2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
8 * http://www.apache.org/licenses/LICENSE-2.0
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
19 #include <arpa/inet.h>
20 #include <sys/socket.h>
21 #include <netinet/in.h>
22 #include <netinet/ip6.h>
24 #include "byte-order.h"
28 #include "dynamic-string.h"
31 const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
33 /* Parses 's' as a 16-digit hexadecimal number representing a datapath ID. On
34 * success stores the dpid into '*dpidp' and returns true, on failure stores 0
35 * into '*dpidp' and returns false.
37 * Rejects an all-zeros dpid as invalid. */
39 dpid_from_string(const char *s, uint64_t *dpidp)
41 *dpidp = (strlen(s) == 16 && strspn(s, "0123456789abcdefABCDEF") == 16
42 ? strtoull(s, NULL, 16)
47 /* Returns true if 'ea' is a reserved address, that a bridge must never
48 * forward, false otherwise.
50 * If you change this function's behavior, please update corresponding
51 * documentation in vswitch.xml at the same time. */
53 eth_addr_is_reserved(const uint8_t ea[ETH_ADDR_LEN])
55 struct eth_addr_node {
56 struct hmap_node hmap_node;
60 static struct eth_addr_node nodes[] = {
61 /* STP, IEEE pause frames, and other reserved protocols. */
62 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000000ULL },
63 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000001ULL },
64 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000002ULL },
65 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000003ULL },
66 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000004ULL },
67 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000005ULL },
68 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000006ULL },
69 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000007ULL },
70 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000008ULL },
71 { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000009ULL },
72 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000aULL },
73 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000bULL },
74 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000cULL },
75 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000dULL },
76 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000eULL },
77 { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000fULL },
79 /* Extreme protocols. */
80 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000000ULL }, /* EDP. */
81 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000004ULL }, /* EAPS. */
82 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000006ULL }, /* EAPS. */
84 /* Cisco protocols. */
85 { HMAP_NODE_NULL_INITIALIZER, 0x01000c000000ULL }, /* ISL. */
86 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccccULL }, /* PAgP, UDLD, CDP,
88 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccccccdULL }, /* PVST+. */
89 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccdcdcdULL }, /* STP Uplink Fast,
93 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc0ULL },
94 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc1ULL },
95 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc2ULL },
96 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc3ULL },
97 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc4ULL },
98 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc5ULL },
99 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc6ULL },
100 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc7ULL },
103 static struct hmap addrs = HMAP_INITIALIZER(&addrs);
104 struct eth_addr_node *node;
107 if (hmap_is_empty(&addrs)) {
108 for (node = nodes; node < &nodes[ARRAY_SIZE(nodes)]; node++) {
109 hmap_insert(&addrs, &node->hmap_node,
110 hash_2words(node->ea64, node->ea64 >> 32));
114 ea64 = eth_addr_to_uint64(ea);
115 HMAP_FOR_EACH_IN_BUCKET (node, hmap_node, hash_2words(ea64, ea64 >> 32),
117 if (node->ea64 == ea64) {
125 eth_addr_from_string(const char *s, uint8_t ea[ETH_ADDR_LEN])
127 if (sscanf(s, ETH_ADDR_SCAN_FMT, ETH_ADDR_SCAN_ARGS(ea))
128 == ETH_ADDR_SCAN_COUNT) {
131 memset(ea, 0, ETH_ADDR_LEN);
136 /* Fills 'b' with a Reverse ARP packet with Ethernet source address 'eth_src'.
137 * This function is used by Open vSwitch to compose packets in cases where
138 * context is important but content doesn't (or shouldn't) matter.
140 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
143 compose_rarp(struct ofpbuf *b, const uint8_t eth_src[ETH_ADDR_LEN])
145 struct eth_header *eth;
146 struct arp_eth_header *arp;
149 ofpbuf_prealloc_tailroom(b, ETH_HEADER_LEN + VLAN_HEADER_LEN
150 + ARP_ETH_HEADER_LEN);
151 ofpbuf_reserve(b, VLAN_HEADER_LEN);
152 eth = ofpbuf_put_uninit(b, sizeof *eth);
153 memcpy(eth->eth_dst, eth_addr_broadcast, ETH_ADDR_LEN);
154 memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
155 eth->eth_type = htons(ETH_TYPE_RARP);
157 arp = ofpbuf_put_uninit(b, sizeof *arp);
158 arp->ar_hrd = htons(ARP_HRD_ETHERNET);
159 arp->ar_pro = htons(ARP_PRO_IP);
160 arp->ar_hln = sizeof arp->ar_sha;
161 arp->ar_pln = sizeof arp->ar_spa;
162 arp->ar_op = htons(ARP_OP_RARP);
163 memcpy(arp->ar_sha, eth_src, ETH_ADDR_LEN);
164 arp->ar_spa = htonl(0);
165 memcpy(arp->ar_tha, eth_src, ETH_ADDR_LEN);
166 arp->ar_tpa = htonl(0);
169 /* Insert VLAN header according to given TCI. Packet passed must be Ethernet
170 * packet. Ignores the CFI bit of 'tci' using 0 instead.
172 * Also sets 'packet->l2' to point to the new Ethernet header. */
174 eth_push_vlan(struct ofpbuf *packet, ovs_be16 tci)
176 struct eth_header *eh = packet->data;
177 struct vlan_eth_header *veh;
179 /* Insert new 802.1Q header. */
180 struct vlan_eth_header tmp;
181 memcpy(tmp.veth_dst, eh->eth_dst, ETH_ADDR_LEN);
182 memcpy(tmp.veth_src, eh->eth_src, ETH_ADDR_LEN);
183 tmp.veth_type = htons(ETH_TYPE_VLAN);
184 tmp.veth_tci = tci & htons(~VLAN_CFI);
185 tmp.veth_next_type = eh->eth_type;
187 veh = ofpbuf_push_uninit(packet, VLAN_HEADER_LEN);
188 memcpy(veh, &tmp, sizeof tmp);
190 packet->l2 = packet->data;
193 /* Removes outermost VLAN header (if any is present) from 'packet'.
195 * 'packet->l2_5' should initially point to 'packet''s outer-most MPLS header
196 * or may be NULL if there are no MPLS headers. */
198 eth_pop_vlan(struct ofpbuf *packet)
200 struct vlan_eth_header *veh = packet->l2;
201 if (packet->size >= sizeof *veh
202 && veh->veth_type == htons(ETH_TYPE_VLAN)) {
203 struct eth_header tmp;
205 memcpy(tmp.eth_dst, veh->veth_dst, ETH_ADDR_LEN);
206 memcpy(tmp.eth_src, veh->veth_src, ETH_ADDR_LEN);
207 tmp.eth_type = veh->veth_next_type;
209 ofpbuf_pull(packet, VLAN_HEADER_LEN);
210 packet->l2 = (char*)packet->l2 + VLAN_HEADER_LEN;
211 memcpy(packet->data, &tmp, sizeof tmp);
215 /* Return depth of mpls stack.
217 * 'packet->l2_5' should initially point to 'packet''s outer-most MPLS header
218 * or may be NULL if there are no MPLS headers. */
220 eth_mpls_depth(const struct ofpbuf *packet)
222 struct mpls_hdr *mh = packet->l2_5;
230 while (packet->size >= ((char *)mh - (char *)packet->data) + sizeof *mh) {
232 if (mh->mpls_lse & htonl(MPLS_BOS_MASK)) {
241 /* Set ethertype of the packet. */
243 set_ethertype(struct ofpbuf *packet, ovs_be16 eth_type)
245 struct eth_header *eh = packet->data;
247 if (eh->eth_type == htons(ETH_TYPE_VLAN)) {
249 p = (ovs_be16 *)((char *)(packet->l2_5 ? packet->l2_5 : packet->l3) - 2);
252 eh->eth_type = eth_type;
256 static bool is_mpls(struct ofpbuf *packet)
258 return packet->l2_5 != NULL;
261 /* Set time to live (TTL) of an MPLS label stack entry (LSE). */
263 set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl)
265 *lse &= ~htonl(MPLS_TTL_MASK);
266 *lse |= htonl((ttl << MPLS_TTL_SHIFT) & MPLS_TTL_MASK);
269 /* Set traffic class (TC) of an MPLS label stack entry (LSE). */
271 set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc)
273 *lse &= ~htonl(MPLS_TC_MASK);
274 *lse |= htonl((tc << MPLS_TC_SHIFT) & MPLS_TC_MASK);
277 /* Set label of an MPLS label stack entry (LSE). */
279 set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label)
281 *lse &= ~htonl(MPLS_LABEL_MASK);
282 *lse |= htonl((ntohl(label) << MPLS_LABEL_SHIFT) & MPLS_LABEL_MASK);
285 /* Set bottom of stack (BoS) bit of an MPLS label stack entry (LSE). */
287 set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos)
289 *lse &= ~htonl(MPLS_BOS_MASK);
290 *lse |= htonl((bos << MPLS_BOS_SHIFT) & MPLS_BOS_MASK);
293 /* Compose an MPLS label stack entry (LSE) from its components:
294 * label, traffic class (TC), time to live (TTL) and
295 * bottom of stack (BoS) bit. */
297 set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label)
299 ovs_be32 lse = htonl(0);
300 set_mpls_lse_ttl(&lse, ttl);
301 set_mpls_lse_tc(&lse, tc);
302 set_mpls_lse_bos(&lse, bos);
303 set_mpls_lse_label(&lse, label);
307 /* Push an new MPLS stack entry onto the MPLS stack and adjust 'packet->l2' and
308 * 'packet->l2_5' accordingly. The new entry will be the outermost entry on
311 * Previous to calling this function, 'packet->l2_5' must be set; if the MPLS
312 * label to be pushed will be the first label in 'packet', then it should be
313 * the same as 'packet->l3'. */
315 push_mpls_lse(struct ofpbuf *packet, struct mpls_hdr *mh)
319 header = ofpbuf_push_uninit(packet, MPLS_HLEN);
320 len = (char *)packet->l2_5 - (char *)packet->l2;
321 memmove(header, packet->l2, len);
322 memcpy(header + len, mh, sizeof *mh);
323 packet->l2 = (char*)packet->l2 - MPLS_HLEN;
324 packet->l2_5 = (char*)packet->l2_5 - MPLS_HLEN;
327 /* Set MPLS label stack entry to outermost MPLS header.*/
329 set_mpls_lse(struct ofpbuf *packet, ovs_be32 mpls_lse)
331 struct mpls_hdr *mh = packet->l2_5;
333 /* Packet type should be MPLS to set label stack entry. */
334 if (is_mpls(packet)) {
335 /* Update mpls label stack entry. */
336 mh->mpls_lse = mpls_lse;
340 /* Push MPLS label stack entry 'lse' onto 'packet' as the the outermost MPLS
341 * header. If 'packet' does not already have any MPLS labels, then its
342 * Ethertype is changed to 'ethtype' (which must be an MPLS Ethertype). */
344 push_mpls(struct ofpbuf *packet, ovs_be16 ethtype, ovs_be32 lse)
348 if (!eth_type_mpls(ethtype)) {
352 if (!is_mpls(packet)) {
353 /* Set ethtype and MPLS label stack entry. */
354 set_ethertype(packet, ethtype);
355 packet->l2_5 = packet->l3;
358 /* Push new MPLS shim header onto packet. */
360 push_mpls_lse(packet, &mh);
363 /* If 'packet' is an MPLS packet, removes its outermost MPLS label stack entry.
364 * If the label that was removed was the only MPLS label, changes 'packet''s
365 * Ethertype to 'ethtype' (which ordinarily should not be an MPLS
368 pop_mpls(struct ofpbuf *packet, ovs_be16 ethtype)
370 struct mpls_hdr *mh = NULL;
372 if (is_mpls(packet)) {
375 len = (char*)packet->l2_5 - (char*)packet->l2;
376 set_ethertype(packet, ethtype);
377 if (mh->mpls_lse & htonl(MPLS_BOS_MASK)) {
380 packet->l2_5 = (char*)packet->l2_5 + MPLS_HLEN;
382 /* Shift the l2 header forward. */
383 memmove((char*)packet->data + MPLS_HLEN, packet->data, len);
384 packet->size -= MPLS_HLEN;
385 packet->data = (char*)packet->data + MPLS_HLEN;
386 packet->l2 = (char*)packet->l2 + MPLS_HLEN;
390 /* Converts hex digits in 'hex' to an Ethernet packet in '*packetp'. The
391 * caller must free '*packetp'. On success, returns NULL. On failure, returns
392 * an error message and stores NULL in '*packetp'. */
394 eth_from_hex(const char *hex, struct ofpbuf **packetp)
396 struct ofpbuf *packet;
398 packet = *packetp = ofpbuf_new(strlen(hex) / 2);
400 if (ofpbuf_put_hex(packet, hex, NULL)[0] != '\0') {
401 ofpbuf_delete(packet);
403 return "Trailing garbage in packet data";
406 if (packet->size < ETH_HEADER_LEN) {
407 ofpbuf_delete(packet);
409 return "Packet data too short for Ethernet";
416 eth_format_masked(const uint8_t eth[ETH_ADDR_LEN],
417 const uint8_t mask[ETH_ADDR_LEN], struct ds *s)
419 ds_put_format(s, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth));
420 if (mask && !eth_mask_is_exact(mask)) {
421 ds_put_format(s, "/"ETH_ADDR_FMT, ETH_ADDR_ARGS(mask));
426 eth_addr_bitand(const uint8_t src[ETH_ADDR_LEN],
427 const uint8_t mask[ETH_ADDR_LEN],
428 uint8_t dst[ETH_ADDR_LEN])
432 for (i = 0; i < ETH_ADDR_LEN; i++) {
433 dst[i] = src[i] & mask[i];
437 /* Given the IP netmask 'netmask', returns the number of bits of the IP address
438 * that it specifies, that is, the number of 1-bits in 'netmask'.
440 * If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
441 * still be in the valid range but isn't otherwise meaningful. */
443 ip_count_cidr_bits(ovs_be32 netmask)
445 return 32 - ctz(ntohl(netmask));
449 ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
451 ds_put_format(s, IP_FMT, IP_ARGS(ip));
452 if (mask != htonl(UINT32_MAX)) {
453 if (ip_is_cidr(mask)) {
454 ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
456 ds_put_format(s, "/"IP_FMT, IP_ARGS(mask));
462 /* Stores the string representation of the IPv6 address 'addr' into the
463 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
466 format_ipv6_addr(char *addr_str, const struct in6_addr *addr)
468 inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
472 print_ipv6_addr(struct ds *string, const struct in6_addr *addr)
476 ds_reserve(string, string->length + INET6_ADDRSTRLEN);
478 dst = string->string + string->length;
479 format_ipv6_addr(dst, addr);
480 string->length += strlen(dst);
484 print_ipv6_masked(struct ds *s, const struct in6_addr *addr,
485 const struct in6_addr *mask)
487 print_ipv6_addr(s, addr);
488 if (mask && !ipv6_mask_is_exact(mask)) {
489 if (ipv6_is_cidr(mask)) {
490 int cidr_bits = ipv6_count_cidr_bits(mask);
491 ds_put_format(s, "/%d", cidr_bits);
494 print_ipv6_addr(s, mask);
499 struct in6_addr ipv6_addr_bitand(const struct in6_addr *a,
500 const struct in6_addr *b)
506 for (i=0; i<4; i++) {
507 dst.s6_addr32[i] = a->s6_addr32[i] & b->s6_addr32[i];
510 for (i=0; i<16; i++) {
511 dst.s6_addr[i] = a->s6_addr[i] & b->s6_addr[i];
518 /* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
519 * low-order 0-bits. */
521 ipv6_create_mask(int mask)
523 struct in6_addr netmask;
524 uint8_t *netmaskp = &netmask.s6_addr[0];
526 memset(&netmask, 0, sizeof netmask);
534 *netmaskp = 0xff << (8 - mask);
540 /* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
541 * address that it specifies, that is, the number of 1-bits in 'netmask'.
542 * 'netmask' must be a CIDR netmask (see ipv6_is_cidr()).
544 * If 'netmask' is not a CIDR netmask (see ipv6_is_cidr()), the return value
545 * will still be in the valid range but isn't otherwise meaningful. */
547 ipv6_count_cidr_bits(const struct in6_addr *netmask)
551 const uint8_t *netmaskp = &netmask->s6_addr[0];
553 for (i=0; i<16; i++) {
554 if (netmaskp[i] == 0xff) {
559 for(nm = netmaskp[i]; nm; nm <<= 1) {
570 /* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
571 * high-order 1-bits and 128-N low-order 0-bits. */
573 ipv6_is_cidr(const struct in6_addr *netmask)
575 const uint8_t *netmaskp = &netmask->s6_addr[0];
578 for (i=0; i<16; i++) {
579 if (netmaskp[i] != 0xff) {
580 uint8_t x = ~netmaskp[i];
595 /* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
596 * 'eth_src' and 'eth_type' parameters. A payload of 'size' bytes is allocated
597 * in 'b' and returned. This payload may be populated with appropriate
598 * information by the caller. Sets 'b''s 'l2' and 'l3' pointers to the
599 * Ethernet header and payload respectively.
601 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
604 eth_compose(struct ofpbuf *b, const uint8_t eth_dst[ETH_ADDR_LEN],
605 const uint8_t eth_src[ETH_ADDR_LEN], uint16_t eth_type,
609 struct eth_header *eth;
613 ofpbuf_prealloc_tailroom(b, ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
614 ofpbuf_reserve(b, VLAN_HEADER_LEN);
615 eth = ofpbuf_put_uninit(b, ETH_HEADER_LEN);
616 data = ofpbuf_put_uninit(b, size);
618 memcpy(eth->eth_dst, eth_dst, ETH_ADDR_LEN);
619 memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
620 eth->eth_type = htons(eth_type);
629 packet_set_ipv4_addr(struct ofpbuf *packet, ovs_be32 *addr, ovs_be32 new_addr)
631 struct ip_header *nh = packet->l3;
633 if (nh->ip_proto == IPPROTO_TCP && packet->l7) {
634 struct tcp_header *th = packet->l4;
636 th->tcp_csum = recalc_csum32(th->tcp_csum, *addr, new_addr);
637 } else if (nh->ip_proto == IPPROTO_UDP && packet->l7) {
638 struct udp_header *uh = packet->l4;
641 uh->udp_csum = recalc_csum32(uh->udp_csum, *addr, new_addr);
643 uh->udp_csum = htons(0xffff);
647 nh->ip_csum = recalc_csum32(nh->ip_csum, *addr, new_addr);
651 /* Returns true, if packet contains at least one routing header where
652 * segements_left > 0.
654 * This function assumes that L3 and L4 markers are set in the packet. */
656 packet_rh_present(struct ofpbuf *packet)
658 const struct ip6_hdr *nh;
662 uint8_t *data = packet->l3;
664 remaining = (uint8_t *)packet->l4 - (uint8_t *)packet->l3;
666 if (remaining < sizeof *nh) {
669 nh = (struct ip6_hdr *)data;
671 remaining -= sizeof *nh;
672 nexthdr = nh->ip6_nxt;
675 if ((nexthdr != IPPROTO_HOPOPTS)
676 && (nexthdr != IPPROTO_ROUTING)
677 && (nexthdr != IPPROTO_DSTOPTS)
678 && (nexthdr != IPPROTO_AH)
679 && (nexthdr != IPPROTO_FRAGMENT)) {
680 /* It's either a terminal header (e.g., TCP, UDP) or one we
681 * don't understand. In either case, we're done with the
682 * packet, so use it to fill in 'nw_proto'. */
686 /* We only verify that at least 8 bytes of the next header are
687 * available, but many of these headers are longer. Ensure that
688 * accesses within the extension header are within those first 8
689 * bytes. All extension headers are required to be at least 8
695 if (nexthdr == IPPROTO_AH) {
696 /* A standard AH definition isn't available, but the fields
697 * we care about are in the same location as the generic
698 * option header--only the header length is calculated
700 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
702 nexthdr = ext_hdr->ip6e_nxt;
703 len = (ext_hdr->ip6e_len + 2) * 4;
704 } else if (nexthdr == IPPROTO_FRAGMENT) {
705 const struct ip6_frag *frag_hdr = (struct ip6_frag *)data;
707 nexthdr = frag_hdr->ip6f_nxt;
708 len = sizeof *frag_hdr;
709 } else if (nexthdr == IPPROTO_ROUTING) {
710 const struct ip6_rthdr *rh = (struct ip6_rthdr *)data;
712 if (rh->ip6r_segleft > 0) {
716 nexthdr = rh->ip6r_nxt;
717 len = (rh->ip6r_len + 1) * 8;
719 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
721 nexthdr = ext_hdr->ip6e_nxt;
722 len = (ext_hdr->ip6e_len + 1) * 8;
725 if (remaining < len) {
736 packet_update_csum128(struct ofpbuf *packet, uint8_t proto,
737 ovs_be32 addr[4], const ovs_be32 new_addr[4])
739 if (proto == IPPROTO_TCP && packet->l7) {
740 struct tcp_header *th = packet->l4;
742 th->tcp_csum = recalc_csum128(th->tcp_csum, addr, new_addr);
743 } else if (proto == IPPROTO_UDP && packet->l7) {
744 struct udp_header *uh = packet->l4;
747 uh->udp_csum = recalc_csum128(uh->udp_csum, addr, new_addr);
749 uh->udp_csum = htons(0xffff);
756 packet_set_ipv6_addr(struct ofpbuf *packet, uint8_t proto,
757 struct in6_addr *addr, const ovs_be32 new_addr[4],
758 bool recalculate_csum)
760 if (recalculate_csum) {
761 packet_update_csum128(packet, proto, (ovs_be32 *)addr, new_addr);
763 memcpy(addr, new_addr, sizeof(*addr));
767 packet_set_ipv6_flow_label(ovs_be32 *flow_label, ovs_be32 flow_key)
769 *flow_label = (*flow_label & htonl(~IPV6_LABEL_MASK)) | flow_key;
773 packet_set_ipv6_tc(ovs_be32 *flow_label, uint8_t tc)
775 *flow_label = (*flow_label & htonl(0xF00FFFFF)) | htonl(tc << 20);
778 /* Modifies the IPv4 header fields of 'packet' to be consistent with 'src',
779 * 'dst', 'tos', and 'ttl'. Updates 'packet''s L4 checksums as appropriate.
780 * 'packet' must contain a valid IPv4 packet with correctly populated l[347]
783 packet_set_ipv4(struct ofpbuf *packet, ovs_be32 src, ovs_be32 dst,
784 uint8_t tos, uint8_t ttl)
786 struct ip_header *nh = packet->l3;
788 if (nh->ip_src != src) {
789 packet_set_ipv4_addr(packet, &nh->ip_src, src);
792 if (nh->ip_dst != dst) {
793 packet_set_ipv4_addr(packet, &nh->ip_dst, dst);
796 if (nh->ip_tos != tos) {
797 uint8_t *field = &nh->ip_tos;
799 nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t) *field),
800 htons((uint16_t) tos));
804 if (nh->ip_ttl != ttl) {
805 uint8_t *field = &nh->ip_ttl;
807 nh->ip_csum = recalc_csum16(nh->ip_csum, htons(*field << 8),
813 /* Modifies the IPv6 header fields of 'packet' to be consistent with 'src',
814 * 'dst', 'traffic class', and 'next hop'. Updates 'packet''s L4 checksums as
815 * appropriate. 'packet' must contain a valid IPv6 packet with correctly
816 * populated l[347] markers. */
818 packet_set_ipv6(struct ofpbuf *packet, uint8_t proto, const ovs_be32 src[4],
819 const ovs_be32 dst[4], uint8_t key_tc, ovs_be32 key_fl,
822 struct ip6_hdr *nh = packet->l3;
824 if (memcmp(&nh->ip6_src, src, sizeof(ovs_be32[4]))) {
825 packet_set_ipv6_addr(packet, proto, &nh->ip6_src, src, true);
828 if (memcmp(&nh->ip6_dst, dst, sizeof(ovs_be32[4]))) {
829 packet_set_ipv6_addr(packet, proto, &nh->ip6_dst, dst,
830 !packet_rh_present(packet));
833 packet_set_ipv6_tc(&nh->ip6_flow, key_tc);
835 packet_set_ipv6_flow_label(&nh->ip6_flow, key_fl);
837 nh->ip6_hlim = key_hl;
841 packet_set_port(ovs_be16 *port, ovs_be16 new_port, ovs_be16 *csum)
843 if (*port != new_port) {
844 *csum = recalc_csum16(*csum, *port, new_port);
849 /* Sets the TCP source and destination port ('src' and 'dst' respectively) of
850 * the TCP header contained in 'packet'. 'packet' must be a valid TCP packet
851 * with its l4 marker properly populated. */
853 packet_set_tcp_port(struct ofpbuf *packet, ovs_be16 src, ovs_be16 dst)
855 struct tcp_header *th = packet->l4;
857 packet_set_port(&th->tcp_src, src, &th->tcp_csum);
858 packet_set_port(&th->tcp_dst, dst, &th->tcp_csum);
861 /* Sets the UDP source and destination port ('src' and 'dst' respectively) of
862 * the UDP header contained in 'packet'. 'packet' must be a valid UDP packet
863 * with its l4 marker properly populated. */
865 packet_set_udp_port(struct ofpbuf *packet, ovs_be16 src, ovs_be16 dst)
867 struct udp_header *uh = packet->l4;
870 packet_set_port(&uh->udp_src, src, &uh->udp_csum);
871 packet_set_port(&uh->udp_dst, dst, &uh->udp_csum);
874 uh->udp_csum = htons(0xffff);
882 /* If 'packet' is a TCP packet, returns the TCP flags. Otherwise, returns 0.
884 * 'flow' must be the flow corresponding to 'packet' and 'packet''s header
885 * pointers must be properly initialized (e.g. with flow_extract()). */
887 packet_get_tcp_flags(const struct ofpbuf *packet, const struct flow *flow)
889 if (dl_type_is_ip_any(flow->dl_type) &&
890 flow->nw_proto == IPPROTO_TCP && packet->l7) {
891 const struct tcp_header *tcp = packet->l4;
892 return TCP_FLAGS(tcp->tcp_ctl);
898 /* Appends a string representation of the TCP flags value 'tcp_flags'
899 * (e.g. obtained via packet_get_tcp_flags() or TCP_FLAGS) to 's', in the
900 * format used by tcpdump. */
902 packet_format_tcp_flags(struct ds *s, uint8_t tcp_flags)
905 ds_put_cstr(s, "none");
909 if (tcp_flags & TCP_SYN) {
912 if (tcp_flags & TCP_FIN) {
915 if (tcp_flags & TCP_PSH) {
918 if (tcp_flags & TCP_RST) {
921 if (tcp_flags & TCP_URG) {
924 if (tcp_flags & TCP_ACK) {
927 if (tcp_flags & 0x40) {
928 ds_put_cstr(s, "[40]");
930 if (tcp_flags & 0x80) {
931 ds_put_cstr(s, "[80]");