upgrade to linux 2.6.10-1.12_FC2
[linux-2.6.git] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/kmod.h>
15 #include <linux/reboot.h>
16 #include <linux/prctl.h>
17 #include <linux/init.h>
18 #include <linux/highuid.h>
19 #include <linux/fs.h>
20 #include <linux/workqueue.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/security.h>
25 #include <linux/dcookies.h>
26 #include <linux/suspend.h>
27 #include <linux/ckrm.h>
28 #include <linux/vs_base.h>
29 #include <linux/vs_cvirt.h>
30 #include <linux/tty.h>
31
32 #include <linux/compat.h>
33 #include <linux/syscalls.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/io.h>
37 #include <asm/unistd.h>
38
39 #ifndef SET_UNALIGN_CTL
40 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
41 #endif
42 #ifndef GET_UNALIGN_CTL
43 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
44 #endif
45 #ifndef SET_FPEMU_CTL
46 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
47 #endif
48 #ifndef GET_FPEMU_CTL
49 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
50 #endif
51 #ifndef SET_FPEXC_CTL
52 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
53 #endif
54 #ifndef GET_FPEXC_CTL
55 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
56 #endif
57
58 /*
59  * this is where the system-wide overflow UID and GID are defined, for
60  * architectures that now have 32-bit UID/GID but didn't in the past
61  */
62
63 int overflowuid = DEFAULT_OVERFLOWUID;
64 int overflowgid = DEFAULT_OVERFLOWGID;
65
66 #ifdef CONFIG_UID16
67 EXPORT_SYMBOL(overflowuid);
68 EXPORT_SYMBOL(overflowgid);
69 #endif
70
71 /*
72  * the same as above, but for filesystems which can only store a 16-bit
73  * UID and GID. as such, this is needed on all architectures
74  */
75
76 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
77 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
78
79 EXPORT_SYMBOL(fs_overflowuid);
80 EXPORT_SYMBOL(fs_overflowgid);
81
82 /*
83  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
84  */
85
86 int C_A_D = 1;
87 int cad_pid = 1;
88
89 /*
90  *      Notifier list for kernel code which wants to be called
91  *      at shutdown. This is used to stop any idling DMA operations
92  *      and the like. 
93  */
94
95 static struct notifier_block *reboot_notifier_list;
96 rwlock_t notifier_lock = RW_LOCK_UNLOCKED;
97
98 /**
99  *      notifier_chain_register - Add notifier to a notifier chain
100  *      @list: Pointer to root list pointer
101  *      @n: New entry in notifier chain
102  *
103  *      Adds a notifier to a notifier chain.
104  *
105  *      Currently always returns zero.
106  */
107  
108 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
109 {
110         write_lock(&notifier_lock);
111         while(*list)
112         {
113                 if(n->priority > (*list)->priority)
114                         break;
115                 list= &((*list)->next);
116         }
117         n->next = *list;
118         *list=n;
119         write_unlock(&notifier_lock);
120         return 0;
121 }
122
123 EXPORT_SYMBOL(notifier_chain_register);
124
125 /**
126  *      notifier_chain_unregister - Remove notifier from a notifier chain
127  *      @nl: Pointer to root list pointer
128  *      @n: New entry in notifier chain
129  *
130  *      Removes a notifier from a notifier chain.
131  *
132  *      Returns zero on success, or %-ENOENT on failure.
133  */
134  
135 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
136 {
137         write_lock(&notifier_lock);
138         while((*nl)!=NULL)
139         {
140                 if((*nl)==n)
141                 {
142                         *nl=n->next;
143                         write_unlock(&notifier_lock);
144                         return 0;
145                 }
146                 nl=&((*nl)->next);
147         }
148         write_unlock(&notifier_lock);
149         return -ENOENT;
150 }
151
152 EXPORT_SYMBOL(notifier_chain_unregister);
153
154 /**
155  *      notifier_call_chain - Call functions in a notifier chain
156  *      @n: Pointer to root pointer of notifier chain
157  *      @val: Value passed unmodified to notifier function
158  *      @v: Pointer passed unmodified to notifier function
159  *
160  *      Calls each function in a notifier chain in turn.
161  *
162  *      If the return value of the notifier can be and'd
163  *      with %NOTIFY_STOP_MASK, then notifier_call_chain
164  *      will return immediately, with the return value of
165  *      the notifier function which halted execution.
166  *      Otherwise, the return value is the return value
167  *      of the last notifier function called.
168  */
169  
170 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
171 {
172         int ret=NOTIFY_DONE;
173         struct notifier_block *nb = *n;
174
175         while(nb)
176         {
177                 ret=nb->notifier_call(nb,val,v);
178                 if(ret&NOTIFY_STOP_MASK)
179                 {
180                         return ret;
181                 }
182                 nb=nb->next;
183         }
184         return ret;
185 }
186
187 EXPORT_SYMBOL(notifier_call_chain);
188
189 /**
190  *      register_reboot_notifier - Register function to be called at reboot time
191  *      @nb: Info about notifier function to be called
192  *
193  *      Registers a function with the list of functions
194  *      to be called at reboot time.
195  *
196  *      Currently always returns zero, as notifier_chain_register
197  *      always returns zero.
198  */
199  
200 int register_reboot_notifier(struct notifier_block * nb)
201 {
202         return notifier_chain_register(&reboot_notifier_list, nb);
203 }
204
205 EXPORT_SYMBOL(register_reboot_notifier);
206
207 /**
208  *      unregister_reboot_notifier - Unregister previously registered reboot notifier
209  *      @nb: Hook to be unregistered
210  *
211  *      Unregisters a previously registered reboot
212  *      notifier function.
213  *
214  *      Returns zero on success, or %-ENOENT on failure.
215  */
216  
217 int unregister_reboot_notifier(struct notifier_block * nb)
218 {
219         return notifier_chain_unregister(&reboot_notifier_list, nb);
220 }
221
222 EXPORT_SYMBOL(unregister_reboot_notifier);
223 static int set_one_prio(struct task_struct *p, int niceval, int error)
224 {
225         int no_nice;
226
227         if (p->uid != current->euid &&
228                 p->uid != current->uid && !capable(CAP_SYS_NICE)) {
229                 error = -EPERM;
230                 goto out;
231         }
232         if (niceval < task_nice(p) && !capable(CAP_SYS_NICE)) {
233                 if (vx_flags(VXF_IGNEG_NICE, 0))
234                         error = 0;
235                 else
236                         error = -EACCES;
237                 goto out;
238         }
239         no_nice = security_task_setnice(p, niceval);
240         if (no_nice) {
241                 error = no_nice;
242                 goto out;
243         }
244         if (error == -ESRCH)
245                 error = 0;
246         set_user_nice(p, niceval);
247 out:
248         return error;
249 }
250
251 asmlinkage long sys_setpriority(int which, int who, int niceval)
252 {
253         struct task_struct *g, *p;
254         struct user_struct *user;
255         int error = -EINVAL;
256
257         if (which > 2 || which < 0)
258                 goto out;
259
260         /* normalize: avoid signed division (rounding problems) */
261         error = -ESRCH;
262         if (niceval < -20)
263                 niceval = -20;
264         if (niceval > 19)
265                 niceval = 19;
266
267         read_lock(&tasklist_lock);
268         switch (which) {
269                 case PRIO_PROCESS:
270                         if (!who)
271                                 who = current->pid;
272                         p = find_task_by_pid(who);
273                         if (p)
274                                 error = set_one_prio(p, niceval, error);
275                         break;
276                 case PRIO_PGRP:
277                         if (!who)
278                                 who = process_group(current);
279                         do_each_task_pid(who, PIDTYPE_PGID, p) {
280                                 error = set_one_prio(p, niceval, error);
281                         } while_each_task_pid(who, PIDTYPE_PGID, p);
282                         break;
283                 case PRIO_USER:
284                         user = current->user;
285                         if (!who)
286                                 who = current->uid;
287                         else
288                                 if ((who != current->uid) &&
289                                         !(user = find_user(vx_current_xid(), who)))
290                                         goto out_unlock;        /* No processes for this user */
291
292                         do_each_thread(g, p)
293                                 if (p->uid == who)
294                                         error = set_one_prio(p, niceval, error);
295                         while_each_thread(g, p);
296                         if (who != current->uid)
297                                 free_uid(user);         /* For find_user() */
298                         break;
299         }
300 out_unlock:
301         read_unlock(&tasklist_lock);
302 out:
303         return error;
304 }
305
306 /*
307  * Ugh. To avoid negative return values, "getpriority()" will
308  * not return the normal nice-value, but a negated value that
309  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
310  * to stay compatible.
311  */
312 asmlinkage long sys_getpriority(int which, int who)
313 {
314         struct task_struct *g, *p;
315         struct user_struct *user;
316         long niceval, retval = -ESRCH;
317
318         if (which > 2 || which < 0)
319                 return -EINVAL;
320
321         read_lock(&tasklist_lock);
322         switch (which) {
323                 case PRIO_PROCESS:
324                         if (!who)
325                                 who = current->pid;
326                         p = find_task_by_pid(who);
327                         if (p) {
328                                 niceval = 20 - task_nice(p);
329                                 if (niceval > retval)
330                                         retval = niceval;
331                         }
332                         break;
333                 case PRIO_PGRP:
334                         if (!who)
335                                 who = process_group(current);
336                         do_each_task_pid(who, PIDTYPE_PGID, p) {
337                                 niceval = 20 - task_nice(p);
338                                 if (niceval > retval)
339                                         retval = niceval;
340                         } while_each_task_pid(who, PIDTYPE_PGID, p);
341                         break;
342                 case PRIO_USER:
343                         user = current->user;
344                         if (!who)
345                                 who = current->uid;
346                         else
347                                 if ((who != current->uid) &&
348                                         !(user = find_user(vx_current_xid(), who)))
349                                         goto out_unlock;        /* No processes for this user */
350
351                         do_each_thread(g, p)
352                                 if (p->uid == who) {
353                                         niceval = 20 - task_nice(p);
354                                         if (niceval > retval)
355                                                 retval = niceval;
356                                 }
357                         while_each_thread(g, p);
358                         if (who != current->uid)
359                                 free_uid(user);         /* for find_user() */
360                         break;
361         }
362 out_unlock:
363         read_unlock(&tasklist_lock);
364
365         return retval;
366 }
367
368 long vs_reboot(unsigned int, void *);
369
370 /*
371  * Reboot system call: for obvious reasons only root may call it,
372  * and even root needs to set up some magic numbers in the registers
373  * so that some mistake won't make this reboot the whole machine.
374  * You can also set the meaning of the ctrl-alt-del-key here.
375  *
376  * reboot doesn't sync: do that yourself before calling this.
377  */
378 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
379 {
380         char buffer[256];
381
382         /* We only trust the superuser with rebooting the system. */
383         if (!capable(CAP_SYS_BOOT))
384                 return -EPERM;
385
386         /* For safety, we require "magic" arguments. */
387         if (magic1 != LINUX_REBOOT_MAGIC1 ||
388             (magic2 != LINUX_REBOOT_MAGIC2 &&
389                         magic2 != LINUX_REBOOT_MAGIC2A &&
390                         magic2 != LINUX_REBOOT_MAGIC2B &&
391                         magic2 != LINUX_REBOOT_MAGIC2C))
392                 return -EINVAL;
393
394         if (!vx_check(0, VX_ADMIN|VX_WATCH))
395                 return vs_reboot(cmd, arg);
396
397         lock_kernel();
398         switch (cmd) {
399         case LINUX_REBOOT_CMD_RESTART:
400                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
401                 system_state = SYSTEM_RESTART;
402                 device_shutdown();
403                 printk(KERN_EMERG "Restarting system.\n");
404                 machine_restart(NULL);
405                 break;
406
407         case LINUX_REBOOT_CMD_CAD_ON:
408                 C_A_D = 1;
409                 break;
410
411         case LINUX_REBOOT_CMD_CAD_OFF:
412                 C_A_D = 0;
413                 break;
414
415         case LINUX_REBOOT_CMD_HALT:
416                 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
417                 system_state = SYSTEM_HALT;
418                 device_shutdown();
419                 printk(KERN_EMERG "System halted.\n");
420                 machine_halt();
421                 unlock_kernel();
422                 do_exit(0);
423                 break;
424
425         case LINUX_REBOOT_CMD_POWER_OFF:
426                 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
427                 system_state = SYSTEM_POWER_OFF;
428                 device_shutdown();
429                 printk(KERN_EMERG "Power down.\n");
430                 machine_power_off();
431                 unlock_kernel();
432                 do_exit(0);
433                 break;
434
435         case LINUX_REBOOT_CMD_RESTART2:
436                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
437                         unlock_kernel();
438                         return -EFAULT;
439                 }
440                 buffer[sizeof(buffer) - 1] = '\0';
441
442                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer);
443                 system_state = SYSTEM_RESTART;
444                 device_shutdown();
445                 printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer);
446                 machine_restart(buffer);
447                 break;
448
449 #ifdef CONFIG_KEXEC
450         case LINUX_REBOOT_CMD_KEXEC:
451         {
452                 struct kimage *image;
453                 image = xchg(&kexec_image, 0);
454                 if (!image) {
455                         unlock_kernel();
456                         return -EINVAL;
457                 }
458                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
459                 system_state = SYSTEM_RESTART;
460                 device_shutdown();
461                 system_state = SYSTEM_BOOTING;
462                 printk(KERN_EMERG "Starting new kernel\n");
463                 machine_shutdown();
464                 machine_kexec(image);
465                 break;
466         }
467 #endif
468
469 #ifdef CONFIG_SOFTWARE_SUSPEND
470         case LINUX_REBOOT_CMD_SW_SUSPEND:
471                 {
472                         int ret = software_suspend();
473                         unlock_kernel();
474                         return ret;
475                 }
476 #endif
477
478         default:
479                 unlock_kernel();
480                 return -EINVAL;
481         }
482         unlock_kernel();
483         return 0;
484 }
485
486 static void deferred_cad(void *dummy)
487 {
488         notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
489         machine_restart(NULL);
490 }
491
492 /*
493  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
494  * As it's called within an interrupt, it may NOT sync: the only choice
495  * is whether to reboot at once, or just ignore the ctrl-alt-del.
496  */
497 void ctrl_alt_del(void)
498 {
499         static DECLARE_WORK(cad_work, deferred_cad, NULL);
500
501         if (C_A_D)
502                 schedule_work(&cad_work);
503         else
504                 kill_proc(cad_pid, SIGINT, 1);
505 }
506         
507
508 /*
509  * Unprivileged users may change the real gid to the effective gid
510  * or vice versa.  (BSD-style)
511  *
512  * If you set the real gid at all, or set the effective gid to a value not
513  * equal to the real gid, then the saved gid is set to the new effective gid.
514  *
515  * This makes it possible for a setgid program to completely drop its
516  * privileges, which is often a useful assertion to make when you are doing
517  * a security audit over a program.
518  *
519  * The general idea is that a program which uses just setregid() will be
520  * 100% compatible with BSD.  A program which uses just setgid() will be
521  * 100% compatible with POSIX with saved IDs. 
522  *
523  * SMP: There are not races, the GIDs are checked only by filesystem
524  *      operations (as far as semantic preservation is concerned).
525  */
526 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
527 {
528         int old_rgid = current->gid;
529         int old_egid = current->egid;
530         int new_rgid = old_rgid;
531         int new_egid = old_egid;
532         int retval;
533
534         retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
535         if (retval)
536                 return retval;
537
538         if (rgid != (gid_t) -1) {
539                 if ((old_rgid == rgid) ||
540                     (current->egid==rgid) ||
541                     capable(CAP_SETGID))
542                         new_rgid = rgid;
543                 else
544                         return -EPERM;
545         }
546         if (egid != (gid_t) -1) {
547                 if ((old_rgid == egid) ||
548                     (current->egid == egid) ||
549                     (current->sgid == egid) ||
550                     capable(CAP_SETGID))
551                         new_egid = egid;
552                 else {
553                         return -EPERM;
554                 }
555         }
556         if (new_egid != old_egid)
557         {
558                 current->mm->dumpable = suid_dumpable;
559                 wmb();
560         }
561         if (rgid != (gid_t) -1 ||
562             (egid != (gid_t) -1 && egid != old_rgid))
563                 current->sgid = new_egid;
564         current->fsgid = new_egid;
565         current->egid = new_egid;
566         current->gid = new_rgid;
567
568         ckrm_cb_gid();
569
570         key_fsgid_changed(current);
571         return 0;
572 }
573
574 /*
575  * setgid() is implemented like SysV w/ SAVED_IDS 
576  *
577  * SMP: Same implicit races as above.
578  */
579 asmlinkage long sys_setgid(gid_t gid)
580 {
581         int old_egid = current->egid;
582         int retval;
583
584         retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
585         if (retval)
586                 return retval;
587
588         if (capable(CAP_SETGID))
589         {
590                 if(old_egid != gid)
591                 {
592                         current->mm->dumpable = suid_dumpable;
593                         wmb();
594                 }
595                 current->gid = current->egid = current->sgid = current->fsgid = gid;
596         }
597         else if ((gid == current->gid) || (gid == current->sgid))
598         {
599                 if(old_egid != gid)
600                 {
601                         current->mm->dumpable = suid_dumpable;
602                         wmb();
603                 }
604                 current->egid = current->fsgid = gid;
605         }
606         else
607                 return -EPERM;
608
609         ckrm_cb_gid();
610
611         key_fsgid_changed(current);
612         return 0;
613 }
614   
615 static int set_user(uid_t new_ruid, int dumpclear)
616 {
617         struct user_struct *new_user;
618
619         new_user = alloc_uid(vx_current_xid(), new_ruid);
620         if (!new_user)
621                 return -EAGAIN;
622
623         if (atomic_read(&new_user->processes) >=
624                                 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
625                         new_user != &root_user) {
626                 free_uid(new_user);
627                 return -EAGAIN;
628         }
629
630         switch_uid(new_user);
631
632         if(dumpclear)
633         {
634                 current->mm->dumpable = suid_dumpable;
635                 wmb();
636         }
637         current->uid = new_ruid;
638         return 0;
639 }
640
641 /*
642  * Unprivileged users may change the real uid to the effective uid
643  * or vice versa.  (BSD-style)
644  *
645  * If you set the real uid at all, or set the effective uid to a value not
646  * equal to the real uid, then the saved uid is set to the new effective uid.
647  *
648  * This makes it possible for a setuid program to completely drop its
649  * privileges, which is often a useful assertion to make when you are doing
650  * a security audit over a program.
651  *
652  * The general idea is that a program which uses just setreuid() will be
653  * 100% compatible with BSD.  A program which uses just setuid() will be
654  * 100% compatible with POSIX with saved IDs. 
655  */
656 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
657 {
658         int old_ruid, old_euid, old_suid, new_ruid, new_euid;
659         int retval;
660
661         retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
662         if (retval)
663                 return retval;
664
665         new_ruid = old_ruid = current->uid;
666         new_euid = old_euid = current->euid;
667         old_suid = current->suid;
668
669         if (ruid != (uid_t) -1) {
670                 new_ruid = ruid;
671                 if ((old_ruid != ruid) &&
672                     (current->euid != ruid) &&
673                     !capable(CAP_SETUID))
674                         return -EPERM;
675         }
676
677         if (euid != (uid_t) -1) {
678                 new_euid = euid;
679                 if ((old_ruid != euid) &&
680                     (current->euid != euid) &&
681                     (current->suid != euid) &&
682                     !capable(CAP_SETUID))
683                         return -EPERM;
684         }
685
686         if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
687                 return -EAGAIN;
688
689         if (new_euid != old_euid)
690         {
691                 current->mm->dumpable = suid_dumpable;
692                 wmb();
693         }
694         current->fsuid = current->euid = new_euid;
695         if (ruid != (uid_t) -1 ||
696             (euid != (uid_t) -1 && euid != old_ruid))
697                 current->suid = current->euid;
698         current->fsuid = current->euid;
699
700         ckrm_cb_uid();
701
702         key_fsuid_changed(current);
703
704         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
705 }
706
707
708                 
709 /*
710  * setuid() is implemented like SysV with SAVED_IDS 
711  * 
712  * Note that SAVED_ID's is deficient in that a setuid root program
713  * like sendmail, for example, cannot set its uid to be a normal 
714  * user and then switch back, because if you're root, setuid() sets
715  * the saved uid too.  If you don't like this, blame the bright people
716  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
717  * will allow a root program to temporarily drop privileges and be able to
718  * regain them by swapping the real and effective uid.  
719  */
720 asmlinkage long sys_setuid(uid_t uid)
721 {
722         int old_euid = current->euid;
723         int old_ruid, old_suid, new_ruid, new_suid;
724         int retval;
725
726         retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
727         if (retval)
728                 return retval;
729
730         old_ruid = new_ruid = current->uid;
731         old_suid = current->suid;
732         new_suid = old_suid;
733         
734         if (capable(CAP_SETUID)) {
735                 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
736                         return -EAGAIN;
737                 new_suid = uid;
738         } else if ((uid != current->uid) && (uid != new_suid))
739                 return -EPERM;
740
741         if (old_euid != uid)
742         {
743                 current->mm->dumpable = suid_dumpable;
744                 wmb();
745         }
746         current->fsuid = current->euid = uid;
747         current->suid = new_suid;
748
749         ckrm_cb_uid();
750
751         key_fsuid_changed(current);
752
753         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
754 }
755
756
757 /*
758  * This function implements a generic ability to update ruid, euid,
759  * and suid.  This allows you to implement the 4.4 compatible seteuid().
760  */
761 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
762 {
763         int old_ruid = current->uid;
764         int old_euid = current->euid;
765         int old_suid = current->suid;
766         int retval;
767
768         retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
769         if (retval)
770                 return retval;
771
772         if (!capable(CAP_SETUID)) {
773                 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
774                     (ruid != current->euid) && (ruid != current->suid))
775                         return -EPERM;
776                 if ((euid != (uid_t) -1) && (euid != current->uid) &&
777                     (euid != current->euid) && (euid != current->suid))
778                         return -EPERM;
779                 if ((suid != (uid_t) -1) && (suid != current->uid) &&
780                     (suid != current->euid) && (suid != current->suid))
781                         return -EPERM;
782         }
783         if (ruid != (uid_t) -1) {
784                 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
785                         return -EAGAIN;
786         }
787         if (euid != (uid_t) -1) {
788                 if (euid != current->euid)
789                 {
790                         current->mm->dumpable = suid_dumpable;
791                         wmb();
792                 }
793                 current->euid = euid;
794         }
795         current->fsuid = current->euid;
796         if (suid != (uid_t) -1)
797                 current->suid = suid;
798
799         ckrm_cb_uid();
800
801         key_fsuid_changed(current);
802
803         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
804 }
805
806 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
807 {
808         int retval;
809
810         if (!(retval = put_user(current->uid, ruid)) &&
811             !(retval = put_user(current->euid, euid)))
812                 retval = put_user(current->suid, suid);
813
814         return retval;
815 }
816
817 /*
818  * Same as above, but for rgid, egid, sgid.
819  */
820 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
821 {
822         int retval;
823
824         retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
825         if (retval)
826                 return retval;
827
828         if (!capable(CAP_SETGID)) {
829                 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
830                     (rgid != current->egid) && (rgid != current->sgid))
831                         return -EPERM;
832                 if ((egid != (gid_t) -1) && (egid != current->gid) &&
833                     (egid != current->egid) && (egid != current->sgid))
834                         return -EPERM;
835                 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
836                     (sgid != current->egid) && (sgid != current->sgid))
837                         return -EPERM;
838         }
839         if (egid != (gid_t) -1) {
840                 if (egid != current->egid)
841                 {
842                         current->mm->dumpable = suid_dumpable;
843                         wmb();
844                 }
845                 current->egid = egid;
846         }
847         current->fsgid = current->egid;
848         if (rgid != (gid_t) -1)
849                 current->gid = rgid;
850         if (sgid != (gid_t) -1)
851                 current->sgid = sgid;
852
853         ckrm_cb_gid();
854
855
856         key_fsgid_changed(current);
857         return 0;
858 }
859
860 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
861 {
862         int retval;
863
864         if (!(retval = put_user(current->gid, rgid)) &&
865             !(retval = put_user(current->egid, egid)))
866                 retval = put_user(current->sgid, sgid);
867
868         return retval;
869 }
870
871
872 /*
873  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
874  * is used for "access()" and for the NFS daemon (letting nfsd stay at
875  * whatever uid it wants to). It normally shadows "euid", except when
876  * explicitly set by setfsuid() or for access..
877  */
878 asmlinkage long sys_setfsuid(uid_t uid)
879 {
880         int old_fsuid;
881
882         old_fsuid = current->fsuid;
883         if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
884                 return old_fsuid;
885
886         if (uid == current->uid || uid == current->euid ||
887             uid == current->suid || uid == current->fsuid || 
888             capable(CAP_SETUID))
889         {
890                 if (uid != old_fsuid)
891                 {
892                         current->mm->dumpable = suid_dumpable;
893                         wmb();
894                 }
895                 current->fsuid = uid;
896         }
897
898         key_fsuid_changed(current);
899
900         security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
901
902         return old_fsuid;
903 }
904
905 /*
906  * Samma pÃ¥ svenska..
907  */
908 asmlinkage long sys_setfsgid(gid_t gid)
909 {
910         int old_fsgid;
911
912         old_fsgid = current->fsgid;
913         if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
914                 return old_fsgid;
915
916         if (gid == current->gid || gid == current->egid ||
917             gid == current->sgid || gid == current->fsgid || 
918             capable(CAP_SETGID))
919         {
920                 if (gid != old_fsgid)
921                 {
922                         current->mm->dumpable = suid_dumpable;
923                         wmb();
924                 }
925                 current->fsgid = gid;
926                 key_fsgid_changed(current);
927         }
928         return old_fsgid;
929 }
930
931 asmlinkage long sys_times(struct tms __user * tbuf)
932 {
933         /*
934          *      In the SMP world we might just be unlucky and have one of
935          *      the times increment as we use it. Since the value is an
936          *      atomically safe type this is just fine. Conceptually its
937          *      as if the syscall took an instant longer to occur.
938          */
939         if (tbuf) {
940                 struct tms tmp;
941                 struct task_struct *tsk = current;
942                 struct task_struct *t;
943                 unsigned long utime, stime, cutime, cstime;
944
945                 read_lock(&tasklist_lock);
946                 utime = tsk->signal->utime;
947                 stime = tsk->signal->stime;
948                 t = tsk;
949                 do {
950                         utime += t->utime;
951                         stime += t->stime;
952                         t = next_thread(t);
953                 } while (t != tsk);
954
955                 /*
956                  * While we have tasklist_lock read-locked, no dying thread
957                  * can be updating current->signal->[us]time.  Instead,
958                  * we got their counts included in the live thread loop.
959                  * However, another thread can come in right now and
960                  * do a wait call that updates current->signal->c[us]time.
961                  * To make sure we always see that pair updated atomically,
962                  * we take the siglock around fetching them.
963                  */
964                 spin_lock_irq(&tsk->sighand->siglock);
965                 cutime = tsk->signal->cutime;
966                 cstime = tsk->signal->cstime;
967                 spin_unlock_irq(&tsk->sighand->siglock);
968                 read_unlock(&tasklist_lock);
969
970                 tmp.tms_utime = jiffies_to_clock_t(utime);
971                 tmp.tms_stime = jiffies_to_clock_t(stime);
972                 tmp.tms_cutime = jiffies_to_clock_t(cutime);
973                 tmp.tms_cstime = jiffies_to_clock_t(cstime);
974                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
975                         return -EFAULT;
976         }
977         return (long) jiffies_64_to_clock_t(get_jiffies_64());
978 }
979
980 /*
981  * This needs some heavy checking ...
982  * I just haven't the stomach for it. I also don't fully
983  * understand sessions/pgrp etc. Let somebody who does explain it.
984  *
985  * OK, I think I have the protection semantics right.... this is really
986  * only important on a multi-user system anyway, to make sure one user
987  * can't send a signal to a process owned by another.  -TYT, 12/12/91
988  *
989  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
990  * LBT 04.03.94
991  */
992
993 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
994 {
995         struct task_struct *p;
996         int err = -EINVAL;
997         pid_t rpgid;
998
999         if (!pid)
1000                 pid = vx_map_pid(current->pid);
1001         if (!pgid)
1002                 pgid = pid;
1003         if (pgid < 0)
1004                 return -EINVAL;
1005
1006         rpgid = vx_rmap_pid(pgid);
1007
1008         /* From this point forward we keep holding onto the tasklist lock
1009          * so that our parent does not change from under us. -DaveM
1010          */
1011         write_lock_irq(&tasklist_lock);
1012
1013         err = -ESRCH;
1014         p = find_task_by_pid(pid);
1015         if (!p)
1016                 goto out;
1017
1018         err = -EINVAL;
1019         if (!thread_group_leader(p))
1020                 goto out;
1021
1022         if (p->parent == current || p->real_parent == current) {
1023                 err = -EPERM;
1024                 if (p->signal->session != current->signal->session)
1025                         goto out;
1026                 err = -EACCES;
1027                 if (p->did_exec)
1028                         goto out;
1029         } else {
1030                 err = -ESRCH;
1031                 if (p != current)
1032                         goto out;
1033         }
1034
1035         err = -EPERM;
1036         if (p->signal->leader)
1037                 goto out;
1038
1039         if (pgid != pid) {
1040                 struct task_struct *p;
1041
1042                 do_each_task_pid(rpgid, PIDTYPE_PGID, p) {
1043                         if (p->signal->session == current->signal->session)
1044                                 goto ok_pgid;
1045                 } while_each_task_pid(rpgid, PIDTYPE_PGID, p);
1046                 goto out;
1047         }
1048
1049 ok_pgid:
1050         err = security_task_setpgid(p, rpgid);
1051         if (err)
1052                 goto out;
1053
1054         if (process_group(p) != rpgid) {
1055                 detach_pid(p, PIDTYPE_PGID);
1056                 p->signal->pgrp = rpgid;
1057                 attach_pid(p, PIDTYPE_PGID, rpgid);
1058         }
1059
1060         err = 0;
1061 out:
1062         /* All paths lead to here, thus we are safe. -DaveM */
1063         write_unlock_irq(&tasklist_lock);
1064         return err;
1065 }
1066
1067 asmlinkage long sys_getpgid(pid_t pid)
1068 {
1069         if (!pid) {
1070                 return vx_rmap_pid(process_group(current));
1071         } else {
1072                 int retval;
1073                 struct task_struct *p;
1074
1075                 read_lock(&tasklist_lock);
1076                 p = find_task_by_pid(pid);
1077
1078                 retval = -ESRCH;
1079                 if (p) {
1080                         retval = security_task_getpgid(p);
1081                         if (!retval)
1082                                 retval = vx_rmap_pid(process_group(p));
1083                 }
1084                 read_unlock(&tasklist_lock);
1085                 return retval;
1086         }
1087 }
1088
1089 #ifdef __ARCH_WANT_SYS_GETPGRP
1090
1091 asmlinkage long sys_getpgrp(void)
1092 {
1093         /* SMP - assuming writes are word atomic this is fine */
1094         return process_group(current);
1095 }
1096
1097 #endif
1098
1099 asmlinkage long sys_getsid(pid_t pid)
1100 {
1101         if (!pid) {
1102                 return current->signal->session;
1103         } else {
1104                 int retval;
1105                 struct task_struct *p;
1106
1107                 read_lock(&tasklist_lock);
1108                 p = find_task_by_pid(pid);
1109
1110                 retval = -ESRCH;
1111                 if(p) {
1112                         retval = security_task_getsid(p);
1113                         if (!retval)
1114                                 retval = p->signal->session;
1115                 }
1116                 read_unlock(&tasklist_lock);
1117                 return retval;
1118         }
1119 }
1120
1121 asmlinkage long sys_setsid(void)
1122 {
1123         struct pid *pid;
1124         int err = -EPERM;
1125
1126         if (!thread_group_leader(current))
1127                 return -EINVAL;
1128
1129         down(&tty_sem);
1130         write_lock_irq(&tasklist_lock);
1131
1132         pid = find_pid(PIDTYPE_PGID, current->pid);
1133         if (pid)
1134                 goto out;
1135
1136         current->signal->leader = 1;
1137         __set_special_pids(current->pid, current->pid);
1138         current->signal->tty = NULL;
1139         current->signal->tty_old_pgrp = 0;
1140         err = process_group(current);
1141 out:
1142         write_unlock_irq(&tasklist_lock);
1143         up(&tty_sem);
1144         return err;
1145 }
1146
1147 /*
1148  * Supplementary group IDs
1149  */
1150
1151 /* init to 2 - one for init_task, one to ensure it is never freed */
1152 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1153
1154 struct group_info *groups_alloc(int gidsetsize)
1155 {
1156         struct group_info *group_info;
1157         int nblocks;
1158         int i;
1159
1160         nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1161         /* Make sure we always allocate at least one indirect block pointer */
1162         nblocks = nblocks ? : 1;
1163         group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1164         if (!group_info)
1165                 return NULL;
1166         group_info->ngroups = gidsetsize;
1167         group_info->nblocks = nblocks;
1168         atomic_set(&group_info->usage, 1);
1169
1170         if (gidsetsize <= NGROUPS_SMALL) {
1171                 group_info->blocks[0] = group_info->small_block;
1172         } else {
1173                 for (i = 0; i < nblocks; i++) {
1174                         gid_t *b;
1175                         b = (void *)__get_free_page(GFP_USER);
1176                         if (!b)
1177                                 goto out_undo_partial_alloc;
1178                         group_info->blocks[i] = b;
1179                 }
1180         }
1181         return group_info;
1182
1183 out_undo_partial_alloc:
1184         while (--i >= 0) {
1185                 free_page((unsigned long)group_info->blocks[i]);
1186         }
1187         kfree(group_info);
1188         return NULL;
1189 }
1190
1191 EXPORT_SYMBOL(groups_alloc);
1192
1193 void groups_free(struct group_info *group_info)
1194 {
1195         if (group_info->blocks[0] != group_info->small_block) {
1196                 int i;
1197                 for (i = 0; i < group_info->nblocks; i++)
1198                         free_page((unsigned long)group_info->blocks[i]);
1199         }
1200         kfree(group_info);
1201 }
1202
1203 EXPORT_SYMBOL(groups_free);
1204
1205 /* export the group_info to a user-space array */
1206 static int groups_to_user(gid_t __user *grouplist,
1207     struct group_info *group_info)
1208 {
1209         int i;
1210         int count = group_info->ngroups;
1211
1212         for (i = 0; i < group_info->nblocks; i++) {
1213                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1214                 int off = i * NGROUPS_PER_BLOCK;
1215                 int len = cp_count * sizeof(*grouplist);
1216
1217                 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1218                         return -EFAULT;
1219
1220                 count -= cp_count;
1221         }
1222         return 0;
1223 }
1224
1225 /* fill a group_info from a user-space array - it must be allocated already */
1226 static int groups_from_user(struct group_info *group_info,
1227     gid_t __user *grouplist)
1228  {
1229         int i;
1230         int count = group_info->ngroups;
1231
1232         for (i = 0; i < group_info->nblocks; i++) {
1233                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1234                 int off = i * NGROUPS_PER_BLOCK;
1235                 int len = cp_count * sizeof(*grouplist);
1236
1237                 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1238                         return -EFAULT;
1239
1240                 count -= cp_count;
1241         }
1242         return 0;
1243 }
1244
1245 /* a simple shell-metzner sort */
1246 static void groups_sort(struct group_info *group_info)
1247 {
1248         int base, max, stride;
1249         int gidsetsize = group_info->ngroups;
1250
1251         for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1252                 ; /* nothing */
1253         stride /= 3;
1254
1255         while (stride) {
1256                 max = gidsetsize - stride;
1257                 for (base = 0; base < max; base++) {
1258                         int left = base;
1259                         int right = left + stride;
1260                         gid_t tmp = GROUP_AT(group_info, right);
1261
1262                         while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1263                                 GROUP_AT(group_info, right) =
1264                                     GROUP_AT(group_info, left);
1265                                 right = left;
1266                                 left -= stride;
1267                         }
1268                         GROUP_AT(group_info, right) = tmp;
1269                 }
1270                 stride /= 3;
1271         }
1272 }
1273
1274 /* a simple bsearch */
1275 static int groups_search(struct group_info *group_info, gid_t grp)
1276 {
1277         int left, right;
1278
1279         if (!group_info)
1280                 return 0;
1281
1282         left = 0;
1283         right = group_info->ngroups;
1284         while (left < right) {
1285                 int mid = (left+right)/2;
1286                 int cmp = grp - GROUP_AT(group_info, mid);
1287                 if (cmp > 0)
1288                         left = mid + 1;
1289                 else if (cmp < 0)
1290                         right = mid;
1291                 else
1292                         return 1;
1293         }
1294         return 0;
1295 }
1296
1297 /* validate and set current->group_info */
1298 int set_current_groups(struct group_info *group_info)
1299 {
1300         int retval;
1301         struct group_info *old_info;
1302
1303         retval = security_task_setgroups(group_info);
1304         if (retval)
1305                 return retval;
1306
1307         groups_sort(group_info);
1308         get_group_info(group_info);
1309
1310         task_lock(current);
1311         old_info = current->group_info;
1312         current->group_info = group_info;
1313         task_unlock(current);
1314
1315         put_group_info(old_info);
1316
1317         return 0;
1318 }
1319
1320 EXPORT_SYMBOL(set_current_groups);
1321
1322 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1323 {
1324         int i = 0;
1325
1326         /*
1327          *      SMP: Nobody else can change our grouplist. Thus we are
1328          *      safe.
1329          */
1330
1331         if (gidsetsize < 0)
1332                 return -EINVAL;
1333
1334         /* no need to grab task_lock here; it cannot change */
1335         get_group_info(current->group_info);
1336         i = current->group_info->ngroups;
1337         if (gidsetsize) {
1338                 if (i > gidsetsize) {
1339                         i = -EINVAL;
1340                         goto out;
1341                 }
1342                 if (groups_to_user(grouplist, current->group_info)) {
1343                         i = -EFAULT;
1344                         goto out;
1345                 }
1346         }
1347 out:
1348         put_group_info(current->group_info);
1349         return i;
1350 }
1351
1352 /*
1353  *      SMP: Our groups are copy-on-write. We can set them safely
1354  *      without another task interfering.
1355  */
1356  
1357 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1358 {
1359         struct group_info *group_info;
1360         int retval;
1361
1362         if (!capable(CAP_SETGID))
1363                 return -EPERM;
1364         if ((unsigned)gidsetsize > NGROUPS_MAX)
1365                 return -EINVAL;
1366
1367         group_info = groups_alloc(gidsetsize);
1368         if (!group_info)
1369                 return -ENOMEM;
1370         retval = groups_from_user(group_info, grouplist);
1371         if (retval) {
1372                 put_group_info(group_info);
1373                 return retval;
1374         }
1375
1376         retval = set_current_groups(group_info);
1377         put_group_info(group_info);
1378
1379         return retval;
1380 }
1381
1382 /*
1383  * Check whether we're fsgid/egid or in the supplemental group..
1384  */
1385 int in_group_p(gid_t grp)
1386 {
1387         int retval = 1;
1388         if (grp != current->fsgid) {
1389                 get_group_info(current->group_info);
1390                 retval = groups_search(current->group_info, grp);
1391                 put_group_info(current->group_info);
1392         }
1393         return retval;
1394 }
1395
1396 EXPORT_SYMBOL(in_group_p);
1397
1398 int in_egroup_p(gid_t grp)
1399 {
1400         int retval = 1;
1401         if (grp != current->egid) {
1402                 get_group_info(current->group_info);
1403                 retval = groups_search(current->group_info, grp);
1404                 put_group_info(current->group_info);
1405         }
1406         return retval;
1407 }
1408
1409 EXPORT_SYMBOL(in_egroup_p);
1410
1411 DECLARE_RWSEM(uts_sem);
1412
1413 EXPORT_SYMBOL(uts_sem);
1414
1415 asmlinkage long sys_newuname(struct new_utsname __user * name)
1416 {
1417         int errno = 0;
1418
1419         down_read(&uts_sem);
1420         if (copy_to_user(name, vx_new_utsname(), sizeof *name))
1421                 errno = -EFAULT;
1422         up_read(&uts_sem);
1423         return errno;
1424 }
1425
1426 asmlinkage long sys_sethostname(char __user *name, int len)
1427 {
1428         int errno;
1429         char tmp[__NEW_UTS_LEN];
1430
1431         if (!capable(CAP_SYS_ADMIN) && !vx_ccaps(VXC_SET_UTSNAME))
1432                 return -EPERM;
1433         if (len < 0 || len > __NEW_UTS_LEN)
1434                 return -EINVAL;
1435         down_write(&uts_sem);
1436         errno = -EFAULT;
1437         if (!copy_from_user(tmp, name, len)) {
1438                 char *ptr = vx_new_uts(nodename);
1439
1440                 memcpy(ptr, tmp, len);
1441                 ptr[len] = 0;
1442                 errno = 0;
1443         }
1444         up_write(&uts_sem);
1445         return errno;
1446 }
1447
1448 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1449
1450 asmlinkage long sys_gethostname(char __user *name, int len)
1451 {
1452         int i, errno;
1453         char *ptr;
1454
1455         if (len < 0)
1456                 return -EINVAL;
1457         down_read(&uts_sem);
1458         ptr = vx_new_uts(nodename);
1459         i = 1 + strlen(ptr);
1460         if (i > len)
1461                 i = len;
1462         errno = 0;
1463         if (copy_to_user(name, ptr, i))
1464                 errno = -EFAULT;
1465         up_read(&uts_sem);
1466         return errno;
1467 }
1468
1469 #endif
1470
1471 /*
1472  * Only setdomainname; getdomainname can be implemented by calling
1473  * uname()
1474  */
1475 asmlinkage long sys_setdomainname(char __user *name, int len)
1476 {
1477         int errno;
1478         char tmp[__NEW_UTS_LEN];
1479
1480         if (!capable(CAP_SYS_ADMIN) && !vx_ccaps(VXC_SET_UTSNAME))
1481                 return -EPERM;
1482         if (len < 0 || len > __NEW_UTS_LEN)
1483                 return -EINVAL;
1484
1485         down_write(&uts_sem);
1486         errno = -EFAULT;
1487         if (!copy_from_user(tmp, name, len)) {
1488                 char *ptr = vx_new_uts(domainname);
1489
1490                 memcpy(ptr, tmp, len);
1491                 ptr[len] = 0;
1492                 errno = 0;
1493         }
1494         up_write(&uts_sem);
1495         return errno;
1496 }
1497
1498 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1499 {
1500         if (resource >= RLIM_NLIMITS)
1501                 return -EINVAL;
1502         else {
1503                 struct rlimit value;
1504                 task_lock(current->group_leader);
1505                 value = current->signal->rlim[resource];
1506                 task_unlock(current->group_leader);
1507                 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1508         }
1509 }
1510
1511 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1512
1513 /*
1514  *      Back compatibility for getrlimit. Needed for some apps.
1515  */
1516  
1517 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1518 {
1519         struct rlimit x;
1520         if (resource >= RLIM_NLIMITS)
1521                 return -EINVAL;
1522
1523         task_lock(current->group_leader);
1524         x = current->signal->rlim[resource];
1525         task_unlock(current->group_leader);
1526         if(x.rlim_cur > 0x7FFFFFFF)
1527                 x.rlim_cur = 0x7FFFFFFF;
1528         if(x.rlim_max > 0x7FFFFFFF)
1529                 x.rlim_max = 0x7FFFFFFF;
1530         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1531 }
1532
1533 #endif
1534
1535 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1536 {
1537         struct rlimit new_rlim, *old_rlim;
1538         int retval;
1539
1540         if (resource >= RLIM_NLIMITS)
1541                 return -EINVAL;
1542         if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1543                 return -EFAULT;
1544        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1545                return -EINVAL;
1546         old_rlim = current->signal->rlim + resource;
1547         if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1548             !capable(CAP_SYS_RESOURCE) && !vx_ccaps(VXC_SET_RLIMIT))
1549                 return -EPERM;
1550         if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1551                         return -EPERM;
1552
1553         retval = security_task_setrlimit(resource, &new_rlim);
1554         if (retval)
1555                 return retval;
1556
1557         task_lock(current->group_leader);
1558         *old_rlim = new_rlim;
1559         task_unlock(current->group_leader);
1560         return 0;
1561 }
1562
1563 /*
1564  * It would make sense to put struct rusage in the task_struct,
1565  * except that would make the task_struct be *really big*.  After
1566  * task_struct gets moved into malloc'ed memory, it would
1567  * make sense to do this.  It will make moving the rest of the information
1568  * a lot simpler!  (Which we're not doing right now because we're not
1569  * measuring them yet).
1570  *
1571  * This expects to be called with tasklist_lock read-locked or better,
1572  * and the siglock not locked.  It may momentarily take the siglock.
1573  *
1574  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1575  * races with threads incrementing their own counters.  But since word
1576  * reads are atomic, we either get new values or old values and we don't
1577  * care which for the sums.  We always take the siglock to protect reading
1578  * the c* fields from p->signal from races with exit.c updating those
1579  * fields when reaping, so a sample either gets all the additions of a
1580  * given child after it's reaped, or none so this sample is before reaping.
1581  */
1582
1583 void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1584 {
1585         struct task_struct *t;
1586         unsigned long flags;
1587         unsigned long utime, stime;
1588
1589         memset((char *) r, 0, sizeof *r);
1590
1591         if (unlikely(!p->signal))
1592                 return;
1593
1594         switch (who) {
1595                 case RUSAGE_CHILDREN:
1596                         spin_lock_irqsave(&p->sighand->siglock, flags);
1597                         utime = p->signal->cutime;
1598                         stime = p->signal->cstime;
1599                         r->ru_nvcsw = p->signal->cnvcsw;
1600                         r->ru_nivcsw = p->signal->cnivcsw;
1601                         r->ru_minflt = p->signal->cmin_flt;
1602                         r->ru_majflt = p->signal->cmaj_flt;
1603                         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1604                         jiffies_to_timeval(utime, &r->ru_utime);
1605                         jiffies_to_timeval(stime, &r->ru_stime);
1606                         break;
1607                 case RUSAGE_SELF:
1608                         spin_lock_irqsave(&p->sighand->siglock, flags);
1609                         utime = stime = 0;
1610                         goto sum_group;
1611                 case RUSAGE_BOTH:
1612                         spin_lock_irqsave(&p->sighand->siglock, flags);
1613                         utime = p->signal->cutime;
1614                         stime = p->signal->cstime;
1615                         r->ru_nvcsw = p->signal->cnvcsw;
1616                         r->ru_nivcsw = p->signal->cnivcsw;
1617                         r->ru_minflt = p->signal->cmin_flt;
1618                         r->ru_majflt = p->signal->cmaj_flt;
1619                 sum_group:
1620                         utime += p->signal->utime;
1621                         stime += p->signal->stime;
1622                         r->ru_nvcsw += p->signal->nvcsw;
1623                         r->ru_nivcsw += p->signal->nivcsw;
1624                         r->ru_minflt += p->signal->min_flt;
1625                         r->ru_majflt += p->signal->maj_flt;
1626                         t = p;
1627                         do {
1628                                 utime += t->utime;
1629                                 stime += t->stime;
1630                                 r->ru_nvcsw += t->nvcsw;
1631                                 r->ru_nivcsw += t->nivcsw;
1632                                 r->ru_minflt += t->min_flt;
1633                                 r->ru_majflt += t->maj_flt;
1634                                 t = next_thread(t);
1635                         } while (t != p);
1636                         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1637                         jiffies_to_timeval(utime, &r->ru_utime);
1638                         jiffies_to_timeval(stime, &r->ru_stime);
1639                         break;
1640                 default:
1641                         BUG();
1642         }
1643 }
1644
1645 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1646 {
1647         struct rusage r;
1648         read_lock(&tasklist_lock);
1649         k_getrusage(p, who, &r);
1650         read_unlock(&tasklist_lock);
1651         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1652 }
1653
1654 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1655 {
1656         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1657                 return -EINVAL;
1658         return getrusage(current, who, ru);
1659 }
1660
1661 asmlinkage long sys_umask(int mask)
1662 {
1663         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1664         return mask;
1665 }
1666     
1667 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1668                           unsigned long arg4, unsigned long arg5)
1669 {
1670         long error;
1671         int sig;
1672
1673         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1674         if (error)
1675                 return error;
1676
1677         switch (option) {
1678                 case PR_SET_PDEATHSIG:
1679                         sig = arg2;
1680                         if (sig < 0 || sig > _NSIG) {
1681                                 error = -EINVAL;
1682                                 break;
1683                         }
1684                         current->pdeath_signal = sig;
1685                         break;
1686                 case PR_GET_PDEATHSIG:
1687                         error = put_user(current->pdeath_signal, (int __user *)arg2);
1688                         break;
1689                 case PR_GET_DUMPABLE:
1690                         if (current->mm->dumpable)
1691                                 error = 1;
1692                         break;
1693                 case PR_SET_DUMPABLE:
1694                         if (arg2 < 0 && arg2 > 2) {
1695                                 error = -EINVAL;
1696                                 break;
1697                         }
1698                         current->mm->dumpable = arg2;
1699                         break;
1700
1701                 case PR_SET_UNALIGN:
1702                         error = SET_UNALIGN_CTL(current, arg2);
1703                         break;
1704                 case PR_GET_UNALIGN:
1705                         error = GET_UNALIGN_CTL(current, arg2);
1706                         break;
1707                 case PR_SET_FPEMU:
1708                         error = SET_FPEMU_CTL(current, arg2);
1709                         break;
1710                 case PR_GET_FPEMU:
1711                         error = GET_FPEMU_CTL(current, arg2);
1712                         break;
1713                 case PR_SET_FPEXC:
1714                         error = SET_FPEXC_CTL(current, arg2);
1715                         break;
1716                 case PR_GET_FPEXC:
1717                         error = GET_FPEXC_CTL(current, arg2);
1718                         break;
1719                 case PR_GET_TIMING:
1720                         error = PR_TIMING_STATISTICAL;
1721                         break;
1722                 case PR_SET_TIMING:
1723                         if (arg2 == PR_TIMING_STATISTICAL)
1724                                 error = 0;
1725                         else
1726                                 error = -EINVAL;
1727                         break;
1728
1729                 case PR_GET_KEEPCAPS:
1730                         if (current->keep_capabilities)
1731                                 error = 1;
1732                         break;
1733                 case PR_SET_KEEPCAPS:
1734                         if (arg2 != 0 && arg2 != 1) {
1735                                 error = -EINVAL;
1736                                 break;
1737                         }
1738                         current->keep_capabilities = arg2;
1739                         break;
1740                 case PR_SET_NAME: {
1741                         struct task_struct *me = current;
1742                         unsigned char ncomm[sizeof(me->comm)];
1743
1744                         ncomm[sizeof(me->comm)-1] = 0;
1745                         if (strncpy_from_user(ncomm, (char __user *)arg2,
1746                                                 sizeof(me->comm)-1) < 0)
1747                                 return -EFAULT;
1748                         set_task_comm(me, ncomm);
1749                         return 0;
1750                 }
1751                 default:
1752                         error = -EINVAL;
1753                         break;
1754         }
1755         return error;
1756 }