linux 2.6.16.38 w/ vs2.0.3-rc1
[linux-2.6.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@redhat.com>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/shm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/syscalls.h>
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/file.h>
19 #include <linux/fs.h>
20 #include <linux/personality.h>
21 #include <linux/security.h>
22 #include <linux/hugetlb.h>
23 #include <linux/profile.h>
24 #include <linux/module.h>
25 #include <linux/mount.h>
26 #include <linux/mempolicy.h>
27 #include <linux/rmap.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlb.h>
32
33 #ifndef arch_mmap_check
34 #define arch_mmap_check(addr, len, flags)       (0)
35 #endif
36
37 static void unmap_region(struct mm_struct *mm,
38                 struct vm_area_struct *vma, struct vm_area_struct *prev,
39                 unsigned long start, unsigned long end);
40
41 /*
42  * WARNING: the debugging will use recursive algorithms so never enable this
43  * unless you know what you are doing.
44  */
45 #undef DEBUG_MM_RB
46
47 /* description of effects of mapping type and prot in current implementation.
48  * this is due to the limited x86 page protection hardware.  The expected
49  * behavior is in parens:
50  *
51  * map_type     prot
52  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
53  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
54  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
55  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
56  *              
57  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
58  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
59  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
60  *
61  */
62 pgprot_t protection_map[16] = {
63         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
64         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
65 };
66
67 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
68 int sysctl_overcommit_ratio = 50;       /* default is 50% */
69 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
70 atomic_t vm_committed_space = ATOMIC_INIT(0);
71
72 /*
73  * Check that a process has enough memory to allocate a new virtual
74  * mapping. 0 means there is enough memory for the allocation to
75  * succeed and -ENOMEM implies there is not.
76  *
77  * We currently support three overcommit policies, which are set via the
78  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
79  *
80  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
81  * Additional code 2002 Jul 20 by Robert Love.
82  *
83  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
84  *
85  * Note this is a helper function intended to be used by LSMs which
86  * wish to use this logic.
87  */
88 int __vm_enough_memory(long pages, int cap_sys_admin)
89 {
90         unsigned long free, allowed;
91
92         vm_acct_memory(pages);
93
94         /*
95          * Sometimes we want to use more memory than we have
96          */
97         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
98                 return 0;
99
100         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
101                 unsigned long n;
102
103                 free = get_page_cache_size();
104                 free += nr_swap_pages;
105
106                 /*
107                  * Any slabs which are created with the
108                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
109                  * which are reclaimable, under pressure.  The dentry
110                  * cache and most inode caches should fall into this
111                  */
112                 free += atomic_read(&slab_reclaim_pages);
113
114                 /*
115                  * Leave the last 3% for root
116                  */
117                 if (!cap_sys_admin)
118                         free -= free / 32;
119
120                 if (free > pages)
121                         return 0;
122
123                 /*
124                  * nr_free_pages() is very expensive on large systems,
125                  * only call if we're about to fail.
126                  */
127                 n = nr_free_pages();
128                 if (!cap_sys_admin)
129                         n -= n / 32;
130                 free += n;
131
132                 if (free > pages)
133                         return 0;
134                 vm_unacct_memory(pages);
135                 return -ENOMEM;
136         }
137
138         allowed = (totalram_pages - hugetlb_total_pages())
139                 * sysctl_overcommit_ratio / 100;
140         /*
141          * Leave the last 3% for root
142          */
143         if (!cap_sys_admin)
144                 allowed -= allowed / 32;
145         allowed += total_swap_pages;
146
147         /* Don't let a single process grow too big:
148            leave 3% of the size of this process for other processes */
149         allowed -= current->mm->total_vm / 32;
150
151         /*
152          * cast `allowed' as a signed long because vm_committed_space
153          * sometimes has a negative value
154          */
155         if (atomic_read(&vm_committed_space) < (long)allowed)
156                 return 0;
157
158         vm_unacct_memory(pages);
159
160         return -ENOMEM;
161 }
162
163 EXPORT_SYMBOL(__vm_enough_memory);
164
165 /*
166  * Requires inode->i_mapping->i_mmap_lock
167  */
168 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
169                 struct file *file, struct address_space *mapping)
170 {
171         if (vma->vm_flags & VM_DENYWRITE)
172                 atomic_inc(&file->f_dentry->d_inode->i_writecount);
173         if (vma->vm_flags & VM_SHARED)
174                 mapping->i_mmap_writable--;
175
176         flush_dcache_mmap_lock(mapping);
177         if (unlikely(vma->vm_flags & VM_NONLINEAR))
178                 list_del_init(&vma->shared.vm_set.list);
179         else
180                 vma_prio_tree_remove(vma, &mapping->i_mmap);
181         flush_dcache_mmap_unlock(mapping);
182 }
183
184 /*
185  * Unlink a file-based vm structure from its prio_tree, to hide
186  * vma from rmap and vmtruncate before freeing its page tables.
187  */
188 void unlink_file_vma(struct vm_area_struct *vma)
189 {
190         struct file *file = vma->vm_file;
191
192         if (file) {
193                 struct address_space *mapping = file->f_mapping;
194                 spin_lock(&mapping->i_mmap_lock);
195                 __remove_shared_vm_struct(vma, file, mapping);
196                 spin_unlock(&mapping->i_mmap_lock);
197         }
198 }
199
200 /*
201  * Close a vm structure and free it, returning the next.
202  */
203 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
204 {
205         struct vm_area_struct *next = vma->vm_next;
206
207         might_sleep();
208         if (vma->vm_ops && vma->vm_ops->close)
209                 vma->vm_ops->close(vma);
210         if (vma->vm_file)
211                 fput(vma->vm_file);
212         mpol_free(vma_policy(vma));
213         kmem_cache_free(vm_area_cachep, vma);
214         return next;
215 }
216
217 asmlinkage unsigned long sys_brk(unsigned long brk)
218 {
219         unsigned long rlim, retval;
220         unsigned long newbrk, oldbrk;
221         struct mm_struct *mm = current->mm;
222
223         down_write(&mm->mmap_sem);
224
225         if (brk < mm->end_code)
226                 goto out;
227         newbrk = PAGE_ALIGN(brk);
228         oldbrk = PAGE_ALIGN(mm->brk);
229         if (oldbrk == newbrk)
230                 goto set_brk;
231
232         /* Always allow shrinking brk. */
233         if (brk <= mm->brk) {
234                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
235                         goto set_brk;
236                 goto out;
237         }
238
239         /* Check against rlimit.. */
240         rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
241         if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)
242                 goto out;
243
244         /* Check against existing mmap mappings. */
245         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
246                 goto out;
247
248         /* Ok, looks good - let it rip. */
249         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
250                 goto out;
251 set_brk:
252         mm->brk = brk;
253 out:
254         retval = mm->brk;
255         up_write(&mm->mmap_sem);
256         return retval;
257 }
258
259 #ifdef DEBUG_MM_RB
260 static int browse_rb(struct rb_root *root)
261 {
262         int i = 0, j;
263         struct rb_node *nd, *pn = NULL;
264         unsigned long prev = 0, pend = 0;
265
266         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
267                 struct vm_area_struct *vma;
268                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
269                 if (vma->vm_start < prev)
270                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
271                 if (vma->vm_start < pend)
272                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
273                 if (vma->vm_start > vma->vm_end)
274                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
275                 i++;
276                 pn = nd;
277         }
278         j = 0;
279         for (nd = pn; nd; nd = rb_prev(nd)) {
280                 j++;
281         }
282         if (i != j)
283                 printk("backwards %d, forwards %d\n", j, i), i = 0;
284         return i;
285 }
286
287 void validate_mm(struct mm_struct *mm)
288 {
289         int bug = 0;
290         int i = 0;
291         struct vm_area_struct *tmp = mm->mmap;
292         while (tmp) {
293                 tmp = tmp->vm_next;
294                 i++;
295         }
296         if (i != mm->map_count)
297                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
298         i = browse_rb(&mm->mm_rb);
299         if (i != mm->map_count)
300                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
301         if (bug)
302                 BUG();
303 }
304 #else
305 #define validate_mm(mm) do { } while (0)
306 #endif
307
308 static struct vm_area_struct *
309 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
310                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
311                 struct rb_node ** rb_parent)
312 {
313         struct vm_area_struct * vma;
314         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
315
316         __rb_link = &mm->mm_rb.rb_node;
317         rb_prev = __rb_parent = NULL;
318         vma = NULL;
319
320         while (*__rb_link) {
321                 struct vm_area_struct *vma_tmp;
322
323                 __rb_parent = *__rb_link;
324                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
325
326                 if (vma_tmp->vm_end > addr) {
327                         vma = vma_tmp;
328                         if (vma_tmp->vm_start <= addr)
329                                 return vma;
330                         __rb_link = &__rb_parent->rb_left;
331                 } else {
332                         rb_prev = __rb_parent;
333                         __rb_link = &__rb_parent->rb_right;
334                 }
335         }
336
337         *pprev = NULL;
338         if (rb_prev)
339                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
340         *rb_link = __rb_link;
341         *rb_parent = __rb_parent;
342         return vma;
343 }
344
345 static inline void
346 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
347                 struct vm_area_struct *prev, struct rb_node *rb_parent)
348 {
349         if (prev) {
350                 vma->vm_next = prev->vm_next;
351                 prev->vm_next = vma;
352         } else {
353                 mm->mmap = vma;
354                 if (rb_parent)
355                         vma->vm_next = rb_entry(rb_parent,
356                                         struct vm_area_struct, vm_rb);
357                 else
358                         vma->vm_next = NULL;
359         }
360 }
361
362 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
363                 struct rb_node **rb_link, struct rb_node *rb_parent)
364 {
365         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
366         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
367 }
368
369 static inline void __vma_link_file(struct vm_area_struct *vma)
370 {
371         struct file * file;
372
373         file = vma->vm_file;
374         if (file) {
375                 struct address_space *mapping = file->f_mapping;
376
377                 if (vma->vm_flags & VM_DENYWRITE)
378                         atomic_dec(&file->f_dentry->d_inode->i_writecount);
379                 if (vma->vm_flags & VM_SHARED)
380                         mapping->i_mmap_writable++;
381
382                 flush_dcache_mmap_lock(mapping);
383                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
384                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
385                 else
386                         vma_prio_tree_insert(vma, &mapping->i_mmap);
387                 flush_dcache_mmap_unlock(mapping);
388         }
389 }
390
391 static void
392 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
393         struct vm_area_struct *prev, struct rb_node **rb_link,
394         struct rb_node *rb_parent)
395 {
396         __vma_link_list(mm, vma, prev, rb_parent);
397         __vma_link_rb(mm, vma, rb_link, rb_parent);
398         __anon_vma_link(vma);
399 }
400
401 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
402                         struct vm_area_struct *prev, struct rb_node **rb_link,
403                         struct rb_node *rb_parent)
404 {
405         struct address_space *mapping = NULL;
406
407         if (vma->vm_file)
408                 mapping = vma->vm_file->f_mapping;
409
410         if (mapping) {
411                 spin_lock(&mapping->i_mmap_lock);
412                 vma->vm_truncate_count = mapping->truncate_count;
413         }
414         anon_vma_lock(vma);
415
416         __vma_link(mm, vma, prev, rb_link, rb_parent);
417         __vma_link_file(vma);
418
419         anon_vma_unlock(vma);
420         if (mapping)
421                 spin_unlock(&mapping->i_mmap_lock);
422
423         mm->map_count++;
424         validate_mm(mm);
425 }
426
427 /*
428  * Helper for vma_adjust in the split_vma insert case:
429  * insert vm structure into list and rbtree and anon_vma,
430  * but it has already been inserted into prio_tree earlier.
431  */
432 static void
433 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
434 {
435         struct vm_area_struct * __vma, * prev;
436         struct rb_node ** rb_link, * rb_parent;
437
438         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
439         if (__vma && __vma->vm_start < vma->vm_end)
440                 BUG();
441         __vma_link(mm, vma, prev, rb_link, rb_parent);
442         mm->map_count++;
443 }
444
445 static inline void
446 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
447                 struct vm_area_struct *prev)
448 {
449         prev->vm_next = vma->vm_next;
450         rb_erase(&vma->vm_rb, &mm->mm_rb);
451         if (mm->mmap_cache == vma)
452                 mm->mmap_cache = prev;
453 }
454
455 /*
456  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
457  * is already present in an i_mmap tree without adjusting the tree.
458  * The following helper function should be used when such adjustments
459  * are necessary.  The "insert" vma (if any) is to be inserted
460  * before we drop the necessary locks.
461  */
462 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
463         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
464 {
465         struct mm_struct *mm = vma->vm_mm;
466         struct vm_area_struct *next = vma->vm_next;
467         struct vm_area_struct *importer = NULL;
468         struct address_space *mapping = NULL;
469         struct prio_tree_root *root = NULL;
470         struct file *file = vma->vm_file;
471         struct anon_vma *anon_vma = NULL;
472         long adjust_next = 0;
473         int remove_next = 0;
474
475         if (next && !insert) {
476                 if (end >= next->vm_end) {
477                         /*
478                          * vma expands, overlapping all the next, and
479                          * perhaps the one after too (mprotect case 6).
480                          */
481 again:                  remove_next = 1 + (end > next->vm_end);
482                         end = next->vm_end;
483                         anon_vma = next->anon_vma;
484                         importer = vma;
485                 } else if (end > next->vm_start) {
486                         /*
487                          * vma expands, overlapping part of the next:
488                          * mprotect case 5 shifting the boundary up.
489                          */
490                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
491                         anon_vma = next->anon_vma;
492                         importer = vma;
493                 } else if (end < vma->vm_end) {
494                         /*
495                          * vma shrinks, and !insert tells it's not
496                          * split_vma inserting another: so it must be
497                          * mprotect case 4 shifting the boundary down.
498                          */
499                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
500                         anon_vma = next->anon_vma;
501                         importer = next;
502                 }
503         }
504
505         if (file) {
506                 mapping = file->f_mapping;
507                 if (!(vma->vm_flags & VM_NONLINEAR))
508                         root = &mapping->i_mmap;
509                 spin_lock(&mapping->i_mmap_lock);
510                 if (importer &&
511                     vma->vm_truncate_count != next->vm_truncate_count) {
512                         /*
513                          * unmap_mapping_range might be in progress:
514                          * ensure that the expanding vma is rescanned.
515                          */
516                         importer->vm_truncate_count = 0;
517                 }
518                 if (insert) {
519                         insert->vm_truncate_count = vma->vm_truncate_count;
520                         /*
521                          * Put into prio_tree now, so instantiated pages
522                          * are visible to arm/parisc __flush_dcache_page
523                          * throughout; but we cannot insert into address
524                          * space until vma start or end is updated.
525                          */
526                         __vma_link_file(insert);
527                 }
528         }
529
530         /*
531          * When changing only vma->vm_end, we don't really need
532          * anon_vma lock: but is that case worth optimizing out?
533          */
534         if (vma->anon_vma)
535                 anon_vma = vma->anon_vma;
536         if (anon_vma) {
537                 spin_lock(&anon_vma->lock);
538                 /*
539                  * Easily overlooked: when mprotect shifts the boundary,
540                  * make sure the expanding vma has anon_vma set if the
541                  * shrinking vma had, to cover any anon pages imported.
542                  */
543                 if (importer && !importer->anon_vma) {
544                         importer->anon_vma = anon_vma;
545                         __anon_vma_link(importer);
546                 }
547         }
548
549         if (root) {
550                 flush_dcache_mmap_lock(mapping);
551                 vma_prio_tree_remove(vma, root);
552                 if (adjust_next)
553                         vma_prio_tree_remove(next, root);
554         }
555
556         vma->vm_start = start;
557         vma->vm_end = end;
558         vma->vm_pgoff = pgoff;
559         if (adjust_next) {
560                 next->vm_start += adjust_next << PAGE_SHIFT;
561                 next->vm_pgoff += adjust_next;
562         }
563
564         if (root) {
565                 if (adjust_next)
566                         vma_prio_tree_insert(next, root);
567                 vma_prio_tree_insert(vma, root);
568                 flush_dcache_mmap_unlock(mapping);
569         }
570
571         if (remove_next) {
572                 /*
573                  * vma_merge has merged next into vma, and needs
574                  * us to remove next before dropping the locks.
575                  */
576                 __vma_unlink(mm, next, vma);
577                 if (file)
578                         __remove_shared_vm_struct(next, file, mapping);
579                 if (next->anon_vma)
580                         __anon_vma_merge(vma, next);
581         } else if (insert) {
582                 /*
583                  * split_vma has split insert from vma, and needs
584                  * us to insert it before dropping the locks
585                  * (it may either follow vma or precede it).
586                  */
587                 __insert_vm_struct(mm, insert);
588         }
589
590         if (anon_vma)
591                 spin_unlock(&anon_vma->lock);
592         if (mapping)
593                 spin_unlock(&mapping->i_mmap_lock);
594
595         if (remove_next) {
596                 if (file)
597                         fput(file);
598                 mm->map_count--;
599                 mpol_free(vma_policy(next));
600                 kmem_cache_free(vm_area_cachep, next);
601                 /*
602                  * In mprotect's case 6 (see comments on vma_merge),
603                  * we must remove another next too. It would clutter
604                  * up the code too much to do both in one go.
605                  */
606                 if (remove_next == 2) {
607                         next = vma->vm_next;
608                         goto again;
609                 }
610         }
611
612         validate_mm(mm);
613 }
614
615 /*
616  * If the vma has a ->close operation then the driver probably needs to release
617  * per-vma resources, so we don't attempt to merge those.
618  */
619 #define VM_SPECIAL (VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
620
621 static inline int is_mergeable_vma(struct vm_area_struct *vma,
622                         struct file *file, unsigned long vm_flags)
623 {
624         if (vma->vm_flags != vm_flags)
625                 return 0;
626         if (vma->vm_file != file)
627                 return 0;
628         if (vma->vm_ops && vma->vm_ops->close)
629                 return 0;
630         return 1;
631 }
632
633 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
634                                         struct anon_vma *anon_vma2)
635 {
636         return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
637 }
638
639 /*
640  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
641  * in front of (at a lower virtual address and file offset than) the vma.
642  *
643  * We cannot merge two vmas if they have differently assigned (non-NULL)
644  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
645  *
646  * We don't check here for the merged mmap wrapping around the end of pagecache
647  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
648  * wrap, nor mmaps which cover the final page at index -1UL.
649  */
650 static int
651 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
652         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
653 {
654         if (is_mergeable_vma(vma, file, vm_flags) &&
655             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
656                 if (vma->vm_pgoff == vm_pgoff)
657                         return 1;
658         }
659         return 0;
660 }
661
662 /*
663  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
664  * beyond (at a higher virtual address and file offset than) the vma.
665  *
666  * We cannot merge two vmas if they have differently assigned (non-NULL)
667  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
668  */
669 static int
670 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
671         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
672 {
673         if (is_mergeable_vma(vma, file, vm_flags) &&
674             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
675                 pgoff_t vm_pglen;
676                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
677                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
678                         return 1;
679         }
680         return 0;
681 }
682
683 /*
684  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
685  * whether that can be merged with its predecessor or its successor.
686  * Or both (it neatly fills a hole).
687  *
688  * In most cases - when called for mmap, brk or mremap - [addr,end) is
689  * certain not to be mapped by the time vma_merge is called; but when
690  * called for mprotect, it is certain to be already mapped (either at
691  * an offset within prev, or at the start of next), and the flags of
692  * this area are about to be changed to vm_flags - and the no-change
693  * case has already been eliminated.
694  *
695  * The following mprotect cases have to be considered, where AAAA is
696  * the area passed down from mprotect_fixup, never extending beyond one
697  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
698  *
699  *     AAAA             AAAA                AAAA          AAAA
700  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
701  *    cannot merge    might become    might become    might become
702  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
703  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
704  *    mremap move:                                    PPPPNNNNNNNN 8
705  *        AAAA
706  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
707  *    might become    case 1 below    case 2 below    case 3 below
708  *
709  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
710  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
711  */
712 struct vm_area_struct *vma_merge(struct mm_struct *mm,
713                         struct vm_area_struct *prev, unsigned long addr,
714                         unsigned long end, unsigned long vm_flags,
715                         struct anon_vma *anon_vma, struct file *file,
716                         pgoff_t pgoff, struct mempolicy *policy)
717 {
718         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
719         struct vm_area_struct *area, *next;
720
721         /*
722          * We later require that vma->vm_flags == vm_flags,
723          * so this tests vma->vm_flags & VM_SPECIAL, too.
724          */
725         if (vm_flags & VM_SPECIAL)
726                 return NULL;
727
728         if (prev)
729                 next = prev->vm_next;
730         else
731                 next = mm->mmap;
732         area = next;
733         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
734                 next = next->vm_next;
735
736         /*
737          * Can it merge with the predecessor?
738          */
739         if (prev && prev->vm_end == addr &&
740                         mpol_equal(vma_policy(prev), policy) &&
741                         can_vma_merge_after(prev, vm_flags,
742                                                 anon_vma, file, pgoff)) {
743                 /*
744                  * OK, it can.  Can we now merge in the successor as well?
745                  */
746                 if (next && end == next->vm_start &&
747                                 mpol_equal(policy, vma_policy(next)) &&
748                                 can_vma_merge_before(next, vm_flags,
749                                         anon_vma, file, pgoff+pglen) &&
750                                 is_mergeable_anon_vma(prev->anon_vma,
751                                                       next->anon_vma)) {
752                                                         /* cases 1, 6 */
753                         vma_adjust(prev, prev->vm_start,
754                                 next->vm_end, prev->vm_pgoff, NULL);
755                 } else                                  /* cases 2, 5, 7 */
756                         vma_adjust(prev, prev->vm_start,
757                                 end, prev->vm_pgoff, NULL);
758                 return prev;
759         }
760
761         /*
762          * Can this new request be merged in front of next?
763          */
764         if (next && end == next->vm_start &&
765                         mpol_equal(policy, vma_policy(next)) &&
766                         can_vma_merge_before(next, vm_flags,
767                                         anon_vma, file, pgoff+pglen)) {
768                 if (prev && addr < prev->vm_end)        /* case 4 */
769                         vma_adjust(prev, prev->vm_start,
770                                 addr, prev->vm_pgoff, NULL);
771                 else                                    /* cases 3, 8 */
772                         vma_adjust(area, addr, next->vm_end,
773                                 next->vm_pgoff - pglen, NULL);
774                 return area;
775         }
776
777         return NULL;
778 }
779
780 /*
781  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
782  * neighbouring vmas for a suitable anon_vma, before it goes off
783  * to allocate a new anon_vma.  It checks because a repetitive
784  * sequence of mprotects and faults may otherwise lead to distinct
785  * anon_vmas being allocated, preventing vma merge in subsequent
786  * mprotect.
787  */
788 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
789 {
790         struct vm_area_struct *near;
791         unsigned long vm_flags;
792
793         near = vma->vm_next;
794         if (!near)
795                 goto try_prev;
796
797         /*
798          * Since only mprotect tries to remerge vmas, match flags
799          * which might be mprotected into each other later on.
800          * Neither mlock nor madvise tries to remerge at present,
801          * so leave their flags as obstructing a merge.
802          */
803         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
804         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
805
806         if (near->anon_vma && vma->vm_end == near->vm_start &&
807                         mpol_equal(vma_policy(vma), vma_policy(near)) &&
808                         can_vma_merge_before(near, vm_flags,
809                                 NULL, vma->vm_file, vma->vm_pgoff +
810                                 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
811                 return near->anon_vma;
812 try_prev:
813         /*
814          * It is potentially slow to have to call find_vma_prev here.
815          * But it's only on the first write fault on the vma, not
816          * every time, and we could devise a way to avoid it later
817          * (e.g. stash info in next's anon_vma_node when assigning
818          * an anon_vma, or when trying vma_merge).  Another time.
819          */
820         if (find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma)
821                 BUG();
822         if (!near)
823                 goto none;
824
825         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
826         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
827
828         if (near->anon_vma && near->vm_end == vma->vm_start &&
829                         mpol_equal(vma_policy(near), vma_policy(vma)) &&
830                         can_vma_merge_after(near, vm_flags,
831                                 NULL, vma->vm_file, vma->vm_pgoff))
832                 return near->anon_vma;
833 none:
834         /*
835          * There's no absolute need to look only at touching neighbours:
836          * we could search further afield for "compatible" anon_vmas.
837          * But it would probably just be a waste of time searching,
838          * or lead to too many vmas hanging off the same anon_vma.
839          * We're trying to allow mprotect remerging later on,
840          * not trying to minimize memory used for anon_vmas.
841          */
842         return NULL;
843 }
844
845 #ifdef CONFIG_PROC_FS
846 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
847                                                 struct file *file, long pages)
848 {
849         const unsigned long stack_flags
850                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
851
852 #ifdef CONFIG_HUGETLB
853         if (flags & VM_HUGETLB) {
854                 if (!(flags & VM_DONTCOPY))
855                         mm->shared_vm += pages;
856                 return;
857         }
858 #endif /* CONFIG_HUGETLB */
859
860         if (file) {
861                 mm->shared_vm += pages;
862                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
863                         mm->exec_vm += pages;
864         } else if (flags & stack_flags)
865                 mm->stack_vm += pages;
866         if (flags & (VM_RESERVED|VM_IO))
867                 mm->reserved_vm += pages;
868 }
869 #endif /* CONFIG_PROC_FS */
870
871 /*
872  * The caller must hold down_write(current->mm->mmap_sem).
873  */
874
875 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
876                         unsigned long len, unsigned long prot,
877                         unsigned long flags, unsigned long pgoff)
878 {
879         struct mm_struct * mm = current->mm;
880         struct vm_area_struct * vma, * prev;
881         struct inode *inode;
882         unsigned int vm_flags;
883         int correct_wcount = 0;
884         int error;
885         struct rb_node ** rb_link, * rb_parent;
886         int accountable = 1;
887         unsigned long charged = 0, reqprot = prot;
888
889         if (file) {
890                 if (is_file_hugepages(file))
891                         accountable = 0;
892
893                 if (!file->f_op || !file->f_op->mmap)
894                         return -ENODEV;
895
896                 if ((prot & PROT_EXEC) &&
897                     (file->f_vfsmnt->mnt_flags & MNT_NOEXEC))
898                         return -EPERM;
899         }
900         /*
901          * Does the application expect PROT_READ to imply PROT_EXEC?
902          *
903          * (the exception is when the underlying filesystem is noexec
904          *  mounted, in which case we dont add PROT_EXEC.)
905          */
906         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
907                 if (!(file && (file->f_vfsmnt->mnt_flags & MNT_NOEXEC)))
908                         prot |= PROT_EXEC;
909
910         if (!len)
911                 return -EINVAL;
912
913         error = arch_mmap_check(addr, len, flags);
914         if (error)
915                 return error;
916
917         /* Careful about overflows.. */
918         len = PAGE_ALIGN(len);
919         if (!len || len > TASK_SIZE)
920                 return -ENOMEM;
921
922         /* offset overflow? */
923         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
924                return -EOVERFLOW;
925
926         /* Too many mappings? */
927         if (mm->map_count > sysctl_max_map_count)
928                 return -ENOMEM;
929
930         /* Obtain the address to map to. we verify (or select) it and ensure
931          * that it represents a valid section of the address space.
932          */
933         addr = get_unmapped_area(file, addr, len, pgoff, flags);
934         if (addr & ~PAGE_MASK)
935                 return addr;
936
937         /* Do simple checking here so the lower-level routines won't have
938          * to. we assume access permissions have been handled by the open
939          * of the memory object, so we don't do any here.
940          */
941         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
942                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
943
944         if (flags & MAP_LOCKED) {
945                 if (!can_do_mlock())
946                         return -EPERM;
947                 vm_flags |= VM_LOCKED;
948         }
949         /* mlock MCL_FUTURE? */
950         if (vm_flags & VM_LOCKED) {
951                 unsigned long locked, lock_limit;
952                 locked = len >> PAGE_SHIFT;
953                 locked += mm->locked_vm;
954                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
955                 lock_limit >>= PAGE_SHIFT;
956                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
957                         return -EAGAIN;
958         }
959
960         inode = file ? file->f_dentry->d_inode : NULL;
961
962         if (file) {
963                 switch (flags & MAP_TYPE) {
964                 case MAP_SHARED:
965                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
966                                 return -EACCES;
967
968                         /*
969                          * Make sure we don't allow writing to an append-only
970                          * file..
971                          */
972                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
973                                 return -EACCES;
974
975                         /*
976                          * Make sure there are no mandatory locks on the file.
977                          */
978                         if (locks_verify_locked(inode))
979                                 return -EAGAIN;
980
981                         vm_flags |= VM_SHARED | VM_MAYSHARE;
982                         if (!(file->f_mode & FMODE_WRITE))
983                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
984
985                         /* fall through */
986                 case MAP_PRIVATE:
987                         if (!(file->f_mode & FMODE_READ))
988                                 return -EACCES;
989                         break;
990
991                 default:
992                         return -EINVAL;
993                 }
994         } else {
995                 switch (flags & MAP_TYPE) {
996                 case MAP_SHARED:
997                         vm_flags |= VM_SHARED | VM_MAYSHARE;
998                         break;
999                 case MAP_PRIVATE:
1000                         /*
1001                          * Set pgoff according to addr for anon_vma.
1002                          */
1003                         pgoff = addr >> PAGE_SHIFT;
1004                         break;
1005                 default:
1006                         return -EINVAL;
1007                 }
1008         }
1009
1010         error = security_file_mmap(file, reqprot, prot, flags);
1011         if (error)
1012                 return error;
1013                 
1014         /* Clear old maps */
1015         error = -ENOMEM;
1016 munmap_back:
1017         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1018         if (vma && vma->vm_start < addr + len) {
1019                 if (do_munmap(mm, addr, len))
1020                         return -ENOMEM;
1021                 goto munmap_back;
1022         }
1023
1024         /* Check against address space limit. */
1025         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1026                 return -ENOMEM;
1027
1028         if (accountable && (!(flags & MAP_NORESERVE) ||
1029                             sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1030                 if (vm_flags & VM_SHARED) {
1031                         /* Check memory availability in shmem_file_setup? */
1032                         vm_flags |= VM_ACCOUNT;
1033                 } else if (vm_flags & VM_WRITE) {
1034                         /*
1035                          * Private writable mapping: check memory availability
1036                          */
1037                         charged = len >> PAGE_SHIFT;
1038                         if (security_vm_enough_memory(charged))
1039                                 return -ENOMEM;
1040                         vm_flags |= VM_ACCOUNT;
1041                 }
1042         }
1043
1044         /*
1045          * Can we just expand an old private anonymous mapping?
1046          * The VM_SHARED test is necessary because shmem_zero_setup
1047          * will create the file object for a shared anonymous map below.
1048          */
1049         if (!file && !(vm_flags & VM_SHARED) &&
1050             vma_merge(mm, prev, addr, addr + len, vm_flags,
1051                                         NULL, NULL, pgoff, NULL))
1052                 goto out;
1053
1054         /*
1055          * Determine the object being mapped and call the appropriate
1056          * specific mapper. the address has already been validated, but
1057          * not unmapped, but the maps are removed from the list.
1058          */
1059         vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1060         if (!vma) {
1061                 error = -ENOMEM;
1062                 goto unacct_error;
1063         }
1064         memset(vma, 0, sizeof(*vma));
1065
1066         vma->vm_mm = mm;
1067         vma->vm_start = addr;
1068         vma->vm_end = addr + len;
1069         vma->vm_flags = vm_flags;
1070         vma->vm_page_prot = protection_map[vm_flags & 0x0f];
1071         vma->vm_pgoff = pgoff;
1072
1073         if (file) {
1074                 error = -EINVAL;
1075                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1076                         goto free_vma;
1077                 if (vm_flags & VM_DENYWRITE) {
1078                         error = deny_write_access(file);
1079                         if (error)
1080                                 goto free_vma;
1081                         correct_wcount = 1;
1082                 }
1083                 vma->vm_file = file;
1084                 get_file(file);
1085                 error = file->f_op->mmap(file, vma);
1086                 if (error)
1087                         goto unmap_and_free_vma;
1088         } else if (vm_flags & VM_SHARED) {
1089                 error = shmem_zero_setup(vma);
1090                 if (error)
1091                         goto free_vma;
1092         }
1093
1094         /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1095          * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1096          * that memory reservation must be checked; but that reservation
1097          * belongs to shared memory object, not to vma: so now clear it.
1098          */
1099         if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1100                 vma->vm_flags &= ~VM_ACCOUNT;
1101
1102         /* Can addr have changed??
1103          *
1104          * Answer: Yes, several device drivers can do it in their
1105          *         f_op->mmap method. -DaveM
1106          */
1107         addr = vma->vm_start;
1108         pgoff = vma->vm_pgoff;
1109         vm_flags = vma->vm_flags;
1110
1111         if (!file || !vma_merge(mm, prev, addr, vma->vm_end,
1112                         vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1113                 file = vma->vm_file;
1114                 vma_link(mm, vma, prev, rb_link, rb_parent);
1115                 if (correct_wcount)
1116                         atomic_inc(&inode->i_writecount);
1117         } else {
1118                 if (file) {
1119                         if (correct_wcount)
1120                                 atomic_inc(&inode->i_writecount);
1121                         fput(file);
1122                 }
1123                 mpol_free(vma_policy(vma));
1124                 kmem_cache_free(vm_area_cachep, vma);
1125         }
1126 out:    
1127         vx_vmpages_add(mm, len >> PAGE_SHIFT);
1128         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1129         if (vm_flags & VM_LOCKED) {
1130                 vx_vmlocked_add(mm, len >> PAGE_SHIFT);
1131                 make_pages_present(addr, addr + len);
1132         }
1133         if (flags & MAP_POPULATE) {
1134                 up_write(&mm->mmap_sem);
1135                 sys_remap_file_pages(addr, len, 0,
1136                                         pgoff, flags & MAP_NONBLOCK);
1137                 down_write(&mm->mmap_sem);
1138         }
1139         return addr;
1140
1141 unmap_and_free_vma:
1142         if (correct_wcount)
1143                 atomic_inc(&inode->i_writecount);
1144         vma->vm_file = NULL;
1145         fput(file);
1146
1147         /* Undo any partial mapping done by a device driver. */
1148         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1149         charged = 0;
1150 free_vma:
1151         kmem_cache_free(vm_area_cachep, vma);
1152 unacct_error:
1153         if (charged)
1154                 vm_unacct_memory(charged);
1155         return error;
1156 }
1157
1158 EXPORT_SYMBOL(do_mmap_pgoff);
1159
1160 /* Get an address range which is currently unmapped.
1161  * For shmat() with addr=0.
1162  *
1163  * Ugly calling convention alert:
1164  * Return value with the low bits set means error value,
1165  * ie
1166  *      if (ret & ~PAGE_MASK)
1167  *              error = ret;
1168  *
1169  * This function "knows" that -ENOMEM has the bits set.
1170  */
1171 #ifndef HAVE_ARCH_UNMAPPED_AREA
1172 unsigned long
1173 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1174                 unsigned long len, unsigned long pgoff, unsigned long flags)
1175 {
1176         struct mm_struct *mm = current->mm;
1177         struct vm_area_struct *vma;
1178         unsigned long start_addr;
1179
1180         if (len > TASK_SIZE)
1181                 return -ENOMEM;
1182
1183         if (addr) {
1184                 addr = PAGE_ALIGN(addr);
1185                 vma = find_vma(mm, addr);
1186                 if (TASK_SIZE - len >= addr &&
1187                     (!vma || addr + len <= vma->vm_start))
1188                         return addr;
1189         }
1190         if (len > mm->cached_hole_size) {
1191                 start_addr = addr = mm->free_area_cache;
1192         } else {
1193                 start_addr = addr = TASK_UNMAPPED_BASE;
1194                 mm->cached_hole_size = 0;
1195         }
1196
1197 full_search:
1198         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1199                 /* At this point:  (!vma || addr < vma->vm_end). */
1200                 if (TASK_SIZE - len < addr) {
1201                         /*
1202                          * Start a new search - just in case we missed
1203                          * some holes.
1204                          */
1205                         if (start_addr != TASK_UNMAPPED_BASE) {
1206                                 addr = TASK_UNMAPPED_BASE;
1207                                 start_addr = addr;
1208                                 mm->cached_hole_size = 0;
1209                                 goto full_search;
1210                         }
1211                         return -ENOMEM;
1212                 }
1213                 if (!vma || addr + len <= vma->vm_start) {
1214                         /*
1215                          * Remember the place where we stopped the search:
1216                          */
1217                         mm->free_area_cache = addr + len;
1218                         return addr;
1219                 }
1220                 if (addr + mm->cached_hole_size < vma->vm_start)
1221                         mm->cached_hole_size = vma->vm_start - addr;
1222                 addr = vma->vm_end;
1223         }
1224 }
1225 #endif  
1226
1227 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1228 {
1229         /*
1230          * Is this a new hole at the lowest possible address?
1231          */
1232         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1233                 mm->free_area_cache = addr;
1234                 mm->cached_hole_size = ~0UL;
1235         }
1236 }
1237
1238 /*
1239  * This mmap-allocator allocates new areas top-down from below the
1240  * stack's low limit (the base):
1241  */
1242 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1243 unsigned long
1244 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1245                           const unsigned long len, const unsigned long pgoff,
1246                           const unsigned long flags)
1247 {
1248         struct vm_area_struct *vma;
1249         struct mm_struct *mm = current->mm;
1250         unsigned long addr = addr0;
1251
1252         /* requested length too big for entire address space */
1253         if (len > TASK_SIZE)
1254                 return -ENOMEM;
1255
1256         /* requesting a specific address */
1257         if (addr) {
1258                 addr = PAGE_ALIGN(addr);
1259                 vma = find_vma(mm, addr);
1260                 if (TASK_SIZE - len >= addr &&
1261                                 (!vma || addr + len <= vma->vm_start))
1262                         return addr;
1263         }
1264
1265         /* check if free_area_cache is useful for us */
1266         if (len <= mm->cached_hole_size) {
1267                 mm->cached_hole_size = 0;
1268                 mm->free_area_cache = mm->mmap_base;
1269         }
1270
1271         /* either no address requested or can't fit in requested address hole */
1272         addr = mm->free_area_cache;
1273
1274         /* make sure it can fit in the remaining address space */
1275         if (addr > len) {
1276                 vma = find_vma(mm, addr-len);
1277                 if (!vma || addr <= vma->vm_start)
1278                         /* remember the address as a hint for next time */
1279                         return (mm->free_area_cache = addr-len);
1280         }
1281
1282         if (mm->mmap_base < len)
1283                 goto bottomup;
1284
1285         addr = mm->mmap_base-len;
1286
1287         do {
1288                 /*
1289                  * Lookup failure means no vma is above this address,
1290                  * else if new region fits below vma->vm_start,
1291                  * return with success:
1292                  */
1293                 vma = find_vma(mm, addr);
1294                 if (!vma || addr+len <= vma->vm_start)
1295                         /* remember the address as a hint for next time */
1296                         return (mm->free_area_cache = addr);
1297
1298                 /* remember the largest hole we saw so far */
1299                 if (addr + mm->cached_hole_size < vma->vm_start)
1300                         mm->cached_hole_size = vma->vm_start - addr;
1301
1302                 /* try just below the current vma->vm_start */
1303                 addr = vma->vm_start-len;
1304         } while (len < vma->vm_start);
1305
1306 bottomup:
1307         /*
1308          * A failed mmap() very likely causes application failure,
1309          * so fall back to the bottom-up function here. This scenario
1310          * can happen with large stack limits and large mmap()
1311          * allocations.
1312          */
1313         mm->cached_hole_size = ~0UL;
1314         mm->free_area_cache = TASK_UNMAPPED_BASE;
1315         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1316         /*
1317          * Restore the topdown base:
1318          */
1319         mm->free_area_cache = mm->mmap_base;
1320         mm->cached_hole_size = ~0UL;
1321
1322         return addr;
1323 }
1324 #endif
1325
1326 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1327 {
1328         /*
1329          * Is this a new hole at the highest possible address?
1330          */
1331         if (addr > mm->free_area_cache)
1332                 mm->free_area_cache = addr;
1333
1334         /* dont allow allocations above current base */
1335         if (mm->free_area_cache > mm->mmap_base)
1336                 mm->free_area_cache = mm->mmap_base;
1337 }
1338
1339 unsigned long
1340 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1341                 unsigned long pgoff, unsigned long flags)
1342 {
1343         unsigned long ret;
1344
1345         if (!(flags & MAP_FIXED)) {
1346                 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1347
1348                 get_area = current->mm->get_unmapped_area;
1349                 if (file && file->f_op && file->f_op->get_unmapped_area)
1350                         get_area = file->f_op->get_unmapped_area;
1351                 addr = get_area(file, addr, len, pgoff, flags);
1352                 if (IS_ERR_VALUE(addr))
1353                         return addr;
1354         }
1355
1356         if (addr > TASK_SIZE - len)
1357                 return -ENOMEM;
1358         if (addr & ~PAGE_MASK)
1359                 return -EINVAL;
1360         if (file && is_file_hugepages(file))  {
1361                 /*
1362                  * Check if the given range is hugepage aligned, and
1363                  * can be made suitable for hugepages.
1364                  */
1365                 ret = prepare_hugepage_range(addr, len);
1366         } else {
1367                 /*
1368                  * Ensure that a normal request is not falling in a
1369                  * reserved hugepage range.  For some archs like IA-64,
1370                  * there is a separate region for hugepages.
1371                  */
1372                 ret = is_hugepage_only_range(current->mm, addr, len);
1373         }
1374         if (ret)
1375                 return -EINVAL;
1376         return addr;
1377 }
1378
1379 EXPORT_SYMBOL(get_unmapped_area);
1380
1381 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1382 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1383 {
1384         struct vm_area_struct *vma = NULL;
1385
1386         if (mm) {
1387                 /* Check the cache first. */
1388                 /* (Cache hit rate is typically around 35%.) */
1389                 vma = mm->mmap_cache;
1390                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1391                         struct rb_node * rb_node;
1392
1393                         rb_node = mm->mm_rb.rb_node;
1394                         vma = NULL;
1395
1396                         while (rb_node) {
1397                                 struct vm_area_struct * vma_tmp;
1398
1399                                 vma_tmp = rb_entry(rb_node,
1400                                                 struct vm_area_struct, vm_rb);
1401
1402                                 if (vma_tmp->vm_end > addr) {
1403                                         vma = vma_tmp;
1404                                         if (vma_tmp->vm_start <= addr)
1405                                                 break;
1406                                         rb_node = rb_node->rb_left;
1407                                 } else
1408                                         rb_node = rb_node->rb_right;
1409                         }
1410                         if (vma)
1411                                 mm->mmap_cache = vma;
1412                 }
1413         }
1414         return vma;
1415 }
1416
1417 EXPORT_SYMBOL(find_vma);
1418
1419 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1420 struct vm_area_struct *
1421 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1422                         struct vm_area_struct **pprev)
1423 {
1424         struct vm_area_struct *vma = NULL, *prev = NULL;
1425         struct rb_node * rb_node;
1426         if (!mm)
1427                 goto out;
1428
1429         /* Guard against addr being lower than the first VMA */
1430         vma = mm->mmap;
1431
1432         /* Go through the RB tree quickly. */
1433         rb_node = mm->mm_rb.rb_node;
1434
1435         while (rb_node) {
1436                 struct vm_area_struct *vma_tmp;
1437                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1438
1439                 if (addr < vma_tmp->vm_end) {
1440                         rb_node = rb_node->rb_left;
1441                 } else {
1442                         prev = vma_tmp;
1443                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1444                                 break;
1445                         rb_node = rb_node->rb_right;
1446                 }
1447         }
1448
1449 out:
1450         *pprev = prev;
1451         return prev ? prev->vm_next : vma;
1452 }
1453
1454 /*
1455  * Verify that the stack growth is acceptable and
1456  * update accounting. This is shared with both the
1457  * grow-up and grow-down cases.
1458  */
1459 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1460 {
1461         struct mm_struct *mm = vma->vm_mm;
1462         struct rlimit *rlim = current->signal->rlim;
1463
1464         /* address space limit tests */
1465         if (!may_expand_vm(mm, grow))
1466                 return -ENOMEM;
1467
1468         /* Stack limit test */
1469         if (size > rlim[RLIMIT_STACK].rlim_cur)
1470                 return -ENOMEM;
1471
1472         /* mlock limit tests */
1473         if (vma->vm_flags & VM_LOCKED) {
1474                 unsigned long locked;
1475                 unsigned long limit;
1476                 locked = mm->locked_vm + grow;
1477                 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1478                 if (locked > limit && !capable(CAP_IPC_LOCK))
1479                         return -ENOMEM;
1480         }
1481
1482         /*
1483          * Overcommit..  This must be the final test, as it will
1484          * update security statistics.
1485          */
1486         if (security_vm_enough_memory(grow))
1487                 return -ENOMEM;
1488
1489         /* Ok, everything looks good - let it rip */
1490         vx_vmpages_add(mm, grow);
1491         if (vma->vm_flags & VM_LOCKED)
1492                 vx_vmlocked_add(mm, grow);
1493         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1494         return 0;
1495 }
1496
1497 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1498 /*
1499  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1500  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1501  */
1502 #ifndef CONFIG_IA64
1503 static inline
1504 #endif
1505 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1506 {
1507         int error;
1508
1509         if (!(vma->vm_flags & VM_GROWSUP))
1510                 return -EFAULT;
1511
1512         /*
1513          * We must make sure the anon_vma is allocated
1514          * so that the anon_vma locking is not a noop.
1515          */
1516         if (unlikely(anon_vma_prepare(vma)))
1517                 return -ENOMEM;
1518         anon_vma_lock(vma);
1519
1520         /*
1521          * vma->vm_start/vm_end cannot change under us because the caller
1522          * is required to hold the mmap_sem in read mode.  We need the
1523          * anon_vma lock to serialize against concurrent expand_stacks.
1524          */
1525         address += 4 + PAGE_SIZE - 1;
1526         address &= PAGE_MASK;
1527         error = 0;
1528
1529         /* Somebody else might have raced and expanded it already */
1530         if (address > vma->vm_end) {
1531                 unsigned long size, grow;
1532
1533                 size = address - vma->vm_start;
1534                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1535
1536                 error = acct_stack_growth(vma, size, grow);
1537                 if (!error)
1538                         vma->vm_end = address;
1539         }
1540         anon_vma_unlock(vma);
1541         return error;
1542 }
1543 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1544
1545 #ifdef CONFIG_STACK_GROWSUP
1546 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1547 {
1548         return expand_upwards(vma, address);
1549 }
1550
1551 struct vm_area_struct *
1552 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1553 {
1554         struct vm_area_struct *vma, *prev;
1555
1556         addr &= PAGE_MASK;
1557         vma = find_vma_prev(mm, addr, &prev);
1558         if (vma && (vma->vm_start <= addr))
1559                 return vma;
1560         if (!prev || expand_stack(prev, addr))
1561                 return NULL;
1562         if (prev->vm_flags & VM_LOCKED) {
1563                 make_pages_present(addr, prev->vm_end);
1564         }
1565         return prev;
1566 }
1567 #else
1568 /*
1569  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1570  */
1571 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1572 {
1573         int error;
1574
1575         /*
1576          * We must make sure the anon_vma is allocated
1577          * so that the anon_vma locking is not a noop.
1578          */
1579         if (unlikely(anon_vma_prepare(vma)))
1580                 return -ENOMEM;
1581         anon_vma_lock(vma);
1582
1583         /*
1584          * vma->vm_start/vm_end cannot change under us because the caller
1585          * is required to hold the mmap_sem in read mode.  We need the
1586          * anon_vma lock to serialize against concurrent expand_stacks.
1587          */
1588         address &= PAGE_MASK;
1589         error = 0;
1590
1591         /* Somebody else might have raced and expanded it already */
1592         if (address < vma->vm_start) {
1593                 unsigned long size, grow;
1594
1595                 size = vma->vm_end - address;
1596                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1597
1598                 error = acct_stack_growth(vma, size, grow);
1599                 if (!error) {
1600                         vma->vm_start = address;
1601                         vma->vm_pgoff -= grow;
1602                 }
1603         }
1604         anon_vma_unlock(vma);
1605         return error;
1606 }
1607
1608 struct vm_area_struct *
1609 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1610 {
1611         struct vm_area_struct * vma;
1612         unsigned long start;
1613
1614         addr &= PAGE_MASK;
1615         vma = find_vma(mm,addr);
1616         if (!vma)
1617                 return NULL;
1618         if (vma->vm_start <= addr)
1619                 return vma;
1620         if (!(vma->vm_flags & VM_GROWSDOWN))
1621                 return NULL;
1622         start = vma->vm_start;
1623         if (expand_stack(vma, addr))
1624                 return NULL;
1625         if (vma->vm_flags & VM_LOCKED) {
1626                 make_pages_present(addr, start);
1627         }
1628         return vma;
1629 }
1630 #endif
1631
1632 /*
1633  * Ok - we have the memory areas we should free on the vma list,
1634  * so release them, and do the vma updates.
1635  *
1636  * Called with the mm semaphore held.
1637  */
1638 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1639 {
1640         /* Update high watermark before we lower total_vm */
1641         update_hiwater_vm(mm);
1642         do {
1643                 long nrpages = vma_pages(vma);
1644
1645                 vx_vmpages_sub(mm, nrpages);
1646                 if (vma->vm_flags & VM_LOCKED)
1647                         vx_vmlocked_sub(mm, nrpages);
1648                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1649                 vma = remove_vma(vma);
1650         } while (vma);
1651         validate_mm(mm);
1652 }
1653
1654 /*
1655  * Get rid of page table information in the indicated region.
1656  *
1657  * Called with the mm semaphore held.
1658  */
1659 static void unmap_region(struct mm_struct *mm,
1660                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1661                 unsigned long start, unsigned long end)
1662 {
1663         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1664         struct mmu_gather *tlb;
1665         unsigned long nr_accounted = 0;
1666
1667         lru_add_drain();
1668         tlb = tlb_gather_mmu(mm, 0);
1669         update_hiwater_rss(mm);
1670         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1671         vm_unacct_memory(nr_accounted);
1672         free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1673                                  next? next->vm_start: 0);
1674         tlb_finish_mmu(tlb, start, end);
1675 }
1676
1677 /*
1678  * Create a list of vma's touched by the unmap, removing them from the mm's
1679  * vma list as we go..
1680  */
1681 static void
1682 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1683         struct vm_area_struct *prev, unsigned long end)
1684 {
1685         struct vm_area_struct **insertion_point;
1686         struct vm_area_struct *tail_vma = NULL;
1687         unsigned long addr;
1688
1689         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1690         do {
1691                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1692                 mm->map_count--;
1693                 tail_vma = vma;
1694                 vma = vma->vm_next;
1695         } while (vma && vma->vm_start < end);
1696         *insertion_point = vma;
1697         tail_vma->vm_next = NULL;
1698         if (mm->unmap_area == arch_unmap_area)
1699                 addr = prev ? prev->vm_end : mm->mmap_base;
1700         else
1701                 addr = vma ?  vma->vm_start : mm->mmap_base;
1702         mm->unmap_area(mm, addr);
1703         mm->mmap_cache = NULL;          /* Kill the cache. */
1704 }
1705
1706 /*
1707  * Split a vma into two pieces at address 'addr', a new vma is allocated
1708  * either for the first part or the the tail.
1709  */
1710 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1711               unsigned long addr, int new_below)
1712 {
1713         struct mempolicy *pol;
1714         struct vm_area_struct *new;
1715
1716         if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1717                 return -EINVAL;
1718
1719         if (mm->map_count >= sysctl_max_map_count)
1720                 return -ENOMEM;
1721
1722         new = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1723         if (!new)
1724                 return -ENOMEM;
1725
1726         /* most fields are the same, copy all, and then fixup */
1727         *new = *vma;
1728
1729         if (new_below)
1730                 new->vm_end = addr;
1731         else {
1732                 new->vm_start = addr;
1733                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1734         }
1735
1736         pol = mpol_copy(vma_policy(vma));
1737         if (IS_ERR(pol)) {
1738                 kmem_cache_free(vm_area_cachep, new);
1739                 return PTR_ERR(pol);
1740         }
1741         vma_set_policy(new, pol);
1742
1743         if (new->vm_file)
1744                 get_file(new->vm_file);
1745
1746         if (new->vm_ops && new->vm_ops->open)
1747                 new->vm_ops->open(new);
1748
1749         if (new_below)
1750                 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1751                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1752         else
1753                 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1754
1755         return 0;
1756 }
1757
1758 /* Munmap is split into 2 main parts -- this part which finds
1759  * what needs doing, and the areas themselves, which do the
1760  * work.  This now handles partial unmappings.
1761  * Jeremy Fitzhardinge <jeremy@goop.org>
1762  */
1763 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1764 {
1765         unsigned long end;
1766         struct vm_area_struct *vma, *prev, *last;
1767
1768         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1769                 return -EINVAL;
1770
1771         if ((len = PAGE_ALIGN(len)) == 0)
1772                 return -EINVAL;
1773
1774         /* Find the first overlapping VMA */
1775         vma = find_vma_prev(mm, start, &prev);
1776         if (!vma)
1777                 return 0;
1778         /* we have  start < vma->vm_end  */
1779
1780         /* if it doesn't overlap, we have nothing.. */
1781         end = start + len;
1782         if (vma->vm_start >= end)
1783                 return 0;
1784
1785         /*
1786          * If we need to split any vma, do it now to save pain later.
1787          *
1788          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1789          * unmapped vm_area_struct will remain in use: so lower split_vma
1790          * places tmp vma above, and higher split_vma places tmp vma below.
1791          */
1792         if (start > vma->vm_start) {
1793                 int error = split_vma(mm, vma, start, 0);
1794                 if (error)
1795                         return error;
1796                 prev = vma;
1797         }
1798
1799         /* Does it split the last one? */
1800         last = find_vma(mm, end);
1801         if (last && end > last->vm_start) {
1802                 int error = split_vma(mm, last, end, 1);
1803                 if (error)
1804                         return error;
1805         }
1806         vma = prev? prev->vm_next: mm->mmap;
1807
1808         /*
1809          * Remove the vma's, and unmap the actual pages
1810          */
1811         detach_vmas_to_be_unmapped(mm, vma, prev, end);
1812         unmap_region(mm, vma, prev, start, end);
1813
1814         /* Fix up all other VM information */
1815         remove_vma_list(mm, vma);
1816
1817         return 0;
1818 }
1819
1820 EXPORT_SYMBOL(do_munmap);
1821
1822 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1823 {
1824         int ret;
1825         struct mm_struct *mm = current->mm;
1826
1827         profile_munmap(addr);
1828
1829         down_write(&mm->mmap_sem);
1830         ret = do_munmap(mm, addr, len);
1831         up_write(&mm->mmap_sem);
1832         return ret;
1833 }
1834
1835 static inline void verify_mm_writelocked(struct mm_struct *mm)
1836 {
1837 #ifdef CONFIG_DEBUG_VM
1838         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1839                 WARN_ON(1);
1840                 up_read(&mm->mmap_sem);
1841         }
1842 #endif
1843 }
1844
1845 /*
1846  *  this is really a simplified "do_mmap".  it only handles
1847  *  anonymous maps.  eventually we may be able to do some
1848  *  brk-specific accounting here.
1849  */
1850 unsigned long do_brk(unsigned long addr, unsigned long len)
1851 {
1852         struct mm_struct * mm = current->mm;
1853         struct vm_area_struct * vma, * prev;
1854         unsigned long flags;
1855         struct rb_node ** rb_link, * rb_parent;
1856         pgoff_t pgoff = addr >> PAGE_SHIFT;
1857         int error;
1858
1859         len = PAGE_ALIGN(len);
1860         if (!len)
1861                 return addr;
1862
1863         if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1864                 return -EINVAL;
1865
1866         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1867
1868         error = arch_mmap_check(addr, len, flags);
1869         if (error)
1870                 return error;
1871
1872         /*
1873          * mlock MCL_FUTURE?
1874          */
1875         if (mm->def_flags & VM_LOCKED) {
1876                 unsigned long locked, lock_limit;
1877                 locked = len >> PAGE_SHIFT;
1878                 locked += mm->locked_vm;
1879                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1880                 lock_limit >>= PAGE_SHIFT;
1881                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1882                         return -EAGAIN;
1883                 if (!vx_vmlocked_avail(mm, len >> PAGE_SHIFT))
1884                         return -ENOMEM;
1885         }
1886
1887         /*
1888          * mm->mmap_sem is required to protect against another thread
1889          * changing the mappings in case we sleep.
1890          */
1891         verify_mm_writelocked(mm);
1892
1893         /*
1894          * Clear old maps.  this also does some error checking for us
1895          */
1896  munmap_back:
1897         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1898         if (vma && vma->vm_start < addr + len) {
1899                 if (do_munmap(mm, addr, len))
1900                         return -ENOMEM;
1901                 goto munmap_back;
1902         }
1903
1904         /* Check against address space limits *after* clearing old maps... */
1905         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1906                 return -ENOMEM;
1907
1908         if (mm->map_count > sysctl_max_map_count)
1909                 return -ENOMEM;
1910
1911         if (security_vm_enough_memory(len >> PAGE_SHIFT) ||
1912                 !vx_vmpages_avail(mm, len >> PAGE_SHIFT))
1913                 return -ENOMEM;
1914
1915         /* Can we just expand an old private anonymous mapping? */
1916         if (vma_merge(mm, prev, addr, addr + len, flags,
1917                                         NULL, NULL, pgoff, NULL))
1918                 goto out;
1919
1920         /*
1921          * create a vma struct for an anonymous mapping
1922          */
1923         vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
1924         if (!vma) {
1925                 vm_unacct_memory(len >> PAGE_SHIFT);
1926                 return -ENOMEM;
1927         }
1928         memset(vma, 0, sizeof(*vma));
1929
1930         vma->vm_mm = mm;
1931         vma->vm_start = addr;
1932         vma->vm_end = addr + len;
1933         vma->vm_pgoff = pgoff;
1934         vma->vm_flags = flags;
1935         vma->vm_page_prot = protection_map[flags & 0x0f];
1936         vma_link(mm, vma, prev, rb_link, rb_parent);
1937 out:
1938         vx_vmpages_add(mm, len >> PAGE_SHIFT);
1939         if (flags & VM_LOCKED) {
1940                 vx_vmlocked_add(mm, len >> PAGE_SHIFT);
1941                 make_pages_present(addr, addr + len);
1942         }
1943         return addr;
1944 }
1945
1946 EXPORT_SYMBOL(do_brk);
1947
1948 /* Release all mmaps. */
1949 void exit_mmap(struct mm_struct *mm)
1950 {
1951         struct mmu_gather *tlb;
1952         struct vm_area_struct *vma = mm->mmap;
1953         unsigned long nr_accounted = 0;
1954         unsigned long end;
1955
1956         lru_add_drain();
1957         flush_cache_mm(mm);
1958         tlb = tlb_gather_mmu(mm, 1);
1959         /* Don't update_hiwater_rss(mm) here, do_exit already did */
1960         /* Use -1 here to ensure all VMAs in the mm are unmapped */
1961         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
1962         vm_unacct_memory(nr_accounted);
1963         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
1964         tlb_finish_mmu(tlb, 0, end);
1965
1966         set_mm_counter(mm, file_rss, 0);
1967         set_mm_counter(mm, anon_rss, 0);
1968         vx_vmpages_sub(mm, mm->total_vm);
1969         vx_vmlocked_sub(mm, mm->locked_vm);
1970
1971         /*
1972          * Walk the list again, actually closing and freeing it,
1973          * with preemption enabled, without holding any MM locks.
1974          */
1975         while (vma)
1976                 vma = remove_vma(vma);
1977
1978         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1979 }
1980
1981 /* Insert vm structure into process list sorted by address
1982  * and into the inode's i_mmap tree.  If vm_file is non-NULL
1983  * then i_mmap_lock is taken here.
1984  */
1985 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
1986 {
1987         struct vm_area_struct * __vma, * prev;
1988         struct rb_node ** rb_link, * rb_parent;
1989
1990         /*
1991          * The vm_pgoff of a purely anonymous vma should be irrelevant
1992          * until its first write fault, when page's anon_vma and index
1993          * are set.  But now set the vm_pgoff it will almost certainly
1994          * end up with (unless mremap moves it elsewhere before that
1995          * first wfault), so /proc/pid/maps tells a consistent story.
1996          *
1997          * By setting it to reflect the virtual start address of the
1998          * vma, merges and splits can happen in a seamless way, just
1999          * using the existing file pgoff checks and manipulations.
2000          * Similarly in do_mmap_pgoff and in do_brk.
2001          */
2002         if (!vma->vm_file) {
2003                 BUG_ON(vma->anon_vma);
2004                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2005         }
2006         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2007         if (__vma && __vma->vm_start < vma->vm_end)
2008                 return -ENOMEM;
2009         if ((vma->vm_flags & VM_ACCOUNT) &&
2010                 (security_vm_enough_memory(vma_pages(vma)) ||
2011                 !vx_vmpages_avail(mm, vma_pages(vma))))
2012                 return -ENOMEM;
2013         vma_link(mm, vma, prev, rb_link, rb_parent);
2014         return 0;
2015 }
2016
2017 /*
2018  * Copy the vma structure to a new location in the same mm,
2019  * prior to moving page table entries, to effect an mremap move.
2020  */
2021 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2022         unsigned long addr, unsigned long len, pgoff_t pgoff)
2023 {
2024         struct vm_area_struct *vma = *vmap;
2025         unsigned long vma_start = vma->vm_start;
2026         struct mm_struct *mm = vma->vm_mm;
2027         struct vm_area_struct *new_vma, *prev;
2028         struct rb_node **rb_link, *rb_parent;
2029         struct mempolicy *pol;
2030
2031         /*
2032          * If anonymous vma has not yet been faulted, update new pgoff
2033          * to match new location, to increase its chance of merging.
2034          */
2035         if (!vma->vm_file && !vma->anon_vma)
2036                 pgoff = addr >> PAGE_SHIFT;
2037
2038         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2039         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2040                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2041         if (new_vma) {
2042                 /*
2043                  * Source vma may have been merged into new_vma
2044                  */
2045                 if (vma_start >= new_vma->vm_start &&
2046                     vma_start < new_vma->vm_end)
2047                         *vmap = new_vma;
2048         } else {
2049                 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2050                 if (new_vma) {
2051                         *new_vma = *vma;
2052                         pol = mpol_copy(vma_policy(vma));
2053                         if (IS_ERR(pol)) {
2054                                 kmem_cache_free(vm_area_cachep, new_vma);
2055                                 return NULL;
2056                         }
2057                         vma_set_policy(new_vma, pol);
2058                         new_vma->vm_start = addr;
2059                         new_vma->vm_end = addr + len;
2060                         new_vma->vm_pgoff = pgoff;
2061                         if (new_vma->vm_file)
2062                                 get_file(new_vma->vm_file);
2063                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2064                                 new_vma->vm_ops->open(new_vma);
2065                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2066                 }
2067         }
2068         return new_vma;
2069 }
2070
2071 /*
2072  * Return true if the calling process may expand its vm space by the passed
2073  * number of pages
2074  */
2075 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2076 {
2077         unsigned long cur = mm->total_vm;       /* pages */
2078         unsigned long lim;
2079
2080         lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2081
2082         if (cur + npages > lim)
2083                 return 0;
2084         if (!vx_vmpages_avail(mm, npages))
2085                 return 0;
2086         return 1;
2087 }