kernel.org linux-2.6.9
[linux-2.6.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/cpu.h>
31 #include <linux/security.h>
32 #include <linux/swap.h>
33 #include <linux/syscalls.h>
34 #include <linux/jiffies.h>
35 #include <linux/futex.h>
36 #include <linux/ptrace.h>
37 #include <linux/mount.h>
38 #include <linux/audit.h>
39 #include <linux/profile.h>
40 #include <linux/rmap.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/pgalloc.h>
44 #include <asm/uaccess.h>
45 #include <asm/mmu_context.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlbflush.h>
48
49 /* The idle threads do not count..
50  * Protected by write_lock_irq(&tasklist_lock)
51  */
52 int nr_threads;
53
54 int max_threads;
55 unsigned long total_forks;      /* Handle normal Linux uptimes. */
56
57 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
58
59 rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED;  /* outer */
60
61 EXPORT_SYMBOL(tasklist_lock);
62
63 int nr_processes(void)
64 {
65         int cpu;
66         int total = 0;
67
68         for_each_online_cpu(cpu)
69                 total += per_cpu(process_counts, cpu);
70
71         return total;
72 }
73
74 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
75 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
76 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
77 static kmem_cache_t *task_struct_cachep;
78 #endif
79
80 void free_task(struct task_struct *tsk)
81 {
82         free_thread_info(tsk->thread_info);
83         free_task_struct(tsk);
84 }
85 EXPORT_SYMBOL(free_task);
86
87 void __put_task_struct(struct task_struct *tsk)
88 {
89         WARN_ON(!(tsk->state & (TASK_DEAD | TASK_ZOMBIE)));
90         WARN_ON(atomic_read(&tsk->usage));
91         WARN_ON(tsk == current);
92
93         if (unlikely(tsk->audit_context))
94                 audit_free(tsk);
95         security_task_free(tsk);
96         free_uid(tsk->user);
97         put_group_info(tsk->group_info);
98
99         if (!profile_handoff_task(tsk))
100                 free_task(tsk);
101 }
102
103 void fastcall add_wait_queue(wait_queue_head_t *q, wait_queue_t * wait)
104 {
105         unsigned long flags;
106
107         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
108         spin_lock_irqsave(&q->lock, flags);
109         __add_wait_queue(q, wait);
110         spin_unlock_irqrestore(&q->lock, flags);
111 }
112
113 EXPORT_SYMBOL(add_wait_queue);
114
115 void fastcall add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t * wait)
116 {
117         unsigned long flags;
118
119         wait->flags |= WQ_FLAG_EXCLUSIVE;
120         spin_lock_irqsave(&q->lock, flags);
121         __add_wait_queue_tail(q, wait);
122         spin_unlock_irqrestore(&q->lock, flags);
123 }
124
125 EXPORT_SYMBOL(add_wait_queue_exclusive);
126
127 void fastcall remove_wait_queue(wait_queue_head_t *q, wait_queue_t * wait)
128 {
129         unsigned long flags;
130
131         spin_lock_irqsave(&q->lock, flags);
132         __remove_wait_queue(q, wait);
133         spin_unlock_irqrestore(&q->lock, flags);
134 }
135
136 EXPORT_SYMBOL(remove_wait_queue);
137
138
139 /*
140  * Note: we use "set_current_state()" _after_ the wait-queue add,
141  * because we need a memory barrier there on SMP, so that any
142  * wake-function that tests for the wait-queue being active
143  * will be guaranteed to see waitqueue addition _or_ subsequent
144  * tests in this thread will see the wakeup having taken place.
145  *
146  * The spin_unlock() itself is semi-permeable and only protects
147  * one way (it only protects stuff inside the critical region and
148  * stops them from bleeding out - it would still allow subsequent
149  * loads to move into the the critical region).
150  */
151 void fastcall prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
152 {
153         unsigned long flags;
154
155         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
156         spin_lock_irqsave(&q->lock, flags);
157         if (list_empty(&wait->task_list))
158                 __add_wait_queue(q, wait);
159         /*
160          * don't alter the task state if this is just going to
161          * queue an async wait queue callback
162          */
163         if (is_sync_wait(wait))
164                 set_current_state(state);
165         spin_unlock_irqrestore(&q->lock, flags);
166 }
167
168 EXPORT_SYMBOL(prepare_to_wait);
169
170 void fastcall
171 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
172 {
173         unsigned long flags;
174
175         wait->flags |= WQ_FLAG_EXCLUSIVE;
176         spin_lock_irqsave(&q->lock, flags);
177         if (list_empty(&wait->task_list))
178                 __add_wait_queue_tail(q, wait);
179         /*
180          * don't alter the task state if this is just going to
181          * queue an async wait queue callback
182          */
183         if (is_sync_wait(wait))
184                 set_current_state(state);
185         spin_unlock_irqrestore(&q->lock, flags);
186 }
187
188 EXPORT_SYMBOL(prepare_to_wait_exclusive);
189
190 void fastcall finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
191 {
192         unsigned long flags;
193
194         __set_current_state(TASK_RUNNING);
195         /*
196          * We can check for list emptiness outside the lock
197          * IFF:
198          *  - we use the "careful" check that verifies both
199          *    the next and prev pointers, so that there cannot
200          *    be any half-pending updates in progress on other
201          *    CPU's that we haven't seen yet (and that might
202          *    still change the stack area.
203          * and
204          *  - all other users take the lock (ie we can only
205          *    have _one_ other CPU that looks at or modifies
206          *    the list).
207          */
208         if (!list_empty_careful(&wait->task_list)) {
209                 spin_lock_irqsave(&q->lock, flags);
210                 list_del_init(&wait->task_list);
211                 spin_unlock_irqrestore(&q->lock, flags);
212         }
213 }
214
215 EXPORT_SYMBOL(finish_wait);
216
217 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
218 {
219         int ret = default_wake_function(wait, mode, sync, key);
220
221         if (ret)
222                 list_del_init(&wait->task_list);
223         return ret;
224 }
225
226 EXPORT_SYMBOL(autoremove_wake_function);
227
228 void __init fork_init(unsigned long mempages)
229 {
230 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
231 #ifndef ARCH_MIN_TASKALIGN
232 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
233 #endif
234         /* create a slab on which task_structs can be allocated */
235         task_struct_cachep =
236                 kmem_cache_create("task_struct", sizeof(struct task_struct),
237                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
238 #endif
239
240         /*
241          * The default maximum number of threads is set to a safe
242          * value: the thread structures can take up at most half
243          * of memory.
244          */
245         max_threads = mempages / (THREAD_SIZE/PAGE_SIZE) / 8;
246         /*
247          * we need to allow at least 20 threads to boot a system
248          */
249         if(max_threads < 20)
250                 max_threads = 20;
251
252         init_task.rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
253         init_task.rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
254 }
255
256 static struct task_struct *dup_task_struct(struct task_struct *orig)
257 {
258         struct task_struct *tsk;
259         struct thread_info *ti;
260
261         prepare_to_copy(orig);
262
263         tsk = alloc_task_struct();
264         if (!tsk)
265                 return NULL;
266
267         ti = alloc_thread_info(tsk);
268         if (!ti) {
269                 free_task_struct(tsk);
270                 return NULL;
271         }
272
273         *ti = *orig->thread_info;
274         *tsk = *orig;
275         tsk->thread_info = ti;
276         ti->task = tsk;
277
278         /* One for us, one for whoever does the "release_task()" (usually parent) */
279         atomic_set(&tsk->usage,2);
280         return tsk;
281 }
282
283 #ifdef CONFIG_MMU
284 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
285 {
286         struct vm_area_struct * mpnt, *tmp, **pprev;
287         struct rb_node **rb_link, *rb_parent;
288         int retval;
289         unsigned long charge;
290         struct mempolicy *pol;
291
292         down_write(&oldmm->mmap_sem);
293         flush_cache_mm(current->mm);
294         mm->locked_vm = 0;
295         mm->mmap = NULL;
296         mm->mmap_cache = NULL;
297         mm->free_area_cache = oldmm->mmap_base;
298         mm->map_count = 0;
299         mm->rss = 0;
300         cpus_clear(mm->cpu_vm_mask);
301         mm->mm_rb = RB_ROOT;
302         rb_link = &mm->mm_rb.rb_node;
303         rb_parent = NULL;
304         pprev = &mm->mmap;
305
306         /*
307          * Add it to the mmlist after the parent.
308          * Doing it this way means that we can order the list,
309          * and fork() won't mess up the ordering significantly.
310          * Add it first so that swapoff can see any swap entries.
311          */
312         spin_lock(&mmlist_lock);
313         list_add(&mm->mmlist, &current->mm->mmlist);
314         mmlist_nr++;
315         spin_unlock(&mmlist_lock);
316
317         for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
318                 struct file *file;
319
320                 if (mpnt->vm_flags & VM_DONTCOPY) {
321                         __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
322                                                         -vma_pages(mpnt));
323                         continue;
324                 }
325                 charge = 0;
326                 if (mpnt->vm_flags & VM_ACCOUNT) {
327                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
328                         if (security_vm_enough_memory(len))
329                                 goto fail_nomem;
330                         charge = len;
331                 }
332                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
333                 if (!tmp)
334                         goto fail_nomem;
335                 *tmp = *mpnt;
336                 pol = mpol_copy(vma_policy(mpnt));
337                 retval = PTR_ERR(pol);
338                 if (IS_ERR(pol))
339                         goto fail_nomem_policy;
340                 vma_set_policy(tmp, pol);
341                 tmp->vm_flags &= ~VM_LOCKED;
342                 tmp->vm_mm = mm;
343                 tmp->vm_next = NULL;
344                 anon_vma_link(tmp);
345                 file = tmp->vm_file;
346                 if (file) {
347                         struct inode *inode = file->f_dentry->d_inode;
348                         get_file(file);
349                         if (tmp->vm_flags & VM_DENYWRITE)
350                                 atomic_dec(&inode->i_writecount);
351       
352                         /* insert tmp into the share list, just after mpnt */
353                         spin_lock(&file->f_mapping->i_mmap_lock);
354                         flush_dcache_mmap_lock(file->f_mapping);
355                         vma_prio_tree_add(tmp, mpnt);
356                         flush_dcache_mmap_unlock(file->f_mapping);
357                         spin_unlock(&file->f_mapping->i_mmap_lock);
358                 }
359
360                 /*
361                  * Link in the new vma and copy the page table entries:
362                  * link in first so that swapoff can see swap entries,
363                  * and try_to_unmap_one's find_vma find the new vma.
364                  */
365                 spin_lock(&mm->page_table_lock);
366                 *pprev = tmp;
367                 pprev = &tmp->vm_next;
368
369                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
370                 rb_link = &tmp->vm_rb.rb_right;
371                 rb_parent = &tmp->vm_rb;
372
373                 mm->map_count++;
374                 retval = copy_page_range(mm, current->mm, tmp);
375                 spin_unlock(&mm->page_table_lock);
376
377                 if (tmp->vm_ops && tmp->vm_ops->open)
378                         tmp->vm_ops->open(tmp);
379
380                 if (retval)
381                         goto out;
382         }
383         retval = 0;
384
385 out:
386         flush_tlb_mm(current->mm);
387         up_write(&oldmm->mmap_sem);
388         return retval;
389 fail_nomem_policy:
390         kmem_cache_free(vm_area_cachep, tmp);
391 fail_nomem:
392         retval = -ENOMEM;
393         vm_unacct_memory(charge);
394         goto out;
395 }
396
397 static inline int mm_alloc_pgd(struct mm_struct * mm)
398 {
399         mm->pgd = pgd_alloc(mm);
400         if (unlikely(!mm->pgd))
401                 return -ENOMEM;
402         return 0;
403 }
404
405 static inline void mm_free_pgd(struct mm_struct * mm)
406 {
407         pgd_free(mm->pgd);
408 }
409 #else
410 #define dup_mmap(mm, oldmm)     (0)
411 #define mm_alloc_pgd(mm)        (0)
412 #define mm_free_pgd(mm)
413 #endif /* CONFIG_MMU */
414
415 spinlock_t mmlist_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
416 int mmlist_nr;
417
418 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
419 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
420
421 #include <linux/init_task.h>
422
423 static struct mm_struct * mm_init(struct mm_struct * mm)
424 {
425         atomic_set(&mm->mm_users, 1);
426         atomic_set(&mm->mm_count, 1);
427         init_rwsem(&mm->mmap_sem);
428         mm->core_waiters = 0;
429         mm->page_table_lock = SPIN_LOCK_UNLOCKED;
430         mm->ioctx_list_lock = RW_LOCK_UNLOCKED;
431         mm->ioctx_list = NULL;
432         mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
433         mm->free_area_cache = TASK_UNMAPPED_BASE;
434
435         if (likely(!mm_alloc_pgd(mm))) {
436                 mm->def_flags = 0;
437                 return mm;
438         }
439         free_mm(mm);
440         return NULL;
441 }
442
443 /*
444  * Allocate and initialize an mm_struct.
445  */
446 struct mm_struct * mm_alloc(void)
447 {
448         struct mm_struct * mm;
449
450         mm = allocate_mm();
451         if (mm) {
452                 memset(mm, 0, sizeof(*mm));
453                 mm = mm_init(mm);
454         }
455         return mm;
456 }
457
458 /*
459  * Called when the last reference to the mm
460  * is dropped: either by a lazy thread or by
461  * mmput. Free the page directory and the mm.
462  */
463 void fastcall __mmdrop(struct mm_struct *mm)
464 {
465         BUG_ON(mm == &init_mm);
466         mm_free_pgd(mm);
467         destroy_context(mm);
468         free_mm(mm);
469 }
470
471 /*
472  * Decrement the use count and release all resources for an mm.
473  */
474 void mmput(struct mm_struct *mm)
475 {
476         if (atomic_dec_and_lock(&mm->mm_users, &mmlist_lock)) {
477                 list_del(&mm->mmlist);
478                 mmlist_nr--;
479                 spin_unlock(&mmlist_lock);
480                 exit_aio(mm);
481                 exit_mmap(mm);
482                 put_swap_token(mm);
483                 mmdrop(mm);
484         }
485 }
486 EXPORT_SYMBOL_GPL(mmput);
487
488 /**
489  * get_task_mm - acquire a reference to the task's mm
490  *
491  * Returns %NULL if the task has no mm.  Checks if the use count
492  * of the mm is non-zero and if so returns a reference to it, after
493  * bumping up the use count.  User must release the mm via mmput()
494  * after use.  Typically used by /proc and ptrace.
495  *
496  * If the use count is zero, it means that this mm is going away,
497  * so return %NULL.  This only happens in the case of an AIO daemon
498  * which has temporarily adopted an mm (see use_mm), in the course
499  * of its final mmput, before exit_aio has completed.
500  */
501 struct mm_struct *get_task_mm(struct task_struct *task)
502 {
503         struct mm_struct *mm;
504
505         task_lock(task);
506         mm = task->mm;
507         if (mm) {
508                 spin_lock(&mmlist_lock);
509                 if (!atomic_read(&mm->mm_users))
510                         mm = NULL;
511                 else
512                         atomic_inc(&mm->mm_users);
513                 spin_unlock(&mmlist_lock);
514         }
515         task_unlock(task);
516         return mm;
517 }
518 EXPORT_SYMBOL_GPL(get_task_mm);
519
520 /* Please note the differences between mmput and mm_release.
521  * mmput is called whenever we stop holding onto a mm_struct,
522  * error success whatever.
523  *
524  * mm_release is called after a mm_struct has been removed
525  * from the current process.
526  *
527  * This difference is important for error handling, when we
528  * only half set up a mm_struct for a new process and need to restore
529  * the old one.  Because we mmput the new mm_struct before
530  * restoring the old one. . .
531  * Eric Biederman 10 January 1998
532  */
533 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
534 {
535         struct completion *vfork_done = tsk->vfork_done;
536
537         /* Get rid of any cached register state */
538         deactivate_mm(tsk, mm);
539
540         /* notify parent sleeping on vfork() */
541         if (vfork_done) {
542                 tsk->vfork_done = NULL;
543                 complete(vfork_done);
544         }
545         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
546                 u32 __user * tidptr = tsk->clear_child_tid;
547                 tsk->clear_child_tid = NULL;
548
549                 /*
550                  * We don't check the error code - if userspace has
551                  * not set up a proper pointer then tough luck.
552                  */
553                 put_user(0, tidptr);
554                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
555         }
556 }
557
558 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
559 {
560         struct mm_struct * mm, *oldmm;
561         int retval;
562
563         tsk->min_flt = tsk->maj_flt = 0;
564         tsk->nvcsw = tsk->nivcsw = 0;
565
566         tsk->mm = NULL;
567         tsk->active_mm = NULL;
568
569         /*
570          * Are we cloning a kernel thread?
571          *
572          * We need to steal a active VM for that..
573          */
574         oldmm = current->mm;
575         if (!oldmm)
576                 return 0;
577
578         if (clone_flags & CLONE_VM) {
579                 atomic_inc(&oldmm->mm_users);
580                 mm = oldmm;
581                 /*
582                  * There are cases where the PTL is held to ensure no
583                  * new threads start up in user mode using an mm, which
584                  * allows optimizing out ipis; the tlb_gather_mmu code
585                  * is an example.
586                  */
587                 spin_unlock_wait(&oldmm->page_table_lock);
588                 goto good_mm;
589         }
590
591         retval = -ENOMEM;
592         mm = allocate_mm();
593         if (!mm)
594                 goto fail_nomem;
595
596         /* Copy the current MM stuff.. */
597         memcpy(mm, oldmm, sizeof(*mm));
598         if (!mm_init(mm))
599                 goto fail_nomem;
600
601         if (init_new_context(tsk,mm))
602                 goto fail_nocontext;
603
604         retval = dup_mmap(mm, oldmm);
605         if (retval)
606                 goto free_pt;
607
608 good_mm:
609         tsk->mm = mm;
610         tsk->active_mm = mm;
611         return 0;
612
613 free_pt:
614         mmput(mm);
615 fail_nomem:
616         return retval;
617
618 fail_nocontext:
619         /*
620          * If init_new_context() failed, we cannot use mmput() to free the mm
621          * because it calls destroy_context()
622          */
623         mm_free_pgd(mm);
624         free_mm(mm);
625         return retval;
626 }
627
628 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
629 {
630         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
631         /* We don't need to lock fs - think why ;-) */
632         if (fs) {
633                 atomic_set(&fs->count, 1);
634                 fs->lock = RW_LOCK_UNLOCKED;
635                 fs->umask = old->umask;
636                 read_lock(&old->lock);
637                 fs->rootmnt = mntget(old->rootmnt);
638                 fs->root = dget(old->root);
639                 fs->pwdmnt = mntget(old->pwdmnt);
640                 fs->pwd = dget(old->pwd);
641                 if (old->altroot) {
642                         fs->altrootmnt = mntget(old->altrootmnt);
643                         fs->altroot = dget(old->altroot);
644                 } else {
645                         fs->altrootmnt = NULL;
646                         fs->altroot = NULL;
647                 }
648                 read_unlock(&old->lock);
649         }
650         return fs;
651 }
652
653 struct fs_struct *copy_fs_struct(struct fs_struct *old)
654 {
655         return __copy_fs_struct(old);
656 }
657
658 EXPORT_SYMBOL_GPL(copy_fs_struct);
659
660 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
661 {
662         if (clone_flags & CLONE_FS) {
663                 atomic_inc(&current->fs->count);
664                 return 0;
665         }
666         tsk->fs = __copy_fs_struct(current->fs);
667         if (!tsk->fs)
668                 return -ENOMEM;
669         return 0;
670 }
671
672 static int count_open_files(struct files_struct *files, int size)
673 {
674         int i;
675
676         /* Find the last open fd */
677         for (i = size/(8*sizeof(long)); i > 0; ) {
678                 if (files->open_fds->fds_bits[--i])
679                         break;
680         }
681         i = (i+1) * 8 * sizeof(long);
682         return i;
683 }
684
685 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
686 {
687         struct files_struct *oldf, *newf;
688         struct file **old_fds, **new_fds;
689         int open_files, nfds, size, i, error = 0;
690
691         /*
692          * A background process may not have any files ...
693          */
694         oldf = current->files;
695         if (!oldf)
696                 goto out;
697
698         if (clone_flags & CLONE_FILES) {
699                 atomic_inc(&oldf->count);
700                 goto out;
701         }
702
703         /*
704          * Note: we may be using current for both targets (See exec.c)
705          * This works because we cache current->files (old) as oldf. Don't
706          * break this.
707          */
708         tsk->files = NULL;
709         error = -ENOMEM;
710         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
711         if (!newf) 
712                 goto out;
713
714         atomic_set(&newf->count, 1);
715
716         newf->file_lock     = SPIN_LOCK_UNLOCKED;
717         newf->next_fd       = 0;
718         newf->max_fds       = NR_OPEN_DEFAULT;
719         newf->max_fdset     = __FD_SETSIZE;
720         newf->close_on_exec = &newf->close_on_exec_init;
721         newf->open_fds      = &newf->open_fds_init;
722         newf->fd            = &newf->fd_array[0];
723
724         /* We don't yet have the oldf readlock, but even if the old
725            fdset gets grown now, we'll only copy up to "size" fds */
726         size = oldf->max_fdset;
727         if (size > __FD_SETSIZE) {
728                 newf->max_fdset = 0;
729                 spin_lock(&newf->file_lock);
730                 error = expand_fdset(newf, size-1);
731                 spin_unlock(&newf->file_lock);
732                 if (error)
733                         goto out_release;
734         }
735         spin_lock(&oldf->file_lock);
736
737         open_files = count_open_files(oldf, size);
738
739         /*
740          * Check whether we need to allocate a larger fd array.
741          * Note: we're not a clone task, so the open count won't
742          * change.
743          */
744         nfds = NR_OPEN_DEFAULT;
745         if (open_files > nfds) {
746                 spin_unlock(&oldf->file_lock);
747                 newf->max_fds = 0;
748                 spin_lock(&newf->file_lock);
749                 error = expand_fd_array(newf, open_files-1);
750                 spin_unlock(&newf->file_lock);
751                 if (error) 
752                         goto out_release;
753                 nfds = newf->max_fds;
754                 spin_lock(&oldf->file_lock);
755         }
756
757         old_fds = oldf->fd;
758         new_fds = newf->fd;
759
760         memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
761         memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
762
763         for (i = open_files; i != 0; i--) {
764                 struct file *f = *old_fds++;
765                 if (f)
766                         get_file(f);
767                 *new_fds++ = f;
768         }
769         spin_unlock(&oldf->file_lock);
770
771         /* compute the remainder to be cleared */
772         size = (newf->max_fds - open_files) * sizeof(struct file *);
773
774         /* This is long word aligned thus could use a optimized version */ 
775         memset(new_fds, 0, size); 
776
777         if (newf->max_fdset > open_files) {
778                 int left = (newf->max_fdset-open_files)/8;
779                 int start = open_files / (8 * sizeof(unsigned long));
780
781                 memset(&newf->open_fds->fds_bits[start], 0, left);
782                 memset(&newf->close_on_exec->fds_bits[start], 0, left);
783         }
784
785         tsk->files = newf;
786         error = 0;
787 out:
788         return error;
789
790 out_release:
791         free_fdset (newf->close_on_exec, newf->max_fdset);
792         free_fdset (newf->open_fds, newf->max_fdset);
793         kmem_cache_free(files_cachep, newf);
794         goto out;
795 }
796
797 /*
798  *      Helper to unshare the files of the current task.
799  *      We don't want to expose copy_files internals to
800  *      the exec layer of the kernel.
801  */
802
803 int unshare_files(void)
804 {
805         struct files_struct *files  = current->files;
806         int rc;
807
808         if(!files)
809                 BUG();
810
811         /* This can race but the race causes us to copy when we don't
812            need to and drop the copy */
813         if(atomic_read(&files->count) == 1)
814         {
815                 atomic_inc(&files->count);
816                 return 0;
817         }
818         rc = copy_files(0, current);
819         if(rc)
820                 current->files = files;
821         return rc;
822 }
823
824 EXPORT_SYMBOL(unshare_files);
825
826 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
827 {
828         struct sighand_struct *sig;
829
830         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
831                 atomic_inc(&current->sighand->count);
832                 return 0;
833         }
834         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
835         tsk->sighand = sig;
836         if (!sig)
837                 return -ENOMEM;
838         spin_lock_init(&sig->siglock);
839         atomic_set(&sig->count, 1);
840         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
841         return 0;
842 }
843
844 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
845 {
846         struct signal_struct *sig;
847
848         if (clone_flags & CLONE_THREAD) {
849                 atomic_inc(&current->signal->count);
850                 return 0;
851         }
852         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
853         tsk->signal = sig;
854         if (!sig)
855                 return -ENOMEM;
856         atomic_set(&sig->count, 1);
857         sig->group_exit = 0;
858         sig->group_exit_code = 0;
859         sig->group_exit_task = NULL;
860         sig->group_stop_count = 0;
861         sig->curr_target = NULL;
862         init_sigpending(&sig->shared_pending);
863         INIT_LIST_HEAD(&sig->posix_timers);
864
865         sig->tty = current->signal->tty;
866         sig->pgrp = process_group(current);
867         sig->session = current->signal->session;
868         sig->leader = 0;        /* session leadership doesn't inherit */
869         sig->tty_old_pgrp = 0;
870
871         sig->utime = sig->stime = sig->cutime = sig->cstime = 0;
872         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
873         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
874
875         return 0;
876 }
877
878 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
879 {
880         unsigned long new_flags = p->flags;
881
882         new_flags &= ~PF_SUPERPRIV;
883         new_flags |= PF_FORKNOEXEC;
884         if (!(clone_flags & CLONE_PTRACE))
885                 p->ptrace = 0;
886         p->flags = new_flags;
887 }
888
889 asmlinkage long sys_set_tid_address(int __user *tidptr)
890 {
891         current->clear_child_tid = tidptr;
892
893         return current->pid;
894 }
895
896 /*
897  * This creates a new process as a copy of the old one,
898  * but does not actually start it yet.
899  *
900  * It copies the registers, and all the appropriate
901  * parts of the process environment (as per the clone
902  * flags). The actual kick-off is left to the caller.
903  */
904 static task_t *copy_process(unsigned long clone_flags,
905                                  unsigned long stack_start,
906                                  struct pt_regs *regs,
907                                  unsigned long stack_size,
908                                  int __user *parent_tidptr,
909                                  int __user *child_tidptr,
910                                  int pid)
911 {
912         int retval;
913         struct task_struct *p = NULL;
914
915         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
916                 return ERR_PTR(-EINVAL);
917
918         /*
919          * Thread groups must share signals as well, and detached threads
920          * can only be started up within the thread group.
921          */
922         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
923                 return ERR_PTR(-EINVAL);
924
925         /*
926          * Shared signal handlers imply shared VM. By way of the above,
927          * thread groups also imply shared VM. Blocking this case allows
928          * for various simplifications in other code.
929          */
930         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
931                 return ERR_PTR(-EINVAL);
932
933         retval = security_task_create(clone_flags);
934         if (retval)
935                 goto fork_out;
936
937         retval = -ENOMEM;
938         p = dup_task_struct(current);
939         if (!p)
940                 goto fork_out;
941
942         retval = -EAGAIN;
943         if (atomic_read(&p->user->processes) >=
944                         p->rlim[RLIMIT_NPROC].rlim_cur) {
945                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
946                                 p->user != &root_user)
947                         goto bad_fork_free;
948         }
949
950         atomic_inc(&p->user->__count);
951         atomic_inc(&p->user->processes);
952         get_group_info(p->group_info);
953
954         /*
955          * If multiple threads are within copy_process(), then this check
956          * triggers too late. This doesn't hurt, the check is only there
957          * to stop root fork bombs.
958          */
959         if (nr_threads >= max_threads)
960                 goto bad_fork_cleanup_count;
961
962         if (!try_module_get(p->thread_info->exec_domain->module))
963                 goto bad_fork_cleanup_count;
964
965         if (p->binfmt && !try_module_get(p->binfmt->module))
966                 goto bad_fork_cleanup_put_domain;
967
968         p->did_exec = 0;
969         copy_flags(clone_flags, p);
970         p->pid = pid;
971         retval = -EFAULT;
972         if (clone_flags & CLONE_PARENT_SETTID)
973                 if (put_user(p->pid, parent_tidptr))
974                         goto bad_fork_cleanup;
975
976         p->proc_dentry = NULL;
977
978         INIT_LIST_HEAD(&p->children);
979         INIT_LIST_HEAD(&p->sibling);
980         init_waitqueue_head(&p->wait_chldexit);
981         p->vfork_done = NULL;
982         spin_lock_init(&p->alloc_lock);
983         spin_lock_init(&p->proc_lock);
984
985         clear_tsk_thread_flag(p, TIF_SIGPENDING);
986         init_sigpending(&p->pending);
987
988         p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
989         p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
990         init_timer(&p->real_timer);
991         p->real_timer.data = (unsigned long) p;
992
993         p->utime = p->stime = 0;
994         p->lock_depth = -1;             /* -1 = no lock */
995         do_posix_clock_monotonic_gettime(&p->start_time);
996         p->security = NULL;
997         p->io_context = NULL;
998         p->io_wait = NULL;
999         p->audit_context = NULL;
1000 #ifdef CONFIG_NUMA
1001         p->mempolicy = mpol_copy(p->mempolicy);
1002         if (IS_ERR(p->mempolicy)) {
1003                 retval = PTR_ERR(p->mempolicy);
1004                 p->mempolicy = NULL;
1005                 goto bad_fork_cleanup;
1006         }
1007 #endif
1008
1009         if ((retval = security_task_alloc(p)))
1010                 goto bad_fork_cleanup_policy;
1011         if ((retval = audit_alloc(p)))
1012                 goto bad_fork_cleanup_security;
1013         /* copy all the process information */
1014         if ((retval = copy_semundo(clone_flags, p)))
1015                 goto bad_fork_cleanup_audit;
1016         if ((retval = copy_files(clone_flags, p)))
1017                 goto bad_fork_cleanup_semundo;
1018         if ((retval = copy_fs(clone_flags, p)))
1019                 goto bad_fork_cleanup_files;
1020         if ((retval = copy_sighand(clone_flags, p)))
1021                 goto bad_fork_cleanup_fs;
1022         if ((retval = copy_signal(clone_flags, p)))
1023                 goto bad_fork_cleanup_sighand;
1024         if ((retval = copy_mm(clone_flags, p)))
1025                 goto bad_fork_cleanup_signal;
1026         if ((retval = copy_namespace(clone_flags, p)))
1027                 goto bad_fork_cleanup_mm;
1028         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1029         if (retval)
1030                 goto bad_fork_cleanup_namespace;
1031
1032         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1033         /*
1034          * Clear TID on mm_release()?
1035          */
1036         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1037
1038         /*
1039          * Syscall tracing should be turned off in the child regardless
1040          * of CLONE_PTRACE.
1041          */
1042         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1043
1044         /* Our parent execution domain becomes current domain
1045            These must match for thread signalling to apply */
1046            
1047         p->parent_exec_id = p->self_exec_id;
1048
1049         /* ok, now we should be set up.. */
1050         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1051         p->pdeath_signal = 0;
1052
1053         /* Perform scheduler related setup */
1054         sched_fork(p);
1055
1056         /*
1057          * Ok, make it visible to the rest of the system.
1058          * We dont wake it up yet.
1059          */
1060         p->tgid = p->pid;
1061         p->group_leader = p;
1062         INIT_LIST_HEAD(&p->ptrace_children);
1063         INIT_LIST_HEAD(&p->ptrace_list);
1064
1065         /* Need tasklist lock for parent etc handling! */
1066         write_lock_irq(&tasklist_lock);
1067
1068         /*
1069          * The task hasn't been attached yet, so cpus_allowed mask cannot
1070          * have changed. The cpus_allowed mask of the parent may have
1071          * changed after it was copied first time, and it may then move to
1072          * another CPU - so we re-copy it here and set the child's CPU to
1073          * the parent's CPU. This avoids alot of nasty races.
1074          */
1075         p->cpus_allowed = current->cpus_allowed;
1076         set_task_cpu(p, smp_processor_id());
1077
1078         /*
1079          * Check for pending SIGKILL! The new thread should not be allowed
1080          * to slip out of an OOM kill. (or normal SIGKILL.)
1081          */
1082         if (sigismember(&current->pending.signal, SIGKILL)) {
1083                 write_unlock_irq(&tasklist_lock);
1084                 retval = -EINTR;
1085                 goto bad_fork_cleanup_namespace;
1086         }
1087
1088         /* CLONE_PARENT re-uses the old parent */
1089         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1090                 p->real_parent = current->real_parent;
1091         else
1092                 p->real_parent = current;
1093         p->parent = p->real_parent;
1094
1095         if (clone_flags & CLONE_THREAD) {
1096                 spin_lock(&current->sighand->siglock);
1097                 /*
1098                  * Important: if an exit-all has been started then
1099                  * do not create this new thread - the whole thread
1100                  * group is supposed to exit anyway.
1101                  */
1102                 if (current->signal->group_exit) {
1103                         spin_unlock(&current->sighand->siglock);
1104                         write_unlock_irq(&tasklist_lock);
1105                         retval = -EAGAIN;
1106                         goto bad_fork_cleanup_namespace;
1107                 }
1108                 p->tgid = current->tgid;
1109                 p->group_leader = current->group_leader;
1110
1111                 if (current->signal->group_stop_count > 0) {
1112                         /*
1113                          * There is an all-stop in progress for the group.
1114                          * We ourselves will stop as soon as we check signals.
1115                          * Make the new thread part of that group stop too.
1116                          */
1117                         current->signal->group_stop_count++;
1118                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1119                 }
1120
1121                 spin_unlock(&current->sighand->siglock);
1122         }
1123
1124         SET_LINKS(p);
1125         if (unlikely(p->ptrace & PT_PTRACED))
1126                 __ptrace_link(p, current->parent);
1127
1128         attach_pid(p, PIDTYPE_PID, p->pid);
1129         attach_pid(p, PIDTYPE_TGID, p->tgid);
1130         if (thread_group_leader(p)) {
1131                 attach_pid(p, PIDTYPE_PGID, process_group(p));
1132                 attach_pid(p, PIDTYPE_SID, p->signal->session);
1133                 if (p->pid)
1134                         __get_cpu_var(process_counts)++;
1135         }
1136
1137         nr_threads++;
1138         write_unlock_irq(&tasklist_lock);
1139         retval = 0;
1140
1141 fork_out:
1142         if (retval)
1143                 return ERR_PTR(retval);
1144         return p;
1145
1146 bad_fork_cleanup_namespace:
1147         exit_namespace(p);
1148 bad_fork_cleanup_mm:
1149         if (p->mm)
1150                 mmput(p->mm);
1151 bad_fork_cleanup_signal:
1152         exit_signal(p);
1153 bad_fork_cleanup_sighand:
1154         exit_sighand(p);
1155 bad_fork_cleanup_fs:
1156         exit_fs(p); /* blocking */
1157 bad_fork_cleanup_files:
1158         exit_files(p); /* blocking */
1159 bad_fork_cleanup_semundo:
1160         exit_sem(p);
1161 bad_fork_cleanup_audit:
1162         audit_free(p);
1163 bad_fork_cleanup_security:
1164         security_task_free(p);
1165 bad_fork_cleanup_policy:
1166 #ifdef CONFIG_NUMA
1167         mpol_free(p->mempolicy);
1168 #endif
1169 bad_fork_cleanup:
1170         if (p->binfmt)
1171                 module_put(p->binfmt->module);
1172 bad_fork_cleanup_put_domain:
1173         module_put(p->thread_info->exec_domain->module);
1174 bad_fork_cleanup_count:
1175         put_group_info(p->group_info);
1176         atomic_dec(&p->user->processes);
1177         free_uid(p->user);
1178 bad_fork_free:
1179         free_task(p);
1180         goto fork_out;
1181 }
1182
1183 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1184 {
1185         memset(regs, 0, sizeof(struct pt_regs));
1186         return regs;
1187 }
1188
1189 task_t * __devinit fork_idle(int cpu)
1190 {
1191         task_t *task;
1192         struct pt_regs regs;
1193
1194         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1195         if (!task)
1196                 return ERR_PTR(-ENOMEM);
1197         init_idle(task, cpu);
1198         unhash_process(task);
1199         return task;
1200 }
1201
1202 static inline int fork_traceflag (unsigned clone_flags)
1203 {
1204         if (clone_flags & CLONE_UNTRACED)
1205                 return 0;
1206         else if (clone_flags & CLONE_VFORK) {
1207                 if (current->ptrace & PT_TRACE_VFORK)
1208                         return PTRACE_EVENT_VFORK;
1209         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1210                 if (current->ptrace & PT_TRACE_CLONE)
1211                         return PTRACE_EVENT_CLONE;
1212         } else if (current->ptrace & PT_TRACE_FORK)
1213                 return PTRACE_EVENT_FORK;
1214
1215         return 0;
1216 }
1217
1218 /*
1219  *  Ok, this is the main fork-routine.
1220  *
1221  * It copies the process, and if successful kick-starts
1222  * it and waits for it to finish using the VM if required.
1223  */
1224 long do_fork(unsigned long clone_flags,
1225               unsigned long stack_start,
1226               struct pt_regs *regs,
1227               unsigned long stack_size,
1228               int __user *parent_tidptr,
1229               int __user *child_tidptr)
1230 {
1231         struct task_struct *p;
1232         int trace = 0;
1233         long pid = alloc_pidmap();
1234
1235         if (pid < 0)
1236                 return -EAGAIN;
1237         if (unlikely(current->ptrace)) {
1238                 trace = fork_traceflag (clone_flags);
1239                 if (trace)
1240                         clone_flags |= CLONE_PTRACE;
1241         }
1242
1243         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1244         /*
1245          * Do this prior waking up the new thread - the thread pointer
1246          * might get invalid after that point, if the thread exits quickly.
1247          */
1248         if (!IS_ERR(p)) {
1249                 struct completion vfork;
1250
1251                 if (clone_flags & CLONE_VFORK) {
1252                         p->vfork_done = &vfork;
1253                         init_completion(&vfork);
1254                 }
1255
1256                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1257                         /*
1258                          * We'll start up with an immediate SIGSTOP.
1259                          */
1260                         sigaddset(&p->pending.signal, SIGSTOP);
1261                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1262                 }
1263
1264                 if (!(clone_flags & CLONE_STOPPED))
1265                         wake_up_new_task(p, clone_flags);
1266                 else
1267                         p->state = TASK_STOPPED;
1268                 ++total_forks;
1269
1270                 if (unlikely (trace)) {
1271                         current->ptrace_message = pid;
1272                         ptrace_notify ((trace << 8) | SIGTRAP);
1273                 }
1274
1275                 if (clone_flags & CLONE_VFORK) {
1276                         wait_for_completion(&vfork);
1277                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1278                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1279                 }
1280         } else {
1281                 free_pidmap(pid);
1282                 pid = PTR_ERR(p);
1283         }
1284         return pid;
1285 }
1286
1287 /* SLAB cache for signal_struct structures (tsk->signal) */
1288 kmem_cache_t *signal_cachep;
1289
1290 /* SLAB cache for sighand_struct structures (tsk->sighand) */
1291 kmem_cache_t *sighand_cachep;
1292
1293 /* SLAB cache for files_struct structures (tsk->files) */
1294 kmem_cache_t *files_cachep;
1295
1296 /* SLAB cache for fs_struct structures (tsk->fs) */
1297 kmem_cache_t *fs_cachep;
1298
1299 /* SLAB cache for vm_area_struct structures */
1300 kmem_cache_t *vm_area_cachep;
1301
1302 /* SLAB cache for mm_struct structures (tsk->mm) */
1303 kmem_cache_t *mm_cachep;
1304
1305 void __init proc_caches_init(void)
1306 {
1307         sighand_cachep = kmem_cache_create("sighand_cache",
1308                         sizeof(struct sighand_struct), 0,
1309                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1310         signal_cachep = kmem_cache_create("signal_cache",
1311                         sizeof(struct signal_struct), 0,
1312                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1313         files_cachep = kmem_cache_create("files_cache", 
1314                         sizeof(struct files_struct), 0,
1315                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1316         fs_cachep = kmem_cache_create("fs_cache", 
1317                         sizeof(struct fs_struct), 0,
1318                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1319         vm_area_cachep = kmem_cache_create("vm_area_struct",
1320                         sizeof(struct vm_area_struct), 0,
1321                         SLAB_PANIC, NULL, NULL);
1322         mm_cachep = kmem_cache_create("mm_struct",
1323                         sizeof(struct mm_struct), 0,
1324                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1325 }