ckrm E17 memory controller
[linux-2.6.git] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/ptrace.h>
24 #include <linux/profile.h>
25 #include <linux/mount.h>
26 #include <linux/proc_fs.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ckrm_events.h>
29 #include <linux/syscalls.h>
30 #include <linux/ckrm_mem_inline.h>
31
32 #include <asm/uaccess.h>
33 #include <asm/unistd.h>
34 #include <asm/pgtable.h>
35 #include <asm/mmu_context.h>
36
37 extern void sem_exit (void);
38 extern struct task_struct *child_reaper;
39
40 int getrusage(struct task_struct *, int, struct rusage __user *);
41
42 static void __unhash_process(struct task_struct *p)
43 {
44         nr_threads--;
45         detach_pid(p, PIDTYPE_PID);
46         detach_pid(p, PIDTYPE_TGID);
47         if (thread_group_leader(p)) {
48                 detach_pid(p, PIDTYPE_PGID);
49                 detach_pid(p, PIDTYPE_SID);
50                 if (p->pid)
51                         __get_cpu_var(process_counts)--;
52         }
53
54         REMOVE_LINKS(p);
55 }
56
57 void release_task(struct task_struct * p)
58 {
59         int zap_leader;
60         task_t *leader;
61         struct dentry *proc_dentry;
62
63 repeat: 
64         atomic_dec(&p->user->processes);
65         spin_lock(&p->proc_lock);
66         proc_dentry = proc_pid_unhash(p);
67         write_lock_irq(&tasklist_lock);
68         if (unlikely(p->ptrace))
69                 __ptrace_unlink(p);
70         BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
71         __exit_signal(p);
72         __exit_sighand(p);
73         __unhash_process(p);
74
75         /*
76          * If we are the last non-leader member of the thread
77          * group, and the leader is zombie, then notify the
78          * group leader's parent process. (if it wants notification.)
79          */
80         zap_leader = 0;
81         leader = p->group_leader;
82         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
83                 BUG_ON(leader->exit_signal == -1);
84                 do_notify_parent(leader, leader->exit_signal);
85                 /*
86                  * If we were the last child thread and the leader has
87                  * exited already, and the leader's parent ignores SIGCHLD,
88                  * then we are the one who should release the leader.
89                  *
90                  * do_notify_parent() will have marked it self-reaping in
91                  * that case.
92                  */
93                 zap_leader = (leader->exit_signal == -1);
94         }
95
96         sched_exit(p);
97         write_unlock_irq(&tasklist_lock);
98         spin_unlock(&p->proc_lock);
99         proc_pid_flush(proc_dentry);
100         release_thread(p);
101         put_task_struct(p);
102
103         p = leader;
104         if (unlikely(zap_leader))
105                 goto repeat;
106 }
107
108 /* we are using it only for SMP init */
109
110 void unhash_process(struct task_struct *p)
111 {
112         struct dentry *proc_dentry;
113
114         spin_lock(&p->proc_lock);
115         proc_dentry = proc_pid_unhash(p);
116         write_lock_irq(&tasklist_lock);
117         __unhash_process(p);
118         write_unlock_irq(&tasklist_lock);
119         spin_unlock(&p->proc_lock);
120         proc_pid_flush(proc_dentry);
121 }
122
123 /*
124  * This checks not only the pgrp, but falls back on the pid if no
125  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
126  * without this...
127  */
128 int session_of_pgrp(int pgrp)
129 {
130         struct task_struct *p;
131         int sid = -1;
132
133         read_lock(&tasklist_lock);
134         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
135                 if (p->signal->session > 0) {
136                         sid = p->signal->session;
137                         goto out;
138                 }
139         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
140         p = find_task_by_pid(pgrp);
141         if (p)
142                 sid = p->signal->session;
143 out:
144         read_unlock(&tasklist_lock);
145         
146         return sid;
147 }
148
149 /*
150  * Determine if a process group is "orphaned", according to the POSIX
151  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
152  * by terminal-generated stop signals.  Newly orphaned process groups are
153  * to receive a SIGHUP and a SIGCONT.
154  *
155  * "I ask you, have you ever known what it is to be an orphan?"
156  */
157 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
158 {
159         struct task_struct *p;
160         int ret = 1;
161
162         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
163                 if (p == ignored_task
164                                 || p->exit_state >= EXIT_ZOMBIE
165                                 || p->real_parent->pid == 1)
166                         continue;
167                 if (process_group(p->real_parent) != pgrp
168                             && p->real_parent->signal->session == p->signal->session) {
169                         ret = 0;
170                         break;
171                 }
172         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
173         return ret;     /* (sighing) "Often!" */
174 }
175
176 int is_orphaned_pgrp(int pgrp)
177 {
178         int retval;
179
180         read_lock(&tasklist_lock);
181         retval = will_become_orphaned_pgrp(pgrp, NULL);
182         read_unlock(&tasklist_lock);
183
184         return retval;
185 }
186
187 static inline int has_stopped_jobs(int pgrp)
188 {
189         int retval = 0;
190         struct task_struct *p;
191
192         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
193                 if (p->state != TASK_STOPPED)
194                         continue;
195
196                 /* If p is stopped by a debugger on a signal that won't
197                    stop it, then don't count p as stopped.  This isn't
198                    perfect but it's a good approximation.  */
199                 if (unlikely (p->ptrace)
200                     && p->exit_code != SIGSTOP
201                     && p->exit_code != SIGTSTP
202                     && p->exit_code != SIGTTOU
203                     && p->exit_code != SIGTTIN)
204                         continue;
205
206                 retval = 1;
207                 break;
208         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
209         return retval;
210 }
211
212 /**
213  * reparent_to_init() - Reparent the calling kernel thread to the init task.
214  *
215  * If a kernel thread is launched as a result of a system call, or if
216  * it ever exits, it should generally reparent itself to init so that
217  * it is correctly cleaned up on exit.
218  *
219  * The various task state such as scheduling policy and priority may have
220  * been inherited from a user process, so we reset them to sane values here.
221  *
222  * NOTE that reparent_to_init() gives the caller full capabilities.
223  */
224 void reparent_to_init(void)
225 {
226         write_lock_irq(&tasklist_lock);
227
228         ptrace_unlink(current);
229         /* Reparent to init */
230         REMOVE_LINKS(current);
231         current->parent = child_reaper;
232         current->real_parent = child_reaper;
233         SET_LINKS(current);
234
235         /* Set the exit signal to SIGCHLD so we signal init on exit */
236         current->exit_signal = SIGCHLD;
237
238         if ((current->policy == SCHED_NORMAL) && (task_nice(current) < 0))
239                 set_user_nice(current, 0);
240         /* cpus_allowed? */
241         /* rt_priority? */
242         /* signals? */
243         security_task_reparent_to_init(current);
244         memcpy(current->signal->rlim, init_task.signal->rlim,
245                sizeof(current->signal->rlim));
246         atomic_inc(&(INIT_USER->__count));
247         write_unlock_irq(&tasklist_lock);
248         switch_uid(INIT_USER);
249 }
250
251 void __set_special_pids(pid_t session, pid_t pgrp)
252 {
253         struct task_struct *curr = current;
254
255         if (curr->signal->session != session) {
256                 detach_pid(curr, PIDTYPE_SID);
257                 curr->signal->session = session;
258                 attach_pid(curr, PIDTYPE_SID, session);
259         }
260         if (process_group(curr) != pgrp) {
261                 detach_pid(curr, PIDTYPE_PGID);
262                 curr->signal->pgrp = pgrp;
263                 attach_pid(curr, PIDTYPE_PGID, pgrp);
264         }
265 }
266
267 void set_special_pids(pid_t session, pid_t pgrp)
268 {
269         write_lock_irq(&tasklist_lock);
270         __set_special_pids(session, pgrp);
271         write_unlock_irq(&tasklist_lock);
272 }
273
274 /*
275  * Let kernel threads use this to say that they
276  * allow a certain signal (since daemonize() will
277  * have disabled all of them by default).
278  */
279 int allow_signal(int sig)
280 {
281         if (sig < 1 || sig > _NSIG)
282                 return -EINVAL;
283
284         spin_lock_irq(&current->sighand->siglock);
285         sigdelset(&current->blocked, sig);
286         if (!current->mm) {
287                 /* Kernel threads handle their own signals.
288                    Let the signal code know it'll be handled, so
289                    that they don't get converted to SIGKILL or
290                    just silently dropped */
291                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
292         }
293         recalc_sigpending();
294         spin_unlock_irq(&current->sighand->siglock);
295         return 0;
296 }
297
298 EXPORT_SYMBOL(allow_signal);
299
300 int disallow_signal(int sig)
301 {
302         if (sig < 1 || sig > _NSIG)
303                 return -EINVAL;
304
305         spin_lock_irq(&current->sighand->siglock);
306         sigaddset(&current->blocked, sig);
307         recalc_sigpending();
308         spin_unlock_irq(&current->sighand->siglock);
309         return 0;
310 }
311
312 EXPORT_SYMBOL(disallow_signal);
313
314 /*
315  *      Put all the gunge required to become a kernel thread without
316  *      attached user resources in one place where it belongs.
317  */
318
319 void daemonize(const char *name, ...)
320 {
321         va_list args;
322         struct fs_struct *fs;
323         sigset_t blocked;
324
325         va_start(args, name);
326         vsnprintf(current->comm, sizeof(current->comm), name, args);
327         va_end(args);
328
329         /*
330          * If we were started as result of loading a module, close all of the
331          * user space pages.  We don't need them, and if we didn't close them
332          * they would be locked into memory.
333          */
334         exit_mm(current);
335
336         set_special_pids(1, 1);
337         current->signal->tty = NULL;
338
339         /* Block and flush all signals */
340         sigfillset(&blocked);
341         sigprocmask(SIG_BLOCK, &blocked, NULL);
342         flush_signals(current);
343
344         /* Become as one with the init task */
345
346         exit_fs(current);       /* current->fs->count--; */
347         fs = init_task.fs;
348         current->fs = fs;
349         atomic_inc(&fs->count);
350         exit_files(current);
351         current->files = init_task.files;
352         atomic_inc(&current->files->count);
353
354         reparent_to_init();
355 }
356
357 EXPORT_SYMBOL(daemonize);
358
359 static inline void close_files(struct files_struct * files)
360 {
361         int i, j;
362
363         j = 0;
364         for (;;) {
365                 unsigned long set;
366                 i = j * __NFDBITS;
367                 if (i >= files->max_fdset || i >= files->max_fds)
368                         break;
369                 set = files->open_fds->fds_bits[j++];
370                 while (set) {
371                         if (set & 1) {
372                                 struct file * file = xchg(&files->fd[i], NULL);
373                                 if (file)
374                                         filp_close(file, files);
375                         }
376                         i++;
377                         set >>= 1;
378                 }
379         }
380 }
381
382 struct files_struct *get_files_struct(struct task_struct *task)
383 {
384         struct files_struct *files;
385
386         task_lock(task);
387         files = task->files;
388         if (files)
389                 atomic_inc(&files->count);
390         task_unlock(task);
391
392         return files;
393 }
394
395 void fastcall put_files_struct(struct files_struct *files)
396 {
397         if (atomic_dec_and_test(&files->count)) {
398                 close_files(files);
399                 /*
400                  * Free the fd and fdset arrays if we expanded them.
401                  */
402                 if (files->fd != &files->fd_array[0])
403                         free_fd_array(files->fd, files->max_fds);
404                 if (files->max_fdset > __FD_SETSIZE) {
405                         free_fdset(files->open_fds, files->max_fdset);
406                         free_fdset(files->close_on_exec, files->max_fdset);
407                 }
408                 kmem_cache_free(files_cachep, files);
409         }
410 }
411
412 EXPORT_SYMBOL(put_files_struct);
413
414 static inline void __exit_files(struct task_struct *tsk)
415 {
416         struct files_struct * files = tsk->files;
417
418         if (files) {
419                 task_lock(tsk);
420                 tsk->files = NULL;
421                 task_unlock(tsk);
422                 put_files_struct(files);
423         }
424 }
425
426 void exit_files(struct task_struct *tsk)
427 {
428         __exit_files(tsk);
429 }
430
431 static inline void __put_fs_struct(struct fs_struct *fs)
432 {
433         /* No need to hold fs->lock if we are killing it */
434         if (atomic_dec_and_test(&fs->count)) {
435                 dput(fs->root);
436                 mntput(fs->rootmnt);
437                 dput(fs->pwd);
438                 mntput(fs->pwdmnt);
439                 if (fs->altroot) {
440                         dput(fs->altroot);
441                         mntput(fs->altrootmnt);
442                 }
443                 kmem_cache_free(fs_cachep, fs);
444         }
445 }
446
447 void put_fs_struct(struct fs_struct *fs)
448 {
449         __put_fs_struct(fs);
450 }
451
452 static inline void __exit_fs(struct task_struct *tsk)
453 {
454         struct fs_struct * fs = tsk->fs;
455
456         if (fs) {
457                 task_lock(tsk);
458                 tsk->fs = NULL;
459                 task_unlock(tsk);
460                 __put_fs_struct(fs);
461         }
462 }
463
464 void exit_fs(struct task_struct *tsk)
465 {
466         __exit_fs(tsk);
467 }
468
469 EXPORT_SYMBOL_GPL(exit_fs);
470
471 /*
472  * Turn us into a lazy TLB process if we
473  * aren't already..
474  */
475 static inline void __exit_mm(struct task_struct * tsk)
476 {
477         struct mm_struct *mm = tsk->mm;
478
479         mm_release(tsk, mm);
480         if (!mm)
481                 return;
482         /*
483          * Serialize with any possible pending coredump.
484          * We must hold mmap_sem around checking core_waiters
485          * and clearing tsk->mm.  The core-inducing thread
486          * will increment core_waiters for each thread in the
487          * group with ->mm != NULL.
488          */
489         down_read(&mm->mmap_sem);
490         if (mm->core_waiters) {
491                 up_read(&mm->mmap_sem);
492                 down_write(&mm->mmap_sem);
493                 if (!--mm->core_waiters)
494                         complete(mm->core_startup_done);
495                 up_write(&mm->mmap_sem);
496
497                 wait_for_completion(&mm->core_done);
498                 down_read(&mm->mmap_sem);
499         }
500         atomic_inc(&mm->mm_count);
501         if (mm != tsk->active_mm) BUG();
502         /* more a memory barrier than a real lock */
503         task_lock(tsk);
504         tsk->mm = NULL;
505         up_read(&mm->mmap_sem);
506         ckrm_task_mm_clear(tsk, mm);
507         enter_lazy_tlb(mm, current);
508         task_unlock(tsk);
509         mmput(mm);
510 }
511
512 void exit_mm(struct task_struct *tsk)
513 {
514         __exit_mm(tsk);
515 }
516
517 static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper)
518 {
519         /*
520          * Make sure we're not reparenting to ourselves and that
521          * the parent is not a zombie.
522          */
523         BUG_ON(p == reaper || reaper->state >= EXIT_ZOMBIE || reaper->exit_state >= EXIT_ZOMBIE);
524         p->real_parent = reaper;
525         if (p->parent == p->real_parent)
526                 BUG();
527 }
528
529 static inline void reparent_thread(task_t *p, task_t *father, int traced)
530 {
531         /* We don't want people slaying init.  */
532         if (p->exit_signal != -1)
533                 p->exit_signal = SIGCHLD;
534
535         if (p->pdeath_signal)
536                 /* We already hold the tasklist_lock here.  */
537                 group_send_sig_info(p->pdeath_signal, (void *) 0, p);
538
539         /* Move the child from its dying parent to the new one.  */
540         if (unlikely(traced)) {
541                 /* Preserve ptrace links if someone else is tracing this child.  */
542                 list_del_init(&p->ptrace_list);
543                 if (p->parent != p->real_parent)
544                         list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
545         } else {
546                 /* If this child is being traced, then we're the one tracing it
547                  * anyway, so let go of it.
548                  */
549                 p->ptrace = 0;
550                 list_del_init(&p->sibling);
551                 p->parent = p->real_parent;
552                 list_add_tail(&p->sibling, &p->parent->children);
553
554                 /* If we'd notified the old parent about this child's death,
555                  * also notify the new parent.
556                  */
557                 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
558                     thread_group_empty(p))
559                         do_notify_parent(p, p->exit_signal);
560                 else if (p->state == TASK_TRACED) {
561                         /*
562                          * If it was at a trace stop, turn it into
563                          * a normal stop since it's no longer being
564                          * traced.
565                          */
566                         p->state = TASK_STOPPED;
567                 }
568         }
569
570         /*
571          * process group orphan check
572          * Case ii: Our child is in a different pgrp
573          * than we are, and it was the only connection
574          * outside, so the child pgrp is now orphaned.
575          */
576         if ((process_group(p) != process_group(father)) &&
577             (p->signal->session == father->signal->session)) {
578                 int pgrp = process_group(p);
579
580                 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
581                         __kill_pg_info(SIGHUP, (void *)1, pgrp);
582                         __kill_pg_info(SIGCONT, (void *)1, pgrp);
583                 }
584         }
585 }
586
587 /*
588  * When we die, we re-parent all our children.
589  * Try to give them to another thread in our thread
590  * group, and if no such member exists, give it to
591  * the global child reaper process (ie "init")
592  */
593 static inline void forget_original_parent(struct task_struct * father,
594                                           struct list_head *to_release)
595 {
596         struct task_struct *p, *reaper = father;
597         struct list_head *_p, *_n;
598
599         do {
600                 reaper = next_thread(reaper);
601                 if (reaper == father) {
602                         reaper = child_reaper;
603                         break;
604                 }
605         } while (reaper->exit_state >= EXIT_ZOMBIE);
606
607         /*
608          * There are only two places where our children can be:
609          *
610          * - in our child list
611          * - in our ptraced child list
612          *
613          * Search them and reparent children.
614          */
615         list_for_each_safe(_p, _n, &father->children) {
616                 int ptrace;
617                 p = list_entry(_p,struct task_struct,sibling);
618
619                 ptrace = p->ptrace;
620
621                 /* if father isn't the real parent, then ptrace must be enabled */
622                 BUG_ON(father != p->real_parent && !ptrace);
623
624                 if (father == p->real_parent) {
625                         /* reparent with a reaper, real father it's us */
626                         choose_new_parent(p, reaper, child_reaper);
627                         reparent_thread(p, father, 0);
628                 } else {
629                         /* reparent ptraced task to its real parent */
630                         __ptrace_unlink (p);
631                         if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
632                             thread_group_empty(p))
633                                 do_notify_parent(p, p->exit_signal);
634                 }
635
636                 /*
637                  * if the ptraced child is a zombie with exit_signal == -1
638                  * we must collect it before we exit, or it will remain
639                  * zombie forever since we prevented it from self-reap itself
640                  * while it was being traced by us, to be able to see it in wait4.
641                  */
642                 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
643                         list_add(&p->ptrace_list, to_release);
644         }
645         list_for_each_safe(_p, _n, &father->ptrace_children) {
646                 p = list_entry(_p,struct task_struct,ptrace_list);
647                 choose_new_parent(p, reaper, child_reaper);
648                 reparent_thread(p, father, 1);
649         }
650 }
651
652 /*
653  * Send signals to all our closest relatives so that they know
654  * to properly mourn us..
655  */
656 static void exit_notify(struct task_struct *tsk)
657 {
658         int state;
659         struct task_struct *t;
660         struct list_head ptrace_dead, *_p, *_n;
661
662         ckrm_cb_exit(tsk);
663
664         if (signal_pending(tsk) && !tsk->signal->group_exit
665             && !thread_group_empty(tsk)) {
666                 /*
667                  * This occurs when there was a race between our exit
668                  * syscall and a group signal choosing us as the one to
669                  * wake up.  It could be that we are the only thread
670                  * alerted to check for pending signals, but another thread
671                  * should be woken now to take the signal since we will not.
672                  * Now we'll wake all the threads in the group just to make
673                  * sure someone gets all the pending signals.
674                  */
675                 read_lock(&tasklist_lock);
676                 spin_lock_irq(&tsk->sighand->siglock);
677                 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
678                         if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
679                                 recalc_sigpending_tsk(t);
680                                 if (signal_pending(t))
681                                         signal_wake_up(t, 0);
682                         }
683                 spin_unlock_irq(&tsk->sighand->siglock);
684                 read_unlock(&tasklist_lock);
685         }
686
687         write_lock_irq(&tasklist_lock);
688
689         /*
690          * This does two things:
691          *
692          * A.  Make init inherit all the child processes
693          * B.  Check to see if any process groups have become orphaned
694          *      as a result of our exiting, and if they have any stopped
695          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
696          */
697
698         INIT_LIST_HEAD(&ptrace_dead);
699         forget_original_parent(tsk, &ptrace_dead);
700         BUG_ON(!list_empty(&tsk->children));
701         BUG_ON(!list_empty(&tsk->ptrace_children));
702
703         /*
704          * Check to see if any process groups have become orphaned
705          * as a result of our exiting, and if they have any stopped
706          * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
707          *
708          * Case i: Our father is in a different pgrp than we are
709          * and we were the only connection outside, so our pgrp
710          * is about to become orphaned.
711          */
712          
713         t = tsk->real_parent;
714         
715         if ((process_group(t) != process_group(tsk)) &&
716             (t->signal->session == tsk->signal->session) &&
717             will_become_orphaned_pgrp(process_group(tsk), tsk) &&
718             has_stopped_jobs(process_group(tsk))) {
719                 __kill_pg_info(SIGHUP, (void *)1, process_group(tsk));
720                 __kill_pg_info(SIGCONT, (void *)1, process_group(tsk));
721         }
722
723         /* Let father know we died 
724          *
725          * Thread signals are configurable, but you aren't going to use
726          * that to send signals to arbitary processes. 
727          * That stops right now.
728          *
729          * If the parent exec id doesn't match the exec id we saved
730          * when we started then we know the parent has changed security
731          * domain.
732          *
733          * If our self_exec id doesn't match our parent_exec_id then
734          * we have changed execution domain as these two values started
735          * the same after a fork.
736          *      
737          */
738         
739         if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
740             ( tsk->parent_exec_id != t->self_exec_id  ||
741               tsk->self_exec_id != tsk->parent_exec_id)
742             && !capable(CAP_KILL))
743                 tsk->exit_signal = SIGCHLD;
744
745
746         /* If something other than our normal parent is ptracing us, then
747          * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
748          * only has special meaning to our real parent.
749          */
750         if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
751                 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
752                 do_notify_parent(tsk, signal);
753         } else if (tsk->ptrace) {
754                 do_notify_parent(tsk, SIGCHLD);
755         }
756
757         state = EXIT_ZOMBIE;
758         if (tsk->exit_signal == -1 && tsk->ptrace == 0)
759                 state = EXIT_DEAD;
760         tsk->exit_state = state;
761
762         /*
763          * Clear these here so that update_process_times() won't try to deliver
764          * itimer, profile or rlimit signals to this task while it is in late exit.
765          */
766         tsk->it_virt_value = 0;
767         tsk->it_prof_value = 0;
768
769         write_unlock_irq(&tasklist_lock);
770
771         list_for_each_safe(_p, _n, &ptrace_dead) {
772                 list_del_init(_p);
773                 t = list_entry(_p,struct task_struct,ptrace_list);
774                 release_task(t);
775         }
776
777         /* If the process is dead, release it - nobody will wait for it */
778         if (state == EXIT_DEAD)
779                 release_task(tsk);
780
781         /* PF_DEAD causes final put_task_struct after we schedule. */
782         preempt_disable();
783         tsk->flags |= PF_DEAD;
784 }
785
786 fastcall NORET_TYPE void do_exit(long code)
787 {
788         struct task_struct *tsk = current;
789         int group_dead;
790
791         profile_task_exit(tsk);
792
793         if (unlikely(in_interrupt()))
794                 panic("Aiee, killing interrupt handler!");
795         if (unlikely(!tsk->pid))
796                 panic("Attempted to kill the idle task!");
797         if (unlikely(tsk->pid == 1))
798                 panic("Attempted to kill init!");
799         if (tsk->io_context)
800                 exit_io_context();
801         tsk->flags |= PF_EXITING;
802         del_timer_sync(&tsk->real_timer);
803
804         if (unlikely(in_atomic()))
805                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
806                                 current->comm, current->pid,
807                                 preempt_count());
808
809         if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
810                 current->ptrace_message = code;
811                 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
812         }
813
814         group_dead = atomic_dec_and_test(&tsk->signal->live);
815         if (group_dead)
816                 acct_process(code);
817         __exit_mm(tsk);
818
819         exit_sem(tsk);
820         __exit_files(tsk);
821         __exit_fs(tsk);
822         exit_namespace(tsk);
823         exit_thread();
824         exit_keys(tsk);
825
826         if (group_dead && tsk->signal->leader)
827                 disassociate_ctty(1);
828
829         module_put(tsk->thread_info->exec_domain->module);
830         if (tsk->binfmt)
831                 module_put(tsk->binfmt->module);
832
833         tsk->exit_code = code;
834         exit_notify(tsk);
835 #ifdef CONFIG_NUMA
836         mpol_free(tsk->mempolicy);
837         tsk->mempolicy = NULL;
838 #endif
839
840         BUG_ON(!(current->flags & PF_DEAD));
841         schedule();
842         BUG();
843         /* Avoid "noreturn function does return".  */
844         for (;;) ;
845 }
846
847 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
848 {
849         if (comp)
850                 complete(comp);
851         
852         do_exit(code);
853 }
854
855 EXPORT_SYMBOL(complete_and_exit);
856
857 asmlinkage long sys_exit(int error_code)
858 {
859         do_exit((error_code&0xff)<<8);
860 }
861
862 task_t fastcall *next_thread(const task_t *p)
863 {
864 #ifdef CONFIG_SMP
865         if (!p->sighand)
866                 BUG();
867         if (!spin_is_locked(&p->sighand->siglock) &&
868                                 !rwlock_is_locked(&tasklist_lock))
869                 BUG();
870 #endif
871         return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID);
872 }
873
874 EXPORT_SYMBOL(next_thread);
875
876 /*
877  * Take down every thread in the group.  This is called by fatal signals
878  * as well as by sys_exit_group (below).
879  */
880 NORET_TYPE void
881 do_group_exit(int exit_code)
882 {
883         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
884
885         if (current->signal->group_exit)
886                 exit_code = current->signal->group_exit_code;
887         else if (!thread_group_empty(current)) {
888                 struct signal_struct *const sig = current->signal;
889                 struct sighand_struct *const sighand = current->sighand;
890                 read_lock(&tasklist_lock);
891                 spin_lock_irq(&sighand->siglock);
892                 if (sig->group_exit)
893                         /* Another thread got here before we took the lock.  */
894                         exit_code = sig->group_exit_code;
895                 else {
896                         sig->group_exit = 1;
897                         sig->group_exit_code = exit_code;
898                         zap_other_threads(current);
899                 }
900                 spin_unlock_irq(&sighand->siglock);
901                 read_unlock(&tasklist_lock);
902         }
903
904         do_exit(exit_code);
905         /* NOTREACHED */
906 }
907
908 /*
909  * this kills every thread in the thread group. Note that any externally
910  * wait4()-ing process will get the correct exit code - even if this
911  * thread is not the thread group leader.
912  */
913 asmlinkage void sys_exit_group(int error_code)
914 {
915         do_group_exit((error_code & 0xff) << 8);
916 }
917
918 static int eligible_child(pid_t pid, int options, task_t *p)
919 {
920         if (pid > 0) {
921                 if (p->pid != pid)
922                         return 0;
923         } else if (!pid) {
924                 if (process_group(p) != process_group(current))
925                         return 0;
926         } else if (pid != -1) {
927                 if (process_group(p) != -pid)
928                         return 0;
929         }
930
931         /*
932          * Do not consider detached threads that are
933          * not ptraced:
934          */
935         if (p->exit_signal == -1 && !p->ptrace)
936                 return 0;
937
938         /* Wait for all children (clone and not) if __WALL is set;
939          * otherwise, wait for clone children *only* if __WCLONE is
940          * set; otherwise, wait for non-clone children *only*.  (Note:
941          * A "clone" child here is one that reports to its parent
942          * using a signal other than SIGCHLD.) */
943         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
944             && !(options & __WALL))
945                 return 0;
946         /*
947          * Do not consider thread group leaders that are
948          * in a non-empty thread group:
949          */
950         if (current->tgid != p->tgid && delay_group_leader(p))
951                 return 2;
952
953         if (security_task_wait(p))
954                 return 0;
955
956         return 1;
957 }
958
959 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
960                                int why, int status,
961                                struct siginfo __user *infop,
962                                struct rusage __user *rusagep)
963 {
964         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
965         put_task_struct(p);
966         if (!retval)
967                 retval = put_user(SIGCHLD, &infop->si_signo);
968         if (!retval)
969                 retval = put_user(0, &infop->si_errno);
970         if (!retval)
971                 retval = put_user((short)why, &infop->si_code);
972         if (!retval)
973                 retval = put_user(pid, &infop->si_pid);
974         if (!retval)
975                 retval = put_user(uid, &infop->si_uid);
976         if (!retval)
977                 retval = put_user(status, &infop->si_status);
978         if (!retval)
979                 retval = pid;
980         return retval;
981 }
982
983 /*
984  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
985  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
986  * the lock and this task is uninteresting.  If we return nonzero, we have
987  * released the lock and the system call should return.
988  */
989 static int wait_task_zombie(task_t *p, int noreap,
990                             struct siginfo __user *infop,
991                             int __user *stat_addr, struct rusage __user *ru)
992 {
993         unsigned long state;
994         int retval;
995         int status;
996
997         if (unlikely(noreap)) {
998                 pid_t pid = p->pid;
999                 uid_t uid = p->uid;
1000                 int exit_code = p->exit_code;
1001                 int why, status;
1002
1003                 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1004                         return 0;
1005                 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1006                         return 0;
1007                 get_task_struct(p);
1008                 read_unlock(&tasklist_lock);
1009                 if ((exit_code & 0x7f) == 0) {
1010                         why = CLD_EXITED;
1011                         status = exit_code >> 8;
1012                 } else {
1013                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1014                         status = exit_code & 0x7f;
1015                 }
1016                 return wait_noreap_copyout(p, pid, uid, why,
1017                                            status, infop, ru);
1018         }
1019
1020         /*
1021          * Try to move the task's state to DEAD
1022          * only one thread is allowed to do this:
1023          */
1024         state = xchg(&p->exit_state, EXIT_DEAD);
1025         if (state != EXIT_ZOMBIE) {
1026                 BUG_ON(state != EXIT_DEAD);
1027                 return 0;
1028         }
1029         if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1030                 /*
1031                  * This can only happen in a race with a ptraced thread
1032                  * dying on another processor.
1033                  */
1034                 return 0;
1035         }
1036
1037         if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1038                 /*
1039                  * The resource counters for the group leader are in its
1040                  * own task_struct.  Those for dead threads in the group
1041                  * are in its signal_struct, as are those for the child
1042                  * processes it has previously reaped.  All these
1043                  * accumulate in the parent's signal_struct c* fields.
1044                  *
1045                  * We don't bother to take a lock here to protect these
1046                  * p->signal fields, because they are only touched by
1047                  * __exit_signal, which runs with tasklist_lock
1048                  * write-locked anyway, and so is excluded here.  We do
1049                  * need to protect the access to p->parent->signal fields,
1050                  * as other threads in the parent group can be right
1051                  * here reaping other children at the same time.
1052                  */
1053                 spin_lock_irq(&p->parent->sighand->siglock);
1054                 p->parent->signal->cutime +=
1055                         p->utime + p->signal->utime + p->signal->cutime;
1056                 p->parent->signal->cstime +=
1057                         p->stime + p->signal->stime + p->signal->cstime;
1058                 p->parent->signal->cmin_flt +=
1059                         p->min_flt + p->signal->min_flt + p->signal->cmin_flt;
1060                 p->parent->signal->cmaj_flt +=
1061                         p->maj_flt + p->signal->maj_flt + p->signal->cmaj_flt;
1062                 p->parent->signal->cnvcsw +=
1063                         p->nvcsw + p->signal->nvcsw + p->signal->cnvcsw;
1064                 p->parent->signal->cnivcsw +=
1065                         p->nivcsw + p->signal->nivcsw + p->signal->cnivcsw;
1066                 spin_unlock_irq(&p->parent->sighand->siglock);
1067         }
1068
1069         /*
1070          * Now we are sure this task is interesting, and no other
1071          * thread can reap it because we set its state to EXIT_DEAD.
1072          */
1073         read_unlock(&tasklist_lock);
1074
1075         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1076         status = p->signal->group_exit
1077                 ? p->signal->group_exit_code : p->exit_code;
1078         if (!retval && stat_addr)
1079                 retval = put_user(status, stat_addr);
1080         if (!retval && infop)
1081                 retval = put_user(SIGCHLD, &infop->si_signo);
1082         if (!retval && infop)
1083                 retval = put_user(0, &infop->si_errno);
1084         if (!retval && infop) {
1085                 int why;
1086
1087                 if ((status & 0x7f) == 0) {
1088                         why = CLD_EXITED;
1089                         status >>= 8;
1090                 } else {
1091                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1092                         status &= 0x7f;
1093                 }
1094                 retval = put_user((short)why, &infop->si_code);
1095                 if (!retval)
1096                         retval = put_user(status, &infop->si_status);
1097         }
1098         if (!retval && infop)
1099                 retval = put_user(p->pid, &infop->si_pid);
1100         if (!retval && infop)
1101                 retval = put_user(p->uid, &infop->si_uid);
1102         if (retval) {
1103                 // TODO: is this safe?
1104                 p->exit_state = EXIT_ZOMBIE;
1105                 return retval;
1106         }
1107         retval = p->pid;
1108         if (p->real_parent != p->parent) {
1109                 write_lock_irq(&tasklist_lock);
1110                 /* Double-check with lock held.  */
1111                 if (p->real_parent != p->parent) {
1112                         __ptrace_unlink(p);
1113                         // TODO: is this safe?
1114                         p->exit_state = EXIT_ZOMBIE;
1115                         /*
1116                          * If this is not a detached task, notify the parent.
1117                          * If it's still not detached after that, don't release
1118                          * it now.
1119                          */
1120                         if (p->exit_signal != -1) {
1121                                 do_notify_parent(p, p->exit_signal);
1122                                 if (p->exit_signal != -1)
1123                                         p = NULL;
1124                         }
1125                 }
1126                 write_unlock_irq(&tasklist_lock);
1127         }
1128         if (p != NULL)
1129                 release_task(p);
1130         BUG_ON(!retval);
1131         return retval;
1132 }
1133
1134 /*
1135  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1136  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1137  * the lock and this task is uninteresting.  If we return nonzero, we have
1138  * released the lock and the system call should return.
1139  */
1140 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1141                              struct siginfo __user *infop,
1142                              int __user *stat_addr, struct rusage __user *ru)
1143 {
1144         int retval, exit_code;
1145
1146         if (!p->exit_code)
1147                 return 0;
1148         if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1149             p->signal && p->signal->group_stop_count > 0)
1150                 /*
1151                  * A group stop is in progress and this is the group leader.
1152                  * We won't report until all threads have stopped.
1153                  */
1154                 return 0;
1155
1156         /*
1157          * Now we are pretty sure this task is interesting.
1158          * Make sure it doesn't get reaped out from under us while we
1159          * give up the lock and then examine it below.  We don't want to
1160          * keep holding onto the tasklist_lock while we call getrusage and
1161          * possibly take page faults for user memory.
1162          */
1163         get_task_struct(p);
1164         read_unlock(&tasklist_lock);
1165
1166         if (unlikely(noreap)) {
1167                 pid_t pid = p->pid;
1168                 uid_t uid = p->uid;
1169                 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1170
1171                 exit_code = p->exit_code;
1172                 if (unlikely(!exit_code) ||
1173                     unlikely(p->state > TASK_STOPPED))
1174                         goto bail_ref;
1175                 return wait_noreap_copyout(p, pid, uid,
1176                                            why, (exit_code << 8) | 0x7f,
1177                                            infop, ru);
1178         }
1179
1180         write_lock_irq(&tasklist_lock);
1181
1182         /*
1183          * This uses xchg to be atomic with the thread resuming and setting
1184          * it.  It must also be done with the write lock held to prevent a
1185          * race with the EXIT_ZOMBIE case.
1186          */
1187         exit_code = xchg(&p->exit_code, 0);
1188         if (unlikely(p->exit_state >= EXIT_ZOMBIE)) {
1189                 /*
1190                  * The task resumed and then died.  Let the next iteration
1191                  * catch it in EXIT_ZOMBIE.  Note that exit_code might
1192                  * already be zero here if it resumed and did _exit(0).
1193                  * The task itself is dead and won't touch exit_code again;
1194                  * other processors in this function are locked out.
1195                  */
1196                 p->exit_code = exit_code;
1197                 exit_code = 0;
1198         }
1199         if (unlikely(exit_code == 0)) {
1200                 /*
1201                  * Another thread in this function got to it first, or it
1202                  * resumed, or it resumed and then died.
1203                  */
1204                 write_unlock_irq(&tasklist_lock);
1205 bail_ref:
1206                 put_task_struct(p);
1207                 /*
1208                  * We are returning to the wait loop without having successfully
1209                  * removed the process and having released the lock. We cannot
1210                  * continue, since the "p" task pointer is potentially stale.
1211                  *
1212                  * Return -EAGAIN, and do_wait() will restart the loop from the
1213                  * beginning. Do _not_ re-acquire the lock.
1214                  */
1215                 return -EAGAIN;
1216         }
1217
1218         /* move to end of parent's list to avoid starvation */
1219         remove_parent(p);
1220         add_parent(p, p->parent);
1221
1222         write_unlock_irq(&tasklist_lock);
1223
1224         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1225         if (!retval && stat_addr)
1226                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1227         if (!retval && infop)
1228                 retval = put_user(SIGCHLD, &infop->si_signo);
1229         if (!retval && infop)
1230                 retval = put_user(0, &infop->si_errno);
1231         if (!retval && infop)
1232                 retval = put_user((short)((p->ptrace & PT_PTRACED)
1233                                           ? CLD_TRAPPED : CLD_STOPPED),
1234                                   &infop->si_code);
1235         if (!retval && infop)
1236                 retval = put_user(exit_code, &infop->si_status);
1237         if (!retval && infop)
1238                 retval = put_user(p->pid, &infop->si_pid);
1239         if (!retval && infop)
1240                 retval = put_user(p->uid, &infop->si_uid);
1241         if (!retval)
1242                 retval = p->pid;
1243         put_task_struct(p);
1244
1245         BUG_ON(!retval);
1246         return retval;
1247 }
1248
1249 /*
1250  * Handle do_wait work for one task in a live, non-stopped state.
1251  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1252  * the lock and this task is uninteresting.  If we return nonzero, we have
1253  * released the lock and the system call should return.
1254  */
1255 static int wait_task_continued(task_t *p, int noreap,
1256                                struct siginfo __user *infop,
1257                                int __user *stat_addr, struct rusage __user *ru)
1258 {
1259         int retval;
1260         pid_t pid;
1261         uid_t uid;
1262
1263         if (unlikely(!p->signal))
1264                 return 0;
1265
1266         if (p->signal->stop_state >= 0)
1267                 return 0;
1268
1269         spin_lock_irq(&p->sighand->siglock);
1270         if (p->signal->stop_state >= 0) { /* Re-check with the lock held.  */
1271                 spin_unlock_irq(&p->sighand->siglock);
1272                 return 0;
1273         }
1274         if (!noreap)
1275                 p->signal->stop_state = 0;
1276         spin_unlock_irq(&p->sighand->siglock);
1277
1278         pid = p->pid;
1279         uid = p->uid;
1280         get_task_struct(p);
1281         read_unlock(&tasklist_lock);
1282
1283         if (!infop) {
1284                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1285                 put_task_struct(p);
1286                 if (!retval && stat_addr)
1287                         retval = put_user(0xffff, stat_addr);
1288                 if (!retval)
1289                         retval = p->pid;
1290         } else {
1291                 retval = wait_noreap_copyout(p, pid, uid,
1292                                              CLD_CONTINUED, SIGCONT,
1293                                              infop, ru);
1294                 BUG_ON(retval == 0);
1295         }
1296
1297         return retval;
1298 }
1299
1300
1301 static inline int my_ptrace_child(struct task_struct *p)
1302 {
1303         if (!(p->ptrace & PT_PTRACED))
1304                 return 0;
1305         if (!(p->ptrace & PT_ATTACHED))
1306                 return 1;
1307         /*
1308          * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1309          * we are the attacher.  If we are the real parent, this is a race
1310          * inside ptrace_attach.  It is waiting for the tasklist_lock,
1311          * which we have to switch the parent links, but has already set
1312          * the flags in p->ptrace.
1313          */
1314         return (p->parent != p->real_parent);
1315 }
1316
1317 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1318                     int __user *stat_addr, struct rusage __user *ru)
1319 {
1320         DECLARE_WAITQUEUE(wait, current);
1321         struct task_struct *tsk;
1322         int flag, retval;
1323
1324         add_wait_queue(&current->wait_chldexit,&wait);
1325 repeat:
1326         /*
1327          * We will set this flag if we see any child that might later
1328          * match our criteria, even if we are not able to reap it yet.
1329          */
1330         flag = 0;
1331         current->state = TASK_INTERRUPTIBLE;
1332         read_lock(&tasklist_lock);
1333         tsk = current;
1334         do {
1335                 struct task_struct *p;
1336                 struct list_head *_p;
1337                 int ret;
1338
1339                 list_for_each(_p,&tsk->children) {
1340                         p = list_entry(_p,struct task_struct,sibling);
1341
1342                         ret = eligible_child(pid, options, p);
1343                         if (!ret)
1344                                 continue;
1345
1346                         switch (p->state) {
1347                         case TASK_TRACED:
1348                                 if (!my_ptrace_child(p))
1349                                         continue;
1350                                 /*FALLTHROUGH*/
1351                         case TASK_STOPPED:
1352                                 /*
1353                                  * It's stopped now, so it might later
1354                                  * continue, exit, or stop again.
1355                                  */
1356                                 flag = 1;
1357                                 if (!(options & WUNTRACED) &&
1358                                     !my_ptrace_child(p))
1359                                         continue;
1360                                 retval = wait_task_stopped(p, ret == 2,
1361                                                            (options & WNOWAIT),
1362                                                            infop,
1363                                                            stat_addr, ru);
1364                                 if (retval == -EAGAIN)
1365                                         goto repeat;
1366                                 if (retval != 0) /* He released the lock.  */
1367                                         goto end;
1368                                 break;
1369                         default:
1370                         // case EXIT_DEAD:
1371                                 if (p->exit_state == EXIT_DEAD)
1372                                         continue;
1373                         // case EXIT_ZOMBIE:
1374                                 if (p->exit_state == EXIT_ZOMBIE) {
1375                                         /*
1376                                          * Eligible but we cannot release
1377                                          * it yet:
1378                                          */
1379                                         if (ret == 2)
1380                                                 goto check_continued;
1381                                         if (!likely(options & WEXITED))
1382                                                 continue;
1383                                         retval = wait_task_zombie(
1384                                                 p, (options & WNOWAIT),
1385                                                 infop, stat_addr, ru);
1386                                         /* He released the lock.  */
1387                                         if (retval != 0)
1388                                                 goto end;
1389                                         break;
1390                                 }
1391 check_continued:
1392                                 /*
1393                                  * It's running now, so it might later
1394                                  * exit, stop, or stop and then continue.
1395                                  */
1396                                 flag = 1;
1397                                 if (!unlikely(options & WCONTINUED))
1398                                         continue;
1399                                 retval = wait_task_continued(
1400                                         p, (options & WNOWAIT),
1401                                         infop, stat_addr, ru);
1402                                 if (retval != 0) /* He released the lock.  */
1403                                         goto end;
1404                                 break;
1405                         }
1406                 }
1407                 if (!flag) {
1408                         list_for_each(_p, &tsk->ptrace_children) {
1409                                 p = list_entry(_p, struct task_struct,
1410                                                 ptrace_list);
1411                                 if (!eligible_child(pid, options, p))
1412                                         continue;
1413                                 flag = 1;
1414                                 break;
1415                         }
1416                 }
1417                 if (options & __WNOTHREAD)
1418                         break;
1419                 tsk = next_thread(tsk);
1420                 if (tsk->signal != current->signal)
1421                         BUG();
1422         } while (tsk != current);
1423
1424         read_unlock(&tasklist_lock);
1425         if (flag) {
1426                 retval = 0;
1427                 if (options & WNOHANG)
1428                         goto end;
1429                 retval = -ERESTARTSYS;
1430                 if (signal_pending(current))
1431                         goto end;
1432                 schedule();
1433                 goto repeat;
1434         }
1435         retval = -ECHILD;
1436 end:
1437         current->state = TASK_RUNNING;
1438         remove_wait_queue(&current->wait_chldexit,&wait);
1439         if (infop) {
1440                 if (retval > 0)
1441                 retval = 0;
1442                 else {
1443                         /*
1444                          * For a WNOHANG return, clear out all the fields
1445                          * we would set so the user can easily tell the
1446                          * difference.
1447                          */
1448                         if (!retval)
1449                                 retval = put_user(0, &infop->si_signo);
1450                         if (!retval)
1451                                 retval = put_user(0, &infop->si_errno);
1452                         if (!retval)
1453                                 retval = put_user(0, &infop->si_code);
1454                         if (!retval)
1455                                 retval = put_user(0, &infop->si_pid);
1456                         if (!retval)
1457                                 retval = put_user(0, &infop->si_uid);
1458                         if (!retval)
1459                                 retval = put_user(0, &infop->si_status);
1460                 }
1461         }
1462         return retval;
1463 }
1464
1465 asmlinkage long sys_waitid(int which, pid_t pid,
1466                            struct siginfo __user *infop, int options,
1467                            struct rusage __user *ru)
1468 {
1469         long ret;
1470
1471         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1472                 return -EINVAL;
1473         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1474                 return -EINVAL;
1475
1476         switch (which) {
1477         case P_ALL:
1478                 pid = -1;
1479                 break;
1480         case P_PID:
1481                 if (pid <= 0)
1482                         return -EINVAL;
1483                 break;
1484         case P_PGID:
1485                 if (pid <= 0)
1486                         return -EINVAL;
1487                 pid = -pid;
1488                 break;
1489         default:
1490                 return -EINVAL;
1491         }
1492
1493         ret = do_wait(pid, options, infop, NULL, ru);
1494
1495         /* avoid REGPARM breakage on x86: */
1496         prevent_tail_call(ret);
1497         return ret;
1498 }
1499
1500 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1501                           int options, struct rusage __user *ru)
1502 {
1503         long ret;
1504
1505         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1506                         __WNOTHREAD|__WCLONE|__WALL))
1507                 return -EINVAL;
1508         ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1509
1510         /* avoid REGPARM breakage on x86: */
1511         prevent_tail_call(ret);
1512         return ret;
1513 }
1514
1515 #ifdef __ARCH_WANT_SYS_WAITPID
1516
1517 /*
1518  * sys_waitpid() remains for compatibility. waitpid() should be
1519  * implemented by calling sys_wait4() from libc.a.
1520  */
1521 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1522 {
1523         return sys_wait4(pid, stat_addr, options, NULL);
1524 }
1525
1526 #endif