linux 2.6.16.38 w/ vs2.0.3-rc1
[linux-2.6.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/config.h>
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <asm/atomic.h>
17
18 /* Free memory management - zoned buddy allocator.  */
19 #ifndef CONFIG_FORCE_MAX_ZONEORDER
20 #define MAX_ORDER 11
21 #else
22 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
23 #endif
24
25 struct free_area {
26         struct list_head        free_list;
27         unsigned long           nr_free;
28 };
29
30 struct pglist_data;
31
32 /*
33  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
34  * So add a wild amount of padding here to ensure that they fall into separate
35  * cachelines.  There are very few zone structures in the machine, so space
36  * consumption is not a concern here.
37  */
38 #if defined(CONFIG_SMP)
39 struct zone_padding {
40         char x[0];
41 } ____cacheline_internodealigned_in_smp;
42 #define ZONE_PADDING(name)      struct zone_padding name;
43 #else
44 #define ZONE_PADDING(name)
45 #endif
46
47 struct per_cpu_pages {
48         int count;              /* number of pages in the list */
49         int high;               /* high watermark, emptying needed */
50         int batch;              /* chunk size for buddy add/remove */
51         struct list_head list;  /* the list of pages */
52 };
53
54 struct per_cpu_pageset {
55         struct per_cpu_pages pcp[2];    /* 0: hot.  1: cold */
56 #ifdef CONFIG_NUMA
57         unsigned long numa_hit;         /* allocated in intended node */
58         unsigned long numa_miss;        /* allocated in non intended node */
59         unsigned long numa_foreign;     /* was intended here, hit elsewhere */
60         unsigned long interleave_hit;   /* interleaver prefered this zone */
61         unsigned long local_node;       /* allocation from local node */
62         unsigned long other_node;       /* allocation from other node */
63 #endif
64 } ____cacheline_aligned_in_smp;
65
66 #ifdef CONFIG_NUMA
67 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
68 #else
69 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
70 #endif
71
72 #define ZONE_DMA                0
73 #define ZONE_DMA32              1
74 #define ZONE_NORMAL             2
75 #define ZONE_HIGHMEM            3
76
77 #define MAX_NR_ZONES            4       /* Sync this with ZONES_SHIFT */
78 #define ZONES_SHIFT             2       /* ceil(log2(MAX_NR_ZONES)) */
79
80
81 /*
82  * When a memory allocation must conform to specific limitations (such
83  * as being suitable for DMA) the caller will pass in hints to the
84  * allocator in the gfp_mask, in the zone modifier bits.  These bits
85  * are used to select a priority ordered list of memory zones which
86  * match the requested limits.  GFP_ZONEMASK defines which bits within
87  * the gfp_mask should be considered as zone modifiers.  Each valid
88  * combination of the zone modifier bits has a corresponding list
89  * of zones (in node_zonelists).  Thus for two zone modifiers there
90  * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
91  * be 8 (2 ** 3) zonelists.  GFP_ZONETYPES defines the number of possible
92  * combinations of zone modifiers in "zone modifier space".
93  *
94  * As an optimisation any zone modifier bits which are only valid when
95  * no other zone modifier bits are set (loners) should be placed in
96  * the highest order bits of this field.  This allows us to reduce the
97  * extent of the zonelists thus saving space.  For example in the case
98  * of three zone modifier bits, we could require up to eight zonelists.
99  * If the left most zone modifier is a "loner" then the highest valid
100  * zonelist would be four allowing us to allocate only five zonelists.
101  * Use the first form for GFP_ZONETYPES when the left most bit is not
102  * a "loner", otherwise use the second.
103  *
104  * NOTE! Make sure this matches the zones in <linux/gfp.h>
105  */
106 #define GFP_ZONEMASK    0x07
107 /* #define GFP_ZONETYPES       (GFP_ZONEMASK + 1) */           /* Non-loner */
108 #define GFP_ZONETYPES  ((GFP_ZONEMASK + 1) / 2 + 1)            /* Loner */
109
110 /*
111  * On machines where it is needed (eg PCs) we divide physical memory
112  * into multiple physical zones. On a 32bit PC we have 4 zones:
113  *
114  * ZONE_DMA       < 16 MB       ISA DMA capable memory
115  * ZONE_DMA32        0 MB       Empty
116  * ZONE_NORMAL  16-896 MB       direct mapped by the kernel
117  * ZONE_HIGHMEM  > 896 MB       only page cache and user processes
118  */
119
120 struct zone {
121         /* Fields commonly accessed by the page allocator */
122         unsigned long           free_pages;
123         unsigned long           pages_min, pages_low, pages_high;
124         /*
125          * We don't know if the memory that we're going to allocate will be freeable
126          * or/and it will be released eventually, so to avoid totally wasting several
127          * GB of ram we must reserve some of the lower zone memory (otherwise we risk
128          * to run OOM on the lower zones despite there's tons of freeable ram
129          * on the higher zones). This array is recalculated at runtime if the
130          * sysctl_lowmem_reserve_ratio sysctl changes.
131          */
132         unsigned long           lowmem_reserve[MAX_NR_ZONES];
133
134 #ifdef CONFIG_NUMA
135         struct per_cpu_pageset  *pageset[NR_CPUS];
136 #else
137         struct per_cpu_pageset  pageset[NR_CPUS];
138 #endif
139         /*
140          * free areas of different sizes
141          */
142         spinlock_t              lock;
143 #ifdef CONFIG_MEMORY_HOTPLUG
144         /* see spanned/present_pages for more description */
145         seqlock_t               span_seqlock;
146 #endif
147         struct free_area        free_area[MAX_ORDER];
148
149
150         ZONE_PADDING(_pad1_)
151
152         /* Fields commonly accessed by the page reclaim scanner */
153         spinlock_t              lru_lock;       
154         struct list_head        active_list;
155         struct list_head        inactive_list;
156         unsigned long           nr_scan_active;
157         unsigned long           nr_scan_inactive;
158         unsigned long           nr_active;
159         unsigned long           nr_inactive;
160         unsigned long           pages_scanned;     /* since last reclaim */
161         int                     all_unreclaimable; /* All pages pinned */
162
163         /* A count of how many reclaimers are scanning this zone */
164         atomic_t                reclaim_in_progress;
165
166         /*
167          * timestamp (in jiffies) of the last zone reclaim that did not
168          * result in freeing of pages. This is used to avoid repeated scans
169          * if all memory in the zone is in use.
170          */
171         unsigned long           last_unsuccessful_zone_reclaim;
172
173         /*
174          * prev_priority holds the scanning priority for this zone.  It is
175          * defined as the scanning priority at which we achieved our reclaim
176          * target at the previous try_to_free_pages() or balance_pgdat()
177          * invokation.
178          *
179          * We use prev_priority as a measure of how much stress page reclaim is
180          * under - it drives the swappiness decision: whether to unmap mapped
181          * pages.
182          *
183          * temp_priority is used to remember the scanning priority at which
184          * this zone was successfully refilled to free_pages == pages_high.
185          *
186          * Access to both these fields is quite racy even on uniprocessor.  But
187          * it is expected to average out OK.
188          */
189         int temp_priority;
190         int prev_priority;
191
192
193         ZONE_PADDING(_pad2_)
194         /* Rarely used or read-mostly fields */
195
196         /*
197          * wait_table           -- the array holding the hash table
198          * wait_table_size      -- the size of the hash table array
199          * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
200          *
201          * The purpose of all these is to keep track of the people
202          * waiting for a page to become available and make them
203          * runnable again when possible. The trouble is that this
204          * consumes a lot of space, especially when so few things
205          * wait on pages at a given time. So instead of using
206          * per-page waitqueues, we use a waitqueue hash table.
207          *
208          * The bucket discipline is to sleep on the same queue when
209          * colliding and wake all in that wait queue when removing.
210          * When something wakes, it must check to be sure its page is
211          * truly available, a la thundering herd. The cost of a
212          * collision is great, but given the expected load of the
213          * table, they should be so rare as to be outweighed by the
214          * benefits from the saved space.
215          *
216          * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
217          * primary users of these fields, and in mm/page_alloc.c
218          * free_area_init_core() performs the initialization of them.
219          */
220         wait_queue_head_t       * wait_table;
221         unsigned long           wait_table_size;
222         unsigned long           wait_table_bits;
223
224         /*
225          * Discontig memory support fields.
226          */
227         struct pglist_data      *zone_pgdat;
228         struct page             *zone_mem_map;
229         /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
230         unsigned long           zone_start_pfn;
231
232         /*
233          * zone_start_pfn, spanned_pages and present_pages are all
234          * protected by span_seqlock.  It is a seqlock because it has
235          * to be read outside of zone->lock, and it is done in the main
236          * allocator path.  But, it is written quite infrequently.
237          *
238          * The lock is declared along with zone->lock because it is
239          * frequently read in proximity to zone->lock.  It's good to
240          * give them a chance of being in the same cacheline.
241          */
242         unsigned long           spanned_pages;  /* total size, including holes */
243         unsigned long           present_pages;  /* amount of memory (excluding holes) */
244
245         /*
246          * rarely used fields:
247          */
248         char                    *name;
249 } ____cacheline_internodealigned_in_smp;
250
251
252 /*
253  * The "priority" of VM scanning is how much of the queues we will scan in one
254  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
255  * queues ("queue_length >> 12") during an aging round.
256  */
257 #define DEF_PRIORITY 12
258
259 /*
260  * One allocation request operates on a zonelist. A zonelist
261  * is a list of zones, the first one is the 'goal' of the
262  * allocation, the other zones are fallback zones, in decreasing
263  * priority.
264  *
265  * Right now a zonelist takes up less than a cacheline. We never
266  * modify it apart from boot-up, and only a few indices are used,
267  * so despite the zonelist table being relatively big, the cache
268  * footprint of this construct is very small.
269  */
270 struct zonelist {
271         struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
272 };
273
274
275 /*
276  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
277  * (mostly NUMA machines?) to denote a higher-level memory zone than the
278  * zone denotes.
279  *
280  * On NUMA machines, each NUMA node would have a pg_data_t to describe
281  * it's memory layout.
282  *
283  * Memory statistics and page replacement data structures are maintained on a
284  * per-zone basis.
285  */
286 struct bootmem_data;
287 typedef struct pglist_data {
288         struct zone node_zones[MAX_NR_ZONES];
289         struct zonelist node_zonelists[GFP_ZONETYPES];
290         int nr_zones;
291 #ifdef CONFIG_FLAT_NODE_MEM_MAP
292         struct page *node_mem_map;
293 #endif
294         struct bootmem_data *bdata;
295 #ifdef CONFIG_MEMORY_HOTPLUG
296         /*
297          * Must be held any time you expect node_start_pfn, node_present_pages
298          * or node_spanned_pages stay constant.  Holding this will also
299          * guarantee that any pfn_valid() stays that way.
300          *
301          * Nests above zone->lock and zone->size_seqlock.
302          */
303         spinlock_t node_size_lock;
304 #endif
305         unsigned long node_start_pfn;
306         unsigned long node_present_pages; /* total number of physical pages */
307         unsigned long node_spanned_pages; /* total size of physical page
308                                              range, including holes */
309         int node_id;
310         struct pglist_data *pgdat_next;
311         wait_queue_head_t kswapd_wait;
312         struct task_struct *kswapd;
313         int kswapd_max_order;
314 } pg_data_t;
315
316 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
317 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
318 #ifdef CONFIG_FLAT_NODE_MEM_MAP
319 #define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
320 #else
321 #define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
322 #endif
323 #define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
324
325 #include <linux/memory_hotplug.h>
326
327 extern struct pglist_data *pgdat_list;
328
329 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
330                         unsigned long *free, struct pglist_data *pgdat);
331 void get_zone_counts(unsigned long *active, unsigned long *inactive,
332                         unsigned long *free);
333 void build_all_zonelists(void);
334 void wakeup_kswapd(struct zone *zone, int order);
335 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
336                 int classzone_idx, int alloc_flags);
337
338 #ifdef CONFIG_HAVE_MEMORY_PRESENT
339 void memory_present(int nid, unsigned long start, unsigned long end);
340 #else
341 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
342 #endif
343
344 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
345 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
346 #endif
347
348 /*
349  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
350  */
351 #define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
352
353 /**
354  * for_each_pgdat - helper macro to iterate over all nodes
355  * @pgdat - pointer to a pg_data_t variable
356  *
357  * Meant to help with common loops of the form
358  * pgdat = pgdat_list;
359  * while(pgdat) {
360  *      ...
361  *      pgdat = pgdat->pgdat_next;
362  * }
363  */
364 #define for_each_pgdat(pgdat) \
365         for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
366
367 /*
368  * next_zone - helper magic for for_each_zone()
369  * Thanks to William Lee Irwin III for this piece of ingenuity.
370  */
371 static inline struct zone *next_zone(struct zone *zone)
372 {
373         pg_data_t *pgdat = zone->zone_pgdat;
374
375         if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
376                 zone++;
377         else if (pgdat->pgdat_next) {
378                 pgdat = pgdat->pgdat_next;
379                 zone = pgdat->node_zones;
380         } else
381                 zone = NULL;
382
383         return zone;
384 }
385
386 /**
387  * for_each_zone - helper macro to iterate over all memory zones
388  * @zone - pointer to struct zone variable
389  *
390  * The user only needs to declare the zone variable, for_each_zone
391  * fills it in. This basically means for_each_zone() is an
392  * easier to read version of this piece of code:
393  *
394  * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
395  *      for (i = 0; i < MAX_NR_ZONES; ++i) {
396  *              struct zone * z = pgdat->node_zones + i;
397  *              ...
398  *      }
399  * }
400  */
401 #define for_each_zone(zone) \
402         for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
403
404 static inline int populated_zone(struct zone *zone)
405 {
406         return (!!zone->present_pages);
407 }
408
409 static inline int is_highmem_idx(int idx)
410 {
411         return (idx == ZONE_HIGHMEM);
412 }
413
414 static inline int is_normal_idx(int idx)
415 {
416         return (idx == ZONE_NORMAL);
417 }
418
419 /**
420  * is_highmem - helper function to quickly check if a struct zone is a 
421  *              highmem zone or not.  This is an attempt to keep references
422  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
423  * @zone - pointer to struct zone variable
424  */
425 static inline int is_highmem(struct zone *zone)
426 {
427         return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
428 }
429
430 static inline int is_normal(struct zone *zone)
431 {
432         return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
433 }
434
435 static inline int is_dma32(struct zone *zone)
436 {
437         return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
438 }
439
440 static inline int is_dma(struct zone *zone)
441 {
442         return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
443 }
444
445 /* These two functions are used to setup the per zone pages min values */
446 struct ctl_table;
447 struct file;
448 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 
449                                         void __user *, size_t *, loff_t *);
450 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
451 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
452                                         void __user *, size_t *, loff_t *);
453 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
454                                         void __user *, size_t *, loff_t *);
455
456 #include <linux/topology.h>
457 /* Returns the number of the current Node. */
458 #ifndef numa_node_id
459 #define numa_node_id()          (cpu_to_node(raw_smp_processor_id()))
460 #endif
461
462 #ifndef CONFIG_NEED_MULTIPLE_NODES
463
464 extern struct pglist_data contig_page_data;
465 #define NODE_DATA(nid)          (&contig_page_data)
466 #define NODE_MEM_MAP(nid)       mem_map
467 #define MAX_NODES_SHIFT         1
468
469 #else /* CONFIG_NEED_MULTIPLE_NODES */
470
471 #include <asm/mmzone.h>
472
473 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
474
475 #ifdef CONFIG_SPARSEMEM
476 #include <asm/sparsemem.h>
477 #endif
478
479 #if BITS_PER_LONG == 32
480 /*
481  * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
482  * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
483  */
484 #define FLAGS_RESERVED          9
485
486 #elif BITS_PER_LONG == 64
487 /*
488  * with 64 bit flags field, there's plenty of room.
489  */
490 #define FLAGS_RESERVED          32
491
492 #else
493
494 #error BITS_PER_LONG not defined
495
496 #endif
497
498 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
499 #define early_pfn_to_nid(nid)  (0UL)
500 #endif
501
502 #ifdef CONFIG_FLATMEM
503 #define pfn_to_nid(pfn)         (0)
504 #endif
505
506 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
507 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
508
509 #ifdef CONFIG_SPARSEMEM
510
511 /*
512  * SECTION_SHIFT                #bits space required to store a section #
513  *
514  * PA_SECTION_SHIFT             physical address to/from section number
515  * PFN_SECTION_SHIFT            pfn to/from section number
516  */
517 #define SECTIONS_SHIFT          (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
518
519 #define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
520 #define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
521
522 #define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
523
524 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
525 #define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
526
527 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
528 #error Allocator MAX_ORDER exceeds SECTION_SIZE
529 #endif
530
531 struct page;
532 struct mem_section {
533         /*
534          * This is, logically, a pointer to an array of struct
535          * pages.  However, it is stored with some other magic.
536          * (see sparse.c::sparse_init_one_section())
537          *
538          * Making it a UL at least makes someone do a cast
539          * before using it wrong.
540          */
541         unsigned long section_mem_map;
542 };
543
544 #ifdef CONFIG_SPARSEMEM_EXTREME
545 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
546 #else
547 #define SECTIONS_PER_ROOT       1
548 #endif
549
550 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
551 #define NR_SECTION_ROOTS        (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
552 #define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
553
554 #ifdef CONFIG_SPARSEMEM_EXTREME
555 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
556 #else
557 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
558 #endif
559
560 static inline struct mem_section *__nr_to_section(unsigned long nr)
561 {
562         if (!mem_section[SECTION_NR_TO_ROOT(nr)])
563                 return NULL;
564         return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
565 }
566 extern int __section_nr(struct mem_section* ms);
567
568 /*
569  * We use the lower bits of the mem_map pointer to store
570  * a little bit of information.  There should be at least
571  * 3 bits here due to 32-bit alignment.
572  */
573 #define SECTION_MARKED_PRESENT  (1UL<<0)
574 #define SECTION_HAS_MEM_MAP     (1UL<<1)
575 #define SECTION_MAP_LAST_BIT    (1UL<<2)
576 #define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
577
578 static inline struct page *__section_mem_map_addr(struct mem_section *section)
579 {
580         unsigned long map = section->section_mem_map;
581         map &= SECTION_MAP_MASK;
582         return (struct page *)map;
583 }
584
585 static inline int valid_section(struct mem_section *section)
586 {
587         return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
588 }
589
590 static inline int section_has_mem_map(struct mem_section *section)
591 {
592         return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
593 }
594
595 static inline int valid_section_nr(unsigned long nr)
596 {
597         return valid_section(__nr_to_section(nr));
598 }
599
600 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
601 {
602         return __nr_to_section(pfn_to_section_nr(pfn));
603 }
604
605 #define pfn_to_page(pfn)                                                \
606 ({                                                                      \
607         unsigned long __pfn = (pfn);                                    \
608         __section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn;        \
609 })
610 #define page_to_pfn(page)                                               \
611 ({                                                                      \
612         page - __section_mem_map_addr(__nr_to_section(                  \
613                 page_to_section(page)));                                \
614 })
615
616 static inline int pfn_valid(unsigned long pfn)
617 {
618         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
619                 return 0;
620         return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
621 }
622
623 /*
624  * These are _only_ used during initialisation, therefore they
625  * can use __initdata ...  They could have names to indicate
626  * this restriction.
627  */
628 #ifdef CONFIG_NUMA
629 #define pfn_to_nid(pfn)                                                 \
630 ({                                                                      \
631         unsigned long __pfn_to_nid_pfn = (pfn);                         \
632         page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
633 })
634 #else
635 #define pfn_to_nid(pfn)         (0)
636 #endif
637
638 #define early_pfn_valid(pfn)    pfn_valid(pfn)
639 void sparse_init(void);
640 #else
641 #define sparse_init()   do {} while (0)
642 #define sparse_index_init(_sec, _nid)  do {} while (0)
643 #endif /* CONFIG_SPARSEMEM */
644
645 #ifndef early_pfn_valid
646 #define early_pfn_valid(pfn)    (1)
647 #endif
648
649 void memory_present(int nid, unsigned long start, unsigned long end);
650 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
651
652 #endif /* !__ASSEMBLY__ */
653 #endif /* __KERNEL__ */
654 #endif /* _LINUX_MMZONE_H */