Revert to Fedora kernel-2.6.17-1.2187_FC5 patched with vs2.0.2.1; there are too many...
[linux-2.6.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17 #include <linux/vs_base.h>
18 #include <linux/vs_memory.h>
19
20 #include <asm/page.h>
21 #include <asm/pgtable.h>
22
23 #include <linux/hugetlb.h>
24 #include "internal.h"
25
26 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
27 static unsigned long nr_huge_pages, free_huge_pages, reserved_huge_pages;
28 unsigned long max_huge_pages;
29 static struct list_head hugepage_freelists[MAX_NUMNODES];
30 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
31 static unsigned int free_huge_pages_node[MAX_NUMNODES];
32 /*
33  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
34  */
35 static DEFINE_SPINLOCK(hugetlb_lock);
36
37 static void clear_huge_page(struct page *page, unsigned long addr)
38 {
39         int i;
40
41         might_sleep();
42         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
43                 cond_resched();
44                 clear_user_highpage(page + i, addr);
45         }
46 }
47
48 static void copy_huge_page(struct page *dst, struct page *src,
49                            unsigned long addr)
50 {
51         int i;
52
53         might_sleep();
54         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
55                 cond_resched();
56                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
57         }
58 }
59
60 static void enqueue_huge_page(struct page *page)
61 {
62         int nid = page_to_nid(page);
63         list_add(&page->lru, &hugepage_freelists[nid]);
64         free_huge_pages++;
65         free_huge_pages_node[nid]++;
66 }
67
68 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
69                                 unsigned long address)
70 {
71         int nid = numa_node_id();
72         struct page *page = NULL;
73         struct zonelist *zonelist = huge_zonelist(vma, address);
74         struct zone **z;
75
76         for (z = zonelist->zones; *z; z++) {
77                 nid = (*z)->zone_pgdat->node_id;
78                 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
79                     !list_empty(&hugepage_freelists[nid]))
80                         break;
81         }
82
83         if (*z) {
84                 page = list_entry(hugepage_freelists[nid].next,
85                                   struct page, lru);
86                 list_del(&page->lru);
87                 free_huge_pages--;
88                 free_huge_pages_node[nid]--;
89         }
90         return page;
91 }
92
93 static void free_huge_page(struct page *page)
94 {
95         BUG_ON(page_count(page));
96
97         INIT_LIST_HEAD(&page->lru);
98
99         spin_lock(&hugetlb_lock);
100         enqueue_huge_page(page);
101         spin_unlock(&hugetlb_lock);
102 }
103
104 static int alloc_fresh_huge_page(void)
105 {
106         static int nid = 0;
107         struct page *page;
108         page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
109                                         HUGETLB_PAGE_ORDER);
110         nid = next_node(nid, node_online_map);
111         if (nid == MAX_NUMNODES)
112                 nid = first_node(node_online_map);
113         if (page) {
114                 page[1].lru.next = (void *)free_huge_page;      /* dtor */
115                 spin_lock(&hugetlb_lock);
116                 nr_huge_pages++;
117                 nr_huge_pages_node[page_to_nid(page)]++;
118                 spin_unlock(&hugetlb_lock);
119                 put_page(page); /* free it into the hugepage allocator */
120                 return 1;
121         }
122         return 0;
123 }
124
125 static struct page *alloc_huge_page(struct vm_area_struct *vma,
126                                     unsigned long addr)
127 {
128         struct inode *inode = vma->vm_file->f_dentry->d_inode;
129         struct page *page;
130         int use_reserve = 0;
131         unsigned long idx;
132
133         spin_lock(&hugetlb_lock);
134
135         if (vma->vm_flags & VM_MAYSHARE) {
136
137                 /* idx = radix tree index, i.e. offset into file in
138                  * HPAGE_SIZE units */
139                 idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
140                         + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
141
142                 /* The hugetlbfs specific inode info stores the number
143                  * of "guaranteed available" (huge) pages.  That is,
144                  * the first 'prereserved_hpages' pages of the inode
145                  * are either already instantiated, or have been
146                  * pre-reserved (by hugetlb_reserve_for_inode()). Here
147                  * we're in the process of instantiating the page, so
148                  * we use this to determine whether to draw from the
149                  * pre-reserved pool or the truly free pool. */
150                 if (idx < HUGETLBFS_I(inode)->prereserved_hpages)
151                         use_reserve = 1;
152         }
153
154         if (!use_reserve) {
155                 if (free_huge_pages <= reserved_huge_pages)
156                         goto fail;
157         } else {
158                 BUG_ON(reserved_huge_pages == 0);
159                 reserved_huge_pages--;
160         }
161
162         page = dequeue_huge_page(vma, addr);
163         if (!page)
164                 goto fail;
165
166         spin_unlock(&hugetlb_lock);
167         set_page_refcounted(page);
168         return page;
169
170  fail:
171         WARN_ON(use_reserve); /* reserved allocations shouldn't fail */
172         spin_unlock(&hugetlb_lock);
173         return NULL;
174 }
175
176 /* hugetlb_extend_reservation()
177  *
178  * Ensure that at least 'atleast' hugepages are, and will remain,
179  * available to instantiate the first 'atleast' pages of the given
180  * inode.  If the inode doesn't already have this many pages reserved
181  * or instantiated, set aside some hugepages in the reserved pool to
182  * satisfy later faults (or fail now if there aren't enough, rather
183  * than getting the SIGBUS later).
184  */
185 int hugetlb_extend_reservation(struct hugetlbfs_inode_info *info,
186                                unsigned long atleast)
187 {
188         struct inode *inode = &info->vfs_inode;
189         unsigned long change_in_reserve = 0;
190         int ret = 0;
191
192         spin_lock(&hugetlb_lock);
193         read_lock_irq(&inode->i_mapping->tree_lock);
194
195         if (info->prereserved_hpages >= atleast)
196                 goto out;
197
198         /* Because we always call this on shared mappings, none of the
199          * pages beyond info->prereserved_hpages can have been
200          * instantiated, so we need to reserve all of them now. */
201         change_in_reserve = atleast - info->prereserved_hpages;
202
203         if ((reserved_huge_pages + change_in_reserve) > free_huge_pages) {
204                 ret = -ENOMEM;
205                 goto out;
206         }
207
208         reserved_huge_pages += change_in_reserve;
209         info->prereserved_hpages = atleast;
210
211  out:
212         read_unlock_irq(&inode->i_mapping->tree_lock);
213         spin_unlock(&hugetlb_lock);
214
215         return ret;
216 }
217
218 /* hugetlb_truncate_reservation()
219  *
220  * This returns pages reserved for the given inode to the general free
221  * hugepage pool.  If the inode has any pages prereserved, but not
222  * instantiated, beyond offset (atmost << HPAGE_SIZE), then release
223  * them.
224  */
225 void hugetlb_truncate_reservation(struct hugetlbfs_inode_info *info,
226                                   unsigned long atmost)
227 {
228         struct inode *inode = &info->vfs_inode;
229         struct address_space *mapping = inode->i_mapping;
230         unsigned long idx;
231         unsigned long change_in_reserve = 0;
232         struct page *page;
233
234         spin_lock(&hugetlb_lock);
235         read_lock_irq(&inode->i_mapping->tree_lock);
236
237         if (info->prereserved_hpages <= atmost)
238                 goto out;
239
240         /* Count pages which were reserved, but not instantiated, and
241          * which we can now release. */
242         for (idx = atmost; idx < info->prereserved_hpages; idx++) {
243                 page = radix_tree_lookup(&mapping->page_tree, idx);
244                 if (!page)
245                         /* Pages which are already instantiated can't
246                          * be unreserved (and in fact have already
247                          * been removed from the reserved pool) */
248                         change_in_reserve++;
249         }
250
251         BUG_ON(reserved_huge_pages < change_in_reserve);
252         reserved_huge_pages -= change_in_reserve;
253         info->prereserved_hpages = atmost;
254
255  out:
256         read_unlock_irq(&inode->i_mapping->tree_lock);
257         spin_unlock(&hugetlb_lock);
258 }
259
260 static int __init hugetlb_init(void)
261 {
262         unsigned long i;
263
264         if (HPAGE_SHIFT == 0)
265                 return 0;
266
267         for (i = 0; i < MAX_NUMNODES; ++i)
268                 INIT_LIST_HEAD(&hugepage_freelists[i]);
269
270         for (i = 0; i < max_huge_pages; ++i) {
271                 if (!alloc_fresh_huge_page())
272                         break;
273         }
274         max_huge_pages = free_huge_pages = nr_huge_pages = i;
275         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
276         return 0;
277 }
278 module_init(hugetlb_init);
279
280 static int __init hugetlb_setup(char *s)
281 {
282         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
283                 max_huge_pages = 0;
284         return 1;
285 }
286 __setup("hugepages=", hugetlb_setup);
287
288 #ifdef CONFIG_SYSCTL
289 static void update_and_free_page(struct page *page)
290 {
291         int i;
292         nr_huge_pages--;
293         nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
294         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
295                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
296                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
297                                 1 << PG_private | 1<< PG_writeback);
298         }
299         page[1].lru.next = NULL;
300         set_page_refcounted(page);
301         __free_pages(page, HUGETLB_PAGE_ORDER);
302 }
303
304 #ifdef CONFIG_HIGHMEM
305 static void try_to_free_low(unsigned long count)
306 {
307         int i, nid;
308         for (i = 0; i < MAX_NUMNODES; ++i) {
309                 struct page *page, *next;
310                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
311                         if (PageHighMem(page))
312                                 continue;
313                         list_del(&page->lru);
314                         update_and_free_page(page);
315                         nid = page_zone(page)->zone_pgdat->node_id;
316                         free_huge_pages--;
317                         free_huge_pages_node[nid]--;
318                         if (count >= nr_huge_pages)
319                                 return;
320                 }
321         }
322 }
323 #else
324 static inline void try_to_free_low(unsigned long count)
325 {
326 }
327 #endif
328
329 static unsigned long set_max_huge_pages(unsigned long count)
330 {
331         while (count > nr_huge_pages) {
332                 if (!alloc_fresh_huge_page())
333                         return nr_huge_pages;
334         }
335         if (count >= nr_huge_pages)
336                 return nr_huge_pages;
337
338         spin_lock(&hugetlb_lock);
339         count = max(count, reserved_huge_pages);
340         try_to_free_low(count);
341         while (count < nr_huge_pages) {
342                 struct page *page = dequeue_huge_page(NULL, 0);
343                 if (!page)
344                         break;
345                 update_and_free_page(page);
346         }
347         spin_unlock(&hugetlb_lock);
348         return nr_huge_pages;
349 }
350
351 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
352                            struct file *file, void __user *buffer,
353                            size_t *length, loff_t *ppos)
354 {
355         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
356         max_huge_pages = set_max_huge_pages(max_huge_pages);
357         return 0;
358 }
359 #endif /* CONFIG_SYSCTL */
360
361 int hugetlb_report_meminfo(char *buf)
362 {
363         return sprintf(buf,
364                         "HugePages_Total: %5lu\n"
365                         "HugePages_Free:  %5lu\n"
366                         "HugePages_Rsvd:  %5lu\n"
367                         "Hugepagesize:    %5lu kB\n",
368                         nr_huge_pages,
369                         free_huge_pages,
370                         reserved_huge_pages,
371                         HPAGE_SIZE/1024);
372 }
373
374 int hugetlb_report_node_meminfo(int nid, char *buf)
375 {
376         return sprintf(buf,
377                 "Node %d HugePages_Total: %5u\n"
378                 "Node %d HugePages_Free:  %5u\n",
379                 nid, nr_huge_pages_node[nid],
380                 nid, free_huge_pages_node[nid]);
381 }
382
383 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
384 unsigned long hugetlb_total_pages(void)
385 {
386         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
387 }
388
389 /*
390  * We cannot handle pagefaults against hugetlb pages at all.  They cause
391  * handle_mm_fault() to try to instantiate regular-sized pages in the
392  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
393  * this far.
394  */
395 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
396                                 unsigned long address, int *unused)
397 {
398         BUG();
399         return NULL;
400 }
401
402 struct vm_operations_struct hugetlb_vm_ops = {
403         .nopage = hugetlb_nopage,
404 };
405
406 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
407                                 int writable)
408 {
409         pte_t entry;
410
411         if (writable) {
412                 entry =
413                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
414         } else {
415                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
416         }
417         entry = pte_mkyoung(entry);
418         entry = pte_mkhuge(entry);
419
420         return entry;
421 }
422
423 static void set_huge_ptep_writable(struct vm_area_struct *vma,
424                                    unsigned long address, pte_t *ptep)
425 {
426         pte_t entry;
427
428         entry = pte_mkwrite(pte_mkdirty(*ptep));
429         ptep_set_access_flags(vma, address, ptep, entry, 1);
430         update_mmu_cache(vma, address, entry);
431         lazy_mmu_prot_update(entry);
432 }
433
434
435 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
436                             struct vm_area_struct *vma)
437 {
438         pte_t *src_pte, *dst_pte, entry;
439         struct page *ptepage;
440         unsigned long addr;
441         int cow;
442
443         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
444
445         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
446                 src_pte = huge_pte_offset(src, addr);
447                 if (!src_pte)
448                         continue;
449                 dst_pte = huge_pte_alloc(dst, addr);
450                 if (!dst_pte)
451                         goto nomem;
452                 spin_lock(&dst->page_table_lock);
453                 spin_lock(&src->page_table_lock);
454                 if (!pte_none(*src_pte)) {
455                         if (cow)
456                                 ptep_set_wrprotect(src, addr, src_pte);
457                         entry = *src_pte;
458                         ptepage = pte_page(entry);
459                         get_page(ptepage);
460                         add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
461                         set_huge_pte_at(dst, addr, dst_pte, entry);
462                 }
463                 spin_unlock(&src->page_table_lock);
464                 spin_unlock(&dst->page_table_lock);
465         }
466         return 0;
467
468 nomem:
469         return -ENOMEM;
470 }
471
472 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
473                           unsigned long end)
474 {
475         struct mm_struct *mm = vma->vm_mm;
476         unsigned long address;
477         pte_t *ptep;
478         pte_t pte;
479         struct page *page;
480
481         WARN_ON(!is_vm_hugetlb_page(vma));
482         BUG_ON(start & ~HPAGE_MASK);
483         BUG_ON(end & ~HPAGE_MASK);
484
485         spin_lock(&mm->page_table_lock);
486
487         /* Update high watermark before we lower rss */
488         update_hiwater_rss(mm);
489
490         for (address = start; address < end; address += HPAGE_SIZE) {
491                 ptep = huge_pte_offset(mm, address);
492                 if (!ptep)
493                         continue;
494
495                 pte = huge_ptep_get_and_clear(mm, address, ptep);
496                 if (pte_none(pte))
497                         continue;
498
499                 page = pte_page(pte);
500                 put_page(page);
501                 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
502         }
503
504         spin_unlock(&mm->page_table_lock);
505         flush_tlb_range(vma, start, end);
506 }
507
508 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
509                         unsigned long address, pte_t *ptep, pte_t pte)
510 {
511         struct page *old_page, *new_page;
512         int avoidcopy;
513
514         old_page = pte_page(pte);
515
516         /* If no-one else is actually using this page, avoid the copy
517          * and just make the page writable */
518         avoidcopy = (page_count(old_page) == 1);
519         if (avoidcopy) {
520                 set_huge_ptep_writable(vma, address, ptep);
521                 return VM_FAULT_MINOR;
522         }
523
524         page_cache_get(old_page);
525         new_page = alloc_huge_page(vma, address);
526
527         if (!new_page) {
528                 page_cache_release(old_page);
529                 return VM_FAULT_OOM;
530         }
531
532         spin_unlock(&mm->page_table_lock);
533         copy_huge_page(new_page, old_page, address);
534         spin_lock(&mm->page_table_lock);
535
536         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
537         if (likely(pte_same(*ptep, pte))) {
538                 /* Break COW */
539                 set_huge_pte_at(mm, address, ptep,
540                                 make_huge_pte(vma, new_page, 1));
541                 /* Make the old page be freed below */
542                 new_page = old_page;
543         }
544         page_cache_release(new_page);
545         page_cache_release(old_page);
546         return VM_FAULT_MINOR;
547 }
548
549 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
550                         unsigned long address, pte_t *ptep, int write_access)
551 {
552         int ret = VM_FAULT_SIGBUS;
553         unsigned long idx;
554         unsigned long size;
555         struct page *page;
556         struct address_space *mapping;
557         pte_t new_pte;
558
559         mapping = vma->vm_file->f_mapping;
560         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
561                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
562
563         /*
564          * Use page lock to guard against racing truncation
565          * before we get page_table_lock.
566          */
567 retry:
568         page = find_lock_page(mapping, idx);
569         if (!page) {
570                 if (hugetlb_get_quota(mapping))
571                         goto out;
572                 page = alloc_huge_page(vma, address);
573                 if (!page) {
574                         hugetlb_put_quota(mapping);
575                         ret = VM_FAULT_OOM;
576                         goto out;
577                 }
578                 clear_huge_page(page, address);
579
580                 if (vma->vm_flags & VM_SHARED) {
581                         int err;
582
583                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
584                         if (err) {
585                                 put_page(page);
586                                 hugetlb_put_quota(mapping);
587                                 if (err == -EEXIST)
588                                         goto retry;
589                                 goto out;
590                         }
591                 } else
592                         lock_page(page);
593         }
594
595         spin_lock(&mm->page_table_lock);
596         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
597         if (idx >= size)
598                 goto backout;
599
600         ret = VM_FAULT_MINOR;
601         if (!pte_none(*ptep))
602                 goto backout;
603
604         add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
605         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
606                                 && (vma->vm_flags & VM_SHARED)));
607         set_huge_pte_at(mm, address, ptep, new_pte);
608
609         if (write_access && !(vma->vm_flags & VM_SHARED)) {
610                 /* Optimization, do the COW without a second fault */
611                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
612         }
613
614         spin_unlock(&mm->page_table_lock);
615         unlock_page(page);
616 out:
617         return ret;
618
619 backout:
620         spin_unlock(&mm->page_table_lock);
621         hugetlb_put_quota(mapping);
622         unlock_page(page);
623         put_page(page);
624         goto out;
625 }
626
627 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
628                         unsigned long address, int write_access)
629 {
630         pte_t *ptep;
631         pte_t entry;
632         int ret;
633         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
634
635         ptep = huge_pte_alloc(mm, address);
636         if (!ptep)
637                 return VM_FAULT_OOM;
638
639         /*
640          * Serialize hugepage allocation and instantiation, so that we don't
641          * get spurious allocation failures if two CPUs race to instantiate
642          * the same page in the page cache.
643          */
644         mutex_lock(&hugetlb_instantiation_mutex);
645         entry = *ptep;
646         if (pte_none(entry)) {
647                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
648                 mutex_unlock(&hugetlb_instantiation_mutex);
649                 return ret;
650         }
651
652         ret = VM_FAULT_MINOR;
653
654         spin_lock(&mm->page_table_lock);
655         /* Check for a racing update before calling hugetlb_cow */
656         if (likely(pte_same(entry, *ptep)))
657                 if (write_access && !pte_write(entry))
658                         ret = hugetlb_cow(mm, vma, address, ptep, entry);
659         spin_unlock(&mm->page_table_lock);
660         mutex_unlock(&hugetlb_instantiation_mutex);
661
662         return ret;
663 }
664
665 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
666                         struct page **pages, struct vm_area_struct **vmas,
667                         unsigned long *position, int *length, int i)
668 {
669         unsigned long pfn_offset;
670         unsigned long vaddr = *position;
671         int remainder = *length;
672
673         spin_lock(&mm->page_table_lock);
674         while (vaddr < vma->vm_end && remainder) {
675                 pte_t *pte;
676                 struct page *page;
677
678                 /*
679                  * Some archs (sparc64, sh*) have multiple pte_ts to
680                  * each hugepage.  We have to make * sure we get the
681                  * first, for the page indexing below to work.
682                  */
683                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
684
685                 if (!pte || pte_none(*pte)) {
686                         int ret;
687
688                         spin_unlock(&mm->page_table_lock);
689                         ret = hugetlb_fault(mm, vma, vaddr, 0);
690                         spin_lock(&mm->page_table_lock);
691                         if (ret == VM_FAULT_MINOR)
692                                 continue;
693
694                         remainder = 0;
695                         if (!i)
696                                 i = -EFAULT;
697                         break;
698                 }
699
700                 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
701                 page = pte_page(*pte);
702 same_page:
703                 if (pages) {
704                         get_page(page);
705                         pages[i] = page + pfn_offset;
706                 }
707
708                 if (vmas)
709                         vmas[i] = vma;
710
711                 vaddr += PAGE_SIZE;
712                 ++pfn_offset;
713                 --remainder;
714                 ++i;
715                 if (vaddr < vma->vm_end && remainder &&
716                                 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
717                         /*
718                          * We use pfn_offset to avoid touching the pageframes
719                          * of this compound page.
720                          */
721                         goto same_page;
722                 }
723         }
724         spin_unlock(&mm->page_table_lock);
725         *length = remainder;
726         *position = vaddr;
727
728         return i;
729 }
730
731 void hugetlb_change_protection(struct vm_area_struct *vma,
732                 unsigned long address, unsigned long end, pgprot_t newprot)
733 {
734         struct mm_struct *mm = vma->vm_mm;
735         unsigned long start = address;
736         pte_t *ptep;
737         pte_t pte;
738
739         BUG_ON(address >= end);
740         flush_cache_range(vma, address, end);
741
742         spin_lock(&mm->page_table_lock);
743         for (; address < end; address += HPAGE_SIZE) {
744                 ptep = huge_pte_offset(mm, address);
745                 if (!ptep)
746                         continue;
747                 if (!pte_none(*ptep)) {
748                         pte = huge_ptep_get_and_clear(mm, address, ptep);
749                         pte = pte_mkhuge(pte_modify(pte, newprot));
750                         set_huge_pte_at(mm, address, ptep, pte);
751                         lazy_mmu_prot_update(pte);
752                 }
753         }
754         spin_unlock(&mm->page_table_lock);
755
756         flush_tlb_range(vma, start, end);
757 }
758