Removed CKRM code base from kernel tree.
[linux-2.6.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/security.h>
33 #include <linux/swap.h>
34 #include <linux/syscalls.h>
35 #include <linux/jiffies.h>
36 #include <linux/futex.h>
37 #include <linux/ptrace.h>
38 #include <linux/mount.h>
39 #include <linux/audit.h>
40 #include <linux/profile.h>
41 #include <linux/rmap.h>
42 #include <linux/vs_network.h>
43 #include <linux/vs_limit.h>
44 #include <linux/vs_memory.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/pgalloc.h>
48 #include <asm/uaccess.h>
49 #include <asm/mmu_context.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlbflush.h>
52
53 /* The idle threads do not count..
54  * Protected by write_lock_irq(&tasklist_lock)
55  */
56 int nr_threads;
57
58 int max_threads;
59 unsigned long total_forks;      /* Handle normal Linux uptimes. */
60
61 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
62
63 rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED;  /* outer */
64
65 EXPORT_SYMBOL(tasklist_lock);
66
67 int nr_processes(void)
68 {
69         int cpu;
70         int total = 0;
71
72         for_each_online_cpu(cpu)
73                 total += per_cpu(process_counts, cpu);
74
75         return total;
76 }
77
78 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
79 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
80 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
81 static kmem_cache_t *task_struct_cachep;
82 #endif
83
84 void free_task(struct task_struct *tsk)
85 {
86         free_thread_info(tsk->thread_info);
87         clr_vx_info(&tsk->vx_info);
88         clr_nx_info(&tsk->nx_info);
89         free_task_struct(tsk);
90 }
91 EXPORT_SYMBOL(free_task);
92
93 void __put_task_struct(struct task_struct *tsk)
94 {
95         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
96         WARN_ON(atomic_read(&tsk->usage));
97         WARN_ON(tsk == current);
98
99         if (unlikely(tsk->audit_context))
100                 audit_free(tsk);
101         security_task_free(tsk);
102         free_uid(tsk->user);
103         put_group_info(tsk->group_info);
104
105         if (!profile_handoff_task(tsk))
106                 free_task(tsk);
107 }
108
109 void __init fork_init(unsigned long mempages)
110 {
111 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
112 #ifndef ARCH_MIN_TASKALIGN
113 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
114 #endif
115         /* create a slab on which task_structs can be allocated */
116         task_struct_cachep =
117                 kmem_cache_create("task_struct", sizeof(struct task_struct),
118                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
119 #endif
120
121         /*
122          * The default maximum number of threads is set to a safe
123          * value: the thread structures can take up at most half
124          * of memory.
125          */
126         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
127
128         /*
129          * we need to allow at least 20 threads to boot a system
130          */
131         if(max_threads < 20)
132                 max_threads = 20;
133
134         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
135         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
136 }
137
138 static struct task_struct *dup_task_struct(struct task_struct *orig)
139 {
140         struct task_struct *tsk;
141         struct thread_info *ti;
142
143         prepare_to_copy(orig);
144
145         tsk = alloc_task_struct();
146         if (!tsk)
147                 return NULL;
148
149         ti = alloc_thread_info(tsk);
150         if (!ti) {
151                 free_task_struct(tsk);
152                 return NULL;
153         }
154
155         *ti = *orig->thread_info;
156         *tsk = *orig;
157         tsk->thread_info = ti;
158         ti->task = tsk;
159
160         /* One for us, one for whoever does the "release_task()" (usually parent) */
161         atomic_set(&tsk->usage,2);
162         return tsk;
163 }
164
165 #ifdef CONFIG_MMU
166 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
167 {
168         struct vm_area_struct * mpnt, *tmp, **pprev;
169         struct rb_node **rb_link, *rb_parent;
170         int retval;
171         unsigned long charge;
172         struct mempolicy *pol;
173
174         down_write(&oldmm->mmap_sem);
175         flush_cache_mm(current->mm);
176         mm->locked_vm = 0;
177         mm->mmap = NULL;
178         mm->mmap_cache = NULL;
179         mm->free_area_cache = oldmm->mmap_base;
180         mm->map_count = 0;
181         mm->rss = 0;
182         mm->anon_rss = 0;
183         cpus_clear(mm->cpu_vm_mask);
184         mm->mm_rb = RB_ROOT;
185         rb_link = &mm->mm_rb.rb_node;
186         rb_parent = NULL;
187         pprev = &mm->mmap;
188
189         for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
190                 struct file *file;
191
192                 if (mpnt->vm_flags & VM_DONTCOPY) {
193                         __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
194                                                         -vma_pages(mpnt));
195                         continue;
196                 }
197                 charge = 0;
198                 if (mpnt->vm_flags & VM_ACCOUNT) {
199                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
200                         if (security_vm_enough_memory(len))
201                                 goto fail_nomem;
202                         charge = len;
203                 }
204                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
205                 if (!tmp)
206                         goto fail_nomem;
207                 *tmp = *mpnt;
208                 pol = mpol_copy(vma_policy(mpnt));
209                 retval = PTR_ERR(pol);
210                 if (IS_ERR(pol))
211                         goto fail_nomem_policy;
212                 vma_set_policy(tmp, pol);
213                 tmp->vm_flags &= ~VM_LOCKED;
214                 tmp->vm_mm = mm;
215                 tmp->vm_next = NULL;
216                 anon_vma_link(tmp);
217                 file = tmp->vm_file;
218                 if (file) {
219                         struct inode *inode = file->f_dentry->d_inode;
220                         get_file(file);
221                         if (tmp->vm_flags & VM_DENYWRITE)
222                                 atomic_dec(&inode->i_writecount);
223       
224                         /* insert tmp into the share list, just after mpnt */
225                         spin_lock(&file->f_mapping->i_mmap_lock);
226                         flush_dcache_mmap_lock(file->f_mapping);
227                         vma_prio_tree_add(tmp, mpnt);
228                         flush_dcache_mmap_unlock(file->f_mapping);
229                         spin_unlock(&file->f_mapping->i_mmap_lock);
230                 }
231
232                 /*
233                  * Link in the new vma and copy the page table entries:
234                  * link in first so that swapoff can see swap entries,
235                  * and try_to_unmap_one's find_vma find the new vma.
236                  */
237                 spin_lock(&mm->page_table_lock);
238                 *pprev = tmp;
239                 pprev = &tmp->vm_next;
240
241                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
242                 rb_link = &tmp->vm_rb.rb_right;
243                 rb_parent = &tmp->vm_rb;
244
245                 mm->map_count++;
246                 retval = copy_page_range(mm, current->mm, tmp);
247                 spin_unlock(&mm->page_table_lock);
248
249                 if (tmp->vm_ops && tmp->vm_ops->open)
250                         tmp->vm_ops->open(tmp);
251
252                 if (retval)
253                         goto out;
254         }
255         retval = 0;
256
257 out:
258         flush_tlb_mm(current->mm);
259         up_write(&oldmm->mmap_sem);
260         return retval;
261 fail_nomem_policy:
262         kmem_cache_free(vm_area_cachep, tmp);
263 fail_nomem:
264         retval = -ENOMEM;
265         vm_unacct_memory(charge);
266         goto out;
267 }
268
269 static inline int mm_alloc_pgd(struct mm_struct * mm)
270 {
271         mm->pgd = pgd_alloc(mm);
272         if (unlikely(!mm->pgd))
273                 return -ENOMEM;
274         return 0;
275 }
276
277 static inline void mm_free_pgd(struct mm_struct * mm)
278 {
279         pgd_free(mm->pgd);
280 }
281 #else
282 #define dup_mmap(mm, oldmm)     (0)
283 #define mm_alloc_pgd(mm)        (0)
284 #define mm_free_pgd(mm)
285 #endif /* CONFIG_MMU */
286
287 spinlock_t mmlist_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
288
289 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
290 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
291
292 #include <linux/init_task.h>
293
294 static struct mm_struct * mm_init(struct mm_struct * mm)
295 {
296         atomic_set(&mm->mm_users, 1);
297         atomic_set(&mm->mm_count, 1);
298         init_rwsem(&mm->mmap_sem);
299         INIT_LIST_HEAD(&mm->mmlist);
300         mm->core_waiters = 0;
301         mm->nr_ptes = 0;
302         spin_lock_init(&mm->page_table_lock);
303         rwlock_init(&mm->ioctx_list_lock);
304         mm->ioctx_list = NULL;
305         mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
306         mm->free_area_cache = TASK_UNMAPPED_BASE;
307
308         if (likely(!mm_alloc_pgd(mm))) {
309                 mm->def_flags = 0;
310                 set_vx_info(&mm->mm_vx_info, current->vx_info);
311                 return mm;
312         }
313         free_mm(mm);
314         return NULL;
315 }
316
317 /*
318  * Allocate and initialize an mm_struct.
319  */
320 struct mm_struct * mm_alloc(void)
321 {
322         struct mm_struct * mm;
323
324         mm = allocate_mm();
325         if (mm) {
326                 memset(mm, 0, sizeof(*mm));
327                 mm = mm_init(mm);
328         }
329         return mm;
330 }
331
332 /*
333  * Called when the last reference to the mm
334  * is dropped: either by a lazy thread or by
335  * mmput. Free the page directory and the mm.
336  */
337 void fastcall __mmdrop(struct mm_struct *mm)
338 {
339         BUG_ON(mm == &init_mm);
340         mm_free_pgd(mm);
341         destroy_context(mm);
342         clr_vx_info(&mm->mm_vx_info);
343         free_mm(mm);
344 }
345
346 /*
347  * Decrement the use count and release all resources for an mm.
348  */
349 void mmput(struct mm_struct *mm)
350 {
351         if (atomic_dec_and_test(&mm->mm_users)) {
352                 exit_aio(mm);
353                 exit_mmap(mm);
354                 if (!list_empty(&mm->mmlist)) {
355                         spin_lock(&mmlist_lock);
356                         list_del(&mm->mmlist);
357                         spin_unlock(&mmlist_lock);
358                 }
359                 put_swap_token(mm);
360                 mmdrop(mm);
361         }
362 }
363 EXPORT_SYMBOL_GPL(mmput);
364
365 /**
366  * get_task_mm - acquire a reference to the task's mm
367  *
368  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
369  * this kernel workthread has transiently adopted a user mm with use_mm,
370  * to do its AIO) is not set and if so returns a reference to it, after
371  * bumping up the use count.  User must release the mm via mmput()
372  * after use.  Typically used by /proc and ptrace.
373  */
374 struct mm_struct *get_task_mm(struct task_struct *task)
375 {
376         struct mm_struct *mm;
377
378         task_lock(task);
379         mm = task->mm;
380         if (mm) {
381                 if (task->flags & PF_BORROWED_MM)
382                         mm = NULL;
383                 else
384                         atomic_inc(&mm->mm_users);
385         }
386         task_unlock(task);
387         return mm;
388 }
389 EXPORT_SYMBOL_GPL(get_task_mm);
390
391 /* Please note the differences between mmput and mm_release.
392  * mmput is called whenever we stop holding onto a mm_struct,
393  * error success whatever.
394  *
395  * mm_release is called after a mm_struct has been removed
396  * from the current process.
397  *
398  * This difference is important for error handling, when we
399  * only half set up a mm_struct for a new process and need to restore
400  * the old one.  Because we mmput the new mm_struct before
401  * restoring the old one. . .
402  * Eric Biederman 10 January 1998
403  */
404 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
405 {
406         struct completion *vfork_done = tsk->vfork_done;
407
408         /* Get rid of any cached register state */
409         deactivate_mm(tsk, mm);
410
411         /* notify parent sleeping on vfork() */
412         if (vfork_done) {
413                 tsk->vfork_done = NULL;
414                 complete(vfork_done);
415         }
416         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
417                 u32 __user * tidptr = tsk->clear_child_tid;
418                 tsk->clear_child_tid = NULL;
419
420                 /*
421                  * We don't check the error code - if userspace has
422                  * not set up a proper pointer then tough luck.
423                  */
424                 put_user(0, tidptr);
425                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
426         }
427 }
428
429 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
430 {
431         struct mm_struct * mm, *oldmm;
432         int retval;
433
434         tsk->min_flt = tsk->maj_flt = 0;
435         tsk->nvcsw = tsk->nivcsw = 0;
436
437         tsk->mm = NULL;
438         tsk->active_mm = NULL;
439
440         /*
441          * Are we cloning a kernel thread?
442          *
443          * We need to steal a active VM for that..
444          */
445         oldmm = current->mm;
446         if (!oldmm)
447                 return 0;
448
449         if (clone_flags & CLONE_VM) {
450                 atomic_inc(&oldmm->mm_users);
451                 mm = oldmm;
452                 /*
453                  * There are cases where the PTL is held to ensure no
454                  * new threads start up in user mode using an mm, which
455                  * allows optimizing out ipis; the tlb_gather_mmu code
456                  * is an example.
457                  */
458                 spin_unlock_wait(&oldmm->page_table_lock);
459                 goto good_mm;
460         }
461
462         retval = -ENOMEM;
463         mm = allocate_mm();
464         if (!mm)
465                 goto fail_nomem;
466
467         /* Copy the current MM stuff.. */
468         memcpy(mm, oldmm, sizeof(*mm));
469         mm->mm_vx_info = NULL;
470         if (!mm_init(mm))
471                 goto fail_nomem;
472
473         if (init_new_context(tsk,mm))
474                 goto fail_nocontext;
475
476         retval = dup_mmap(mm, oldmm);
477         if (retval)
478                 goto free_pt;
479
480 good_mm:
481         tsk->mm = mm;
482         tsk->active_mm = mm;
483         return 0;
484
485 free_pt:
486         mmput(mm);
487 fail_nomem:
488         return retval;
489
490 fail_nocontext:
491         /*
492          * If init_new_context() failed, we cannot use mmput() to free the mm
493          * because it calls destroy_context()
494          */
495         mm_free_pgd(mm);
496         free_mm(mm);
497         return retval;
498 }
499
500 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
501 {
502         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
503         /* We don't need to lock fs - think why ;-) */
504         if (fs) {
505                 atomic_set(&fs->count, 1);
506                 rwlock_init(&fs->lock);
507                 fs->umask = old->umask;
508                 read_lock(&old->lock);
509                 fs->rootmnt = mntget(old->rootmnt);
510                 fs->root = dget(old->root);
511                 fs->pwdmnt = mntget(old->pwdmnt);
512                 fs->pwd = dget(old->pwd);
513                 if (old->altroot) {
514                         fs->altrootmnt = mntget(old->altrootmnt);
515                         fs->altroot = dget(old->altroot);
516                 } else {
517                         fs->altrootmnt = NULL;
518                         fs->altroot = NULL;
519                 }
520                 read_unlock(&old->lock);
521         }
522         return fs;
523 }
524
525 struct fs_struct *copy_fs_struct(struct fs_struct *old)
526 {
527         return __copy_fs_struct(old);
528 }
529
530 EXPORT_SYMBOL_GPL(copy_fs_struct);
531
532 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
533 {
534         if (clone_flags & CLONE_FS) {
535                 atomic_inc(&current->fs->count);
536                 return 0;
537         }
538         tsk->fs = __copy_fs_struct(current->fs);
539         if (!tsk->fs)
540                 return -ENOMEM;
541         return 0;
542 }
543
544 static int count_open_files(struct files_struct *files, int size)
545 {
546         int i;
547
548         /* Find the last open fd */
549         for (i = size/(8*sizeof(long)); i > 0; ) {
550                 if (files->open_fds->fds_bits[--i])
551                         break;
552         }
553         i = (i+1) * 8 * sizeof(long);
554         return i;
555 }
556
557 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
558 {
559         struct files_struct *oldf, *newf;
560         struct file **old_fds, **new_fds;
561         int open_files, nfds, size, i, error = 0;
562
563         /*
564          * A background process may not have any files ...
565          */
566         oldf = current->files;
567         if (!oldf)
568                 goto out;
569
570         if (clone_flags & CLONE_FILES) {
571                 atomic_inc(&oldf->count);
572                 goto out;
573         }
574
575         /*
576          * Note: we may be using current for both targets (See exec.c)
577          * This works because we cache current->files (old) as oldf. Don't
578          * break this.
579          */
580         tsk->files = NULL;
581         error = -ENOMEM;
582         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
583         if (!newf) 
584                 goto out;
585
586         atomic_set(&newf->count, 1);
587
588         spin_lock_init(&newf->file_lock);
589         newf->next_fd       = 0;
590         newf->max_fds       = NR_OPEN_DEFAULT;
591         newf->max_fdset     = __FD_SETSIZE;
592         newf->close_on_exec = &newf->close_on_exec_init;
593         newf->open_fds      = &newf->open_fds_init;
594         newf->fd            = &newf->fd_array[0];
595
596         /* We don't yet have the oldf readlock, but even if the old
597            fdset gets grown now, we'll only copy up to "size" fds */
598         size = oldf->max_fdset;
599         if (size > __FD_SETSIZE) {
600                 newf->max_fdset = 0;
601                 spin_lock(&newf->file_lock);
602                 error = expand_fdset(newf, size-1);
603                 spin_unlock(&newf->file_lock);
604                 if (error)
605                         goto out_release;
606         }
607         spin_lock(&oldf->file_lock);
608
609         open_files = count_open_files(oldf, size);
610
611         /*
612          * Check whether we need to allocate a larger fd array.
613          * Note: we're not a clone task, so the open count won't
614          * change.
615          */
616         nfds = NR_OPEN_DEFAULT;
617         if (open_files > nfds) {
618                 spin_unlock(&oldf->file_lock);
619                 newf->max_fds = 0;
620                 spin_lock(&newf->file_lock);
621                 error = expand_fd_array(newf, open_files-1);
622                 spin_unlock(&newf->file_lock);
623                 if (error) 
624                         goto out_release;
625                 nfds = newf->max_fds;
626                 spin_lock(&oldf->file_lock);
627         }
628
629         old_fds = oldf->fd;
630         new_fds = newf->fd;
631
632         memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
633         memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
634
635         for (i = open_files; i != 0; i--) {
636                 struct file *f = *old_fds++;
637                 if (f) {
638                         get_file(f);
639                 } else {
640                         /*
641                          * The fd may be claimed in the fd bitmap but not yet
642                          * instantiated in the files array if a sibling thread
643                          * is partway through open().  So make sure that this
644                          * fd is available to the new process.
645                          */
646                         FD_CLR(open_files - i, newf->open_fds);
647                 }
648                 *new_fds++ = f;
649         }
650         spin_unlock(&oldf->file_lock);
651
652         /* compute the remainder to be cleared */
653         size = (newf->max_fds - open_files) * sizeof(struct file *);
654
655         /* This is long word aligned thus could use a optimized version */ 
656         memset(new_fds, 0, size); 
657
658         if (newf->max_fdset > open_files) {
659                 int left = (newf->max_fdset-open_files)/8;
660                 int start = open_files / (8 * sizeof(unsigned long));
661
662                 memset(&newf->open_fds->fds_bits[start], 0, left);
663                 memset(&newf->close_on_exec->fds_bits[start], 0, left);
664         }
665
666         tsk->files = newf;
667         error = 0;
668 out:
669         return error;
670
671 out_release:
672         free_fdset (newf->close_on_exec, newf->max_fdset);
673         free_fdset (newf->open_fds, newf->max_fdset);
674         kmem_cache_free(files_cachep, newf);
675         goto out;
676 }
677
678 /*
679  *      Helper to unshare the files of the current task.
680  *      We don't want to expose copy_files internals to
681  *      the exec layer of the kernel.
682  */
683
684 int unshare_files(void)
685 {
686         struct files_struct *files  = current->files;
687         int rc;
688
689         if(!files)
690                 BUG();
691
692         /* This can race but the race causes us to copy when we don't
693            need to and drop the copy */
694         if(atomic_read(&files->count) == 1)
695         {
696                 atomic_inc(&files->count);
697                 return 0;
698         }
699         rc = copy_files(0, current);
700         if(rc)
701                 current->files = files;
702         return rc;
703 }
704
705 EXPORT_SYMBOL(unshare_files);
706
707 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
708 {
709         struct sighand_struct *sig;
710
711         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
712                 atomic_inc(&current->sighand->count);
713                 return 0;
714         }
715         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
716         tsk->sighand = sig;
717         if (!sig)
718                 return -ENOMEM;
719         spin_lock_init(&sig->siglock);
720         atomic_set(&sig->count, 1);
721         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
722         return 0;
723 }
724
725 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
726 {
727         struct signal_struct *sig;
728
729         if (clone_flags & CLONE_THREAD) {
730                 atomic_inc(&current->signal->count);
731                 atomic_inc(&current->signal->live);
732                 return 0;
733         }
734         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
735         tsk->signal = sig;
736         if (!sig)
737                 return -ENOMEM;
738         atomic_set(&sig->count, 1);
739         atomic_set(&sig->live, 1);
740         sig->group_exit = 0;
741         sig->group_exit_code = 0;
742         sig->group_exit_task = NULL;
743         sig->group_stop_count = 0;
744         sig->stop_state = 0;
745         sig->curr_target = NULL;
746         init_sigpending(&sig->shared_pending);
747         INIT_LIST_HEAD(&sig->posix_timers);
748
749         sig->tty = current->signal->tty;
750         sig->pgrp = process_group(current);
751         sig->session = current->signal->session;
752         sig->leader = 0;        /* session leadership doesn't inherit */
753         sig->tty_old_pgrp = 0;
754
755         sig->utime = sig->stime = sig->cutime = sig->cstime = 0;
756         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
757         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
758
759         task_lock(current->group_leader);
760         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
761         task_unlock(current->group_leader);
762
763         return 0;
764 }
765
766 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
767 {
768         unsigned long new_flags = p->flags;
769
770         new_flags &= ~PF_SUPERPRIV;
771         new_flags |= PF_FORKNOEXEC;
772         if (!(clone_flags & CLONE_PTRACE))
773                 p->ptrace = 0;
774         p->flags = new_flags;
775 }
776
777 asmlinkage long sys_set_tid_address(int __user *tidptr)
778 {
779         current->clear_child_tid = tidptr;
780
781         return current->pid;
782 }
783
784 /*
785  * This creates a new process as a copy of the old one,
786  * but does not actually start it yet.
787  *
788  * It copies the registers, and all the appropriate
789  * parts of the process environment (as per the clone
790  * flags). The actual kick-off is left to the caller.
791  */
792 static task_t *copy_process(unsigned long clone_flags,
793                                  unsigned long stack_start,
794                                  struct pt_regs *regs,
795                                  unsigned long stack_size,
796                                  int __user *parent_tidptr,
797                                  int __user *child_tidptr,
798                                  int pid)
799 {
800         int retval;
801         struct task_struct *p = NULL;
802         struct vx_info *vxi;
803
804         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
805                 return ERR_PTR(-EINVAL);
806
807         /*
808          * Thread groups must share signals as well, and detached threads
809          * can only be started up within the thread group.
810          */
811         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
812                 return ERR_PTR(-EINVAL);
813
814         /*
815          * Shared signal handlers imply shared VM. By way of the above,
816          * thread groups also imply shared VM. Blocking this case allows
817          * for various simplifications in other code.
818          */
819         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
820                 return ERR_PTR(-EINVAL);
821
822         retval = security_task_create(clone_flags);
823         if (retval)
824                 goto fork_out;
825
826         retval = -ENOMEM;
827         p = dup_task_struct(current);
828         if (!p)
829                 goto fork_out;
830         p->tux_info = NULL;
831
832         p->vx_info = NULL;
833         set_vx_info(&p->vx_info, current->vx_info);
834         p->nx_info = NULL;
835         set_nx_info(&p->nx_info, current->nx_info);
836
837         /* check vserver memory */
838         if (p->mm && !(clone_flags & CLONE_VM)) {
839                 if (vx_vmpages_avail(p->mm, p->mm->total_vm))
840                         vx_pages_add(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
841                 else
842                         goto bad_fork_free;
843         }
844         if (p->mm && vx_flags(VXF_FORK_RSS, 0)) {
845                 if (!vx_rsspages_avail(p->mm, p->mm->rss))
846                         goto bad_fork_cleanup_vm;
847         }
848
849         p->vx_info = NULL;
850         set_vx_info(&p->vx_info, current->vx_info);
851         p->nx_info = NULL;
852         set_nx_info(&p->nx_info, current->nx_info);
853
854         /* check vserver memory */
855         if (p->mm && !(clone_flags & CLONE_VM)) {
856                 if (vx_vmpages_avail(p->mm, p->mm->total_vm))
857                         vx_pages_add(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
858                 else
859                         goto bad_fork_free;
860         }
861         if (p->mm && vx_flags(VXF_FORK_RSS, 0)) {
862                 if (!vx_rsspages_avail(p->mm, p->mm->rss))
863                         goto bad_fork_cleanup_vm;
864         }
865
866         retval = -EAGAIN;
867         if (!vx_nproc_avail(1))
868                 goto bad_fork_cleanup_vm;
869
870         if (atomic_read(&p->user->processes) >=
871                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
872                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
873                                 p->user != &root_user)
874                         goto bad_fork_cleanup_vm;
875         }
876
877         atomic_inc(&p->user->__count);
878         atomic_inc(&p->user->processes);
879         get_group_info(p->group_info);
880
881         /*
882          * If multiple threads are within copy_process(), then this check
883          * triggers too late. This doesn't hurt, the check is only there
884          * to stop root fork bombs.
885          */
886         if (nr_threads >= max_threads)
887                 goto bad_fork_cleanup_count;
888
889         if (!try_module_get(p->thread_info->exec_domain->module))
890                 goto bad_fork_cleanup_count;
891
892         if (p->binfmt && !try_module_get(p->binfmt->module))
893                 goto bad_fork_cleanup_put_domain;
894
895         p->did_exec = 0;
896         copy_flags(clone_flags, p);
897         p->pid = pid;
898         retval = -EFAULT;
899         if (clone_flags & CLONE_PARENT_SETTID)
900                 if (put_user(p->pid, parent_tidptr))
901                         goto bad_fork_cleanup;
902
903         p->proc_dentry = NULL;
904
905         INIT_LIST_HEAD(&p->children);
906         INIT_LIST_HEAD(&p->sibling);
907         init_waitqueue_head(&p->wait_chldexit);
908         p->vfork_done = NULL;
909         spin_lock_init(&p->alloc_lock);
910         spin_lock_init(&p->proc_lock);
911
912         clear_tsk_thread_flag(p, TIF_SIGPENDING);
913         init_sigpending(&p->pending);
914
915         p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
916         p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
917         init_timer(&p->real_timer);
918         p->real_timer.data = (unsigned long) p;
919
920         p->utime = p->stime = 0;
921         p->lock_depth = -1;             /* -1 = no lock */
922         do_posix_clock_monotonic_gettime(&p->start_time);
923         p->security = NULL;
924         p->io_context = NULL;
925         p->io_wait = NULL;
926         p->audit_context = NULL;
927 #ifdef CONFIG_NUMA
928         p->mempolicy = mpol_copy(p->mempolicy);
929         if (IS_ERR(p->mempolicy)) {
930                 retval = PTR_ERR(p->mempolicy);
931                 p->mempolicy = NULL;
932                 goto bad_fork_cleanup;
933         }
934 #endif
935
936         p->tgid = p->pid;
937         if (clone_flags & CLONE_THREAD)
938                 p->tgid = current->tgid;
939
940         if ((retval = security_task_alloc(p)))
941                 goto bad_fork_cleanup_policy;
942         if ((retval = audit_alloc(p)))
943                 goto bad_fork_cleanup_security;
944         /* copy all the process information */
945         if ((retval = copy_semundo(clone_flags, p)))
946                 goto bad_fork_cleanup_audit;
947         if ((retval = copy_files(clone_flags, p)))
948                 goto bad_fork_cleanup_semundo;
949         if ((retval = copy_fs(clone_flags, p)))
950                 goto bad_fork_cleanup_files;
951         if ((retval = copy_sighand(clone_flags, p)))
952                 goto bad_fork_cleanup_fs;
953         if ((retval = copy_signal(clone_flags, p)))
954                 goto bad_fork_cleanup_sighand;
955         if ((retval = copy_mm(clone_flags, p)))
956                 goto bad_fork_cleanup_signal;
957         if ((retval = copy_keys(clone_flags, p)))
958                 goto bad_fork_cleanup_mm;
959         if ((retval = copy_namespace(clone_flags, p)))
960                 goto bad_fork_cleanup_keys;
961         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
962         if (retval)
963                 goto bad_fork_cleanup_namespace;
964
965         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
966         /*
967          * Clear TID on mm_release()?
968          */
969         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
970
971         /*
972          * Syscall tracing should be turned off in the child regardless
973          * of CLONE_PTRACE.
974          */
975         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
976
977         /* Our parent execution domain becomes current domain
978            These must match for thread signalling to apply */
979            
980         p->parent_exec_id = p->self_exec_id;
981
982         /* ok, now we should be set up.. */
983         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
984         p->pdeath_signal = 0;
985         p->exit_state = 0;
986
987         /* Perform scheduler related setup */
988         sched_fork(p);
989
990         /*
991          * Ok, make it visible to the rest of the system.
992          * We dont wake it up yet.
993          */
994         p->group_leader = p;
995         INIT_LIST_HEAD(&p->ptrace_children);
996         INIT_LIST_HEAD(&p->ptrace_list);
997
998         /* Need tasklist lock for parent etc handling! */
999         write_lock_irq(&tasklist_lock);
1000
1001         /*
1002          * The task hasn't been attached yet, so cpus_allowed mask cannot
1003          * have changed. The cpus_allowed mask of the parent may have
1004          * changed after it was copied first time, and it may then move to
1005          * another CPU - so we re-copy it here and set the child's CPU to
1006          * the parent's CPU. This avoids alot of nasty races.
1007          */
1008         p->cpus_allowed = current->cpus_allowed;
1009         set_task_cpu(p, smp_processor_id());
1010
1011         /*
1012          * Check for pending SIGKILL! The new thread should not be allowed
1013          * to slip out of an OOM kill. (or normal SIGKILL.)
1014          */
1015         if (sigismember(&current->pending.signal, SIGKILL)) {
1016                 write_unlock_irq(&tasklist_lock);
1017                 retval = -EINTR;
1018                 goto bad_fork_cleanup_namespace;
1019         }
1020
1021         /* CLONE_PARENT re-uses the old parent */
1022         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1023                 p->real_parent = current->real_parent;
1024         else
1025                 p->real_parent = current;
1026         p->parent = p->real_parent;
1027
1028         if (clone_flags & CLONE_THREAD) {
1029                 spin_lock(&current->sighand->siglock);
1030                 /*
1031                  * Important: if an exit-all has been started then
1032                  * do not create this new thread - the whole thread
1033                  * group is supposed to exit anyway.
1034                  */
1035                 if (current->signal->group_exit) {
1036                         spin_unlock(&current->sighand->siglock);
1037                         write_unlock_irq(&tasklist_lock);
1038                         retval = -EAGAIN;
1039                         goto bad_fork_cleanup_namespace;
1040                 }
1041                 p->group_leader = current->group_leader;
1042
1043                 if (current->signal->group_stop_count > 0) {
1044                         /*
1045                          * There is an all-stop in progress for the group.
1046                          * We ourselves will stop as soon as we check signals.
1047                          * Make the new thread part of that group stop too.
1048                          */
1049                         current->signal->group_stop_count++;
1050                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1051                 }
1052
1053                 spin_unlock(&current->sighand->siglock);
1054         }
1055
1056         SET_LINKS(p);
1057         if (unlikely(p->ptrace & PT_PTRACED))
1058                 __ptrace_link(p, current->parent);
1059
1060         attach_pid(p, PIDTYPE_PID, p->pid);
1061         attach_pid(p, PIDTYPE_TGID, p->tgid);
1062         if (thread_group_leader(p)) {
1063                 attach_pid(p, PIDTYPE_PGID, process_group(p));
1064                 attach_pid(p, PIDTYPE_SID, p->signal->session);
1065                 if (p->pid)
1066                         __get_cpu_var(process_counts)++;
1067         }
1068
1069         p->ioprio = current->ioprio;
1070         nr_threads++;
1071         /* p is copy of current */
1072         vxi = p->vx_info;
1073         if (vxi) {
1074                 atomic_inc(&vxi->cvirt.nr_threads);
1075                 vx_nproc_inc(p);
1076         }
1077         write_unlock_irq(&tasklist_lock);
1078         retval = 0;
1079
1080 fork_out:
1081         if (retval)
1082                 return ERR_PTR(retval);
1083         return p;
1084
1085 bad_fork_cleanup_namespace:
1086         exit_namespace(p);
1087 bad_fork_cleanup_keys:
1088         exit_keys(p);
1089 bad_fork_cleanup_mm:
1090         if (p->mm)
1091                 mmput(p->mm);
1092 bad_fork_cleanup_signal:
1093         exit_signal(p);
1094 bad_fork_cleanup_sighand:
1095         exit_sighand(p);
1096 bad_fork_cleanup_fs:
1097         exit_fs(p); /* blocking */
1098 bad_fork_cleanup_files:
1099         exit_files(p); /* blocking */
1100 bad_fork_cleanup_semundo:
1101         exit_sem(p);
1102 bad_fork_cleanup_audit:
1103         audit_free(p);
1104 bad_fork_cleanup_security:
1105         security_task_free(p);
1106 bad_fork_cleanup_policy:
1107 #ifdef CONFIG_NUMA
1108         mpol_free(p->mempolicy);
1109 #endif
1110 bad_fork_cleanup:
1111         if (p->binfmt)
1112                 module_put(p->binfmt->module);
1113 bad_fork_cleanup_put_domain:
1114         module_put(p->thread_info->exec_domain->module);
1115 bad_fork_cleanup_count:
1116         put_group_info(p->group_info);
1117         atomic_dec(&p->user->processes);
1118         free_uid(p->user);
1119 bad_fork_cleanup_vm:
1120         if (p->mm && !(clone_flags & CLONE_VM))
1121                 vx_pages_sub(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
1122 bad_fork_free:
1123         free_task(p);
1124         goto fork_out;
1125 }
1126
1127 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1128 {
1129         memset(regs, 0, sizeof(struct pt_regs));
1130         return regs;
1131 }
1132
1133 task_t * __devinit fork_idle(int cpu)
1134 {
1135         task_t *task;
1136         struct pt_regs regs;
1137
1138         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1139         if (!task)
1140                 return ERR_PTR(-ENOMEM);
1141         init_idle(task, cpu);
1142         unhash_process(task);
1143         return task;
1144 }
1145
1146 static inline int fork_traceflag (unsigned clone_flags)
1147 {
1148         if (clone_flags & CLONE_UNTRACED)
1149                 return 0;
1150         else if (clone_flags & CLONE_VFORK) {
1151                 if (current->ptrace & PT_TRACE_VFORK)
1152                         return PTRACE_EVENT_VFORK;
1153         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1154                 if (current->ptrace & PT_TRACE_CLONE)
1155                         return PTRACE_EVENT_CLONE;
1156         } else if (current->ptrace & PT_TRACE_FORK)
1157                 return PTRACE_EVENT_FORK;
1158
1159         return 0;
1160 }
1161
1162 /*
1163  *  Ok, this is the main fork-routine.
1164  *
1165  * It copies the process, and if successful kick-starts
1166  * it and waits for it to finish using the VM if required.
1167  */
1168 long do_fork(unsigned long clone_flags,
1169               unsigned long stack_start,
1170               struct pt_regs *regs,
1171               unsigned long stack_size,
1172               int __user *parent_tidptr,
1173               int __user *child_tidptr)
1174 {
1175         struct task_struct *p;
1176         int trace = 0;
1177         long pid = alloc_pidmap();
1178
1179         if (pid < 0)
1180                 return -EAGAIN;
1181         if (unlikely(current->ptrace)) {
1182                 trace = fork_traceflag (clone_flags);
1183                 if (trace)
1184                         clone_flags |= CLONE_PTRACE;
1185         }
1186
1187         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1188
1189         /*
1190          * Do this prior waking up the new thread - the thread pointer
1191          * might get invalid after that point, if the thread exits quickly.
1192          */
1193         if (!IS_ERR(p)) {
1194                 struct completion vfork;
1195
1196                 if (clone_flags & CLONE_VFORK) {
1197                         p->vfork_done = &vfork;
1198                         init_completion(&vfork);
1199                 }
1200
1201                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1202                         /*
1203                          * We'll start up with an immediate SIGSTOP.
1204                          */
1205                         sigaddset(&p->pending.signal, SIGSTOP);
1206                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1207                 }
1208
1209                 if (!(clone_flags & CLONE_STOPPED))
1210                         wake_up_new_task(p, clone_flags);
1211                 else
1212                         p->state = TASK_STOPPED;
1213                 ++total_forks;
1214
1215                 if (unlikely (trace)) {
1216                         current->ptrace_message = pid;
1217                         ptrace_notify ((trace << 8) | SIGTRAP);
1218                 }
1219
1220                 if (clone_flags & CLONE_VFORK) {
1221                         wait_for_completion(&vfork);
1222                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1223                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1224                 }
1225         } else {
1226                 free_pidmap(pid);
1227                 pid = PTR_ERR(p);
1228         }
1229         return pid;
1230 }
1231
1232 /* SLAB cache for signal_struct structures (tsk->signal) */
1233 kmem_cache_t *signal_cachep;
1234
1235 /* SLAB cache for sighand_struct structures (tsk->sighand) */
1236 kmem_cache_t *sighand_cachep;
1237
1238 /* SLAB cache for files_struct structures (tsk->files) */
1239 kmem_cache_t *files_cachep;
1240
1241 /* SLAB cache for fs_struct structures (tsk->fs) */
1242 kmem_cache_t *fs_cachep;
1243
1244 /* SLAB cache for vm_area_struct structures */
1245 kmem_cache_t *vm_area_cachep;
1246
1247 /* SLAB cache for mm_struct structures (tsk->mm) */
1248 kmem_cache_t *mm_cachep;
1249
1250 void __init proc_caches_init(void)
1251 {
1252         sighand_cachep = kmem_cache_create("sighand_cache",
1253                         sizeof(struct sighand_struct), 0,
1254                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1255         signal_cachep = kmem_cache_create("signal_cache",
1256                         sizeof(struct signal_struct), 0,
1257                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1258         files_cachep = kmem_cache_create("files_cache", 
1259                         sizeof(struct files_struct), 0,
1260                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1261         fs_cachep = kmem_cache_create("fs_cache", 
1262                         sizeof(struct fs_struct), 0,
1263                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1264         vm_area_cachep = kmem_cache_create("vm_area_struct",
1265                         sizeof(struct vm_area_struct), 0,
1266                         SLAB_PANIC, NULL, NULL);
1267         mm_cachep = kmem_cache_create("mm_struct",
1268                         sizeof(struct mm_struct), 0,
1269                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1270 }