backported vs2.1.x fix to irq handling, which caused incorrect scheduler behavior
[linux-2.6.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17 #include <linux/vs_base.h>
18 #include <linux/vs_memory.h>
19
20 #include <asm/page.h>
21 #include <asm/pgtable.h>
22
23 #include <linux/hugetlb.h>
24 #include "internal.h"
25
26 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
27 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
28 unsigned long max_huge_pages;
29 static struct list_head hugepage_freelists[MAX_NUMNODES];
30 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
31 static unsigned int free_huge_pages_node[MAX_NUMNODES];
32 /*
33  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
34  */
35 static DEFINE_SPINLOCK(hugetlb_lock);
36
37 static void clear_huge_page(struct page *page, unsigned long addr)
38 {
39         int i;
40
41         might_sleep();
42         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
43                 cond_resched();
44                 clear_user_highpage(page + i, addr);
45         }
46 }
47
48 static void copy_huge_page(struct page *dst, struct page *src,
49                            unsigned long addr)
50 {
51         int i;
52
53         might_sleep();
54         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
55                 cond_resched();
56                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
57         }
58 }
59
60 static void enqueue_huge_page(struct page *page)
61 {
62         int nid = page_to_nid(page);
63         list_add(&page->lru, &hugepage_freelists[nid]);
64         free_huge_pages++;
65         free_huge_pages_node[nid]++;
66 }
67
68 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
69                                 unsigned long address)
70 {
71         int nid = numa_node_id();
72         struct page *page = NULL;
73         struct zonelist *zonelist = huge_zonelist(vma, address);
74         struct zone **z;
75
76         for (z = zonelist->zones; *z; z++) {
77                 nid = (*z)->zone_pgdat->node_id;
78                 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
79                     !list_empty(&hugepage_freelists[nid]))
80                         break;
81         }
82
83         if (*z) {
84                 page = list_entry(hugepage_freelists[nid].next,
85                                   struct page, lru);
86                 list_del(&page->lru);
87                 free_huge_pages--;
88                 free_huge_pages_node[nid]--;
89         }
90         return page;
91 }
92
93 static void free_huge_page(struct page *page)
94 {
95         BUG_ON(page_count(page));
96
97         INIT_LIST_HEAD(&page->lru);
98
99         spin_lock(&hugetlb_lock);
100         enqueue_huge_page(page);
101         spin_unlock(&hugetlb_lock);
102 }
103
104 static int alloc_fresh_huge_page(void)
105 {
106         static int nid = 0;
107         struct page *page;
108         page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
109                                         HUGETLB_PAGE_ORDER);
110         nid = next_node(nid, node_online_map);
111         if (nid == MAX_NUMNODES)
112                 nid = first_node(node_online_map);
113         if (page) {
114                 page[1].lru.next = (void *)free_huge_page;      /* dtor */
115                 spin_lock(&hugetlb_lock);
116                 nr_huge_pages++;
117                 nr_huge_pages_node[page_to_nid(page)]++;
118                 spin_unlock(&hugetlb_lock);
119                 put_page(page); /* free it into the hugepage allocator */
120                 return 1;
121         }
122         return 0;
123 }
124
125 static struct page *alloc_huge_page(struct vm_area_struct *vma,
126                                     unsigned long addr)
127 {
128         struct page *page;
129
130         spin_lock(&hugetlb_lock);
131         if (vma->vm_flags & VM_MAYSHARE)
132                 resv_huge_pages--;
133         else if (free_huge_pages <= resv_huge_pages)
134                 goto fail;
135
136         page = dequeue_huge_page(vma, addr);
137         if (!page)
138                 goto fail;
139
140         spin_unlock(&hugetlb_lock);
141         set_page_refcounted(page);
142         return page;
143
144 fail:
145         spin_unlock(&hugetlb_lock);
146         return NULL;
147 }
148
149 static int __init hugetlb_init(void)
150 {
151         unsigned long i;
152
153         if (HPAGE_SHIFT == 0)
154                 return 0;
155
156         for (i = 0; i < MAX_NUMNODES; ++i)
157                 INIT_LIST_HEAD(&hugepage_freelists[i]);
158
159         for (i = 0; i < max_huge_pages; ++i) {
160                 if (!alloc_fresh_huge_page())
161                         break;
162         }
163         max_huge_pages = free_huge_pages = nr_huge_pages = i;
164         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
165         return 0;
166 }
167 module_init(hugetlb_init);
168
169 static int __init hugetlb_setup(char *s)
170 {
171         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
172                 max_huge_pages = 0;
173         return 1;
174 }
175 __setup("hugepages=", hugetlb_setup);
176
177 #ifdef CONFIG_SYSCTL
178 static void update_and_free_page(struct page *page)
179 {
180         int i;
181         nr_huge_pages--;
182         nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
183         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
184                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
185                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
186                                 1 << PG_private | 1<< PG_writeback);
187         }
188         page[1].lru.next = NULL;
189         set_page_refcounted(page);
190         __free_pages(page, HUGETLB_PAGE_ORDER);
191 }
192
193 #ifdef CONFIG_HIGHMEM
194 static void try_to_free_low(unsigned long count)
195 {
196         int i, nid;
197         for (i = 0; i < MAX_NUMNODES; ++i) {
198                 struct page *page, *next;
199                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
200                         if (PageHighMem(page))
201                                 continue;
202                         list_del(&page->lru);
203                         update_and_free_page(page);
204                         nid = page_zone(page)->zone_pgdat->node_id;
205                         free_huge_pages--;
206                         free_huge_pages_node[nid]--;
207                         if (count >= nr_huge_pages)
208                                 return;
209                 }
210         }
211 }
212 #else
213 static inline void try_to_free_low(unsigned long count)
214 {
215 }
216 #endif
217
218 static unsigned long set_max_huge_pages(unsigned long count)
219 {
220         while (count > nr_huge_pages) {
221                 if (!alloc_fresh_huge_page())
222                         return nr_huge_pages;
223         }
224         if (count >= nr_huge_pages)
225                 return nr_huge_pages;
226
227         spin_lock(&hugetlb_lock);
228         count = max(count, resv_huge_pages);
229         try_to_free_low(count);
230         while (count < nr_huge_pages) {
231                 struct page *page = dequeue_huge_page(NULL, 0);
232                 if (!page)
233                         break;
234                 update_and_free_page(page);
235         }
236         spin_unlock(&hugetlb_lock);
237         return nr_huge_pages;
238 }
239
240 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
241                            struct file *file, void __user *buffer,
242                            size_t *length, loff_t *ppos)
243 {
244         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
245         max_huge_pages = set_max_huge_pages(max_huge_pages);
246         return 0;
247 }
248 #endif /* CONFIG_SYSCTL */
249
250 int hugetlb_report_meminfo(char *buf)
251 {
252         return sprintf(buf,
253                         "HugePages_Total: %5lu\n"
254                         "HugePages_Free:  %5lu\n"
255                         "HugePages_Rsvd:  %5lu\n"
256                         "Hugepagesize:    %5lu kB\n",
257                         nr_huge_pages,
258                         free_huge_pages,
259                         resv_huge_pages,
260                         HPAGE_SIZE/1024);
261 }
262
263 int hugetlb_report_node_meminfo(int nid, char *buf)
264 {
265         return sprintf(buf,
266                 "Node %d HugePages_Total: %5u\n"
267                 "Node %d HugePages_Free:  %5u\n",
268                 nid, nr_huge_pages_node[nid],
269                 nid, free_huge_pages_node[nid]);
270 }
271
272 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
273 unsigned long hugetlb_total_pages(void)
274 {
275         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
276 }
277
278 /*
279  * We cannot handle pagefaults against hugetlb pages at all.  They cause
280  * handle_mm_fault() to try to instantiate regular-sized pages in the
281  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
282  * this far.
283  */
284 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
285                                 unsigned long address, int *unused)
286 {
287         BUG();
288         return NULL;
289 }
290
291 struct vm_operations_struct hugetlb_vm_ops = {
292         .nopage = hugetlb_nopage,
293 };
294
295 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
296                                 int writable)
297 {
298         pte_t entry;
299
300         if (writable) {
301                 entry =
302                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
303         } else {
304                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
305         }
306         entry = pte_mkyoung(entry);
307         entry = pte_mkhuge(entry);
308
309         return entry;
310 }
311
312 static void set_huge_ptep_writable(struct vm_area_struct *vma,
313                                    unsigned long address, pte_t *ptep)
314 {
315         pte_t entry;
316
317         entry = pte_mkwrite(pte_mkdirty(*ptep));
318         ptep_set_access_flags(vma, address, ptep, entry, 1);
319         update_mmu_cache(vma, address, entry);
320         lazy_mmu_prot_update(entry);
321 }
322
323
324 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
325                             struct vm_area_struct *vma)
326 {
327         pte_t *src_pte, *dst_pte, entry;
328         struct page *ptepage;
329         unsigned long addr;
330         int cow;
331
332         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
333
334         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
335                 src_pte = huge_pte_offset(src, addr);
336                 if (!src_pte)
337                         continue;
338                 dst_pte = huge_pte_alloc(dst, addr);
339                 if (!dst_pte)
340                         goto nomem;
341                 spin_lock(&dst->page_table_lock);
342                 spin_lock(&src->page_table_lock);
343                 if (!pte_none(*src_pte)) {
344                         if (cow)
345                                 ptep_set_wrprotect(src, addr, src_pte);
346                         entry = *src_pte;
347                         ptepage = pte_page(entry);
348                         get_page(ptepage);
349                         add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
350                         set_huge_pte_at(dst, addr, dst_pte, entry);
351                 }
352                 spin_unlock(&src->page_table_lock);
353                 spin_unlock(&dst->page_table_lock);
354         }
355         return 0;
356
357 nomem:
358         return -ENOMEM;
359 }
360
361 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
362                           unsigned long end)
363 {
364         struct mm_struct *mm = vma->vm_mm;
365         unsigned long address;
366         pte_t *ptep;
367         pte_t pte;
368         struct page *page;
369
370         WARN_ON(!is_vm_hugetlb_page(vma));
371         BUG_ON(start & ~HPAGE_MASK);
372         BUG_ON(end & ~HPAGE_MASK);
373
374         spin_lock(&mm->page_table_lock);
375
376         /* Update high watermark before we lower rss */
377         update_hiwater_rss(mm);
378
379         for (address = start; address < end; address += HPAGE_SIZE) {
380                 ptep = huge_pte_offset(mm, address);
381                 if (!ptep)
382                         continue;
383
384                 pte = huge_ptep_get_and_clear(mm, address, ptep);
385                 if (pte_none(pte))
386                         continue;
387
388                 page = pte_page(pte);
389                 put_page(page);
390                 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
391         }
392
393         spin_unlock(&mm->page_table_lock);
394         flush_tlb_range(vma, start, end);
395 }
396
397 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
398                         unsigned long address, pte_t *ptep, pte_t pte)
399 {
400         struct page *old_page, *new_page;
401         int avoidcopy;
402
403         old_page = pte_page(pte);
404
405         /* If no-one else is actually using this page, avoid the copy
406          * and just make the page writable */
407         avoidcopy = (page_count(old_page) == 1);
408         if (avoidcopy) {
409                 set_huge_ptep_writable(vma, address, ptep);
410                 return VM_FAULT_MINOR;
411         }
412
413         page_cache_get(old_page);
414         new_page = alloc_huge_page(vma, address);
415
416         if (!new_page) {
417                 page_cache_release(old_page);
418                 return VM_FAULT_OOM;
419         }
420
421         spin_unlock(&mm->page_table_lock);
422         copy_huge_page(new_page, old_page, address);
423         spin_lock(&mm->page_table_lock);
424
425         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
426         if (likely(pte_same(*ptep, pte))) {
427                 /* Break COW */
428                 set_huge_pte_at(mm, address, ptep,
429                                 make_huge_pte(vma, new_page, 1));
430                 /* Make the old page be freed below */
431                 new_page = old_page;
432         }
433         page_cache_release(new_page);
434         page_cache_release(old_page);
435         return VM_FAULT_MINOR;
436 }
437
438 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
439                         unsigned long address, pte_t *ptep, int write_access)
440 {
441         int ret = VM_FAULT_SIGBUS;
442         unsigned long idx;
443         unsigned long size;
444         struct page *page;
445         struct address_space *mapping;
446         pte_t new_pte;
447
448         mapping = vma->vm_file->f_mapping;
449         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
450                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
451
452         /*
453          * Use page lock to guard against racing truncation
454          * before we get page_table_lock.
455          */
456 retry:
457         page = find_lock_page(mapping, idx);
458         if (!page) {
459                 if (hugetlb_get_quota(mapping))
460                         goto out;
461                 page = alloc_huge_page(vma, address);
462                 if (!page) {
463                         hugetlb_put_quota(mapping);
464                         ret = VM_FAULT_OOM;
465                         goto out;
466                 }
467                 clear_huge_page(page, address);
468
469                 if (vma->vm_flags & VM_SHARED) {
470                         int err;
471
472                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
473                         if (err) {
474                                 put_page(page);
475                                 hugetlb_put_quota(mapping);
476                                 if (err == -EEXIST)
477                                         goto retry;
478                                 goto out;
479                         }
480                 } else
481                         lock_page(page);
482         }
483
484         spin_lock(&mm->page_table_lock);
485         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
486         if (idx >= size)
487                 goto backout;
488
489         ret = VM_FAULT_MINOR;
490         if (!pte_none(*ptep))
491                 goto backout;
492
493         add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
494         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
495                                 && (vma->vm_flags & VM_SHARED)));
496         set_huge_pte_at(mm, address, ptep, new_pte);
497
498         if (write_access && !(vma->vm_flags & VM_SHARED)) {
499                 /* Optimization, do the COW without a second fault */
500                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
501         }
502
503         spin_unlock(&mm->page_table_lock);
504         unlock_page(page);
505 out:
506         return ret;
507
508 backout:
509         spin_unlock(&mm->page_table_lock);
510         hugetlb_put_quota(mapping);
511         unlock_page(page);
512         put_page(page);
513         goto out;
514 }
515
516 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
517                         unsigned long address, int write_access)
518 {
519         pte_t *ptep;
520         pte_t entry;
521         int ret;
522         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
523
524         ptep = huge_pte_alloc(mm, address);
525         if (!ptep)
526                 return VM_FAULT_OOM;
527
528         /*
529          * Serialize hugepage allocation and instantiation, so that we don't
530          * get spurious allocation failures if two CPUs race to instantiate
531          * the same page in the page cache.
532          */
533         mutex_lock(&hugetlb_instantiation_mutex);
534         entry = *ptep;
535         if (pte_none(entry)) {
536                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
537                 mutex_unlock(&hugetlb_instantiation_mutex);
538                 return ret;
539         }
540
541         ret = VM_FAULT_MINOR;
542
543         spin_lock(&mm->page_table_lock);
544         /* Check for a racing update before calling hugetlb_cow */
545         if (likely(pte_same(entry, *ptep)))
546                 if (write_access && !pte_write(entry))
547                         ret = hugetlb_cow(mm, vma, address, ptep, entry);
548         spin_unlock(&mm->page_table_lock);
549         mutex_unlock(&hugetlb_instantiation_mutex);
550
551         return ret;
552 }
553
554 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
555                         struct page **pages, struct vm_area_struct **vmas,
556                         unsigned long *position, int *length, int i)
557 {
558         unsigned long pfn_offset;
559         unsigned long vaddr = *position;
560         int remainder = *length;
561
562         spin_lock(&mm->page_table_lock);
563         while (vaddr < vma->vm_end && remainder) {
564                 pte_t *pte;
565                 struct page *page;
566
567                 /*
568                  * Some archs (sparc64, sh*) have multiple pte_ts to
569                  * each hugepage.  We have to make * sure we get the
570                  * first, for the page indexing below to work.
571                  */
572                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
573
574                 if (!pte || pte_none(*pte)) {
575                         int ret;
576
577                         spin_unlock(&mm->page_table_lock);
578                         ret = hugetlb_fault(mm, vma, vaddr, 0);
579                         spin_lock(&mm->page_table_lock);
580                         if (ret == VM_FAULT_MINOR)
581                                 continue;
582
583                         remainder = 0;
584                         if (!i)
585                                 i = -EFAULT;
586                         break;
587                 }
588
589                 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
590                 page = pte_page(*pte);
591 same_page:
592                 if (pages) {
593                         get_page(page);
594                         pages[i] = page + pfn_offset;
595                 }
596
597                 if (vmas)
598                         vmas[i] = vma;
599
600                 vaddr += PAGE_SIZE;
601                 ++pfn_offset;
602                 --remainder;
603                 ++i;
604                 if (vaddr < vma->vm_end && remainder &&
605                                 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
606                         /*
607                          * We use pfn_offset to avoid touching the pageframes
608                          * of this compound page.
609                          */
610                         goto same_page;
611                 }
612         }
613         spin_unlock(&mm->page_table_lock);
614         *length = remainder;
615         *position = vaddr;
616
617         return i;
618 }
619
620 void hugetlb_change_protection(struct vm_area_struct *vma,
621                 unsigned long address, unsigned long end, pgprot_t newprot)
622 {
623         struct mm_struct *mm = vma->vm_mm;
624         unsigned long start = address;
625         pte_t *ptep;
626         pte_t pte;
627
628         BUG_ON(address >= end);
629         flush_cache_range(vma, address, end);
630
631         spin_lock(&mm->page_table_lock);
632         for (; address < end; address += HPAGE_SIZE) {
633                 ptep = huge_pte_offset(mm, address);
634                 if (!ptep)
635                         continue;
636                 if (!pte_none(*ptep)) {
637                         pte = huge_ptep_get_and_clear(mm, address, ptep);
638                         pte = pte_mkhuge(pte_modify(pte, newprot));
639                         set_huge_pte_at(mm, address, ptep, pte);
640                         lazy_mmu_prot_update(pte);
641                 }
642         }
643         spin_unlock(&mm->page_table_lock);
644
645         flush_tlb_range(vma, start, end);
646 }
647
648 struct file_region {
649         struct list_head link;
650         long from;
651         long to;
652 };
653
654 static long region_add(struct list_head *head, long f, long t)
655 {
656         struct file_region *rg, *nrg, *trg;
657
658         /* Locate the region we are either in or before. */
659         list_for_each_entry(rg, head, link)
660                 if (f <= rg->to)
661                         break;
662
663         /* Round our left edge to the current segment if it encloses us. */
664         if (f > rg->from)
665                 f = rg->from;
666
667         /* Check for and consume any regions we now overlap with. */
668         nrg = rg;
669         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
670                 if (&rg->link == head)
671                         break;
672                 if (rg->from > t)
673                         break;
674
675                 /* If this area reaches higher then extend our area to
676                  * include it completely.  If this is not the first area
677                  * which we intend to reuse, free it. */
678                 if (rg->to > t)
679                         t = rg->to;
680                 if (rg != nrg) {
681                         list_del(&rg->link);
682                         kfree(rg);
683                 }
684         }
685         nrg->from = f;
686         nrg->to = t;
687         return 0;
688 }
689
690 static long region_chg(struct list_head *head, long f, long t)
691 {
692         struct file_region *rg, *nrg;
693         long chg = 0;
694
695         /* Locate the region we are before or in. */
696         list_for_each_entry(rg, head, link)
697                 if (f <= rg->to)
698                         break;
699
700         /* If we are below the current region then a new region is required.
701          * Subtle, allocate a new region at the position but make it zero
702          * size such that we can guarentee to record the reservation. */
703         if (&rg->link == head || t < rg->from) {
704                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
705                 if (nrg == 0)
706                         return -ENOMEM;
707                 nrg->from = f;
708                 nrg->to   = f;
709                 INIT_LIST_HEAD(&nrg->link);
710                 list_add(&nrg->link, rg->link.prev);
711
712                 return t - f;
713         }
714
715         /* Round our left edge to the current segment if it encloses us. */
716         if (f > rg->from)
717                 f = rg->from;
718         chg = t - f;
719
720         /* Check for and consume any regions we now overlap with. */
721         list_for_each_entry(rg, rg->link.prev, link) {
722                 if (&rg->link == head)
723                         break;
724                 if (rg->from > t)
725                         return chg;
726
727                 /* We overlap with this area, if it extends futher than
728                  * us then we must extend ourselves.  Account for its
729                  * existing reservation. */
730                 if (rg->to > t) {
731                         chg += rg->to - t;
732                         t = rg->to;
733                 }
734                 chg -= rg->to - rg->from;
735         }
736         return chg;
737 }
738
739 static long region_truncate(struct list_head *head, long end)
740 {
741         struct file_region *rg, *trg;
742         long chg = 0;
743
744         /* Locate the region we are either in or before. */
745         list_for_each_entry(rg, head, link)
746                 if (end <= rg->to)
747                         break;
748         if (&rg->link == head)
749                 return 0;
750
751         /* If we are in the middle of a region then adjust it. */
752         if (end > rg->from) {
753                 chg = rg->to - end;
754                 rg->to = end;
755                 rg = list_entry(rg->link.next, typeof(*rg), link);
756         }
757
758         /* Drop any remaining regions. */
759         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
760                 if (&rg->link == head)
761                         break;
762                 chg += rg->to - rg->from;
763                 list_del(&rg->link);
764                 kfree(rg);
765         }
766         return chg;
767 }
768
769 static int hugetlb_acct_memory(long delta)
770 {
771         int ret = -ENOMEM;
772
773         spin_lock(&hugetlb_lock);
774         if ((delta + resv_huge_pages) <= free_huge_pages) {
775                 resv_huge_pages += delta;
776                 ret = 0;
777         }
778         spin_unlock(&hugetlb_lock);
779         return ret;
780 }
781
782 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
783 {
784         long ret, chg;
785
786         chg = region_chg(&inode->i_mapping->private_list, from, to);
787         if (chg < 0)
788                 return chg;
789         ret = hugetlb_acct_memory(chg);
790         if (ret < 0)
791                 return ret;
792         region_add(&inode->i_mapping->private_list, from, to);
793         return 0;
794 }
795
796 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
797 {
798         long chg = region_truncate(&inode->i_mapping->private_list, offset);
799         hugetlb_acct_memory(freed - chg);
800 }