upgrade to linux 2.6.10-1.12_FC2
[linux-2.6.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/security.h>
33 #include <linux/swap.h>
34 #include <linux/syscalls.h>
35 #include <linux/jiffies.h>
36 #include <linux/futex.h>
37 #include <linux/ptrace.h>
38 #include <linux/mount.h>
39 #include <linux/audit.h>
40 #include <linux/profile.h>
41 #include <linux/rmap.h>
42 #include <linux/vs_network.h>
43 #include <linux/vs_limit.h>
44 #include <linux/vs_memory.h>
45 #include <linux/ckrm.h>
46 #include <linux/ckrm_tsk.h>
47 #include <linux/ckrm_mem_inline.h>
48
49 #include <asm/pgtable.h>
50 #include <asm/pgalloc.h>
51 #include <asm/uaccess.h>
52 #include <asm/mmu_context.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlbflush.h>
55
56 /* The idle threads do not count..
57  * Protected by write_lock_irq(&tasklist_lock)
58  */
59 int nr_threads;
60
61 int max_threads;
62 unsigned long total_forks;      /* Handle normal Linux uptimes. */
63
64 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
65
66 rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED;  /* outer */
67
68 EXPORT_SYMBOL(tasklist_lock);
69
70 int nr_processes(void)
71 {
72         int cpu;
73         int total = 0;
74
75         for_each_online_cpu(cpu)
76                 total += per_cpu(process_counts, cpu);
77
78         return total;
79 }
80
81 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
82 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
83 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
84 static kmem_cache_t *task_struct_cachep;
85 #endif
86
87 void free_task(struct task_struct *tsk)
88 {
89         free_thread_info(tsk->thread_info);
90         clr_vx_info(&tsk->vx_info);
91         clr_nx_info(&tsk->nx_info);
92         free_task_struct(tsk);
93 }
94 EXPORT_SYMBOL(free_task);
95
96 void __put_task_struct(struct task_struct *tsk)
97 {
98         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
99         WARN_ON(atomic_read(&tsk->usage));
100         WARN_ON(tsk == current);
101
102         if (unlikely(tsk->audit_context))
103                 audit_free(tsk);
104         security_task_free(tsk);
105         free_uid(tsk->user);
106         put_group_info(tsk->group_info);
107
108         if (!profile_handoff_task(tsk))
109                 free_task(tsk);
110 }
111
112 void __init fork_init(unsigned long mempages)
113 {
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 #ifndef ARCH_MIN_TASKALIGN
116 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
117 #endif
118         /* create a slab on which task_structs can be allocated */
119         task_struct_cachep =
120                 kmem_cache_create("task_struct", sizeof(struct task_struct),
121                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
122 #endif
123
124         /*
125          * The default maximum number of threads is set to a safe
126          * value: the thread structures can take up at most half
127          * of memory.
128          */
129         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
130
131         /*
132          * we need to allow at least 20 threads to boot a system
133          */
134         if(max_threads < 20)
135                 max_threads = 20;
136
137         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
138         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
139 }
140
141 static struct task_struct *dup_task_struct(struct task_struct *orig)
142 {
143         struct task_struct *tsk;
144         struct thread_info *ti;
145
146         prepare_to_copy(orig);
147
148         tsk = alloc_task_struct();
149         if (!tsk)
150                 return NULL;
151
152         ti = alloc_thread_info(tsk);
153         if (!ti) {
154                 free_task_struct(tsk);
155                 return NULL;
156         }
157
158         *ti = *orig->thread_info;
159         *tsk = *orig;
160         tsk->thread_info = ti;
161         ti->task = tsk;
162
163         ckrm_cb_newtask(tsk);
164         /* One for us, one for whoever does the "release_task()" (usually parent) */
165         atomic_set(&tsk->usage,2);
166 #ifdef CONFIG_CKRM_RES_MEM      
167         INIT_LIST_HEAD(&tsk->mm_peers);
168 #endif
169         return tsk;
170 }
171
172 #ifdef CONFIG_MMU
173 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
174 {
175         struct vm_area_struct * mpnt, *tmp, **pprev;
176         struct rb_node **rb_link, *rb_parent;
177         int retval;
178         unsigned long charge;
179         struct mempolicy *pol;
180
181         down_write(&oldmm->mmap_sem);
182         flush_cache_mm(current->mm);
183         mm->locked_vm = 0;
184         mm->mmap = NULL;
185         mm->mmap_cache = NULL;
186         mm->free_area_cache = oldmm->mmap_base;
187         mm->map_count = 0;
188         mm->rss = 0;
189         mm->anon_rss = 0;
190         cpus_clear(mm->cpu_vm_mask);
191         mm->mm_rb = RB_ROOT;
192         rb_link = &mm->mm_rb.rb_node;
193         rb_parent = NULL;
194         pprev = &mm->mmap;
195
196         for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
197                 struct file *file;
198
199                 if (mpnt->vm_flags & VM_DONTCOPY) {
200                         __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
201                                                         -vma_pages(mpnt));
202                         continue;
203                 }
204                 charge = 0;
205                 if (mpnt->vm_flags & VM_ACCOUNT) {
206                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
207                         if (security_vm_enough_memory(len))
208                                 goto fail_nomem;
209                         charge = len;
210                 }
211                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
212                 if (!tmp)
213                         goto fail_nomem;
214                 *tmp = *mpnt;
215                 pol = mpol_copy(vma_policy(mpnt));
216                 retval = PTR_ERR(pol);
217                 if (IS_ERR(pol))
218                         goto fail_nomem_policy;
219                 vma_set_policy(tmp, pol);
220                 tmp->vm_flags &= ~VM_LOCKED;
221                 tmp->vm_mm = mm;
222                 tmp->vm_next = NULL;
223                 anon_vma_link(tmp);
224                 file = tmp->vm_file;
225                 if (file) {
226                         struct inode *inode = file->f_dentry->d_inode;
227                         get_file(file);
228                         if (tmp->vm_flags & VM_DENYWRITE)
229                                 atomic_dec(&inode->i_writecount);
230       
231                         /* insert tmp into the share list, just after mpnt */
232                         spin_lock(&file->f_mapping->i_mmap_lock);
233                         flush_dcache_mmap_lock(file->f_mapping);
234                         vma_prio_tree_add(tmp, mpnt);
235                         flush_dcache_mmap_unlock(file->f_mapping);
236                         spin_unlock(&file->f_mapping->i_mmap_lock);
237                 }
238
239                 /*
240                  * Link in the new vma and copy the page table entries:
241                  * link in first so that swapoff can see swap entries,
242                  * and try_to_unmap_one's find_vma find the new vma.
243                  */
244                 spin_lock(&mm->page_table_lock);
245                 *pprev = tmp;
246                 pprev = &tmp->vm_next;
247
248                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
249                 rb_link = &tmp->vm_rb.rb_right;
250                 rb_parent = &tmp->vm_rb;
251
252                 mm->map_count++;
253                 retval = copy_page_range(mm, current->mm, tmp);
254                 spin_unlock(&mm->page_table_lock);
255
256                 if (tmp->vm_ops && tmp->vm_ops->open)
257                         tmp->vm_ops->open(tmp);
258
259                 if (retval)
260                         goto out;
261         }
262         retval = 0;
263
264 out:
265         flush_tlb_mm(current->mm);
266         up_write(&oldmm->mmap_sem);
267         return retval;
268 fail_nomem_policy:
269         kmem_cache_free(vm_area_cachep, tmp);
270 fail_nomem:
271         retval = -ENOMEM;
272         vm_unacct_memory(charge);
273         goto out;
274 }
275
276 static inline int mm_alloc_pgd(struct mm_struct * mm)
277 {
278         mm->pgd = pgd_alloc(mm);
279         if (unlikely(!mm->pgd))
280                 return -ENOMEM;
281         return 0;
282 }
283
284 static inline void mm_free_pgd(struct mm_struct * mm)
285 {
286         pgd_free(mm->pgd);
287 }
288 #else
289 #define dup_mmap(mm, oldmm)     (0)
290 #define mm_alloc_pgd(mm)        (0)
291 #define mm_free_pgd(mm)
292 #endif /* CONFIG_MMU */
293
294 spinlock_t mmlist_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
295
296 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
297 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
298
299 #include <linux/init_task.h>
300
301 static struct mm_struct * mm_init(struct mm_struct * mm)
302 {
303         atomic_set(&mm->mm_users, 1);
304         atomic_set(&mm->mm_count, 1);
305         init_rwsem(&mm->mmap_sem);
306         INIT_LIST_HEAD(&mm->mmlist);
307         mm->core_waiters = 0;
308         mm->nr_ptes = 0;
309         spin_lock_init(&mm->page_table_lock);
310         rwlock_init(&mm->ioctx_list_lock);
311         mm->ioctx_list = NULL;
312         mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
313         mm->free_area_cache = TASK_UNMAPPED_BASE;
314 #ifdef CONFIG_CKRM_RES_MEM
315         INIT_LIST_HEAD(&mm->tasklist);
316         mm->peertask_lock = SPIN_LOCK_UNLOCKED;
317 #endif
318
319         if (likely(!mm_alloc_pgd(mm))) {
320                 mm->def_flags = 0;
321                 set_vx_info(&mm->mm_vx_info, current->vx_info);
322                 return mm;
323         }
324         free_mm(mm);
325         return NULL;
326 }
327
328 /*
329  * Allocate and initialize an mm_struct.
330  */
331 struct mm_struct * mm_alloc(void)
332 {
333         struct mm_struct * mm;
334
335         mm = allocate_mm();
336         if (mm) {
337                 memset(mm, 0, sizeof(*mm));
338                 mm = mm_init(mm);
339 #ifdef CONFIG_CKRM_RES_MEM
340                 mm->memclass = GET_MEM_CLASS(current);
341                 mem_class_get(mm->memclass);
342 #endif
343         }
344         return mm;
345 }
346
347 /*
348  * Called when the last reference to the mm
349  * is dropped: either by a lazy thread or by
350  * mmput. Free the page directory and the mm.
351  */
352 void fastcall __mmdrop(struct mm_struct *mm)
353 {
354         BUG_ON(mm == &init_mm);
355         mm_free_pgd(mm);
356         destroy_context(mm);
357         clr_vx_info(&mm->mm_vx_info);
358 #ifdef CONFIG_CKRM_RES_MEM
359         /* class can be null and mm's tasklist can be empty here */
360         if (mm->memclass) {
361                 mem_class_put(mm->memclass);
362                 mm->memclass = NULL;
363         }
364 #endif
365         free_mm(mm);
366 }
367
368 /*
369  * Decrement the use count and release all resources for an mm.
370  */
371 void mmput(struct mm_struct *mm)
372 {
373         if (atomic_dec_and_test(&mm->mm_users)) {
374                 exit_aio(mm);
375                 exit_mmap(mm);
376                 if (!list_empty(&mm->mmlist)) {
377                         spin_lock(&mmlist_lock);
378                         list_del(&mm->mmlist);
379                         spin_unlock(&mmlist_lock);
380                 }
381                 put_swap_token(mm);
382                 mmdrop(mm);
383         }
384 }
385 EXPORT_SYMBOL_GPL(mmput);
386
387 /**
388  * get_task_mm - acquire a reference to the task's mm
389  *
390  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
391  * this kernel workthread has transiently adopted a user mm with use_mm,
392  * to do its AIO) is not set and if so returns a reference to it, after
393  * bumping up the use count.  User must release the mm via mmput()
394  * after use.  Typically used by /proc and ptrace.
395  */
396 struct mm_struct *get_task_mm(struct task_struct *task)
397 {
398         struct mm_struct *mm;
399
400         task_lock(task);
401         mm = task->mm;
402         if (mm) {
403                 if (task->flags & PF_BORROWED_MM)
404                         mm = NULL;
405                 else
406                         atomic_inc(&mm->mm_users);
407         }
408         task_unlock(task);
409         return mm;
410 }
411 EXPORT_SYMBOL_GPL(get_task_mm);
412
413 /* Please note the differences between mmput and mm_release.
414  * mmput is called whenever we stop holding onto a mm_struct,
415  * error success whatever.
416  *
417  * mm_release is called after a mm_struct has been removed
418  * from the current process.
419  *
420  * This difference is important for error handling, when we
421  * only half set up a mm_struct for a new process and need to restore
422  * the old one.  Because we mmput the new mm_struct before
423  * restoring the old one. . .
424  * Eric Biederman 10 January 1998
425  */
426 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
427 {
428         struct completion *vfork_done = tsk->vfork_done;
429
430         /* Get rid of any cached register state */
431         deactivate_mm(tsk, mm);
432
433         /* notify parent sleeping on vfork() */
434         if (vfork_done) {
435                 tsk->vfork_done = NULL;
436                 complete(vfork_done);
437         }
438         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
439                 u32 __user * tidptr = tsk->clear_child_tid;
440                 tsk->clear_child_tid = NULL;
441
442                 /*
443                  * We don't check the error code - if userspace has
444                  * not set up a proper pointer then tough luck.
445                  */
446                 put_user(0, tidptr);
447                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
448         }
449 }
450
451 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
452 {
453         struct mm_struct * mm, *oldmm;
454         int retval;
455
456         tsk->min_flt = tsk->maj_flt = 0;
457         tsk->nvcsw = tsk->nivcsw = 0;
458
459         tsk->mm = NULL;
460         tsk->active_mm = NULL;
461
462         /*
463          * Are we cloning a kernel thread?
464          *
465          * We need to steal a active VM for that..
466          */
467         oldmm = current->mm;
468         if (!oldmm)
469                 return 0;
470
471         if (clone_flags & CLONE_VM) {
472                 atomic_inc(&oldmm->mm_users);
473                 mm = oldmm;
474                 /*
475                  * There are cases where the PTL is held to ensure no
476                  * new threads start up in user mode using an mm, which
477                  * allows optimizing out ipis; the tlb_gather_mmu code
478                  * is an example.
479                  */
480                 spin_unlock_wait(&oldmm->page_table_lock);
481                 goto good_mm;
482         }
483
484         retval = -ENOMEM;
485         mm = allocate_mm();
486         if (!mm)
487                 goto fail_nomem;
488
489         /* Copy the current MM stuff.. */
490         memcpy(mm, oldmm, sizeof(*mm));
491         mm->mm_vx_info = NULL;
492         if (!mm_init(mm))
493                 goto fail_nomem;
494
495         if (init_new_context(tsk,mm))
496                 goto fail_nocontext;
497
498         retval = dup_mmap(mm, oldmm);
499         if (retval)
500                 goto free_pt;
501
502 good_mm:
503         tsk->mm = mm;
504         tsk->active_mm = mm;
505         ckrm_init_mm_to_task(mm, tsk);
506         return 0;
507
508 free_pt:
509         mmput(mm);
510 fail_nomem:
511         return retval;
512
513 fail_nocontext:
514         /*
515          * If init_new_context() failed, we cannot use mmput() to free the mm
516          * because it calls destroy_context()
517          */
518         mm_free_pgd(mm);
519         free_mm(mm);
520         return retval;
521 }
522
523 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
524 {
525         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
526         /* We don't need to lock fs - think why ;-) */
527         if (fs) {
528                 atomic_set(&fs->count, 1);
529                 rwlock_init(&fs->lock);
530                 fs->umask = old->umask;
531                 read_lock(&old->lock);
532                 fs->rootmnt = mntget(old->rootmnt);
533                 fs->root = dget(old->root);
534                 fs->pwdmnt = mntget(old->pwdmnt);
535                 fs->pwd = dget(old->pwd);
536                 if (old->altroot) {
537                         fs->altrootmnt = mntget(old->altrootmnt);
538                         fs->altroot = dget(old->altroot);
539                 } else {
540                         fs->altrootmnt = NULL;
541                         fs->altroot = NULL;
542                 }
543                 read_unlock(&old->lock);
544         }
545         return fs;
546 }
547
548 struct fs_struct *copy_fs_struct(struct fs_struct *old)
549 {
550         return __copy_fs_struct(old);
551 }
552
553 EXPORT_SYMBOL_GPL(copy_fs_struct);
554
555 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
556 {
557         if (clone_flags & CLONE_FS) {
558                 atomic_inc(&current->fs->count);
559                 return 0;
560         }
561         tsk->fs = __copy_fs_struct(current->fs);
562         if (!tsk->fs)
563                 return -ENOMEM;
564         return 0;
565 }
566
567 static int count_open_files(struct files_struct *files, int size)
568 {
569         int i;
570
571         /* Find the last open fd */
572         for (i = size/(8*sizeof(long)); i > 0; ) {
573                 if (files->open_fds->fds_bits[--i])
574                         break;
575         }
576         i = (i+1) * 8 * sizeof(long);
577         return i;
578 }
579
580 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
581 {
582         struct files_struct *oldf, *newf;
583         struct file **old_fds, **new_fds;
584         int open_files, nfds, size, i, error = 0;
585
586         /*
587          * A background process may not have any files ...
588          */
589         oldf = current->files;
590         if (!oldf)
591                 goto out;
592
593         if (clone_flags & CLONE_FILES) {
594                 atomic_inc(&oldf->count);
595                 goto out;
596         }
597
598         /*
599          * Note: we may be using current for both targets (See exec.c)
600          * This works because we cache current->files (old) as oldf. Don't
601          * break this.
602          */
603         tsk->files = NULL;
604         error = -ENOMEM;
605         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
606         if (!newf) 
607                 goto out;
608
609         atomic_set(&newf->count, 1);
610
611         spin_lock_init(&newf->file_lock);
612         newf->next_fd       = 0;
613         newf->max_fds       = NR_OPEN_DEFAULT;
614         newf->max_fdset     = __FD_SETSIZE;
615         newf->close_on_exec = &newf->close_on_exec_init;
616         newf->open_fds      = &newf->open_fds_init;
617         newf->fd            = &newf->fd_array[0];
618
619         /* We don't yet have the oldf readlock, but even if the old
620            fdset gets grown now, we'll only copy up to "size" fds */
621         size = oldf->max_fdset;
622         if (size > __FD_SETSIZE) {
623                 newf->max_fdset = 0;
624                 spin_lock(&newf->file_lock);
625                 error = expand_fdset(newf, size-1);
626                 spin_unlock(&newf->file_lock);
627                 if (error)
628                         goto out_release;
629         }
630         spin_lock(&oldf->file_lock);
631
632         open_files = count_open_files(oldf, size);
633
634         /*
635          * Check whether we need to allocate a larger fd array.
636          * Note: we're not a clone task, so the open count won't
637          * change.
638          */
639         nfds = NR_OPEN_DEFAULT;
640         if (open_files > nfds) {
641                 spin_unlock(&oldf->file_lock);
642                 newf->max_fds = 0;
643                 spin_lock(&newf->file_lock);
644                 error = expand_fd_array(newf, open_files-1);
645                 spin_unlock(&newf->file_lock);
646                 if (error) 
647                         goto out_release;
648                 nfds = newf->max_fds;
649                 spin_lock(&oldf->file_lock);
650         }
651
652         old_fds = oldf->fd;
653         new_fds = newf->fd;
654
655         memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
656         memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
657
658         for (i = open_files; i != 0; i--) {
659                 struct file *f = *old_fds++;
660                 if (f) {
661                         get_file(f);
662                 } else {
663                         /*
664                          * The fd may be claimed in the fd bitmap but not yet
665                          * instantiated in the files array if a sibling thread
666                          * is partway through open().  So make sure that this
667                          * fd is available to the new process.
668                          */
669                         FD_CLR(open_files - i, newf->open_fds);
670                 }
671                 *new_fds++ = f;
672         }
673         spin_unlock(&oldf->file_lock);
674
675         /* compute the remainder to be cleared */
676         size = (newf->max_fds - open_files) * sizeof(struct file *);
677
678         /* This is long word aligned thus could use a optimized version */ 
679         memset(new_fds, 0, size); 
680
681         if (newf->max_fdset > open_files) {
682                 int left = (newf->max_fdset-open_files)/8;
683                 int start = open_files / (8 * sizeof(unsigned long));
684
685                 memset(&newf->open_fds->fds_bits[start], 0, left);
686                 memset(&newf->close_on_exec->fds_bits[start], 0, left);
687         }
688
689         tsk->files = newf;
690         error = 0;
691 out:
692         return error;
693
694 out_release:
695         free_fdset (newf->close_on_exec, newf->max_fdset);
696         free_fdset (newf->open_fds, newf->max_fdset);
697         kmem_cache_free(files_cachep, newf);
698         goto out;
699 }
700
701 /*
702  *      Helper to unshare the files of the current task.
703  *      We don't want to expose copy_files internals to
704  *      the exec layer of the kernel.
705  */
706
707 int unshare_files(void)
708 {
709         struct files_struct *files  = current->files;
710         int rc;
711
712         if(!files)
713                 BUG();
714
715         /* This can race but the race causes us to copy when we don't
716            need to and drop the copy */
717         if(atomic_read(&files->count) == 1)
718         {
719                 atomic_inc(&files->count);
720                 return 0;
721         }
722         rc = copy_files(0, current);
723         if(rc)
724                 current->files = files;
725         return rc;
726 }
727
728 EXPORT_SYMBOL(unshare_files);
729
730 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
731 {
732         struct sighand_struct *sig;
733
734         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
735                 atomic_inc(&current->sighand->count);
736                 return 0;
737         }
738         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
739         tsk->sighand = sig;
740         if (!sig)
741                 return -ENOMEM;
742         spin_lock_init(&sig->siglock);
743         atomic_set(&sig->count, 1);
744         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
745         return 0;
746 }
747
748 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
749 {
750         struct signal_struct *sig;
751
752         if (clone_flags & CLONE_THREAD) {
753                 atomic_inc(&current->signal->count);
754                 atomic_inc(&current->signal->live);
755                 return 0;
756         }
757         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
758         tsk->signal = sig;
759         if (!sig)
760                 return -ENOMEM;
761         atomic_set(&sig->count, 1);
762         atomic_set(&sig->live, 1);
763         sig->group_exit = 0;
764         sig->group_exit_code = 0;
765         sig->group_exit_task = NULL;
766         sig->group_stop_count = 0;
767         sig->stop_state = 0;
768         sig->curr_target = NULL;
769         init_sigpending(&sig->shared_pending);
770         INIT_LIST_HEAD(&sig->posix_timers);
771
772         sig->tty = current->signal->tty;
773         sig->pgrp = process_group(current);
774         sig->session = current->signal->session;
775         sig->leader = 0;        /* session leadership doesn't inherit */
776         sig->tty_old_pgrp = 0;
777
778         sig->utime = sig->stime = sig->cutime = sig->cstime = 0;
779         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
780         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
781
782         task_lock(current->group_leader);
783         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
784         task_unlock(current->group_leader);
785
786         return 0;
787 }
788
789 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
790 {
791         unsigned long new_flags = p->flags;
792
793         new_flags &= ~PF_SUPERPRIV;
794         new_flags |= PF_FORKNOEXEC;
795         if (!(clone_flags & CLONE_PTRACE))
796                 p->ptrace = 0;
797         p->flags = new_flags;
798 }
799
800 asmlinkage long sys_set_tid_address(int __user *tidptr)
801 {
802         current->clear_child_tid = tidptr;
803
804         return current->pid;
805 }
806
807 /*
808  * This creates a new process as a copy of the old one,
809  * but does not actually start it yet.
810  *
811  * It copies the registers, and all the appropriate
812  * parts of the process environment (as per the clone
813  * flags). The actual kick-off is left to the caller.
814  */
815 static task_t *copy_process(unsigned long clone_flags,
816                                  unsigned long stack_start,
817                                  struct pt_regs *regs,
818                                  unsigned long stack_size,
819                                  int __user *parent_tidptr,
820                                  int __user *child_tidptr,
821                                  int pid)
822 {
823         int retval;
824         struct task_struct *p = NULL;
825         struct vx_info *vxi;
826
827         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
828                 return ERR_PTR(-EINVAL);
829
830         /*
831          * Thread groups must share signals as well, and detached threads
832          * can only be started up within the thread group.
833          */
834         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
835                 return ERR_PTR(-EINVAL);
836
837         /*
838          * Shared signal handlers imply shared VM. By way of the above,
839          * thread groups also imply shared VM. Blocking this case allows
840          * for various simplifications in other code.
841          */
842         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
843                 return ERR_PTR(-EINVAL);
844
845         retval = security_task_create(clone_flags);
846         if (retval)
847                 goto fork_out;
848
849         retval = -ENOMEM;
850         p = dup_task_struct(current);
851         if (!p)
852                 goto fork_out;
853         p->tux_info = NULL;
854
855         p->vx_info = NULL;
856         set_vx_info(&p->vx_info, current->vx_info);
857         p->nx_info = NULL;
858         set_nx_info(&p->nx_info, current->nx_info);
859
860         /* check vserver memory */
861         if (p->mm && !(clone_flags & CLONE_VM)) {
862                 if (vx_vmpages_avail(p->mm, p->mm->total_vm))
863                         vx_pages_add(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
864                 else
865                         goto bad_fork_free;
866         }
867         if (p->mm && vx_flags(VXF_FORK_RSS, 0)) {
868                 if (!vx_rsspages_avail(p->mm, p->mm->rss))
869                         goto bad_fork_cleanup_vm;
870         }
871
872         retval = -EAGAIN;
873         if (!vx_nproc_avail(1))
874                 goto bad_fork_cleanup_vm;
875
876         if (atomic_read(&p->user->processes) >=
877                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
878                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
879                                 p->user != &root_user)
880                         goto bad_fork_cleanup_vm;
881         }
882
883         atomic_inc(&p->user->__count);
884         atomic_inc(&p->user->processes);
885         get_group_info(p->group_info);
886
887         /*
888          * If multiple threads are within copy_process(), then this check
889          * triggers too late. This doesn't hurt, the check is only there
890          * to stop root fork bombs.
891          */
892         if (nr_threads >= max_threads)
893                 goto bad_fork_cleanup_count;
894
895         if (!try_module_get(p->thread_info->exec_domain->module))
896                 goto bad_fork_cleanup_count;
897
898         if (p->binfmt && !try_module_get(p->binfmt->module))
899                 goto bad_fork_cleanup_put_domain;
900
901         init_delays(p);
902         p->did_exec = 0;
903         copy_flags(clone_flags, p);
904         p->pid = pid;
905         retval = -EFAULT;
906         if (clone_flags & CLONE_PARENT_SETTID)
907                 if (put_user(p->pid, parent_tidptr))
908                         goto bad_fork_cleanup;
909
910         p->proc_dentry = NULL;
911
912         INIT_LIST_HEAD(&p->children);
913         INIT_LIST_HEAD(&p->sibling);
914         init_waitqueue_head(&p->wait_chldexit);
915         p->vfork_done = NULL;
916         spin_lock_init(&p->alloc_lock);
917         spin_lock_init(&p->proc_lock);
918
919         clear_tsk_thread_flag(p, TIF_SIGPENDING);
920         init_sigpending(&p->pending);
921
922         p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
923         p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
924         init_timer(&p->real_timer);
925         p->real_timer.data = (unsigned long) p;
926
927         p->utime = p->stime = 0;
928         p->lock_depth = -1;             /* -1 = no lock */
929         do_posix_clock_monotonic_gettime(&p->start_time);
930         p->security = NULL;
931         p->io_context = NULL;
932         p->io_wait = NULL;
933         p->audit_context = NULL;
934 #ifdef CONFIG_NUMA
935         p->mempolicy = mpol_copy(p->mempolicy);
936         if (IS_ERR(p->mempolicy)) {
937                 retval = PTR_ERR(p->mempolicy);
938                 p->mempolicy = NULL;
939                 goto bad_fork_cleanup;
940         }
941 #endif
942
943         p->tgid = p->pid;
944         if (clone_flags & CLONE_THREAD)
945                 p->tgid = current->tgid;
946
947         if ((retval = security_task_alloc(p)))
948                 goto bad_fork_cleanup_policy;
949         if ((retval = audit_alloc(p)))
950                 goto bad_fork_cleanup_security;
951         /* copy all the process information */
952         if ((retval = copy_semundo(clone_flags, p)))
953                 goto bad_fork_cleanup_audit;
954         if ((retval = copy_files(clone_flags, p)))
955                 goto bad_fork_cleanup_semundo;
956         if ((retval = copy_fs(clone_flags, p)))
957                 goto bad_fork_cleanup_files;
958         if ((retval = copy_sighand(clone_flags, p)))
959                 goto bad_fork_cleanup_fs;
960         if ((retval = copy_signal(clone_flags, p)))
961                 goto bad_fork_cleanup_sighand;
962         if ((retval = copy_mm(clone_flags, p)))
963                 goto bad_fork_cleanup_signal;
964         if ((retval = copy_keys(clone_flags, p)))
965                 goto bad_fork_cleanup_mm;
966         if ((retval = copy_namespace(clone_flags, p)))
967                 goto bad_fork_cleanup_keys;
968         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
969         if (retval)
970                 goto bad_fork_cleanup_namespace;
971
972         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
973         /*
974          * Clear TID on mm_release()?
975          */
976         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
977
978         /*
979          * Syscall tracing should be turned off in the child regardless
980          * of CLONE_PTRACE.
981          */
982         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
983
984         /* Our parent execution domain becomes current domain
985            These must match for thread signalling to apply */
986            
987         p->parent_exec_id = p->self_exec_id;
988
989         /* ok, now we should be set up.. */
990         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
991         p->pdeath_signal = 0;
992         p->exit_state = 0;
993
994         /* Perform scheduler related setup */
995         sched_fork(p);
996
997         /*
998          * Ok, make it visible to the rest of the system.
999          * We dont wake it up yet.
1000          */
1001         p->group_leader = p;
1002         INIT_LIST_HEAD(&p->ptrace_children);
1003         INIT_LIST_HEAD(&p->ptrace_list);
1004
1005         /* Need tasklist lock for parent etc handling! */
1006         write_lock_irq(&tasklist_lock);
1007
1008         /*
1009          * The task hasn't been attached yet, so cpus_allowed mask cannot
1010          * have changed. The cpus_allowed mask of the parent may have
1011          * changed after it was copied first time, and it may then move to
1012          * another CPU - so we re-copy it here and set the child's CPU to
1013          * the parent's CPU. This avoids alot of nasty races.
1014          */
1015         p->cpus_allowed = current->cpus_allowed;
1016         set_task_cpu(p, smp_processor_id());
1017
1018         /*
1019          * Check for pending SIGKILL! The new thread should not be allowed
1020          * to slip out of an OOM kill. (or normal SIGKILL.)
1021          */
1022         if (sigismember(&current->pending.signal, SIGKILL)) {
1023                 write_unlock_irq(&tasklist_lock);
1024                 retval = -EINTR;
1025                 goto bad_fork_cleanup_namespace;
1026         }
1027
1028         /* CLONE_PARENT re-uses the old parent */
1029         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1030                 p->real_parent = current->real_parent;
1031         else
1032                 p->real_parent = current;
1033         p->parent = p->real_parent;
1034
1035         if (clone_flags & CLONE_THREAD) {
1036                 spin_lock(&current->sighand->siglock);
1037                 /*
1038                  * Important: if an exit-all has been started then
1039                  * do not create this new thread - the whole thread
1040                  * group is supposed to exit anyway.
1041                  */
1042                 if (current->signal->group_exit) {
1043                         spin_unlock(&current->sighand->siglock);
1044                         write_unlock_irq(&tasklist_lock);
1045                         retval = -EAGAIN;
1046                         goto bad_fork_cleanup_namespace;
1047                 }
1048                 p->group_leader = current->group_leader;
1049
1050                 if (current->signal->group_stop_count > 0) {
1051                         /*
1052                          * There is an all-stop in progress for the group.
1053                          * We ourselves will stop as soon as we check signals.
1054                          * Make the new thread part of that group stop too.
1055                          */
1056                         current->signal->group_stop_count++;
1057                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1058                 }
1059
1060                 spin_unlock(&current->sighand->siglock);
1061         }
1062
1063         SET_LINKS(p);
1064         if (unlikely(p->ptrace & PT_PTRACED))
1065                 __ptrace_link(p, current->parent);
1066
1067         attach_pid(p, PIDTYPE_PID, p->pid);
1068         attach_pid(p, PIDTYPE_TGID, p->tgid);
1069         if (thread_group_leader(p)) {
1070                 attach_pid(p, PIDTYPE_PGID, process_group(p));
1071                 attach_pid(p, PIDTYPE_SID, p->signal->session);
1072                 if (p->pid)
1073                         __get_cpu_var(process_counts)++;
1074         }
1075
1076         p->ioprio = current->ioprio;
1077         nr_threads++;
1078         /* p is copy of current */
1079         vxi = p->vx_info;
1080         if (vxi) {
1081                 atomic_inc(&vxi->cvirt.nr_threads);
1082                 vx_nproc_inc(p);
1083         }
1084         write_unlock_irq(&tasklist_lock);
1085         retval = 0;
1086
1087 fork_out:
1088         if (retval)
1089                 return ERR_PTR(retval);
1090         return p;
1091
1092 bad_fork_cleanup_namespace:
1093         exit_namespace(p);
1094 bad_fork_cleanup_keys:
1095         exit_keys(p);
1096 bad_fork_cleanup_mm:
1097         if (p->mm)
1098                 mmput(p->mm);
1099 bad_fork_cleanup_signal:
1100         exit_signal(p);
1101 bad_fork_cleanup_sighand:
1102         exit_sighand(p);
1103 bad_fork_cleanup_fs:
1104         exit_fs(p); /* blocking */
1105 bad_fork_cleanup_files:
1106         exit_files(p); /* blocking */
1107 bad_fork_cleanup_semundo:
1108         exit_sem(p);
1109 bad_fork_cleanup_audit:
1110         audit_free(p);
1111 bad_fork_cleanup_security:
1112         security_task_free(p);
1113 bad_fork_cleanup_policy:
1114 #ifdef CONFIG_NUMA
1115         mpol_free(p->mempolicy);
1116 #endif
1117 bad_fork_cleanup:
1118         if (p->binfmt)
1119                 module_put(p->binfmt->module);
1120 bad_fork_cleanup_put_domain:
1121         module_put(p->thread_info->exec_domain->module);
1122 bad_fork_cleanup_count:
1123         put_group_info(p->group_info);
1124         atomic_dec(&p->user->processes);
1125         free_uid(p->user);
1126 bad_fork_cleanup_vm:
1127         if (p->mm && !(clone_flags & CLONE_VM))
1128                 vx_pages_sub(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
1129 bad_fork_free:
1130         free_task(p);
1131         goto fork_out;
1132 }
1133
1134 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1135 {
1136         memset(regs, 0, sizeof(struct pt_regs));
1137         return regs;
1138 }
1139
1140 task_t * __devinit fork_idle(int cpu)
1141 {
1142         task_t *task;
1143         struct pt_regs regs;
1144
1145         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1146         if (!task)
1147                 return ERR_PTR(-ENOMEM);
1148         init_idle(task, cpu);
1149         unhash_process(task);
1150         return task;
1151 }
1152
1153 static inline int fork_traceflag (unsigned clone_flags)
1154 {
1155         if (clone_flags & CLONE_UNTRACED)
1156                 return 0;
1157         else if (clone_flags & CLONE_VFORK) {
1158                 if (current->ptrace & PT_TRACE_VFORK)
1159                         return PTRACE_EVENT_VFORK;
1160         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1161                 if (current->ptrace & PT_TRACE_CLONE)
1162                         return PTRACE_EVENT_CLONE;
1163         } else if (current->ptrace & PT_TRACE_FORK)
1164                 return PTRACE_EVENT_FORK;
1165
1166         return 0;
1167 }
1168
1169 /*
1170  *  Ok, this is the main fork-routine.
1171  *
1172  * It copies the process, and if successful kick-starts
1173  * it and waits for it to finish using the VM if required.
1174  */
1175 long do_fork(unsigned long clone_flags,
1176               unsigned long stack_start,
1177               struct pt_regs *regs,
1178               unsigned long stack_size,
1179               int __user *parent_tidptr,
1180               int __user *child_tidptr)
1181 {
1182         struct task_struct *p;
1183         int trace = 0;
1184         long pid = alloc_pidmap();
1185
1186         if (pid < 0)
1187                 return -EAGAIN;
1188         if (unlikely(current->ptrace)) {
1189                 trace = fork_traceflag (clone_flags);
1190                 if (trace)
1191                         clone_flags |= CLONE_PTRACE;
1192         }
1193
1194 #ifdef CONFIG_CKRM_TYPE_TASKCLASS
1195         if (numtasks_get_ref(current->taskclass, 0) == 0) {
1196                 return -ENOMEM;
1197         }
1198 #endif
1199
1200         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1201         /*
1202          * Do this prior waking up the new thread - the thread pointer
1203          * might get invalid after that point, if the thread exits quickly.
1204          */
1205         if (!IS_ERR(p)) {
1206                 struct completion vfork;
1207
1208                 ckrm_cb_fork(p);
1209
1210                 if (clone_flags & CLONE_VFORK) {
1211                         p->vfork_done = &vfork;
1212                         init_completion(&vfork);
1213                 }
1214
1215                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1216                         /*
1217                          * We'll start up with an immediate SIGSTOP.
1218                          */
1219                         sigaddset(&p->pending.signal, SIGSTOP);
1220                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1221                 }
1222
1223                 if (!(clone_flags & CLONE_STOPPED))
1224                         wake_up_new_task(p, clone_flags);
1225                 else
1226                         p->state = TASK_STOPPED;
1227                 ++total_forks;
1228
1229                 if (unlikely (trace)) {
1230                         current->ptrace_message = pid;
1231                         ptrace_notify ((trace << 8) | SIGTRAP);
1232                 }
1233
1234                 if (clone_flags & CLONE_VFORK) {
1235                         wait_for_completion(&vfork);
1236                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1237                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1238                 }
1239         } else {
1240 #ifdef CONFIG_CKRM_TYPE_TASKCLASS
1241                 numtasks_put_ref(current->taskclass);
1242 #endif
1243                 free_pidmap(pid);
1244                 pid = PTR_ERR(p);
1245         }
1246         return pid;
1247 }
1248
1249 /* SLAB cache for signal_struct structures (tsk->signal) */
1250 kmem_cache_t *signal_cachep;
1251
1252 /* SLAB cache for sighand_struct structures (tsk->sighand) */
1253 kmem_cache_t *sighand_cachep;
1254
1255 /* SLAB cache for files_struct structures (tsk->files) */
1256 kmem_cache_t *files_cachep;
1257
1258 /* SLAB cache for fs_struct structures (tsk->fs) */
1259 kmem_cache_t *fs_cachep;
1260
1261 /* SLAB cache for vm_area_struct structures */
1262 kmem_cache_t *vm_area_cachep;
1263
1264 /* SLAB cache for mm_struct structures (tsk->mm) */
1265 kmem_cache_t *mm_cachep;
1266
1267 void __init proc_caches_init(void)
1268 {
1269         sighand_cachep = kmem_cache_create("sighand_cache",
1270                         sizeof(struct sighand_struct), 0,
1271                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1272         signal_cachep = kmem_cache_create("signal_cache",
1273                         sizeof(struct signal_struct), 0,
1274                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1275         files_cachep = kmem_cache_create("files_cache", 
1276                         sizeof(struct files_struct), 0,
1277                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1278         fs_cachep = kmem_cache_create("fs_cache", 
1279                         sizeof(struct fs_struct), 0,
1280                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1281         vm_area_cachep = kmem_cache_create("vm_area_struct",
1282                         sizeof(struct vm_area_struct), 0,
1283                         SLAB_PANIC, NULL, NULL);
1284         mm_cachep = kmem_cache_create("mm_struct",
1285                         sizeof(struct mm_struct), 0,
1286                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1287 }