2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
8 * http://www.apache.org/licenses/LICENSE-2.0
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
19 #include <arpa/inet.h>
20 #include <sys/socket.h>
21 #include <netinet/in.h>
22 #include <netinet/ip6.h>
24 #include "byte-order.h"
28 #include "dynamic-string.h"
31 const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
33 /* Parses 's' as a 16-digit hexadecimal number representing a datapath ID. On
34 * success stores the dpid into '*dpidp' and returns true, on failure stores 0
35 * into '*dpidp' and returns false.
37 * Rejects an all-zeros dpid as invalid. */
39 dpid_from_string(const char *s, uint64_t *dpidp)
41 *dpidp = (strlen(s) == 16 && strspn(s, "0123456789abcdefABCDEF") == 16
42 ? strtoull(s, NULL, 16)
47 /* Returns true if 'ea' is a reserved address, that a bridge must never
48 * forward, false otherwise.
50 * If you change this function's behavior, please update corresponding
51 * documentation in vswitch.xml at the same time. */
53 eth_addr_is_reserved(const uint8_t ea[ETH_ADDR_LEN])
55 struct eth_addr_node {
56 struct hmap_node hmap_node;
60 static struct eth_addr_node nodes[] = {
61 /* STP, IEEE pause frames, and other reserved protocols. */
62 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000000ULL },
63 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000001ULL },
64 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000002ULL },
65 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000003ULL },
66 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000004ULL },
67 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000005ULL },
68 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000006ULL },
69 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000007ULL },
70 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000008ULL },
71 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000009ULL },
72 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000aULL },
73 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000bULL },
74 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000cULL },
75 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000dULL },
76 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000eULL },
77 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000fULL },
79 /* Extreme protocols. */
80 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000000ULL }, /* EDP. */
81 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000004ULL }, /* EAPS. */
82 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000006ULL }, /* EAPS. */
84 /* Cisco protocols. */
85 { HMAP_NODE_NULL_INITIALIZER, 0x01000c000000ULL }, /* ISL. */
86 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccccULL }, /* PAgP, UDLD, CDP,
88 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccccccdULL }, /* PVST+. */
89 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccdcdcdULL }, /* STP Uplink Fast,
93 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc0ULL },
94 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc1ULL },
95 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc2ULL },
96 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc3ULL },
97 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc4ULL },
98 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc5ULL },
99 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc6ULL },
100 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc7ULL },
103 static struct hmap addrs = HMAP_INITIALIZER(&addrs);
104 struct eth_addr_node *node;
107 if (hmap_is_empty(&addrs)) {
108 for (node = nodes; node < &nodes[ARRAY_SIZE(nodes)]; node++) {
109 hmap_insert(&addrs, &node->hmap_node,
110 hash_2words(node->ea64, node->ea64 >> 32));
114 ea64 = eth_addr_to_uint64(ea);
115 HMAP_FOR_EACH_IN_BUCKET (node, hmap_node, hash_2words(ea64, ea64 >> 32),
117 if (node->ea64 == ea64) {
125 eth_addr_from_string(const char *s, uint8_t ea[ETH_ADDR_LEN])
127 if (sscanf(s, ETH_ADDR_SCAN_FMT, ETH_ADDR_SCAN_ARGS(ea))
128 == ETH_ADDR_SCAN_COUNT) {
131 memset(ea, 0, ETH_ADDR_LEN);
136 /* Fills 'b' with a Reverse ARP packet with Ethernet source address 'eth_src'.
137 * This function is used by Open vSwitch to compose packets in cases where
138 * context is important but content doesn't (or shouldn't) matter.
140 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
143 compose_rarp(struct ofpbuf *b, const uint8_t eth_src[ETH_ADDR_LEN])
145 struct eth_header *eth;
146 struct arp_eth_header *arp;
149 ofpbuf_prealloc_tailroom(b, ETH_HEADER_LEN + VLAN_HEADER_LEN
150 + ARP_ETH_HEADER_LEN);
151 ofpbuf_reserve(b, VLAN_HEADER_LEN);
152 eth = ofpbuf_put_uninit(b, sizeof *eth);
153 memcpy(eth->eth_dst, eth_addr_broadcast, ETH_ADDR_LEN);
154 memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
155 eth->eth_type = htons(ETH_TYPE_RARP);
157 arp = ofpbuf_put_uninit(b, sizeof *arp);
158 arp->ar_hrd = htons(ARP_HRD_ETHERNET);
159 arp->ar_pro = htons(ARP_PRO_IP);
160 arp->ar_hln = sizeof arp->ar_sha;
161 arp->ar_pln = sizeof arp->ar_spa;
162 arp->ar_op = htons(ARP_OP_RARP);
163 memcpy(arp->ar_sha, eth_src, ETH_ADDR_LEN);
164 arp->ar_spa = htonl(0);
165 memcpy(arp->ar_tha, eth_src, ETH_ADDR_LEN);
166 arp->ar_tpa = htonl(0);
169 /* Insert VLAN header according to given TCI. Packet passed must be Ethernet
170 * packet. Ignores the CFI bit of 'tci' using 0 instead.
172 * Also sets 'packet->l2' to point to the new Ethernet header. */
174 eth_push_vlan(struct ofpbuf *packet, ovs_be16 tci)
176 struct eth_header *eh = packet->data;
177 struct vlan_eth_header *veh;
179 /* Insert new 802.1Q header. */
180 struct vlan_eth_header tmp;
181 memcpy(tmp.veth_dst, eh->eth_dst, ETH_ADDR_LEN);
182 memcpy(tmp.veth_src, eh->eth_src, ETH_ADDR_LEN);
183 tmp.veth_type = htons(ETH_TYPE_VLAN);
184 tmp.veth_tci = tci & htons(~VLAN_CFI);
185 tmp.veth_next_type = eh->eth_type;
187 veh = ofpbuf_push_uninit(packet, VLAN_HEADER_LEN);
188 memcpy(veh, &tmp, sizeof tmp);
190 packet->l2 = packet->data;
193 /* Removes outermost VLAN header (if any is present) from 'packet'.
195 * 'packet->l2_5' should initially point to 'packet''s outer-most MPLS header
196 * or may be NULL if there are no MPLS headers. */
198 eth_pop_vlan(struct ofpbuf *packet)
200 struct vlan_eth_header *veh = packet->l2;
201 if (packet->size >= sizeof *veh
202 && veh->veth_type == htons(ETH_TYPE_VLAN)) {
203 struct eth_header tmp;
205 memcpy(tmp.eth_dst, veh->veth_dst, ETH_ADDR_LEN);
206 memcpy(tmp.eth_src, veh->veth_src, ETH_ADDR_LEN);
207 tmp.eth_type = veh->veth_next_type;
209 ofpbuf_pull(packet, VLAN_HEADER_LEN);
210 packet->l2 = (char*)packet->l2 + VLAN_HEADER_LEN;
211 memcpy(packet->data, &tmp, sizeof tmp);
215 /* Return depth of mpls stack.
217 * 'packet->l2_5' should initially point to 'packet''s outer-most MPLS header
218 * or may be NULL if there are no MPLS headers. */
220 eth_mpls_depth(const struct ofpbuf *packet)
222 struct mpls_hdr *mh = packet->l2_5;
230 while (packet->size >= ((char *)mh - (char *)packet->data) + sizeof *mh) {
232 if (mh->mpls_lse & htonl(MPLS_BOS_MASK)) {
241 /* Set ethertype of the packet. */
243 set_ethertype(struct ofpbuf *packet, ovs_be16 eth_type)
245 struct eth_header *eh = packet->data;
247 if (eh->eth_type == htons(ETH_TYPE_VLAN)) {
249 p = (ovs_be16 *)((char *)(packet->l2_5 ? packet->l2_5 : packet->l3) - 2);
252 eh->eth_type = eth_type;
256 static bool is_mpls(struct ofpbuf *packet)
258 return packet->l2_5 != NULL;
261 /* Set time to live (TTL) of an MPLS label stack entry (LSE). */
263 set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl)
265 *lse &= ~htonl(MPLS_TTL_MASK);
266 *lse |= htonl((ttl << MPLS_TTL_SHIFT) & MPLS_TTL_MASK);
269 /* Set traffic class (TC) of an MPLS label stack entry (LSE). */
271 set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc)
273 *lse &= ~htonl(MPLS_TC_MASK);
274 *lse |= htonl((tc << MPLS_TC_SHIFT) & MPLS_TC_MASK);
277 /* Set label of an MPLS label stack entry (LSE). */
279 set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label)
281 *lse &= ~htonl(MPLS_LABEL_MASK);
282 *lse |= htonl((ntohl(label) << MPLS_LABEL_SHIFT) & MPLS_LABEL_MASK);
285 /* Set bottom of stack (BoS) bit of an MPLS label stack entry (LSE). */
287 set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos)
289 *lse &= ~htonl(MPLS_BOS_MASK);
290 *lse |= htonl((bos << MPLS_BOS_SHIFT) & MPLS_BOS_MASK);
293 /* Compose an MPLS label stack entry (LSE) from its components:
294 * label, traffic class (TC), time to live (TTL) and
295 * bottom of stack (BoS) bit. */
297 set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label)
299 ovs_be32 lse = htonl(0);
300 set_mpls_lse_ttl(&lse, ttl);
301 set_mpls_lse_tc(&lse, tc);
302 set_mpls_lse_bos(&lse, bos);
303 set_mpls_lse_label(&lse, label);
307 /* Push an new MPLS stack entry onto the MPLS stack and adjust 'packet->l2' and
308 * 'packet->l2_5' accordingly. The new entry will be the outermost entry on
311 * Previous to calling this function, 'packet->l2_5' must be set; if the MPLS
312 * label to be pushed will be the first label in 'packet', then it should be
313 * the same as 'packet->l3'. */
315 push_mpls_lse(struct ofpbuf *packet, struct mpls_hdr *mh)
319 header = ofpbuf_push_uninit(packet, MPLS_HLEN);
320 len = (char *)packet->l2_5 - (char *)packet->l2;
321 memmove(header, packet->l2, len);
322 memcpy(header + len, mh, sizeof *mh);
323 packet->l2 = (char*)packet->l2 - MPLS_HLEN;
324 packet->l2_5 = (char*)packet->l2_5 - MPLS_HLEN;
327 /* Set MPLS label stack entry to outermost MPLS header.*/
329 set_mpls_lse(struct ofpbuf *packet, ovs_be32 mpls_lse)
331 struct mpls_hdr *mh = packet->l2_5;
333 /* Packet type should be MPLS to set label stack entry. */
334 if (is_mpls(packet)) {
335 /* Update mpls label stack entry. */
336 mh->mpls_lse = mpls_lse;
340 /* Push MPLS label stack entry 'lse' onto 'packet' as the the outermost MPLS
341 * header. If 'packet' does not already have any MPLS labels, then its
342 * Ethertype is changed to 'ethtype' (which must be an MPLS Ethertype). */
344 push_mpls(struct ofpbuf *packet, ovs_be16 ethtype, ovs_be32 lse)
348 if (!eth_type_mpls(ethtype)) {
352 if (!is_mpls(packet)) {
353 /* Set ethtype and MPLS label stack entry. */
354 set_ethertype(packet, ethtype);
355 packet->l2_5 = packet->l3;
358 /* Push new MPLS shim header onto packet. */
360 push_mpls_lse(packet, &mh);
363 /* If 'packet' is an MPLS packet, removes its outermost MPLS label stack entry.
364 * If the label that was removed was the only MPLS label, changes 'packet''s
365 * Ethertype to 'ethtype' (which ordinarily should not be an MPLS
368 pop_mpls(struct ofpbuf *packet, ovs_be16 ethtype)
370 struct mpls_hdr *mh = NULL;
372 if (is_mpls(packet)) {
375 len = (char*)packet->l2_5 - (char*)packet->l2;
376 /* If bottom of the stack set ethertype. */
377 if (mh->mpls_lse & htonl(MPLS_BOS_MASK)) {
378 set_ethertype(packet, ethtype);
381 packet->l2_5 = (char*)packet->l2_5 + MPLS_HLEN;
383 /* Shift the l2 header forward. */
384 memmove((char*)packet->data + MPLS_HLEN, packet->data, len);
385 packet->size -= MPLS_HLEN;
386 packet->data = (char*)packet->data + MPLS_HLEN;
387 packet->l2 = (char*)packet->l2 + MPLS_HLEN;
391 /* Converts hex digits in 'hex' to an Ethernet packet in '*packetp'. The
392 * caller must free '*packetp'. On success, returns NULL. On failure, returns
393 * an error message and stores NULL in '*packetp'. */
395 eth_from_hex(const char *hex, struct ofpbuf **packetp)
397 struct ofpbuf *packet;
399 packet = *packetp = ofpbuf_new(strlen(hex) / 2);
401 if (ofpbuf_put_hex(packet, hex, NULL)[0] != '\0') {
402 ofpbuf_delete(packet);
404 return "Trailing garbage in packet data";
407 if (packet->size < ETH_HEADER_LEN) {
408 ofpbuf_delete(packet);
410 return "Packet data too short for Ethernet";
417 eth_format_masked(const uint8_t eth[ETH_ADDR_LEN],
418 const uint8_t mask[ETH_ADDR_LEN], struct ds *s)
420 ds_put_format(s, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth));
421 if (mask && !eth_mask_is_exact(mask)) {
422 ds_put_format(s, "/"ETH_ADDR_FMT, ETH_ADDR_ARGS(mask));
427 eth_addr_bitand(const uint8_t src[ETH_ADDR_LEN],
428 const uint8_t mask[ETH_ADDR_LEN],
429 uint8_t dst[ETH_ADDR_LEN])
433 for (i = 0; i < ETH_ADDR_LEN; i++) {
434 dst[i] = src[i] & mask[i];
438 /* Given the IP netmask 'netmask', returns the number of bits of the IP address
439 * that it specifies, that is, the number of 1-bits in 'netmask'.
441 * If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
442 * still be in the valid range but isn't otherwise meaningful. */
444 ip_count_cidr_bits(ovs_be32 netmask)
446 return 32 - ctz(ntohl(netmask));
450 ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
452 ds_put_format(s, IP_FMT, IP_ARGS(ip));
453 if (mask != htonl(UINT32_MAX)) {
454 if (ip_is_cidr(mask)) {
455 ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
457 ds_put_format(s, "/"IP_FMT, IP_ARGS(mask));
463 /* Stores the string representation of the IPv6 address 'addr' into the
464 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
467 format_ipv6_addr(char *addr_str, const struct in6_addr *addr)
469 inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
473 print_ipv6_addr(struct ds *string, const struct in6_addr *addr)
477 ds_reserve(string, string->length + INET6_ADDRSTRLEN);
479 dst = string->string + string->length;
480 format_ipv6_addr(dst, addr);
481 string->length += strlen(dst);
485 print_ipv6_masked(struct ds *s, const struct in6_addr *addr,
486 const struct in6_addr *mask)
488 print_ipv6_addr(s, addr);
489 if (mask && !ipv6_mask_is_exact(mask)) {
490 if (ipv6_is_cidr(mask)) {
491 int cidr_bits = ipv6_count_cidr_bits(mask);
492 ds_put_format(s, "/%d", cidr_bits);
495 print_ipv6_addr(s, mask);
500 struct in6_addr ipv6_addr_bitand(const struct in6_addr *a,
501 const struct in6_addr *b)
507 for (i=0; i<4; i++) {
508 dst.s6_addr32[i] = a->s6_addr32[i] & b->s6_addr32[i];
511 for (i=0; i<16; i++) {
512 dst.s6_addr[i] = a->s6_addr[i] & b->s6_addr[i];
519 /* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
520 * low-order 0-bits. */
522 ipv6_create_mask(int mask)
524 struct in6_addr netmask;
525 uint8_t *netmaskp = &netmask.s6_addr[0];
527 memset(&netmask, 0, sizeof netmask);
535 *netmaskp = 0xff << (8 - mask);
541 /* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
542 * address that it specifies, that is, the number of 1-bits in 'netmask'.
543 * 'netmask' must be a CIDR netmask (see ipv6_is_cidr()).
545 * If 'netmask' is not a CIDR netmask (see ipv6_is_cidr()), the return value
546 * will still be in the valid range but isn't otherwise meaningful. */
548 ipv6_count_cidr_bits(const struct in6_addr *netmask)
552 const uint8_t *netmaskp = &netmask->s6_addr[0];
554 for (i=0; i<16; i++) {
555 if (netmaskp[i] == 0xff) {
560 for(nm = netmaskp[i]; nm; nm <<= 1) {
571 /* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
572 * high-order 1-bits and 128-N low-order 0-bits. */
574 ipv6_is_cidr(const struct in6_addr *netmask)
576 const uint8_t *netmaskp = &netmask->s6_addr[0];
579 for (i=0; i<16; i++) {
580 if (netmaskp[i] != 0xff) {
581 uint8_t x = ~netmaskp[i];
596 /* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
597 * 'eth_src' and 'eth_type' parameters. A payload of 'size' bytes is allocated
598 * in 'b' and returned. This payload may be populated with appropriate
599 * information by the caller. Sets 'b''s 'l2' and 'l3' pointers to the
600 * Ethernet header and payload respectively.
602 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
605 eth_compose(struct ofpbuf *b, const uint8_t eth_dst[ETH_ADDR_LEN],
606 const uint8_t eth_src[ETH_ADDR_LEN], uint16_t eth_type,
610 struct eth_header *eth;
614 ofpbuf_prealloc_tailroom(b, ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
615 ofpbuf_reserve(b, VLAN_HEADER_LEN);
616 eth = ofpbuf_put_uninit(b, ETH_HEADER_LEN);
617 data = ofpbuf_put_uninit(b, size);
619 memcpy(eth->eth_dst, eth_dst, ETH_ADDR_LEN);
620 memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
621 eth->eth_type = htons(eth_type);
630 packet_set_ipv4_addr(struct ofpbuf *packet, ovs_be32 *addr, ovs_be32 new_addr)
632 struct ip_header *nh = packet->l3;
634 if (nh->ip_proto == IPPROTO_TCP && packet->l7) {
635 struct tcp_header *th = packet->l4;
637 th->tcp_csum = recalc_csum32(th->tcp_csum, *addr, new_addr);
638 } else if (nh->ip_proto == IPPROTO_UDP && packet->l7) {
639 struct udp_header *uh = packet->l4;
642 uh->udp_csum = recalc_csum32(uh->udp_csum, *addr, new_addr);
644 uh->udp_csum = htons(0xffff);
648 nh->ip_csum = recalc_csum32(nh->ip_csum, *addr, new_addr);
652 /* Returns true, if packet contains at least one routing header where
653 * segements_left > 0.
655 * This function assumes that L3 and L4 markers are set in the packet. */
657 packet_rh_present(struct ofpbuf *packet)
659 const struct ip6_hdr *nh;
663 uint8_t *data = packet->l3;
665 remaining = (uint8_t *)packet->l4 - (uint8_t *)packet->l3;
667 if (remaining < sizeof *nh) {
670 nh = (struct ip6_hdr *)data;
672 remaining -= sizeof *nh;
673 nexthdr = nh->ip6_nxt;
676 if ((nexthdr != IPPROTO_HOPOPTS)
677 && (nexthdr != IPPROTO_ROUTING)
678 && (nexthdr != IPPROTO_DSTOPTS)
679 && (nexthdr != IPPROTO_AH)
680 && (nexthdr != IPPROTO_FRAGMENT)) {
681 /* It's either a terminal header (e.g., TCP, UDP) or one we
682 * don't understand. In either case, we're done with the
683 * packet, so use it to fill in 'nw_proto'. */
687 /* We only verify that at least 8 bytes of the next header are
688 * available, but many of these headers are longer. Ensure that
689 * accesses within the extension header are within those first 8
690 * bytes. All extension headers are required to be at least 8
696 if (nexthdr == IPPROTO_AH) {
697 /* A standard AH definition isn't available, but the fields
698 * we care about are in the same location as the generic
699 * option header--only the header length is calculated
701 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
703 nexthdr = ext_hdr->ip6e_nxt;
704 len = (ext_hdr->ip6e_len + 2) * 4;
705 } else if (nexthdr == IPPROTO_FRAGMENT) {
706 const struct ip6_frag *frag_hdr = (struct ip6_frag *)data;
708 nexthdr = frag_hdr->ip6f_nxt;
709 len = sizeof *frag_hdr;
710 } else if (nexthdr == IPPROTO_ROUTING) {
711 const struct ip6_rthdr *rh = (struct ip6_rthdr *)data;
713 if (rh->ip6r_segleft > 0) {
717 nexthdr = rh->ip6r_nxt;
718 len = (rh->ip6r_len + 1) * 8;
720 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
722 nexthdr = ext_hdr->ip6e_nxt;
723 len = (ext_hdr->ip6e_len + 1) * 8;
726 if (remaining < len) {
737 packet_update_csum128(struct ofpbuf *packet, uint8_t proto,
738 ovs_be32 addr[4], const ovs_be32 new_addr[4])
740 if (proto == IPPROTO_TCP && packet->l7) {
741 struct tcp_header *th = packet->l4;
743 th->tcp_csum = recalc_csum128(th->tcp_csum, addr, new_addr);
744 } else if (proto == IPPROTO_UDP && packet->l7) {
745 struct udp_header *uh = packet->l4;
748 uh->udp_csum = recalc_csum128(uh->udp_csum, addr, new_addr);
750 uh->udp_csum = htons(0xffff);
757 packet_set_ipv6_addr(struct ofpbuf *packet, uint8_t proto,
758 struct in6_addr *addr, const ovs_be32 new_addr[4],
759 bool recalculate_csum)
761 if (recalculate_csum) {
762 packet_update_csum128(packet, proto, (ovs_be32 *)addr, new_addr);
764 memcpy(addr, new_addr, sizeof(*addr));
768 packet_set_ipv6_flow_label(ovs_be32 *flow_label, ovs_be32 flow_key)
770 *flow_label = (*flow_label & htonl(~IPV6_LABEL_MASK)) | flow_key;
774 packet_set_ipv6_tc(ovs_be32 *flow_label, uint8_t tc)
776 *flow_label = (*flow_label & htonl(0xF00FFFFF)) | htonl(tc << 20);
779 /* Modifies the IPv4 header fields of 'packet' to be consistent with 'src',
780 * 'dst', 'tos', and 'ttl'. Updates 'packet''s L4 checksums as appropriate.
781 * 'packet' must contain a valid IPv4 packet with correctly populated l[347]
784 packet_set_ipv4(struct ofpbuf *packet, ovs_be32 src, ovs_be32 dst,
785 uint8_t tos, uint8_t ttl)
787 struct ip_header *nh = packet->l3;
789 if (nh->ip_src != src) {
790 packet_set_ipv4_addr(packet, &nh->ip_src, src);
793 if (nh->ip_dst != dst) {
794 packet_set_ipv4_addr(packet, &nh->ip_dst, dst);
797 if (nh->ip_tos != tos) {
798 uint8_t *field = &nh->ip_tos;
800 nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t) *field),
801 htons((uint16_t) tos));
805 if (nh->ip_ttl != ttl) {
806 uint8_t *field = &nh->ip_ttl;
808 nh->ip_csum = recalc_csum16(nh->ip_csum, htons(*field << 8),
814 /* Modifies the IPv6 header fields of 'packet' to be consistent with 'src',
815 * 'dst', 'traffic class', and 'next hop'. Updates 'packet''s L4 checksums as
816 * appropriate. 'packet' must contain a valid IPv6 packet with correctly
817 * populated l[347] markers. */
819 packet_set_ipv6(struct ofpbuf *packet, uint8_t proto, const ovs_be32 src[4],
820 const ovs_be32 dst[4], uint8_t key_tc, ovs_be32 key_fl,
823 struct ip6_hdr *nh = packet->l3;
825 if (memcmp(&nh->ip6_src, src, sizeof(ovs_be32[4]))) {
826 packet_set_ipv6_addr(packet, proto, &nh->ip6_src, src, true);
829 if (memcmp(&nh->ip6_dst, dst, sizeof(ovs_be32[4]))) {
830 packet_set_ipv6_addr(packet, proto, &nh->ip6_dst, dst,
831 !packet_rh_present(packet));
834 packet_set_ipv6_tc(&nh->ip6_flow, key_tc);
836 packet_set_ipv6_flow_label(&nh->ip6_flow, key_fl);
838 nh->ip6_hlim = key_hl;
842 packet_set_port(ovs_be16 *port, ovs_be16 new_port, ovs_be16 *csum)
844 if (*port != new_port) {
845 *csum = recalc_csum16(*csum, *port, new_port);
850 /* Sets the TCP source and destination port ('src' and 'dst' respectively) of
851 * the TCP header contained in 'packet'. 'packet' must be a valid TCP packet
852 * with its l4 marker properly populated. */
854 packet_set_tcp_port(struct ofpbuf *packet, ovs_be16 src, ovs_be16 dst)
856 struct tcp_header *th = packet->l4;
858 packet_set_port(&th->tcp_src, src, &th->tcp_csum);
859 packet_set_port(&th->tcp_dst, dst, &th->tcp_csum);
862 /* Sets the UDP source and destination port ('src' and 'dst' respectively) of
863 * the UDP header contained in 'packet'. 'packet' must be a valid UDP packet
864 * with its l4 marker properly populated. */
866 packet_set_udp_port(struct ofpbuf *packet, ovs_be16 src, ovs_be16 dst)
868 struct udp_header *uh = packet->l4;
871 packet_set_port(&uh->udp_src, src, &uh->udp_csum);
872 packet_set_port(&uh->udp_dst, dst, &uh->udp_csum);
875 uh->udp_csum = htons(0xffff);
883 /* If 'packet' is a TCP packet, returns the TCP flags. Otherwise, returns 0.
885 * 'flow' must be the flow corresponding to 'packet' and 'packet''s header
886 * pointers must be properly initialized (e.g. with flow_extract()). */
888 packet_get_tcp_flags(const struct ofpbuf *packet, const struct flow *flow)
890 ovs_be16 dl_type = flow_innermost_dl_type(flow);
891 if (dl_type_is_ip_any(dl_type) &&
892 flow->nw_proto == IPPROTO_TCP && packet->l7) {
893 const struct tcp_header *tcp = packet->l4;
894 return TCP_FLAGS(tcp->tcp_ctl);
900 /* Appends a string representation of the TCP flags value 'tcp_flags'
901 * (e.g. obtained via packet_get_tcp_flags() or TCP_FLAGS) to 's', in the
902 * format used by tcpdump. */
904 packet_format_tcp_flags(struct ds *s, uint8_t tcp_flags)
907 ds_put_cstr(s, "none");
911 if (tcp_flags & TCP_SYN) {
914 if (tcp_flags & TCP_FIN) {
917 if (tcp_flags & TCP_PSH) {
920 if (tcp_flags & TCP_RST) {
923 if (tcp_flags & TCP_URG) {
926 if (tcp_flags & TCP_ACK) {
929 if (tcp_flags & 0x40) {
930 ds_put_cstr(s, "[40]");
932 if (tcp_flags & 0x80) {
933 ds_put_cstr(s, "[80]");