This commit was manufactured by cvs2svn to create tag
[linux-2.6.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/security.h>
33 #include <linux/swap.h>
34 #include <linux/syscalls.h>
35 #include <linux/jiffies.h>
36 #include <linux/futex.h>
37 #include <linux/ptrace.h>
38 #include <linux/mount.h>
39 #include <linux/audit.h>
40 #include <linux/profile.h>
41 #include <linux/rmap.h>
42 #include <linux/ckrm_events.h>
43 #include <linux/ckrm_tsk.h>
44 #include <linux/ckrm_tc.h>
45 #include <linux/ckrm_mem_inline.h>
46 #include <linux/vs_network.h>
47 #include <linux/vs_limit.h>
48 #include <linux/vs_memory.h>
49
50 #include <asm/pgtable.h>
51 #include <asm/pgalloc.h>
52 #include <asm/uaccess.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56
57 /* The idle threads do not count..
58  * Protected by write_lock_irq(&tasklist_lock)
59  */
60 int nr_threads;
61
62 int max_threads;
63 unsigned long total_forks;      /* Handle normal Linux uptimes. */
64
65 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
66
67 rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED;  /* outer */
68
69 EXPORT_SYMBOL(tasklist_lock);
70
71 int nr_processes(void)
72 {
73         int cpu;
74         int total = 0;
75
76         for_each_online_cpu(cpu)
77                 total += per_cpu(process_counts, cpu);
78
79         return total;
80 }
81
82 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
83 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
84 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
85 static kmem_cache_t *task_struct_cachep;
86 #endif
87
88 void free_task(struct task_struct *tsk)
89 {
90         free_thread_info(tsk->thread_info);
91         clr_vx_info(&tsk->vx_info);
92         clr_nx_info(&tsk->nx_info);
93         free_task_struct(tsk);
94 }
95 EXPORT_SYMBOL(free_task);
96
97 void __put_task_struct(struct task_struct *tsk)
98 {
99         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
100         WARN_ON(atomic_read(&tsk->usage));
101         WARN_ON(tsk == current);
102
103         if (unlikely(tsk->audit_context))
104                 audit_free(tsk);
105         security_task_free(tsk);
106         free_uid(tsk->user);
107         put_group_info(tsk->group_info);
108
109         if (!profile_handoff_task(tsk))
110                 free_task(tsk);
111 }
112
113 void __init fork_init(unsigned long mempages)
114 {
115 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
116 #ifndef ARCH_MIN_TASKALIGN
117 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
118 #endif
119         /* create a slab on which task_structs can be allocated */
120         task_struct_cachep =
121                 kmem_cache_create("task_struct", sizeof(struct task_struct),
122                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
123 #endif
124
125         /*
126          * The default maximum number of threads is set to a safe
127          * value: the thread structures can take up at most half
128          * of memory.
129          */
130         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
131
132         /*
133          * we need to allow at least 20 threads to boot a system
134          */
135         if(max_threads < 20)
136                 max_threads = 20;
137
138         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
139         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
140 }
141
142 static struct task_struct *dup_task_struct(struct task_struct *orig)
143 {
144         struct task_struct *tsk;
145         struct thread_info *ti;
146
147         prepare_to_copy(orig);
148
149         tsk = alloc_task_struct();
150         if (!tsk)
151                 return NULL;
152
153         ti = alloc_thread_info(tsk);
154         if (!ti) {
155                 free_task_struct(tsk);
156                 return NULL;
157         }
158
159         *ti = *orig->thread_info;
160         *tsk = *orig;
161         tsk->thread_info = ti;
162         ti->task = tsk;
163
164         ckrm_cb_newtask(tsk);
165         ckrm_task_mm_init(tsk);
166         /* One for us, one for whoever does the "release_task()" (usually parent) */
167         atomic_set(&tsk->usage,2);
168         return tsk;
169 }
170
171 #ifdef CONFIG_MMU
172 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
173 {
174         struct vm_area_struct * mpnt, *tmp, **pprev;
175         struct rb_node **rb_link, *rb_parent;
176         int retval;
177         unsigned long charge;
178         struct mempolicy *pol;
179
180         down_write(&oldmm->mmap_sem);
181         flush_cache_mm(current->mm);
182         mm->locked_vm = 0;
183         mm->mmap = NULL;
184         mm->mmap_cache = NULL;
185         mm->free_area_cache = oldmm->mmap_base;
186         mm->map_count = 0;
187         mm->rss = 0;
188         mm->anon_rss = 0;
189         cpus_clear(mm->cpu_vm_mask);
190         mm->mm_rb = RB_ROOT;
191         rb_link = &mm->mm_rb.rb_node;
192         rb_parent = NULL;
193         pprev = &mm->mmap;
194
195         for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
196                 struct file *file;
197
198                 if (mpnt->vm_flags & VM_DONTCOPY) {
199                         __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
200                                                         -vma_pages(mpnt));
201                         continue;
202                 }
203                 charge = 0;
204                 if (mpnt->vm_flags & VM_ACCOUNT) {
205                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
206                         if (security_vm_enough_memory(len))
207                                 goto fail_nomem;
208                         charge = len;
209                 }
210                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
211                 if (!tmp)
212                         goto fail_nomem;
213                 *tmp = *mpnt;
214                 pol = mpol_copy(vma_policy(mpnt));
215                 retval = PTR_ERR(pol);
216                 if (IS_ERR(pol))
217                         goto fail_nomem_policy;
218                 vma_set_policy(tmp, pol);
219                 tmp->vm_flags &= ~VM_LOCKED;
220                 tmp->vm_mm = mm;
221                 tmp->vm_next = NULL;
222                 anon_vma_link(tmp);
223                 file = tmp->vm_file;
224                 if (file) {
225                         struct inode *inode = file->f_dentry->d_inode;
226                         get_file(file);
227                         if (tmp->vm_flags & VM_DENYWRITE)
228                                 atomic_dec(&inode->i_writecount);
229       
230                         /* insert tmp into the share list, just after mpnt */
231                         spin_lock(&file->f_mapping->i_mmap_lock);
232                         flush_dcache_mmap_lock(file->f_mapping);
233                         vma_prio_tree_add(tmp, mpnt);
234                         flush_dcache_mmap_unlock(file->f_mapping);
235                         spin_unlock(&file->f_mapping->i_mmap_lock);
236                 }
237
238                 /*
239                  * Link in the new vma and copy the page table entries:
240                  * link in first so that swapoff can see swap entries,
241                  * and try_to_unmap_one's find_vma find the new vma.
242                  */
243                 spin_lock(&mm->page_table_lock);
244                 *pprev = tmp;
245                 pprev = &tmp->vm_next;
246
247                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
248                 rb_link = &tmp->vm_rb.rb_right;
249                 rb_parent = &tmp->vm_rb;
250
251                 mm->map_count++;
252                 retval = copy_page_range(mm, current->mm, tmp);
253                 spin_unlock(&mm->page_table_lock);
254
255                 if (tmp->vm_ops && tmp->vm_ops->open)
256                         tmp->vm_ops->open(tmp);
257
258                 if (retval)
259                         goto out;
260         }
261         retval = 0;
262
263 out:
264         flush_tlb_mm(current->mm);
265         up_write(&oldmm->mmap_sem);
266         return retval;
267 fail_nomem_policy:
268         kmem_cache_free(vm_area_cachep, tmp);
269 fail_nomem:
270         retval = -ENOMEM;
271         vm_unacct_memory(charge);
272         goto out;
273 }
274
275 static inline int mm_alloc_pgd(struct mm_struct * mm)
276 {
277         mm->pgd = pgd_alloc(mm);
278         if (unlikely(!mm->pgd))
279                 return -ENOMEM;
280         return 0;
281 }
282
283 static inline void mm_free_pgd(struct mm_struct * mm)
284 {
285         pgd_free(mm->pgd);
286 }
287 #else
288 #define dup_mmap(mm, oldmm)     (0)
289 #define mm_alloc_pgd(mm)        (0)
290 #define mm_free_pgd(mm)
291 #endif /* CONFIG_MMU */
292
293 spinlock_t mmlist_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
294
295 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
296 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
297
298 #include <linux/init_task.h>
299
300 static struct mm_struct * mm_init(struct mm_struct * mm)
301 {
302         atomic_set(&mm->mm_users, 1);
303         atomic_set(&mm->mm_count, 1);
304         init_rwsem(&mm->mmap_sem);
305         INIT_LIST_HEAD(&mm->mmlist);
306         mm->core_waiters = 0;
307         mm->nr_ptes = 0;
308         spin_lock_init(&mm->page_table_lock);
309         rwlock_init(&mm->ioctx_list_lock);
310         mm->ioctx_list = NULL;
311         mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
312         mm->free_area_cache = TASK_UNMAPPED_BASE;
313         ckrm_mm_init(mm);
314
315         if (likely(!mm_alloc_pgd(mm))) {
316                 mm->def_flags = 0;
317                 set_vx_info(&mm->mm_vx_info, current->vx_info);
318                 return mm;
319         }
320         free_mm(mm);
321         return NULL;
322 }
323
324 /*
325  * Allocate and initialize an mm_struct.
326  */
327 struct mm_struct * mm_alloc(void)
328 {
329         struct mm_struct * mm;
330
331         mm = allocate_mm();
332         if (mm) {
333                 memset(mm, 0, sizeof(*mm));
334                 mm = mm_init(mm);
335                 ckrm_mm_setclass(mm, ckrm_get_mem_class(current));
336         }
337         return mm;
338 }
339
340 /*
341  * Called when the last reference to the mm
342  * is dropped: either by a lazy thread or by
343  * mmput. Free the page directory and the mm.
344  */
345 void fastcall __mmdrop(struct mm_struct *mm)
346 {
347         BUG_ON(mm == &init_mm);
348         mm_free_pgd(mm);
349         destroy_context(mm);
350         ckrm_mm_clearclass(mm);
351         clr_vx_info(&mm->mm_vx_info);
352         free_mm(mm);
353 }
354
355 /*
356  * Decrement the use count and release all resources for an mm.
357  */
358 void mmput(struct mm_struct *mm)
359 {
360         if (atomic_dec_and_test(&mm->mm_users)) {
361                 exit_aio(mm);
362                 exit_mmap(mm);
363                 if (!list_empty(&mm->mmlist)) {
364                         spin_lock(&mmlist_lock);
365                         list_del(&mm->mmlist);
366                         spin_unlock(&mmlist_lock);
367                 }
368                 put_swap_token(mm);
369                 mmdrop(mm);
370         }
371 }
372 EXPORT_SYMBOL_GPL(mmput);
373
374 /**
375  * get_task_mm - acquire a reference to the task's mm
376  *
377  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
378  * this kernel workthread has transiently adopted a user mm with use_mm,
379  * to do its AIO) is not set and if so returns a reference to it, after
380  * bumping up the use count.  User must release the mm via mmput()
381  * after use.  Typically used by /proc and ptrace.
382  */
383 struct mm_struct *get_task_mm(struct task_struct *task)
384 {
385         struct mm_struct *mm;
386
387         task_lock(task);
388         mm = task->mm;
389         if (mm) {
390                 if (task->flags & PF_BORROWED_MM)
391                         mm = NULL;
392                 else
393                         atomic_inc(&mm->mm_users);
394         }
395         task_unlock(task);
396         return mm;
397 }
398 EXPORT_SYMBOL_GPL(get_task_mm);
399
400 /* Please note the differences between mmput and mm_release.
401  * mmput is called whenever we stop holding onto a mm_struct,
402  * error success whatever.
403  *
404  * mm_release is called after a mm_struct has been removed
405  * from the current process.
406  *
407  * This difference is important for error handling, when we
408  * only half set up a mm_struct for a new process and need to restore
409  * the old one.  Because we mmput the new mm_struct before
410  * restoring the old one. . .
411  * Eric Biederman 10 January 1998
412  */
413 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
414 {
415         struct completion *vfork_done = tsk->vfork_done;
416
417         /* Get rid of any cached register state */
418         deactivate_mm(tsk, mm);
419
420         /* notify parent sleeping on vfork() */
421         if (vfork_done) {
422                 tsk->vfork_done = NULL;
423                 complete(vfork_done);
424         }
425         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
426                 u32 __user * tidptr = tsk->clear_child_tid;
427                 tsk->clear_child_tid = NULL;
428
429                 /*
430                  * We don't check the error code - if userspace has
431                  * not set up a proper pointer then tough luck.
432                  */
433                 put_user(0, tidptr);
434                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
435         }
436 }
437
438 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
439 {
440         struct mm_struct * mm, *oldmm;
441         int retval;
442
443         tsk->min_flt = tsk->maj_flt = 0;
444         tsk->nvcsw = tsk->nivcsw = 0;
445
446         tsk->mm = NULL;
447         tsk->active_mm = NULL;
448
449         /*
450          * Are we cloning a kernel thread?
451          *
452          * We need to steal a active VM for that..
453          */
454         oldmm = current->mm;
455         if (!oldmm)
456                 return 0;
457
458         if (clone_flags & CLONE_VM) {
459                 atomic_inc(&oldmm->mm_users);
460                 mm = oldmm;
461                 /*
462                  * There are cases where the PTL is held to ensure no
463                  * new threads start up in user mode using an mm, which
464                  * allows optimizing out ipis; the tlb_gather_mmu code
465                  * is an example.
466                  */
467                 spin_unlock_wait(&oldmm->page_table_lock);
468                 goto good_mm;
469         }
470
471         retval = -ENOMEM;
472         mm = allocate_mm();
473         if (!mm)
474                 goto fail_nomem;
475
476         /* Copy the current MM stuff.. */
477         memcpy(mm, oldmm, sizeof(*mm));
478         mm->mm_vx_info = NULL;
479         if (!mm_init(mm))
480                 goto fail_nomem;
481
482         if (init_new_context(tsk,mm))
483                 goto fail_nocontext;
484
485         retval = dup_mmap(mm, oldmm);
486         if (retval)
487                 goto free_pt;
488
489 good_mm:
490         ckrm_mm_setclass(mm, oldmm->memclass);
491         tsk->mm = mm;
492         tsk->active_mm = mm;
493         ckrm_mm_setclass(mm, oldmm->memclass);
494         ckrm_task_mm_set(mm, tsk);
495         return 0;
496
497 free_pt:
498         mmput(mm);
499 fail_nomem:
500         return retval;
501
502 fail_nocontext:
503         /*
504          * If init_new_context() failed, we cannot use mmput() to free the mm
505          * because it calls destroy_context()
506          */
507         mm_free_pgd(mm);
508         free_mm(mm);
509         return retval;
510 }
511
512 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
513 {
514         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
515         /* We don't need to lock fs - think why ;-) */
516         if (fs) {
517                 atomic_set(&fs->count, 1);
518                 rwlock_init(&fs->lock);
519                 fs->umask = old->umask;
520                 read_lock(&old->lock);
521                 fs->rootmnt = mntget(old->rootmnt);
522                 fs->root = dget(old->root);
523                 fs->pwdmnt = mntget(old->pwdmnt);
524                 fs->pwd = dget(old->pwd);
525                 if (old->altroot) {
526                         fs->altrootmnt = mntget(old->altrootmnt);
527                         fs->altroot = dget(old->altroot);
528                 } else {
529                         fs->altrootmnt = NULL;
530                         fs->altroot = NULL;
531                 }
532                 read_unlock(&old->lock);
533         }
534         return fs;
535 }
536
537 struct fs_struct *copy_fs_struct(struct fs_struct *old)
538 {
539         return __copy_fs_struct(old);
540 }
541
542 EXPORT_SYMBOL_GPL(copy_fs_struct);
543
544 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
545 {
546         if (clone_flags & CLONE_FS) {
547                 atomic_inc(&current->fs->count);
548                 return 0;
549         }
550         tsk->fs = __copy_fs_struct(current->fs);
551         if (!tsk->fs)
552                 return -ENOMEM;
553         return 0;
554 }
555
556 static int count_open_files(struct files_struct *files, int size)
557 {
558         int i;
559
560         /* Find the last open fd */
561         for (i = size/(8*sizeof(long)); i > 0; ) {
562                 if (files->open_fds->fds_bits[--i])
563                         break;
564         }
565         i = (i+1) * 8 * sizeof(long);
566         return i;
567 }
568
569 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
570 {
571         struct files_struct *oldf, *newf;
572         struct file **old_fds, **new_fds;
573         int open_files, nfds, size, i, error = 0;
574
575         /*
576          * A background process may not have any files ...
577          */
578         oldf = current->files;
579         if (!oldf)
580                 goto out;
581
582         if (clone_flags & CLONE_FILES) {
583                 atomic_inc(&oldf->count);
584                 goto out;
585         }
586
587         /*
588          * Note: we may be using current for both targets (See exec.c)
589          * This works because we cache current->files (old) as oldf. Don't
590          * break this.
591          */
592         tsk->files = NULL;
593         error = -ENOMEM;
594         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
595         if (!newf) 
596                 goto out;
597
598         atomic_set(&newf->count, 1);
599
600         spin_lock_init(&newf->file_lock);
601         newf->next_fd       = 0;
602         newf->max_fds       = NR_OPEN_DEFAULT;
603         newf->max_fdset     = __FD_SETSIZE;
604         newf->close_on_exec = &newf->close_on_exec_init;
605         newf->open_fds      = &newf->open_fds_init;
606         newf->fd            = &newf->fd_array[0];
607
608         /* We don't yet have the oldf readlock, but even if the old
609            fdset gets grown now, we'll only copy up to "size" fds */
610         size = oldf->max_fdset;
611         if (size > __FD_SETSIZE) {
612                 newf->max_fdset = 0;
613                 spin_lock(&newf->file_lock);
614                 error = expand_fdset(newf, size-1);
615                 spin_unlock(&newf->file_lock);
616                 if (error)
617                         goto out_release;
618         }
619         spin_lock(&oldf->file_lock);
620
621         open_files = count_open_files(oldf, size);
622
623         /*
624          * Check whether we need to allocate a larger fd array.
625          * Note: we're not a clone task, so the open count won't
626          * change.
627          */
628         nfds = NR_OPEN_DEFAULT;
629         if (open_files > nfds) {
630                 spin_unlock(&oldf->file_lock);
631                 newf->max_fds = 0;
632                 spin_lock(&newf->file_lock);
633                 error = expand_fd_array(newf, open_files-1);
634                 spin_unlock(&newf->file_lock);
635                 if (error) 
636                         goto out_release;
637                 nfds = newf->max_fds;
638                 spin_lock(&oldf->file_lock);
639         }
640
641         old_fds = oldf->fd;
642         new_fds = newf->fd;
643
644         memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
645         memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
646
647         for (i = open_files; i != 0; i--) {
648                 struct file *f = *old_fds++;
649                 if (f) {
650                         get_file(f);
651                 } else {
652                         /*
653                          * The fd may be claimed in the fd bitmap but not yet
654                          * instantiated in the files array if a sibling thread
655                          * is partway through open().  So make sure that this
656                          * fd is available to the new process.
657                          */
658                         FD_CLR(open_files - i, newf->open_fds);
659                 }
660                 *new_fds++ = f;
661         }
662         spin_unlock(&oldf->file_lock);
663
664         /* compute the remainder to be cleared */
665         size = (newf->max_fds - open_files) * sizeof(struct file *);
666
667         /* This is long word aligned thus could use a optimized version */ 
668         memset(new_fds, 0, size); 
669
670         if (newf->max_fdset > open_files) {
671                 int left = (newf->max_fdset-open_files)/8;
672                 int start = open_files / (8 * sizeof(unsigned long));
673
674                 memset(&newf->open_fds->fds_bits[start], 0, left);
675                 memset(&newf->close_on_exec->fds_bits[start], 0, left);
676         }
677
678         tsk->files = newf;
679         error = 0;
680 out:
681         return error;
682
683 out_release:
684         free_fdset (newf->close_on_exec, newf->max_fdset);
685         free_fdset (newf->open_fds, newf->max_fdset);
686         kmem_cache_free(files_cachep, newf);
687         goto out;
688 }
689
690 /*
691  *      Helper to unshare the files of the current task.
692  *      We don't want to expose copy_files internals to
693  *      the exec layer of the kernel.
694  */
695
696 int unshare_files(void)
697 {
698         struct files_struct *files  = current->files;
699         int rc;
700
701         if(!files)
702                 BUG();
703
704         /* This can race but the race causes us to copy when we don't
705            need to and drop the copy */
706         if(atomic_read(&files->count) == 1)
707         {
708                 atomic_inc(&files->count);
709                 return 0;
710         }
711         rc = copy_files(0, current);
712         if(rc)
713                 current->files = files;
714         return rc;
715 }
716
717 EXPORT_SYMBOL(unshare_files);
718
719 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
720 {
721         struct sighand_struct *sig;
722
723         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
724                 atomic_inc(&current->sighand->count);
725                 return 0;
726         }
727         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
728         tsk->sighand = sig;
729         if (!sig)
730                 return -ENOMEM;
731         spin_lock_init(&sig->siglock);
732         atomic_set(&sig->count, 1);
733         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
734         return 0;
735 }
736
737 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
738 {
739         struct signal_struct *sig;
740
741         if (clone_flags & CLONE_THREAD) {
742                 atomic_inc(&current->signal->count);
743                 atomic_inc(&current->signal->live);
744                 return 0;
745         }
746         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
747         tsk->signal = sig;
748         if (!sig)
749                 return -ENOMEM;
750         atomic_set(&sig->count, 1);
751         atomic_set(&sig->live, 1);
752         sig->group_exit = 0;
753         sig->group_exit_code = 0;
754         sig->group_exit_task = NULL;
755         sig->group_stop_count = 0;
756         sig->stop_state = 0;
757         sig->curr_target = NULL;
758         init_sigpending(&sig->shared_pending);
759         INIT_LIST_HEAD(&sig->posix_timers);
760
761         sig->tty = current->signal->tty;
762         sig->pgrp = process_group(current);
763         sig->session = current->signal->session;
764         sig->leader = 0;        /* session leadership doesn't inherit */
765         sig->tty_old_pgrp = 0;
766
767         sig->utime = sig->stime = sig->cutime = sig->cstime = 0;
768         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
769         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
770
771         task_lock(current->group_leader);
772         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
773         task_unlock(current->group_leader);
774
775         return 0;
776 }
777
778 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
779 {
780         unsigned long new_flags = p->flags;
781
782         new_flags &= ~PF_SUPERPRIV;
783         new_flags |= PF_FORKNOEXEC;
784         if (!(clone_flags & CLONE_PTRACE))
785                 p->ptrace = 0;
786         p->flags = new_flags;
787 }
788
789 asmlinkage long sys_set_tid_address(int __user *tidptr)
790 {
791         current->clear_child_tid = tidptr;
792
793         return current->pid;
794 }
795
796 /*
797  * This creates a new process as a copy of the old one,
798  * but does not actually start it yet.
799  *
800  * It copies the registers, and all the appropriate
801  * parts of the process environment (as per the clone
802  * flags). The actual kick-off is left to the caller.
803  */
804 static task_t *copy_process(unsigned long clone_flags,
805                                  unsigned long stack_start,
806                                  struct pt_regs *regs,
807                                  unsigned long stack_size,
808                                  int __user *parent_tidptr,
809                                  int __user *child_tidptr,
810                                  int pid)
811 {
812         int retval;
813         struct task_struct *p = NULL;
814         struct vx_info *vxi;
815
816         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
817                 return ERR_PTR(-EINVAL);
818
819         /*
820          * Thread groups must share signals as well, and detached threads
821          * can only be started up within the thread group.
822          */
823         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
824                 return ERR_PTR(-EINVAL);
825
826         /*
827          * Shared signal handlers imply shared VM. By way of the above,
828          * thread groups also imply shared VM. Blocking this case allows
829          * for various simplifications in other code.
830          */
831         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
832                 return ERR_PTR(-EINVAL);
833
834         retval = security_task_create(clone_flags);
835         if (retval)
836                 goto fork_out;
837
838         retval = -ENOMEM;
839         p = dup_task_struct(current);
840         if (!p)
841                 goto fork_out;
842         p->tux_info = NULL;
843
844         p->vx_info = NULL;
845         set_vx_info(&p->vx_info, current->vx_info);
846         p->nx_info = NULL;
847         set_nx_info(&p->nx_info, current->nx_info);
848
849         /* check vserver memory */
850         if (p->mm && !(clone_flags & CLONE_VM)) {
851                 if (vx_vmpages_avail(p->mm, p->mm->total_vm))
852                         vx_pages_add(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
853                 else
854                         goto bad_fork_free;
855         }
856         if (p->mm && vx_flags(VXF_FORK_RSS, 0)) {
857                 if (!vx_rsspages_avail(p->mm, p->mm->rss))
858                         goto bad_fork_cleanup_vm;
859         }
860
861         p->vx_info = NULL;
862         set_vx_info(&p->vx_info, current->vx_info);
863         p->nx_info = NULL;
864         set_nx_info(&p->nx_info, current->nx_info);
865
866         /* check vserver memory */
867         if (p->mm && !(clone_flags & CLONE_VM)) {
868                 if (vx_vmpages_avail(p->mm, p->mm->total_vm))
869                         vx_pages_add(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
870                 else
871                         goto bad_fork_free;
872         }
873         if (p->mm && vx_flags(VXF_FORK_RSS, 0)) {
874                 if (!vx_rsspages_avail(p->mm, p->mm->rss))
875                         goto bad_fork_cleanup_vm;
876         }
877
878         retval = -EAGAIN;
879         if (!vx_nproc_avail(1))
880                 goto bad_fork_cleanup_vm;
881
882         if (atomic_read(&p->user->processes) >=
883                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
884                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
885                                 p->user != &root_user)
886                         goto bad_fork_cleanup_vm;
887         }
888
889         atomic_inc(&p->user->__count);
890         atomic_inc(&p->user->processes);
891         get_group_info(p->group_info);
892
893         /*
894          * If multiple threads are within copy_process(), then this check
895          * triggers too late. This doesn't hurt, the check is only there
896          * to stop root fork bombs.
897          */
898         if (nr_threads >= max_threads)
899                 goto bad_fork_cleanup_count;
900
901         if (!try_module_get(p->thread_info->exec_domain->module))
902                 goto bad_fork_cleanup_count;
903
904         if (p->binfmt && !try_module_get(p->binfmt->module))
905                 goto bad_fork_cleanup_put_domain;
906
907         init_delays(p);
908         p->did_exec = 0;
909         copy_flags(clone_flags, p);
910         p->pid = pid;
911         retval = -EFAULT;
912         if (clone_flags & CLONE_PARENT_SETTID)
913                 if (put_user(p->pid, parent_tidptr))
914                         goto bad_fork_cleanup;
915
916         p->proc_dentry = NULL;
917
918         INIT_LIST_HEAD(&p->children);
919         INIT_LIST_HEAD(&p->sibling);
920         init_waitqueue_head(&p->wait_chldexit);
921         p->vfork_done = NULL;
922         spin_lock_init(&p->alloc_lock);
923         spin_lock_init(&p->proc_lock);
924
925         clear_tsk_thread_flag(p, TIF_SIGPENDING);
926         init_sigpending(&p->pending);
927
928         p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
929         p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
930         init_timer(&p->real_timer);
931         p->real_timer.data = (unsigned long) p;
932
933         p->utime = p->stime = 0;
934         p->lock_depth = -1;             /* -1 = no lock */
935         do_posix_clock_monotonic_gettime(&p->start_time);
936         p->security = NULL;
937         p->io_context = NULL;
938         p->io_wait = NULL;
939         p->audit_context = NULL;
940 #ifdef CONFIG_NUMA
941         p->mempolicy = mpol_copy(p->mempolicy);
942         if (IS_ERR(p->mempolicy)) {
943                 retval = PTR_ERR(p->mempolicy);
944                 p->mempolicy = NULL;
945                 goto bad_fork_cleanup;
946         }
947 #endif
948
949         p->tgid = p->pid;
950         if (clone_flags & CLONE_THREAD)
951                 p->tgid = current->tgid;
952
953         if ((retval = security_task_alloc(p)))
954                 goto bad_fork_cleanup_policy;
955         if ((retval = audit_alloc(p)))
956                 goto bad_fork_cleanup_security;
957         /* copy all the process information */
958         if ((retval = copy_semundo(clone_flags, p)))
959                 goto bad_fork_cleanup_audit;
960         if ((retval = copy_files(clone_flags, p)))
961                 goto bad_fork_cleanup_semundo;
962         if ((retval = copy_fs(clone_flags, p)))
963                 goto bad_fork_cleanup_files;
964         if ((retval = copy_sighand(clone_flags, p)))
965                 goto bad_fork_cleanup_fs;
966         if ((retval = copy_signal(clone_flags, p)))
967                 goto bad_fork_cleanup_sighand;
968         if ((retval = copy_mm(clone_flags, p)))
969                 goto bad_fork_cleanup_signal;
970         if ((retval = copy_keys(clone_flags, p)))
971                 goto bad_fork_cleanup_mm;
972         if ((retval = copy_namespace(clone_flags, p)))
973                 goto bad_fork_cleanup_keys;
974         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
975         if (retval)
976                 goto bad_fork_cleanup_namespace;
977
978         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
979         /*
980          * Clear TID on mm_release()?
981          */
982         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
983
984         /*
985          * Syscall tracing should be turned off in the child regardless
986          * of CLONE_PTRACE.
987          */
988         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
989
990         /* Our parent execution domain becomes current domain
991            These must match for thread signalling to apply */
992            
993         p->parent_exec_id = p->self_exec_id;
994
995         /* ok, now we should be set up.. */
996         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
997         p->pdeath_signal = 0;
998         p->exit_state = 0;
999
1000         /* Perform scheduler related setup */
1001         sched_fork(p);
1002
1003         /*
1004          * Ok, make it visible to the rest of the system.
1005          * We dont wake it up yet.
1006          */
1007         p->group_leader = p;
1008         INIT_LIST_HEAD(&p->ptrace_children);
1009         INIT_LIST_HEAD(&p->ptrace_list);
1010
1011         /* Need tasklist lock for parent etc handling! */
1012         write_lock_irq(&tasklist_lock);
1013
1014         /*
1015          * The task hasn't been attached yet, so cpus_allowed mask cannot
1016          * have changed. The cpus_allowed mask of the parent may have
1017          * changed after it was copied first time, and it may then move to
1018          * another CPU - so we re-copy it here and set the child's CPU to
1019          * the parent's CPU. This avoids alot of nasty races.
1020          */
1021         p->cpus_allowed = current->cpus_allowed;
1022         set_task_cpu(p, smp_processor_id());
1023
1024         /*
1025          * Check for pending SIGKILL! The new thread should not be allowed
1026          * to slip out of an OOM kill. (or normal SIGKILL.)
1027          */
1028         if (sigismember(&current->pending.signal, SIGKILL)) {
1029                 write_unlock_irq(&tasklist_lock);
1030                 retval = -EINTR;
1031                 goto bad_fork_cleanup_namespace;
1032         }
1033
1034         /* CLONE_PARENT re-uses the old parent */
1035         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1036                 p->real_parent = current->real_parent;
1037         else
1038                 p->real_parent = current;
1039         p->parent = p->real_parent;
1040
1041         if (clone_flags & CLONE_THREAD) {
1042                 spin_lock(&current->sighand->siglock);
1043                 /*
1044                  * Important: if an exit-all has been started then
1045                  * do not create this new thread - the whole thread
1046                  * group is supposed to exit anyway.
1047                  */
1048                 if (current->signal->group_exit) {
1049                         spin_unlock(&current->sighand->siglock);
1050                         write_unlock_irq(&tasklist_lock);
1051                         retval = -EAGAIN;
1052                         goto bad_fork_cleanup_namespace;
1053                 }
1054                 p->group_leader = current->group_leader;
1055
1056                 if (current->signal->group_stop_count > 0) {
1057                         /*
1058                          * There is an all-stop in progress for the group.
1059                          * We ourselves will stop as soon as we check signals.
1060                          * Make the new thread part of that group stop too.
1061                          */
1062                         current->signal->group_stop_count++;
1063                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1064                 }
1065
1066                 spin_unlock(&current->sighand->siglock);
1067         }
1068
1069         SET_LINKS(p);
1070         if (unlikely(p->ptrace & PT_PTRACED))
1071                 __ptrace_link(p, current->parent);
1072
1073         attach_pid(p, PIDTYPE_PID, p->pid);
1074         attach_pid(p, PIDTYPE_TGID, p->tgid);
1075         if (thread_group_leader(p)) {
1076                 attach_pid(p, PIDTYPE_PGID, process_group(p));
1077                 attach_pid(p, PIDTYPE_SID, p->signal->session);
1078                 if (p->pid)
1079                         __get_cpu_var(process_counts)++;
1080         }
1081
1082         p->ioprio = current->ioprio;
1083         nr_threads++;
1084         /* p is copy of current */
1085         vxi = p->vx_info;
1086         if (vxi) {
1087                 atomic_inc(&vxi->cvirt.nr_threads);
1088                 vx_nproc_inc(p);
1089         }
1090         write_unlock_irq(&tasklist_lock);
1091         retval = 0;
1092
1093 fork_out:
1094         if (retval)
1095                 return ERR_PTR(retval);
1096         return p;
1097
1098 bad_fork_cleanup_namespace:
1099         exit_namespace(p);
1100 bad_fork_cleanup_keys:
1101         exit_keys(p);
1102 bad_fork_cleanup_mm:
1103         if (p->mm)
1104                 mmput(p->mm);
1105 bad_fork_cleanup_signal:
1106         exit_signal(p);
1107 bad_fork_cleanup_sighand:
1108         exit_sighand(p);
1109 bad_fork_cleanup_fs:
1110         exit_fs(p); /* blocking */
1111 bad_fork_cleanup_files:
1112         exit_files(p); /* blocking */
1113 bad_fork_cleanup_semundo:
1114         exit_sem(p);
1115 bad_fork_cleanup_audit:
1116         audit_free(p);
1117 bad_fork_cleanup_security:
1118         security_task_free(p);
1119 bad_fork_cleanup_policy:
1120 #ifdef CONFIG_NUMA
1121         mpol_free(p->mempolicy);
1122 #endif
1123 bad_fork_cleanup:
1124         if (p->binfmt)
1125                 module_put(p->binfmt->module);
1126 bad_fork_cleanup_put_domain:
1127         module_put(p->thread_info->exec_domain->module);
1128 bad_fork_cleanup_count:
1129         put_group_info(p->group_info);
1130         atomic_dec(&p->user->processes);
1131         free_uid(p->user);
1132 bad_fork_cleanup_vm:
1133         if (p->mm && !(clone_flags & CLONE_VM))
1134                 vx_pages_sub(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
1135 bad_fork_free:
1136         free_task(p);
1137         goto fork_out;
1138 }
1139
1140 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1141 {
1142         memset(regs, 0, sizeof(struct pt_regs));
1143         return regs;
1144 }
1145
1146 task_t * __devinit fork_idle(int cpu)
1147 {
1148         task_t *task;
1149         struct pt_regs regs;
1150
1151         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1152         if (!task)
1153                 return ERR_PTR(-ENOMEM);
1154         init_idle(task, cpu);
1155         unhash_process(task);
1156         return task;
1157 }
1158
1159 static inline int fork_traceflag (unsigned clone_flags)
1160 {
1161         if (clone_flags & CLONE_UNTRACED)
1162                 return 0;
1163         else if (clone_flags & CLONE_VFORK) {
1164                 if (current->ptrace & PT_TRACE_VFORK)
1165                         return PTRACE_EVENT_VFORK;
1166         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1167                 if (current->ptrace & PT_TRACE_CLONE)
1168                         return PTRACE_EVENT_CLONE;
1169         } else if (current->ptrace & PT_TRACE_FORK)
1170                 return PTRACE_EVENT_FORK;
1171
1172         return 0;
1173 }
1174
1175 /*
1176  *  Ok, this is the main fork-routine.
1177  *
1178  * It copies the process, and if successful kick-starts
1179  * it and waits for it to finish using the VM if required.
1180  */
1181 long do_fork(unsigned long clone_flags,
1182               unsigned long stack_start,
1183               struct pt_regs *regs,
1184               unsigned long stack_size,
1185               int __user *parent_tidptr,
1186               int __user *child_tidptr)
1187 {
1188         struct task_struct *p;
1189         int trace = 0;
1190         long pid = alloc_pidmap();
1191
1192         if (pid < 0)
1193                 return -EAGAIN;
1194         if (unlikely(current->ptrace)) {
1195                 trace = fork_traceflag (clone_flags);
1196                 if (trace)
1197                         clone_flags |= CLONE_PTRACE;
1198         }
1199
1200         if (numtasks_get_ref(current->taskclass, 0) == 0) {
1201                 return -ENOMEM;
1202         }
1203         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1204
1205         /*
1206          * Do this prior waking up the new thread - the thread pointer
1207          * might get invalid after that point, if the thread exits quickly.
1208          */
1209         if (!IS_ERR(p)) {
1210                 struct completion vfork;
1211
1212                 ckrm_cb_fork(p);
1213
1214                 if (clone_flags & CLONE_VFORK) {
1215                         p->vfork_done = &vfork;
1216                         init_completion(&vfork);
1217                 }
1218
1219                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1220                         /*
1221                          * We'll start up with an immediate SIGSTOP.
1222                          */
1223                         sigaddset(&p->pending.signal, SIGSTOP);
1224                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1225                 }
1226
1227                 if (!(clone_flags & CLONE_STOPPED))
1228                         wake_up_new_task(p, clone_flags);
1229                 else
1230                         p->state = TASK_STOPPED;
1231                 ++total_forks;
1232
1233                 if (unlikely (trace)) {
1234                         current->ptrace_message = pid;
1235                         ptrace_notify ((trace << 8) | SIGTRAP);
1236                 }
1237
1238                 if (clone_flags & CLONE_VFORK) {
1239                         wait_for_completion(&vfork);
1240                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1241                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1242                 }
1243         } else {
1244                 numtasks_put_ref(current->taskclass);
1245                 free_pidmap(pid);
1246                 pid = PTR_ERR(p);
1247         }
1248         return pid;
1249 }
1250
1251 /* SLAB cache for signal_struct structures (tsk->signal) */
1252 kmem_cache_t *signal_cachep;
1253
1254 /* SLAB cache for sighand_struct structures (tsk->sighand) */
1255 kmem_cache_t *sighand_cachep;
1256
1257 /* SLAB cache for files_struct structures (tsk->files) */
1258 kmem_cache_t *files_cachep;
1259
1260 /* SLAB cache for fs_struct structures (tsk->fs) */
1261 kmem_cache_t *fs_cachep;
1262
1263 /* SLAB cache for vm_area_struct structures */
1264 kmem_cache_t *vm_area_cachep;
1265
1266 /* SLAB cache for mm_struct structures (tsk->mm) */
1267 kmem_cache_t *mm_cachep;
1268
1269 void __init proc_caches_init(void)
1270 {
1271         sighand_cachep = kmem_cache_create("sighand_cache",
1272                         sizeof(struct sighand_struct), 0,
1273                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1274         signal_cachep = kmem_cache_create("signal_cache",
1275                         sizeof(struct signal_struct), 0,
1276                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1277         files_cachep = kmem_cache_create("files_cache", 
1278                         sizeof(struct files_struct), 0,
1279                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1280         fs_cachep = kmem_cache_create("fs_cache", 
1281                         sizeof(struct fs_struct), 0,
1282                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1283         vm_area_cachep = kmem_cache_create("vm_area_struct",
1284                         sizeof(struct vm_area_struct), 0,
1285                         SLAB_PANIC, NULL, NULL);
1286         mm_cachep = kmem_cache_create("mm_struct",
1287                         sizeof(struct mm_struct), 0,
1288                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1289 }