->bg_inode_bitmap));
2333                         if (!bitmap_bh)
2334                                 goto make_io;
2335
2336                         /*
2337                          * If the inode bitmap isn't in cache then the
2338                          * optimisation may end up performing two reads instead
2339                          * of one, so skip it.
2340                          */
2341                         if (!buffer_uptodate(bitmap_bh)) {
2342                                 brelse(bitmap_bh);
2343                                 goto make_io;
2344                         }
2345                         for (i = start; i < start + inodes_per_buffer; i++) {
2346                                 if (i == inode_offset)
2347                                         continue;
2348                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2349                                         break;
2350                         }
2351                         brelse(bitmap_bh);
2352                         if (i == start + inodes_per_buffer) {
2353                                 /* all other inodes are free, so skip I/O */
2354                                 memset(bh->b_data, 0, bh->b_size);
2355                                 set_buffer_uptodate(bh);
2356                                 unlock_buffer(bh);
2357                                 goto has_buffer;
2358                         }
2359                 }
2360
2361 make_io:
2362                 /*
2363                  * There are another valid inodes in the buffer so we must
2364                  * read the block from disk
2365                  */
2366                 get_bh(bh);
2367                 bh->b_end_io = end_buffer_read_sync;
2368                 submit_bh(READ, bh);
2369                 wait_on_buffer(bh);
2370                 if (!buffer_uptodate(bh)) {
2371                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2372                                         "unable to read inode block - "
2373                                         "inode=%lu, block=%lu",
2374                                         inode->i_ino, block);
2375                         brelse(bh);
2376                         return -EIO;
2377                 }
2378         }
2379 has_buffer:
2380         iloc->bh = bh;
2381         return 0;
2382 }
2383
2384 void ext3_truncate(struct inode * inode)
2385 {
2386         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2387                 return;
2388         ext3_truncate_nocheck(inode);
2389 }
2390
2391 void ext3_set_inode_flags(struct inode *inode)
2392 {
2393         unsigned int flags = EXT3_I(inode)->i_flags;
2394
2395         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_IUNLINK|S_BARRIER|S_NOATIME|S_DIRSYNC);
2396         if (flags & EXT3_SYNC_FL)
2397                 inode->i_flags |= S_SYNC;
2398         if (flags & EXT3_APPEND_FL)
2399                 inode->i_flags |= S_APPEND;
2400         if (flags & EXT3_IMMUTABLE_FL)
2401                 inode->i_flags |= S_IMMUTABLE;
2402         if (flags & EXT3_IUNLINK_FL)
2403                 inode->i_flags |= S_IUNLINK;
2404         if (flags & EXT3_BARRIER_FL)
2405                 inode->i_flags |= S_BARRIER;
2406         if (flags & EXT3_NOATIME_FL)
2407                 inode->i_flags |= S_NOATIME;
2408         if (flags & EXT3_DIRSYNC_FL)
2409                 inode->i_flags |= S_DIRSYNC;
2410 }
2411
2412 void ext3_read_inode(struct inode * inode)
2413 {
2414         struct ext3_iloc iloc;
2415         struct ext3_inode *raw_inode;
2416         struct ext3_inode_info *ei = EXT3_I(inode);
2417         struct buffer_head *bh;
2418         int block;
2419         uid_t uid;
2420         gid_t gid;
2421
2422 #ifdef CONFIG_EXT3_FS_POSIX_ACL
2423         ei->i_acl = EXT3_ACL_NOT_CACHED;
2424         ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2425 #endif
2426         ei->i_rsv_window.rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
2427
2428         if (ext3_get_inode_loc(inode, &iloc, 0))
2429                 goto bad_inode;
2430         bh = iloc.bh;
2431         raw_inode = ext3_raw_inode(&iloc);
2432         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2433         uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2434         gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2435         if(!(test_opt (inode->i_sb, NO_UID32))) {
2436                 uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2437                 gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2438         }
2439         inode->i_uid = INOXID_UID(XID_TAG(inode), uid, gid);
2440         inode->i_gid = INOXID_GID(XID_TAG(inode), uid, gid);
2441         inode->i_xid = INOXID_XID(XID_TAG(inode), uid, gid,
2442                 le16_to_cpu(raw_inode->i_raw_xid));
2443
2444         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2445         inode->i_size = le32_to_cpu(raw_inode->i_size);
2446         inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
2447         inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
2448         inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
2449         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2450
2451         ei->i_state = 0;
2452         ei->i_next_alloc_block = 0;
2453         ei->i_next_alloc_goal = 0;
2454         ei->i_dir_start_lookup = 0;
2455         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2456         /* We now have enough fields to check if the inode was active or not.
2457          * This is needed because nfsd might try to access dead inodes
2458          * the test is that same one that e2fsck uses
2459          * NeilBrown 1999oct15
2460          */
2461         if (inode->i_nlink == 0) {
2462                 if (inode->i_mode == 0 ||
2463                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2464                         /* this inode is deleted */
2465                         brelse (bh);
2466                         goto bad_inode;
2467                 }
2468                 /* The only unlinked inodes we let through here have
2469                  * valid i_mode and are being read by the orphan
2470                  * recovery code: that's fine, we're about to complete
2471                  * the process of deleting those. */
2472         }
2473         inode->i_blksize = PAGE_SIZE;   /* This is the optimal IO size
2474                                          * (for stat), not the fs block
2475                                          * size */  
2476         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2477         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2478 #ifdef EXT3_FRAGMENTS
2479         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2480         ei->i_frag_no = raw_inode->i_frag;
2481         ei->i_frag_size = raw_inode->i_fsize;
2482 #endif
2483         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2484         if (!S_ISREG(inode->i_mode)) {
2485                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2486         } else {
2487                 inode->i_size |=
2488                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2489         }
2490         ei->i_disksize = inode->i_size;
2491         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2492         ei->i_block_group = iloc.block_group;
2493         ei->i_rsv_window.rsv_start = 0;
2494         ei->i_rsv_window.rsv_end= 0;
2495         atomic_set(&ei->i_rsv_window.rsv_goal_size, EXT3_DEFAULT_RESERVE_BLOCKS);
2496         seqlock_init(&ei->i_rsv_window.rsv_seqlock);
2497         /*
2498          * NOTE! The in-memory inode i_data array is in little-endian order
2499          * even on big-endian machines: we do NOT byteswap the block numbers!
2500          */
2501         for (block = 0; block < EXT3_N_BLOCKS; block++)
2502                 ei->i_data[block] = raw_inode->i_block[block];
2503         INIT_LIST_HEAD(&ei->i_orphan);
2504
2505         if (S_ISREG(inode->i_mode)) {
2506                 inode->i_op = &ext3_file_inode_operations;
2507                 inode->i_fop = &ext3_file_operations;
2508                 ext3_set_aops(inode);
2509         } else if (S_ISDIR(inode->i_mode)) {
2510                 inode->i_op = &ext3_dir_inode_operations;
2511                 inode->i_fop = &ext3_dir_operations;
2512         } else if (S_ISLNK(inode->i_mode)) {
2513                 if (ext3_inode_is_fast_symlink(inode))
2514                         inode->i_op = &ext3_fast_symlink_inode_operations;
2515                 else {
2516                         inode->i_op = &ext3_symlink_inode_operations;
2517                         ext3_set_aops(inode);
2518                 }
2519         } else {
2520                 inode->i_op = &ext3_special_inode_operations;
2521                 if (raw_inode->i_block[0])
2522                         init_special_inode(inode, inode->i_mode,
2523                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2524                 else 
2525                         init_special_inode(inode, inode->i_mode,
2526                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2527         }
2528         brelse (iloc.bh);
2529         ext3_set_inode_flags(inode);
2530         return;
2531
2532 bad_inode:
2533         make_bad_inode(inode);
2534         return;
2535 }
2536
2537 /*
2538  * Post the struct inode info into an on-disk inode location in the
2539  * buffer-cache.  This gobbles the caller's reference to the
2540  * buffer_head in the inode location struct.
2541  *
2542  * The caller must have write access to iloc->bh.
2543  */
2544 static int ext3_do_update_inode(handle_t *handle, 
2545                                 struct inode *inode, 
2546                                 struct ext3_iloc *iloc)
2547 {
2548         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2549         struct ext3_inode_info *ei = EXT3_I(inode);
2550         struct buffer_head *bh = iloc->bh;
2551         uid_t uid = XIDINO_UID(XID_TAG(inode), inode->i_uid, inode->i_xid);
2552         gid_t gid = XIDINO_GID(XID_TAG(inode), inode->i_gid, inode->i_xid);
2553         int err = 0, rc, block;
2554
2555         /* For fields not not tracking in the in-memory inode,
2556          * initialise them to zero for new inodes. */
2557         if (ei->i_state & EXT3_STATE_NEW)
2558                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2559
2560         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2561         if(!(test_opt(inode->i_sb, NO_UID32))) {
2562                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
2563                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
2564 /*
2565  * Fix up interoperability with old kernels. Otherwise, old inodes get
2566  * re-used with the upper 16 bits of the uid/gid intact
2567  */
2568                 if(!ei->i_dtime) {
2569                         raw_inode->i_uid_high =
2570                                 cpu_to_le16(high_16_bits(uid));
2571                         raw_inode->i_gid_high =
2572                                 cpu_to_le16(high_16_bits(gid));
2573                 } else {
2574                         raw_inode->i_uid_high = 0;
2575                         raw_inode->i_gid_high = 0;
2576                 }
2577         } else {
2578                 raw_inode->i_uid_low =
2579                         cpu_to_le16(fs_high2lowuid(uid));
2580                 raw_inode->i_gid_low =
2581                         cpu_to_le16(fs_high2lowgid(gid));
2582                 raw_inode->i_uid_high = 0;
2583                 raw_inode->i_gid_high = 0;
2584         }
2585 #ifdef CONFIG_INOXID_GID32
2586         raw_inode->i_raw_xid = cpu_to_le16(inode->i_xid);
2587 #endif
2588         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2589         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2590         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2591         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2592         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2593         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2594         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2595         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2596 #ifdef EXT3_FRAGMENTS
2597         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2598         raw_inode->i_frag = ei->i_frag_no;
2599         raw_inode->i_fsize = ei->i_frag_size;
2600 #endif
2601         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2602         if (!S_ISREG(inode->i_mode)) {
2603                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2604         } else {
2605                 raw_inode->i_size_high =
2606                         cpu_to_le32(ei->i_disksize >> 32);
2607                 if (ei->i_disksize > 0x7fffffffULL) {
2608                         struct super_block *sb = inode->i_sb;
2609                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2610                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2611                             EXT3_SB(sb)->s_es->s_rev_level ==
2612                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2613                                /* If this is the first large file
2614                                 * created, add a flag to the superblock.
2615                                 */
2616                                 err = ext3_journal_get_write_access(handle,
2617                                                 EXT3_SB(sb)->s_sbh);
2618                                 if (err)
2619                                         goto out_brelse;
2620                                 ext3_update_dynamic_rev(sb);
2621                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
2622                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2623                                 sb->s_dirt = 1;
2624                                 handle->h_sync = 1;
2625                                 err = ext3_journal_dirty_metadata(handle,
2626                                                 EXT3_SB(sb)->s_sbh);
2627                         }
2628                 }
2629         }
2630         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2631         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2632                 if (old_valid_dev(inode->i_rdev)) {
2633                         raw_inode->i_block[0] =
2634                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2635                         raw_inode->i_block[1] = 0;
2636                 } else {
2637                         raw_inode->i_block[0] = 0;
2638                         raw_inode->i_block[1] =
2639                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
2640                         raw_inode->i_block[2] = 0;
2641                 }
2642         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2643                 raw_inode->i_block[block] = ei->i_data[block];
2644
2645         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2646         rc = ext3_journal_dirty_metadata(handle, bh);
2647         if (!err)
2648                 err = rc;
2649         ei->i_state &= ~EXT3_STATE_NEW;
2650
2651 out_brelse:
2652         brelse (bh);
2653         ext3_std_error(inode->i_sb, err);
2654         return err;
2655 }
2656
2657 /*
2658  * ext3_write_inode()
2659  *
2660  * We are called from a few places:
2661  *
2662  * - Within generic_file_write() for O_SYNC files.
2663  *   Here, there will be no transaction running. We wait for any running
2664  *   trasnaction to commit.
2665  *
2666  * - Within sys_sync(), kupdate and such.
2667  *   We wait on commit, if tol to.
2668  *
2669  * - Within prune_icache() (PF_MEMALLOC == true)
2670  *   Here we simply return.  We can't afford to block kswapd on the
2671  *   journal commit.
2672  *
2673  * In all cases it is actually safe for us to return without doing anything,
2674  * because the inode has been copied into a raw inode buffer in
2675  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2676  * knfsd.
2677  *
2678  * Note that we are absolutely dependent upon all inode dirtiers doing the
2679  * right thing: they *must* call mark_inode_dirty() after dirtying info in
2680  * which we are interested.
2681  *
2682  * It would be a bug for them to not do this.  The code:
2683  *
2684  *      mark_inode_dirty(inode)
2685  *      stuff();
2686  *      inode->i_size = expr;
2687  *
2688  * is in error because a kswapd-driven write_inode() could occur while
2689  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2690  * will no longer be on the superblock's dirty inode list.
2691  */
2692 int ext3_write_inode(struct inode *inode, int wait)
2693 {
2694         if (current->flags & PF_MEMALLOC)
2695                 return 0;
2696
2697         if (ext3_journal_current_handle()) {
2698                 jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2699                 dump_stack();
2700                 return -EIO;
2701         }
2702
2703         if (!wait)
2704                 return 0;
2705
2706         return ext3_force_commit(inode->i_sb);
2707 }
2708
2709 int ext3_setattr_flags(struct inode *inode, unsigned int flags)
2710 {
2711         unsigned int oldflags, newflags;
2712         int err = 0;
2713
2714         oldflags = EXT3_I(inode)->i_flags;
2715         newflags = oldflags &
2716                 ~(EXT3_IMMUTABLE_FL | EXT3_IUNLINK_FL | EXT3_BARRIER_FL);
2717         if (flags & ATTR_FLAG_IMMUTABLE)
2718                 newflags |= EXT3_IMMUTABLE_FL;
2719         if (flags & ATTR_FLAG_IUNLINK)
2720                 newflags |= EXT3_IUNLINK_FL;
2721         if (flags & ATTR_FLAG_BARRIER)
2722                 newflags |= EXT3_BARRIER_FL;
2723
2724         if (oldflags ^ newflags) {
2725                 handle_t *handle;
2726                 struct ext3_iloc iloc;
2727
2728                 handle = ext3_journal_start(inode, 1);
2729                 if (IS_ERR(handle))
2730                         return PTR_ERR(handle);
2731                 if (IS_SYNC(inode))
2732                         handle->h_sync = 1;
2733                 err = ext3_reserve_inode_write(handle, inode, &iloc);
2734                 if (err)
2735                         goto flags_err;
2736
2737                 EXT3_I(inode)->i_flags = newflags;
2738                 inode->i_ctime = CURRENT_TIME;
2739
2740                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
2741         flags_err:
2742                 ext3_journal_stop(handle);
2743         }
2744         return err;
2745 }
2746
2747 /*
2748  * ext3_setattr()
2749  *
2750  * Called from notify_change.
2751  *
2752  * We want to trap VFS attempts to truncate the file as soon as
2753  * possible.  In particular, we want to make sure that when the VFS
2754  * shrinks i_size, we put the inode on the orphan list and modify
2755  * i_disksize immediately, so that during the subsequent flushing of
2756  * dirty pages and freeing of disk blocks, we can guarantee that any
2757  * commit will leave the blocks being flushed in an unused state on
2758  * disk.  (On recovery, the inode will get truncated and the blocks will
2759  * be freed, so we have a strong guarantee that no future commit will
2760  * leave these blocks visible to the user.)  
2761  *
2762  * Called with inode->sem down.
2763  */
2764 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2765 {
2766         struct inode *inode = dentry->d_inode;
2767         int error, rc = 0;
2768         const unsigned int ia_valid = attr->ia_valid;
2769
2770         error = inode_change_ok(inode, attr);
2771         if (error)
2772                 return error;
2773
2774         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2775                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid) ||
2776                 (ia_valid & ATTR_XID && attr->ia_xid != inode->i_xid)) {
2777                 handle_t *handle;
2778
2779                 /* (user+group)*(old+new) structure, inode write (sb,
2780                  * inode block, ? - but truncate inode update has it) */
2781                 handle = ext3_journal_start(inode, 4*EXT3_QUOTA_INIT_BLOCKS+3);
2782                 if (IS_ERR(handle)) {
2783                         error = PTR_ERR(handle);
2784                         goto err_out;
2785                 }
2786                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2787                 if (error) {
2788                         ext3_journal_stop(handle);
2789                         return error;
2790                 }
2791                 /* Update corresponding info in inode so that everything is in
2792                  * one transaction */
2793                 if (attr->ia_valid & ATTR_UID)
2794                         inode->i_uid = attr->ia_uid;
2795                 if (attr->ia_valid & ATTR_GID)
2796                         inode->i_gid = attr->ia_gid;
2797                 if ((attr->ia_valid & ATTR_XID)
2798                         && inode->i_sb
2799                         && (inode->i_sb->s_flags & MS_TAGXID))
2800                         inode->i_xid = attr->ia_xid;
2801                 error = ext3_mark_inode_dirty(handle, inode);
2802                 ext3_journal_stop(handle);
2803         }
2804
2805         if (S_ISREG(inode->i_mode) &&
2806             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2807                 handle_t *handle;
2808
2809                 handle = ext3_journal_start(inode, 3);
2810                 if (IS_ERR(handle)) {
2811                         error = PTR_ERR(handle);
2812                         goto err_out;
2813                 }
2814
2815                 error = ext3_orphan_add(handle, inode);
2816                 EXT3_I(inode)->i_disksize = attr->ia_size;
2817                 rc = ext3_mark_inode_dirty(handle, inode);
2818                 if (!error)
2819                         error = rc;
2820                 ext3_journal_stop(handle);
2821         }
2822
2823         if (ia_valid & ATTR_ATTR_FLAG) {
2824                 rc = ext3_setattr_flags(inode, attr->ia_attr_flags);
2825                 if (!error)
2826                         error = rc;
2827         }
2828
2829         rc = inode_setattr(inode, attr);
2830
2831         /* If inode_setattr's call to ext3_truncate failed to get a
2832          * transaction handle at all, we need to clean up the in-core
2833          * orphan list manually. */
2834         if (inode->i_nlink)
2835                 ext3_orphan_del(NULL, inode);
2836
2837         if (!rc && (ia_valid & ATTR_MODE))
2838                 rc = ext3_acl_chmod(inode);
2839
2840 err_out:
2841         ext3_std_error(inode->i_sb, error);
2842         if (!error)
2843                 error = rc;
2844         return error;
2845 }
2846
2847
2848 /*
2849  * akpm: how many blocks doth make a writepage()?
2850  *
2851  * With N blocks per page, it may be:
2852  * N data blocks
2853  * 2 indirect block
2854  * 2 dindirect
2855  * 1 tindirect
2856  * N+5 bitmap blocks (from the above)
2857  * N+5 group descriptor summary blocks
2858  * 1 inode block
2859  * 1 superblock.
2860  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
2861  *
2862  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
2863  *
2864  * With ordered or writeback data it's the same, less the N data blocks.
2865  *
2866  * If the inode's direct blocks can hold an integral number of pages then a
2867  * page cannot straddle two indirect blocks, and we can only touch one indirect
2868  * and dindirect block, and the "5" above becomes "3".
2869  *
2870  * This still overestimates under most circumstances.  If we were to pass the
2871  * start and end offsets in here as well we could do block_to_path() on each
2872  * block and work out the exact number of indirects which are touched.  Pah.
2873  */
2874
2875 int ext3_writepage_trans_blocks(struct inode *inode)
2876 {
2877         int bpp = ext3_journal_blocks_per_page(inode);
2878         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
2879         int ret;
2880
2881         if (ext3_should_journal_data(inode))
2882                 ret = 3 * (bpp + indirects) + 2;
2883         else
2884                 ret = 2 * (bpp + indirects) + 2;
2885
2886 #ifdef CONFIG_QUOTA
2887         /* We know that structure was already allocated during DQUOT_INIT so
2888          * we will be updating only the data blocks + inodes */
2889         ret += 2*EXT3_QUOTA_TRANS_BLOCKS;
2890 #endif
2891
2892         return ret;
2893 }
2894
2895 /*
2896  * The caller must have previously called ext3_reserve_inode_write().
2897  * Give this, we know that the caller already has write access to iloc->bh.
2898  */
2899 int ext3_mark_iloc_dirty(handle_t *handle,
2900                 struct inode *inode, struct ext3_iloc *iloc)
2901 {
2902         int err = 0;
2903
2904         /* the do_update_inode consumes one bh->b_count */
2905         get_bh(iloc->bh);
2906
2907         /* ext3_do_update_inode() does journal_dirty_metadata */
2908         err = ext3_do_update_inode(handle, inode, iloc);
2909         put_bh(iloc->bh);
2910         return err;
2911 }
2912
2913 /* 
2914  * On success, We end up with an outstanding reference count against
2915  * iloc->bh.  This _must_ be cleaned up later. 
2916  */
2917
2918 int
2919 ext3_reserve_inode_write(handle_t *handle, struct inode *inode, 
2920                          struct ext3_iloc *iloc)
2921 {
2922         int err = 0;
2923         if (handle) {
2924                 err = ext3_get_inode_loc(inode, iloc, 1);
2925                 if (!err) {
2926                         BUFFER_TRACE(iloc->bh, "get_write_access");
2927                         err = ext3_journal_get_write_access(handle, iloc->bh);
2928                         if (err) {
2929                                 brelse(iloc->bh);
2930                                 iloc->bh = NULL;
2931                         }
2932                 }
2933         }
2934         ext3_std_error(inode->i_sb, err);
2935         return err;
2936 }
2937
2938 /*
2939  * akpm: What we do here is to mark the in-core inode as clean
2940  * with respect to inode dirtiness (it may still be data-dirty).
2941  * This means that the in-core inode may be reaped by prune_icache
2942  * without having to perform any I/O.  This is a very good thing,
2943  * because *any* task may call prune_icache - even ones which
2944  * have a transaction open against a different journal.
2945  *
2946  * Is this cheating?  Not really.  Sure, we haven't written the
2947  * inode out, but prune_icache isn't a user-visible syncing function.
2948  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
2949  * we start and wait on commits.
2950  *
2951  * Is this efficient/effective?  Well, we're being nice to the system
2952  * by cleaning up our inodes proactively so they can be reaped
2953  * without I/O.  But we are potentially leaving up to five seconds'
2954  * worth of inodes floating about which prune_icache wants us to
2955  * write out.  One way to fix that would be to get prune_icache()
2956  * to do a write_super() to free up some memory.  It has the desired
2957  * effect.
2958  */
2959 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
2960 {
2961         struct ext3_iloc iloc;
2962         int err;
2963
2964         might_sleep();
2965         err = ext3_reserve_inode_write(handle, inode, &iloc);
2966         if (!err)
2967                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
2968         return err;
2969 }
2970
2971 /*
2972  * akpm: ext3_dirty_inode() is called from __mark_inode_dirty()
2973  *
2974  * We're really interested in the case where a file is being extended.
2975  * i_size has been changed by generic_commit_write() and we thus need
2976  * to include the updated inode in the current transaction.
2977  *
2978  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
2979  * are allocated to the file.
2980  *
2981  * If the inode is marked synchronous, we don't honour that here - doing
2982  * so would cause a commit on atime updates, which we don't bother doing.
2983  * We handle synchronous inodes at the highest possible level.
2984  */
2985 void ext3_dirty_inode(struct inode *inode)
2986 {
2987         handle_t *current_handle = ext3_journal_current_handle();
2988         handle_t *handle;
2989
2990         handle = ext3_journal_start(inode, 2);
2991         if (IS_ERR(handle))
2992                 goto out;
2993         if (current_handle &&
2994                 current_handle->h_transaction != handle->h_transaction) {
2995                 /* This task has a transaction open against a different fs */
2996                 printk(KERN_EMERG "%s: transactions do not match!\n",
2997                        __FUNCTION__);
2998         } else {
2999                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3000                                 current_handle);
3001                 ext3_mark_inode_dirty(handle, inode);
3002         }
3003         ext3_journal_stop(handle);
3004 out:
3005         return;
3006 }
3007
3008 #ifdef AKPM
3009 /* 
3010  * Bind an inode's backing buffer_head into this transaction, to prevent
3011  * it from being flushed to disk early.  Unlike
3012  * ext3_reserve_inode_write, this leaves behind no bh reference and
3013  * returns no iloc structure, so the caller needs to repeat the iloc
3014  * lookup to mark the inode dirty later.
3015  */
3016 static inline int
3017 ext3_pin_inode(handle_t *handle, struct inode *inode)
3018 {
3019         struct ext3_iloc iloc;
3020
3021         int err = 0;
3022         if (handle) {
3023                 err = ext3_get_inode_loc(inode, &iloc, 1);
3024                 if (!err) {
3025                         BUFFER_TRACE(iloc.bh, "get_write_access");
3026                         err = journal_get_write_access(handle, iloc.bh);
3027                         if (!err)
3028                                 err = ext3_journal_dirty_metadata(handle, 
3029                                                                   iloc.bh);
3030                         brelse(iloc.bh);
3031                 }
3032         }
3033         ext3_std_error(inode->i_sb, err);
3034         return err;
3035 }
3036 #endif
3037
3038 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3039 {
3040         journal_t *journal;
3041         handle_t *handle;
3042         int err;
3043
3044         /*
3045          * We have to be very careful here: changing a data block's
3046          * journaling status dynamically is dangerous.  If we write a
3047          * data block to the journal, change the status and then delete
3048          * that block, we risk forgetting to revoke the old log record
3049          * from the journal and so a subsequent replay can corrupt data.
3050          * So, first we make sure that the journal is empty and that
3051          * nobody is changing anything.
3052          */
3053
3054         journal = EXT3_JOURNAL(inode);
3055         if (is_journal_aborted(journal) || IS_RDONLY(inode))
3056                 return -EROFS;
3057
3058         journal_lock_updates(journal);
3059         journal_flush(journal);
3060
3061         /*
3062          * OK, there are no updates running now, and all cached data is
3063          * synced to disk.  We are now in a completely consistent state
3064          * which doesn't have anything in the journal, and we know that
3065          * no filesystem updates are running, so it is safe to modify
3066          * the inode's in-core data-journaling state flag now.
3067          */
3068
3069         if (val)
3070                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3071         else
3072                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3073         ext3_set_aops(inode);
3074
3075         journal_unlock_updates(journal);
3076
3077         /* Finally we can mark the inode as dirty. */
3078
3079         handle = ext3_journal_start(inode, 1);
3080         if (IS_ERR(handle))
3081                 return PTR_ERR(handle);
3082
3083         err = ext3_mark_inode_dirty(handle, inode);
3084         handle->h_sync = 1;
3085         ext3_journal_stop(handle);
3086         ext3_std_error(inode->i_sb, err);
3087
3088         return err;
3089 }