Revert to Fedora kernel-2.6.17-1.2187_FC5 patched with vs2.0.2.1; there are too many...
[linux-2.6.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/vs_base.h>
32 #include <linux/vs_memory.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37
38 DEFINE_SPINLOCK(swap_lock);
39 unsigned int nr_swapfiles;
40 long total_swap_pages;
41 static int swap_overflow;
42
43 static const char Bad_file[] = "Bad swap file entry ";
44 static const char Unused_file[] = "Unused swap file entry ";
45 static const char Bad_offset[] = "Bad swap offset entry ";
46 static const char Unused_offset[] = "Unused swap offset entry ";
47
48 struct swap_list_t swap_list = {-1, -1};
49
50 static struct swap_info_struct swap_info[MAX_SWAPFILES];
51
52 static DEFINE_MUTEX(swapon_mutex);
53
54 /*
55  * We need this because the bdev->unplug_fn can sleep and we cannot
56  * hold swap_lock while calling the unplug_fn. And swap_lock
57  * cannot be turned into a mutex.
58  */
59 static DECLARE_RWSEM(swap_unplug_sem);
60
61 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
62 {
63         swp_entry_t entry;
64
65         down_read(&swap_unplug_sem);
66         entry.val = page_private(page);
67         if (PageSwapCache(page)) {
68                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
69                 struct backing_dev_info *bdi;
70
71                 /*
72                  * If the page is removed from swapcache from under us (with a
73                  * racy try_to_unuse/swapoff) we need an additional reference
74                  * count to avoid reading garbage from page_private(page) above.
75                  * If the WARN_ON triggers during a swapoff it maybe the race
76                  * condition and it's harmless. However if it triggers without
77                  * swapoff it signals a problem.
78                  */
79                 WARN_ON(page_count(page) <= 1);
80
81                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
82                 blk_run_backing_dev(bdi, page);
83         }
84         up_read(&swap_unplug_sem);
85 }
86
87 #define SWAPFILE_CLUSTER        256
88 #define LATENCY_LIMIT           256
89
90 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
91 {
92         unsigned long offset, last_in_cluster;
93         int latency_ration = LATENCY_LIMIT;
94
95         /* 
96          * We try to cluster swap pages by allocating them sequentially
97          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
98          * way, however, we resort to first-free allocation, starting
99          * a new cluster.  This prevents us from scattering swap pages
100          * all over the entire swap partition, so that we reduce
101          * overall disk seek times between swap pages.  -- sct
102          * But we do now try to find an empty cluster.  -Andrea
103          */
104
105         si->flags += SWP_SCANNING;
106         if (unlikely(!si->cluster_nr)) {
107                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
108                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
109                         goto lowest;
110                 spin_unlock(&swap_lock);
111
112                 offset = si->lowest_bit;
113                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
114
115                 /* Locate the first empty (unaligned) cluster */
116                 for (; last_in_cluster <= si->highest_bit; offset++) {
117                         if (si->swap_map[offset])
118                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
119                         else if (offset == last_in_cluster) {
120                                 spin_lock(&swap_lock);
121                                 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
122                                 goto cluster;
123                         }
124                         if (unlikely(--latency_ration < 0)) {
125                                 cond_resched();
126                                 latency_ration = LATENCY_LIMIT;
127                         }
128                 }
129                 spin_lock(&swap_lock);
130                 goto lowest;
131         }
132
133         si->cluster_nr--;
134 cluster:
135         offset = si->cluster_next;
136         if (offset > si->highest_bit)
137 lowest:         offset = si->lowest_bit;
138 checks: if (!(si->flags & SWP_WRITEOK))
139                 goto no_page;
140         if (!si->highest_bit)
141                 goto no_page;
142         if (!si->swap_map[offset]) {
143                 if (offset == si->lowest_bit)
144                         si->lowest_bit++;
145                 if (offset == si->highest_bit)
146                         si->highest_bit--;
147                 si->inuse_pages++;
148                 if (si->inuse_pages == si->pages) {
149                         si->lowest_bit = si->max;
150                         si->highest_bit = 0;
151                 }
152                 si->swap_map[offset] = 1;
153                 si->cluster_next = offset + 1;
154                 si->flags -= SWP_SCANNING;
155                 return offset;
156         }
157
158         spin_unlock(&swap_lock);
159         while (++offset <= si->highest_bit) {
160                 if (!si->swap_map[offset]) {
161                         spin_lock(&swap_lock);
162                         goto checks;
163                 }
164                 if (unlikely(--latency_ration < 0)) {
165                         cond_resched();
166                         latency_ration = LATENCY_LIMIT;
167                 }
168         }
169         spin_lock(&swap_lock);
170         goto lowest;
171
172 no_page:
173         si->flags -= SWP_SCANNING;
174         return 0;
175 }
176
177 swp_entry_t get_swap_page(void)
178 {
179         struct swap_info_struct *si;
180         pgoff_t offset;
181         int type, next;
182         int wrapped = 0;
183
184         spin_lock(&swap_lock);
185         if (nr_swap_pages <= 0)
186                 goto noswap;
187         nr_swap_pages--;
188
189         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
190                 si = swap_info + type;
191                 next = si->next;
192                 if (next < 0 ||
193                     (!wrapped && si->prio != swap_info[next].prio)) {
194                         next = swap_list.head;
195                         wrapped++;
196                 }
197
198                 if (!si->highest_bit)
199                         continue;
200                 if (!(si->flags & SWP_WRITEOK))
201                         continue;
202
203                 swap_list.next = next;
204                 offset = scan_swap_map(si);
205                 if (offset) {
206                         spin_unlock(&swap_lock);
207                         return swp_entry(type, offset);
208                 }
209                 next = swap_list.next;
210         }
211
212         nr_swap_pages++;
213 noswap:
214         spin_unlock(&swap_lock);
215         return (swp_entry_t) {0};
216 }
217
218 swp_entry_t get_swap_page_of_type(int type)
219 {
220         struct swap_info_struct *si;
221         pgoff_t offset;
222
223         spin_lock(&swap_lock);
224         si = swap_info + type;
225         if (si->flags & SWP_WRITEOK) {
226                 nr_swap_pages--;
227                 offset = scan_swap_map(si);
228                 if (offset) {
229                         spin_unlock(&swap_lock);
230                         return swp_entry(type, offset);
231                 }
232                 nr_swap_pages++;
233         }
234         spin_unlock(&swap_lock);
235         return (swp_entry_t) {0};
236 }
237
238 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
239 {
240         struct swap_info_struct * p;
241         unsigned long offset, type;
242
243         if (!entry.val)
244                 goto out;
245         type = swp_type(entry);
246         if (type >= nr_swapfiles)
247                 goto bad_nofile;
248         p = & swap_info[type];
249         if (!(p->flags & SWP_USED))
250                 goto bad_device;
251         offset = swp_offset(entry);
252         if (offset >= p->max)
253                 goto bad_offset;
254         if (!p->swap_map[offset])
255                 goto bad_free;
256         spin_lock(&swap_lock);
257         return p;
258
259 bad_free:
260         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
261         goto out;
262 bad_offset:
263         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
264         goto out;
265 bad_device:
266         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
267         goto out;
268 bad_nofile:
269         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
270 out:
271         return NULL;
272 }       
273
274 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
275 {
276         int count = p->swap_map[offset];
277
278         if (count < SWAP_MAP_MAX) {
279                 count--;
280                 p->swap_map[offset] = count;
281                 if (!count) {
282                         if (offset < p->lowest_bit)
283                                 p->lowest_bit = offset;
284                         if (offset > p->highest_bit)
285                                 p->highest_bit = offset;
286                         if (p->prio > swap_info[swap_list.next].prio)
287                                 swap_list.next = p - swap_info;
288                         nr_swap_pages++;
289                         p->inuse_pages--;
290                 }
291         }
292         return count;
293 }
294
295 /*
296  * Caller has made sure that the swapdevice corresponding to entry
297  * is still around or has not been recycled.
298  */
299 void swap_free(swp_entry_t entry)
300 {
301         struct swap_info_struct * p;
302
303         p = swap_info_get(entry);
304         if (p) {
305                 swap_entry_free(p, swp_offset(entry));
306                 spin_unlock(&swap_lock);
307         }
308 }
309
310 /*
311  * How many references to page are currently swapped out?
312  */
313 static inline int page_swapcount(struct page *page)
314 {
315         int count = 0;
316         struct swap_info_struct *p;
317         swp_entry_t entry;
318
319         entry.val = page_private(page);
320         p = swap_info_get(entry);
321         if (p) {
322                 /* Subtract the 1 for the swap cache itself */
323                 count = p->swap_map[swp_offset(entry)] - 1;
324                 spin_unlock(&swap_lock);
325         }
326         return count;
327 }
328
329 /*
330  * We can use this swap cache entry directly
331  * if there are no other references to it.
332  */
333 int can_share_swap_page(struct page *page)
334 {
335         int count;
336
337         BUG_ON(!PageLocked(page));
338         count = page_mapcount(page);
339         if (count <= 1 && PageSwapCache(page))
340                 count += page_swapcount(page);
341         return count == 1;
342 }
343
344 /*
345  * Work out if there are any other processes sharing this
346  * swap cache page. Free it if you can. Return success.
347  */
348 int remove_exclusive_swap_page(struct page *page)
349 {
350         int retval;
351         struct swap_info_struct * p;
352         swp_entry_t entry;
353
354         BUG_ON(PagePrivate(page));
355         BUG_ON(!PageLocked(page));
356
357         if (!PageSwapCache(page))
358                 return 0;
359         if (PageWriteback(page))
360                 return 0;
361         if (page_count(page) != 2) /* 2: us + cache */
362                 return 0;
363
364         entry.val = page_private(page);
365         p = swap_info_get(entry);
366         if (!p)
367                 return 0;
368
369         /* Is the only swap cache user the cache itself? */
370         retval = 0;
371         if (p->swap_map[swp_offset(entry)] == 1) {
372                 /* Recheck the page count with the swapcache lock held.. */
373                 write_lock_irq(&swapper_space.tree_lock);
374                 if ((page_count(page) == 2) && !PageWriteback(page)) {
375                         __delete_from_swap_cache(page);
376                         SetPageDirty(page);
377                         retval = 1;
378                 }
379                 write_unlock_irq(&swapper_space.tree_lock);
380         }
381         spin_unlock(&swap_lock);
382
383         if (retval) {
384                 swap_free(entry);
385                 page_cache_release(page);
386         }
387
388         return retval;
389 }
390
391 /*
392  * Free the swap entry like above, but also try to
393  * free the page cache entry if it is the last user.
394  */
395 void free_swap_and_cache(swp_entry_t entry)
396 {
397         struct swap_info_struct * p;
398         struct page *page = NULL;
399
400         p = swap_info_get(entry);
401         if (p) {
402                 if (swap_entry_free(p, swp_offset(entry)) == 1) {
403                         page = find_get_page(&swapper_space, entry.val);
404                         if (page && unlikely(TestSetPageLocked(page))) {
405                                 page_cache_release(page);
406                                 page = NULL;
407                         }
408                 }
409                 spin_unlock(&swap_lock);
410         }
411         if (page) {
412                 int one_user;
413
414                 BUG_ON(PagePrivate(page));
415                 one_user = (page_count(page) == 2);
416                 /* Only cache user (+us), or swap space full? Free it! */
417                 /* Also recheck PageSwapCache after page is locked (above) */
418                 if (PageSwapCache(page) && !PageWriteback(page) &&
419                                         (one_user || vm_swap_full())) {
420                         delete_from_swap_cache(page);
421                         SetPageDirty(page);
422                 }
423                 unlock_page(page);
424                 page_cache_release(page);
425         }
426 }
427
428 #ifdef CONFIG_SOFTWARE_SUSPEND
429 /*
430  * Find the swap type that corresponds to given device (if any)
431  *
432  * This is needed for software suspend and is done in such a way that inode
433  * aliasing is allowed.
434  */
435 int swap_type_of(dev_t device)
436 {
437         int i;
438
439         spin_lock(&swap_lock);
440         for (i = 0; i < nr_swapfiles; i++) {
441                 struct inode *inode;
442
443                 if (!(swap_info[i].flags & SWP_WRITEOK))
444                         continue;
445
446                 if (!device) {
447                         spin_unlock(&swap_lock);
448                         return i;
449                 }
450                 inode = swap_info[i].swap_file->f_dentry->d_inode;
451                 if (S_ISBLK(inode->i_mode) &&
452                     device == MKDEV(imajor(inode), iminor(inode))) {
453                         spin_unlock(&swap_lock);
454                         return i;
455                 }
456         }
457         spin_unlock(&swap_lock);
458         return -ENODEV;
459 }
460
461 /*
462  * Return either the total number of swap pages of given type, or the number
463  * of free pages of that type (depending on @free)
464  *
465  * This is needed for software suspend
466  */
467 unsigned int count_swap_pages(int type, int free)
468 {
469         unsigned int n = 0;
470
471         if (type < nr_swapfiles) {
472                 spin_lock(&swap_lock);
473                 if (swap_info[type].flags & SWP_WRITEOK) {
474                         n = swap_info[type].pages;
475                         if (free)
476                                 n -= swap_info[type].inuse_pages;
477                 }
478                 spin_unlock(&swap_lock);
479         }
480         return n;
481 }
482 #endif
483
484 /*
485  * No need to decide whether this PTE shares the swap entry with others,
486  * just let do_wp_page work it out if a write is requested later - to
487  * force COW, vm_page_prot omits write permission from any private vma.
488  */
489 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
490                 unsigned long addr, swp_entry_t entry, struct page *page)
491 {
492         inc_mm_counter(vma->vm_mm, anon_rss);
493         get_page(page);
494         set_pte_at(vma->vm_mm, addr, pte,
495                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
496         page_add_anon_rmap(page, vma, addr);
497         swap_free(entry);
498         /*
499          * Move the page to the active list so it is not
500          * immediately swapped out again after swapon.
501          */
502         activate_page(page);
503 }
504
505 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
506                                 unsigned long addr, unsigned long end,
507                                 swp_entry_t entry, struct page *page)
508 {
509         pte_t swp_pte = swp_entry_to_pte(entry);
510         pte_t *pte;
511         spinlock_t *ptl;
512         int found = 0;
513
514         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
515         do {
516                 /*
517                  * swapoff spends a _lot_ of time in this loop!
518                  * Test inline before going to call unuse_pte.
519                  */
520                 if (unlikely(pte_same(*pte, swp_pte))) {
521                         unuse_pte(vma, pte++, addr, entry, page);
522                         found = 1;
523                         break;
524                 }
525         } while (pte++, addr += PAGE_SIZE, addr != end);
526         pte_unmap_unlock(pte - 1, ptl);
527         return found;
528 }
529
530 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
531                                 unsigned long addr, unsigned long end,
532                                 swp_entry_t entry, struct page *page)
533 {
534         pmd_t *pmd;
535         unsigned long next;
536
537         pmd = pmd_offset(pud, addr);
538         do {
539                 next = pmd_addr_end(addr, end);
540                 if (pmd_none_or_clear_bad(pmd))
541                         continue;
542                 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
543                         return 1;
544         } while (pmd++, addr = next, addr != end);
545         return 0;
546 }
547
548 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
549                                 unsigned long addr, unsigned long end,
550                                 swp_entry_t entry, struct page *page)
551 {
552         pud_t *pud;
553         unsigned long next;
554
555         pud = pud_offset(pgd, addr);
556         do {
557                 next = pud_addr_end(addr, end);
558                 if (pud_none_or_clear_bad(pud))
559                         continue;
560                 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
561                         return 1;
562         } while (pud++, addr = next, addr != end);
563         return 0;
564 }
565
566 static int unuse_vma(struct vm_area_struct *vma,
567                                 swp_entry_t entry, struct page *page)
568 {
569         pgd_t *pgd;
570         unsigned long addr, end, next;
571
572         if (page->mapping) {
573                 addr = page_address_in_vma(page, vma);
574                 if (addr == -EFAULT)
575                         return 0;
576                 else
577                         end = addr + PAGE_SIZE;
578         } else {
579                 addr = vma->vm_start;
580                 end = vma->vm_end;
581         }
582
583         pgd = pgd_offset(vma->vm_mm, addr);
584         do {
585                 next = pgd_addr_end(addr, end);
586                 if (pgd_none_or_clear_bad(pgd))
587                         continue;
588                 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
589                         return 1;
590         } while (pgd++, addr = next, addr != end);
591         return 0;
592 }
593
594 static int unuse_mm(struct mm_struct *mm,
595                                 swp_entry_t entry, struct page *page)
596 {
597         struct vm_area_struct *vma;
598
599         if (!down_read_trylock(&mm->mmap_sem)) {
600                 /*
601                  * Activate page so shrink_cache is unlikely to unmap its
602                  * ptes while lock is dropped, so swapoff can make progress.
603                  */
604                 activate_page(page);
605                 unlock_page(page);
606                 down_read(&mm->mmap_sem);
607                 lock_page(page);
608         }
609         for (vma = mm->mmap; vma; vma = vma->vm_next) {
610                 if (vma->anon_vma && unuse_vma(vma, entry, page))
611                         break;
612         }
613         up_read(&mm->mmap_sem);
614         /*
615          * Currently unuse_mm cannot fail, but leave error handling
616          * at call sites for now, since we change it from time to time.
617          */
618         return 0;
619 }
620
621 #ifdef CONFIG_MIGRATION
622 int remove_vma_swap(struct vm_area_struct *vma, struct page *page)
623 {
624         swp_entry_t entry = { .val = page_private(page) };
625
626         return unuse_vma(vma, entry, page);
627 }
628 #endif
629
630 /*
631  * Scan swap_map from current position to next entry still in use.
632  * Recycle to start on reaching the end, returning 0 when empty.
633  */
634 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
635                                         unsigned int prev)
636 {
637         unsigned int max = si->max;
638         unsigned int i = prev;
639         int count;
640
641         /*
642          * No need for swap_lock here: we're just looking
643          * for whether an entry is in use, not modifying it; false
644          * hits are okay, and sys_swapoff() has already prevented new
645          * allocations from this area (while holding swap_lock).
646          */
647         for (;;) {
648                 if (++i >= max) {
649                         if (!prev) {
650                                 i = 0;
651                                 break;
652                         }
653                         /*
654                          * No entries in use at top of swap_map,
655                          * loop back to start and recheck there.
656                          */
657                         max = prev + 1;
658                         prev = 0;
659                         i = 1;
660                 }
661                 count = si->swap_map[i];
662                 if (count && count != SWAP_MAP_BAD)
663                         break;
664         }
665         return i;
666 }
667
668 /*
669  * We completely avoid races by reading each swap page in advance,
670  * and then search for the process using it.  All the necessary
671  * page table adjustments can then be made atomically.
672  */
673 static int try_to_unuse(unsigned int type)
674 {
675         struct swap_info_struct * si = &swap_info[type];
676         struct mm_struct *start_mm;
677         unsigned short *swap_map;
678         unsigned short swcount;
679         struct page *page;
680         swp_entry_t entry;
681         unsigned int i = 0;
682         int retval = 0;
683         int reset_overflow = 0;
684         int shmem;
685
686         /*
687          * When searching mms for an entry, a good strategy is to
688          * start at the first mm we freed the previous entry from
689          * (though actually we don't notice whether we or coincidence
690          * freed the entry).  Initialize this start_mm with a hold.
691          *
692          * A simpler strategy would be to start at the last mm we
693          * freed the previous entry from; but that would take less
694          * advantage of mmlist ordering, which clusters forked mms
695          * together, child after parent.  If we race with dup_mmap(), we
696          * prefer to resolve parent before child, lest we miss entries
697          * duplicated after we scanned child: using last mm would invert
698          * that.  Though it's only a serious concern when an overflowed
699          * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
700          */
701         start_mm = &init_mm;
702         atomic_inc(&init_mm.mm_users);
703
704         /*
705          * Keep on scanning until all entries have gone.  Usually,
706          * one pass through swap_map is enough, but not necessarily:
707          * there are races when an instance of an entry might be missed.
708          */
709         while ((i = find_next_to_unuse(si, i)) != 0) {
710                 if (signal_pending(current)) {
711                         retval = -EINTR;
712                         break;
713                 }
714
715                 /* 
716                  * Get a page for the entry, using the existing swap
717                  * cache page if there is one.  Otherwise, get a clean
718                  * page and read the swap into it. 
719                  */
720                 swap_map = &si->swap_map[i];
721                 entry = swp_entry(type, i);
722 again:
723                 page = read_swap_cache_async(entry, NULL, 0);
724                 if (!page) {
725                         /*
726                          * Either swap_duplicate() failed because entry
727                          * has been freed independently, and will not be
728                          * reused since sys_swapoff() already disabled
729                          * allocation from here, or alloc_page() failed.
730                          */
731                         if (!*swap_map)
732                                 continue;
733                         retval = -ENOMEM;
734                         break;
735                 }
736
737                 /*
738                  * Don't hold on to start_mm if it looks like exiting.
739                  */
740                 if (atomic_read(&start_mm->mm_users) == 1) {
741                         mmput(start_mm);
742                         start_mm = &init_mm;
743                         atomic_inc(&init_mm.mm_users);
744                 }
745
746                 /*
747                  * Wait for and lock page.  When do_swap_page races with
748                  * try_to_unuse, do_swap_page can handle the fault much
749                  * faster than try_to_unuse can locate the entry.  This
750                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
751                  * defer to do_swap_page in such a case - in some tests,
752                  * do_swap_page and try_to_unuse repeatedly compete.
753                  */
754                 wait_on_page_locked(page);
755                 wait_on_page_writeback(page);
756                 lock_page(page);
757                 if (!PageSwapCache(page)) {
758                         /* Page migration has occured */
759                         unlock_page(page);
760                         page_cache_release(page);
761                         goto again;
762                 }
763                 wait_on_page_writeback(page);
764
765                 /*
766                  * Remove all references to entry.
767                  * Whenever we reach init_mm, there's no address space
768                  * to search, but use it as a reminder to search shmem.
769                  */
770                 shmem = 0;
771                 swcount = *swap_map;
772                 if (swcount > 1) {
773                         if (start_mm == &init_mm)
774                                 shmem = shmem_unuse(entry, page);
775                         else
776                                 retval = unuse_mm(start_mm, entry, page);
777                 }
778                 if (*swap_map > 1) {
779                         int set_start_mm = (*swap_map >= swcount);
780                         struct list_head *p = &start_mm->mmlist;
781                         struct mm_struct *new_start_mm = start_mm;
782                         struct mm_struct *prev_mm = start_mm;
783                         struct mm_struct *mm;
784
785                         atomic_inc(&new_start_mm->mm_users);
786                         atomic_inc(&prev_mm->mm_users);
787                         spin_lock(&mmlist_lock);
788                         while (*swap_map > 1 && !retval &&
789                                         (p = p->next) != &start_mm->mmlist) {
790                                 mm = list_entry(p, struct mm_struct, mmlist);
791                                 if (atomic_inc_return(&mm->mm_users) == 1) {
792                                         atomic_dec(&mm->mm_users);
793                                         continue;
794                                 }
795                                 spin_unlock(&mmlist_lock);
796                                 mmput(prev_mm);
797                                 prev_mm = mm;
798
799                                 cond_resched();
800
801                                 swcount = *swap_map;
802                                 if (swcount <= 1)
803                                         ;
804                                 else if (mm == &init_mm) {
805                                         set_start_mm = 1;
806                                         shmem = shmem_unuse(entry, page);
807                                 } else
808                                         retval = unuse_mm(mm, entry, page);
809                                 if (set_start_mm && *swap_map < swcount) {
810                                         mmput(new_start_mm);
811                                         atomic_inc(&mm->mm_users);
812                                         new_start_mm = mm;
813                                         set_start_mm = 0;
814                                 }
815                                 spin_lock(&mmlist_lock);
816                         }
817                         spin_unlock(&mmlist_lock);
818                         mmput(prev_mm);
819                         mmput(start_mm);
820                         start_mm = new_start_mm;
821                 }
822                 if (retval) {
823                         unlock_page(page);
824                         page_cache_release(page);
825                         break;
826                 }
827
828                 /*
829                  * How could swap count reach 0x7fff when the maximum
830                  * pid is 0x7fff, and there's no way to repeat a swap
831                  * page within an mm (except in shmem, where it's the
832                  * shared object which takes the reference count)?
833                  * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
834                  *
835                  * If that's wrong, then we should worry more about
836                  * exit_mmap() and do_munmap() cases described above:
837                  * we might be resetting SWAP_MAP_MAX too early here.
838                  * We know "Undead"s can happen, they're okay, so don't
839                  * report them; but do report if we reset SWAP_MAP_MAX.
840                  */
841                 if (*swap_map == SWAP_MAP_MAX) {
842                         spin_lock(&swap_lock);
843                         *swap_map = 1;
844                         spin_unlock(&swap_lock);
845                         reset_overflow = 1;
846                 }
847
848                 /*
849                  * If a reference remains (rare), we would like to leave
850                  * the page in the swap cache; but try_to_unmap could
851                  * then re-duplicate the entry once we drop page lock,
852                  * so we might loop indefinitely; also, that page could
853                  * not be swapped out to other storage meanwhile.  So:
854                  * delete from cache even if there's another reference,
855                  * after ensuring that the data has been saved to disk -
856                  * since if the reference remains (rarer), it will be
857                  * read from disk into another page.  Splitting into two
858                  * pages would be incorrect if swap supported "shared
859                  * private" pages, but they are handled by tmpfs files.
860                  *
861                  * Note shmem_unuse already deleted a swappage from
862                  * the swap cache, unless the move to filepage failed:
863                  * in which case it left swappage in cache, lowered its
864                  * swap count to pass quickly through the loops above,
865                  * and now we must reincrement count to try again later.
866                  */
867                 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
868                         struct writeback_control wbc = {
869                                 .sync_mode = WB_SYNC_NONE,
870                         };
871
872                         swap_writepage(page, &wbc);
873                         lock_page(page);
874                         wait_on_page_writeback(page);
875                 }
876                 if (PageSwapCache(page)) {
877                         if (shmem)
878                                 swap_duplicate(entry);
879                         else
880                                 delete_from_swap_cache(page);
881                 }
882
883                 /*
884                  * So we could skip searching mms once swap count went
885                  * to 1, we did not mark any present ptes as dirty: must
886                  * mark page dirty so shrink_list will preserve it.
887                  */
888                 SetPageDirty(page);
889                 unlock_page(page);
890                 page_cache_release(page);
891
892                 /*
893                  * Make sure that we aren't completely killing
894                  * interactive performance.
895                  */
896                 cond_resched();
897         }
898
899         mmput(start_mm);
900         if (reset_overflow) {
901                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
902                 swap_overflow = 0;
903         }
904         return retval;
905 }
906
907 /*
908  * After a successful try_to_unuse, if no swap is now in use, we know
909  * we can empty the mmlist.  swap_lock must be held on entry and exit.
910  * Note that mmlist_lock nests inside swap_lock, and an mm must be
911  * added to the mmlist just after page_duplicate - before would be racy.
912  */
913 static void drain_mmlist(void)
914 {
915         struct list_head *p, *next;
916         unsigned int i;
917
918         for (i = 0; i < nr_swapfiles; i++)
919                 if (swap_info[i].inuse_pages)
920                         return;
921         spin_lock(&mmlist_lock);
922         list_for_each_safe(p, next, &init_mm.mmlist)
923                 list_del_init(p);
924         spin_unlock(&mmlist_lock);
925 }
926
927 /*
928  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
929  * corresponds to page offset `offset'.
930  */
931 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
932 {
933         struct swap_extent *se = sis->curr_swap_extent;
934         struct swap_extent *start_se = se;
935
936         for ( ; ; ) {
937                 struct list_head *lh;
938
939                 if (se->start_page <= offset &&
940                                 offset < (se->start_page + se->nr_pages)) {
941                         return se->start_block + (offset - se->start_page);
942                 }
943                 lh = se->list.next;
944                 if (lh == &sis->extent_list)
945                         lh = lh->next;
946                 se = list_entry(lh, struct swap_extent, list);
947                 sis->curr_swap_extent = se;
948                 BUG_ON(se == start_se);         /* It *must* be present */
949         }
950 }
951
952 /*
953  * Free all of a swapdev's extent information
954  */
955 static void destroy_swap_extents(struct swap_info_struct *sis)
956 {
957         while (!list_empty(&sis->extent_list)) {
958                 struct swap_extent *se;
959
960                 se = list_entry(sis->extent_list.next,
961                                 struct swap_extent, list);
962                 list_del(&se->list);
963                 kfree(se);
964         }
965 }
966
967 /*
968  * Add a block range (and the corresponding page range) into this swapdev's
969  * extent list.  The extent list is kept sorted in page order.
970  *
971  * This function rather assumes that it is called in ascending page order.
972  */
973 static int
974 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
975                 unsigned long nr_pages, sector_t start_block)
976 {
977         struct swap_extent *se;
978         struct swap_extent *new_se;
979         struct list_head *lh;
980
981         lh = sis->extent_list.prev;     /* The highest page extent */
982         if (lh != &sis->extent_list) {
983                 se = list_entry(lh, struct swap_extent, list);
984                 BUG_ON(se->start_page + se->nr_pages != start_page);
985                 if (se->start_block + se->nr_pages == start_block) {
986                         /* Merge it */
987                         se->nr_pages += nr_pages;
988                         return 0;
989                 }
990         }
991
992         /*
993          * No merge.  Insert a new extent, preserving ordering.
994          */
995         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
996         if (new_se == NULL)
997                 return -ENOMEM;
998         new_se->start_page = start_page;
999         new_se->nr_pages = nr_pages;
1000         new_se->start_block = start_block;
1001
1002         list_add_tail(&new_se->list, &sis->extent_list);
1003         return 1;
1004 }
1005
1006 /*
1007  * A `swap extent' is a simple thing which maps a contiguous range of pages
1008  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1009  * is built at swapon time and is then used at swap_writepage/swap_readpage
1010  * time for locating where on disk a page belongs.
1011  *
1012  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1013  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1014  * swap files identically.
1015  *
1016  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1017  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1018  * swapfiles are handled *identically* after swapon time.
1019  *
1020  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1021  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1022  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1023  * requirements, they are simply tossed out - we will never use those blocks
1024  * for swapping.
1025  *
1026  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1027  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1028  * which will scribble on the fs.
1029  *
1030  * The amount of disk space which a single swap extent represents varies.
1031  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1032  * extents in the list.  To avoid much list walking, we cache the previous
1033  * search location in `curr_swap_extent', and start new searches from there.
1034  * This is extremely effective.  The average number of iterations in
1035  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1036  */
1037 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1038 {
1039         struct inode *inode;
1040         unsigned blocks_per_page;
1041         unsigned long page_no;
1042         unsigned blkbits;
1043         sector_t probe_block;
1044         sector_t last_block;
1045         sector_t lowest_block = -1;
1046         sector_t highest_block = 0;
1047         int nr_extents = 0;
1048         int ret;
1049
1050         inode = sis->swap_file->f_mapping->host;
1051         if (S_ISBLK(inode->i_mode)) {
1052                 ret = add_swap_extent(sis, 0, sis->max, 0);
1053                 *span = sis->pages;
1054                 goto done;
1055         }
1056
1057         blkbits = inode->i_blkbits;
1058         blocks_per_page = PAGE_SIZE >> blkbits;
1059
1060         /*
1061          * Map all the blocks into the extent list.  This code doesn't try
1062          * to be very smart.
1063          */
1064         probe_block = 0;
1065         page_no = 0;
1066         last_block = i_size_read(inode) >> blkbits;
1067         while ((probe_block + blocks_per_page) <= last_block &&
1068                         page_no < sis->max) {
1069                 unsigned block_in_page;
1070                 sector_t first_block;
1071
1072                 first_block = bmap(inode, probe_block);
1073                 if (first_block == 0)
1074                         goto bad_bmap;
1075
1076                 /*
1077                  * It must be PAGE_SIZE aligned on-disk
1078                  */
1079                 if (first_block & (blocks_per_page - 1)) {
1080                         probe_block++;
1081                         goto reprobe;
1082                 }
1083
1084                 for (block_in_page = 1; block_in_page < blocks_per_page;
1085                                         block_in_page++) {
1086                         sector_t block;
1087
1088                         block = bmap(inode, probe_block + block_in_page);
1089                         if (block == 0)
1090                                 goto bad_bmap;
1091                         if (block != first_block + block_in_page) {
1092                                 /* Discontiguity */
1093                                 probe_block++;
1094                                 goto reprobe;
1095                         }
1096                 }
1097
1098                 first_block >>= (PAGE_SHIFT - blkbits);
1099                 if (page_no) {  /* exclude the header page */
1100                         if (first_block < lowest_block)
1101                                 lowest_block = first_block;
1102                         if (first_block > highest_block)
1103                                 highest_block = first_block;
1104                 }
1105
1106                 /*
1107                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1108                  */
1109                 ret = add_swap_extent(sis, page_no, 1, first_block);
1110                 if (ret < 0)
1111                         goto out;
1112                 nr_extents += ret;
1113                 page_no++;
1114                 probe_block += blocks_per_page;
1115 reprobe:
1116                 continue;
1117         }
1118         ret = nr_extents;
1119         *span = 1 + highest_block - lowest_block;
1120         if (page_no == 0)
1121                 page_no = 1;    /* force Empty message */
1122         sis->max = page_no;
1123         sis->pages = page_no - 1;
1124         sis->highest_bit = page_no - 1;
1125 done:
1126         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1127                                         struct swap_extent, list);
1128         goto out;
1129 bad_bmap:
1130         printk(KERN_ERR "swapon: swapfile has holes\n");
1131         ret = -EINVAL;
1132 out:
1133         return ret;
1134 }
1135
1136 #if 0   /* We don't need this yet */
1137 #include <linux/backing-dev.h>
1138 int page_queue_congested(struct page *page)
1139 {
1140         struct backing_dev_info *bdi;
1141
1142         BUG_ON(!PageLocked(page));      /* It pins the swap_info_struct */
1143
1144         if (PageSwapCache(page)) {
1145                 swp_entry_t entry = { .val = page_private(page) };
1146                 struct swap_info_struct *sis;
1147
1148                 sis = get_swap_info_struct(swp_type(entry));
1149                 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1150         } else
1151                 bdi = page->mapping->backing_dev_info;
1152         return bdi_write_congested(bdi);
1153 }
1154 #endif
1155
1156 asmlinkage long sys_swapoff(const char __user * specialfile)
1157 {
1158         struct swap_info_struct * p = NULL;
1159         unsigned short *swap_map;
1160         struct file *swap_file, *victim;
1161         struct address_space *mapping;
1162         struct inode *inode;
1163         char * pathname;
1164         int i, type, prev;
1165         int err;
1166         
1167         if (!capable(CAP_SYS_ADMIN))
1168                 return -EPERM;
1169
1170         pathname = getname(specialfile);
1171         err = PTR_ERR(pathname);
1172         if (IS_ERR(pathname))
1173                 goto out;
1174
1175         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1176         putname(pathname);
1177         err = PTR_ERR(victim);
1178         if (IS_ERR(victim))
1179                 goto out;
1180
1181         mapping = victim->f_mapping;
1182         prev = -1;
1183         spin_lock(&swap_lock);
1184         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1185                 p = swap_info + type;
1186                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1187                         if (p->swap_file->f_mapping == mapping)
1188                                 break;
1189                 }
1190                 prev = type;
1191         }
1192         if (type < 0) {
1193                 err = -EINVAL;
1194                 spin_unlock(&swap_lock);
1195                 goto out_dput;
1196         }
1197         if (!security_vm_enough_memory(p->pages))
1198                 vm_unacct_memory(p->pages);
1199         else {
1200                 err = -ENOMEM;
1201                 spin_unlock(&swap_lock);
1202                 goto out_dput;
1203         }
1204         if (prev < 0) {
1205                 swap_list.head = p->next;
1206         } else {
1207                 swap_info[prev].next = p->next;
1208         }
1209         if (type == swap_list.next) {
1210                 /* just pick something that's safe... */
1211                 swap_list.next = swap_list.head;
1212         }
1213         nr_swap_pages -= p->pages;
1214         total_swap_pages -= p->pages;
1215         p->flags &= ~SWP_WRITEOK;
1216         spin_unlock(&swap_lock);
1217
1218         current->flags |= PF_SWAPOFF;
1219         err = try_to_unuse(type);
1220         current->flags &= ~PF_SWAPOFF;
1221
1222         if (err) {
1223                 /* re-insert swap space back into swap_list */
1224                 spin_lock(&swap_lock);
1225                 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1226                         if (p->prio >= swap_info[i].prio)
1227                                 break;
1228                 p->next = i;
1229                 if (prev < 0)
1230                         swap_list.head = swap_list.next = p - swap_info;
1231                 else
1232                         swap_info[prev].next = p - swap_info;
1233                 nr_swap_pages += p->pages;
1234                 total_swap_pages += p->pages;
1235                 p->flags |= SWP_WRITEOK;
1236                 spin_unlock(&swap_lock);
1237                 goto out_dput;
1238         }
1239
1240         /* wait for any unplug function to finish */
1241         down_write(&swap_unplug_sem);
1242         up_write(&swap_unplug_sem);
1243
1244         destroy_swap_extents(p);
1245         mutex_lock(&swapon_mutex);
1246         spin_lock(&swap_lock);
1247         drain_mmlist();
1248
1249         /* wait for anyone still in scan_swap_map */
1250         p->highest_bit = 0;             /* cuts scans short */
1251         while (p->flags >= SWP_SCANNING) {
1252                 spin_unlock(&swap_lock);
1253                 schedule_timeout_uninterruptible(1);
1254                 spin_lock(&swap_lock);
1255         }
1256
1257         swap_file = p->swap_file;
1258         p->swap_file = NULL;
1259         p->max = 0;
1260         swap_map = p->swap_map;
1261         p->swap_map = NULL;
1262         p->flags = 0;
1263         spin_unlock(&swap_lock);
1264         mutex_unlock(&swapon_mutex);
1265         vfree(swap_map);
1266         inode = mapping->host;
1267         if (S_ISBLK(inode->i_mode)) {
1268                 struct block_device *bdev = I_BDEV(inode);
1269                 set_blocksize(bdev, p->old_block_size);
1270                 bd_release(bdev);
1271         } else {
1272                 mutex_lock(&inode->i_mutex);
1273                 inode->i_flags &= ~S_SWAPFILE;
1274                 mutex_unlock(&inode->i_mutex);
1275         }
1276         filp_close(swap_file, NULL);
1277         err = 0;
1278
1279 out_dput:
1280         filp_close(victim, NULL);
1281 out:
1282         return err;
1283 }
1284
1285 #ifdef CONFIG_PROC_FS
1286 /* iterator */
1287 static void *swap_start(struct seq_file *swap, loff_t *pos)
1288 {
1289         struct swap_info_struct *ptr = swap_info;
1290         int i;
1291         loff_t l = *pos;
1292
1293         mutex_lock(&swapon_mutex);
1294
1295         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1296                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1297                         continue;
1298                 if (!l--)
1299                         return ptr;
1300         }
1301
1302         return NULL;
1303 }
1304
1305 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1306 {
1307         struct swap_info_struct *ptr = v;
1308         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1309
1310         for (++ptr; ptr < endptr; ptr++) {
1311                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1312                         continue;
1313                 ++*pos;
1314                 return ptr;
1315         }
1316
1317         return NULL;
1318 }
1319
1320 static void swap_stop(struct seq_file *swap, void *v)
1321 {
1322         mutex_unlock(&swapon_mutex);
1323 }
1324
1325 static int swap_show(struct seq_file *swap, void *v)
1326 {
1327         struct swap_info_struct *ptr = v;
1328         struct file *file;
1329         int len;
1330
1331         if (v == swap_info)
1332                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1333
1334         file = ptr->swap_file;
1335         len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1336         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1337                        len < 40 ? 40 - len : 1, " ",
1338                        S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1339                                 "partition" : "file\t",
1340                        ptr->pages << (PAGE_SHIFT - 10),
1341                        ptr->inuse_pages << (PAGE_SHIFT - 10),
1342                        ptr->prio);
1343         return 0;
1344 }
1345
1346 static struct seq_operations swaps_op = {
1347         .start =        swap_start,
1348         .next =         swap_next,
1349         .stop =         swap_stop,
1350         .show =         swap_show
1351 };
1352
1353 static int swaps_open(struct inode *inode, struct file *file)
1354 {
1355         return seq_open(file, &swaps_op);
1356 }
1357
1358 static struct file_operations proc_swaps_operations = {
1359         .open           = swaps_open,
1360         .read           = seq_read,
1361         .llseek         = seq_lseek,
1362         .release        = seq_release,
1363 };
1364
1365 static int __init procswaps_init(void)
1366 {
1367         struct proc_dir_entry *entry;
1368
1369         entry = create_proc_entry("swaps", 0, NULL);
1370         if (entry)
1371                 entry->proc_fops = &proc_swaps_operations;
1372         return 0;
1373 }
1374 __initcall(procswaps_init);
1375 #endif /* CONFIG_PROC_FS */
1376
1377 /*
1378  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1379  *
1380  * The swapon system call
1381  */
1382 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1383 {
1384         struct swap_info_struct * p;
1385         char *name = NULL;
1386         struct block_device *bdev = NULL;
1387         struct file *swap_file = NULL;
1388         struct address_space *mapping;
1389         unsigned int type;
1390         int i, prev;
1391         int error;
1392         static int least_priority;
1393         union swap_header *swap_header = NULL;
1394         int swap_header_version;
1395         unsigned int nr_good_pages = 0;
1396         int nr_extents = 0;
1397         sector_t span;
1398         unsigned long maxpages = 1;
1399         int swapfilesize;
1400         unsigned short *swap_map;
1401         struct page *page = NULL;
1402         struct inode *inode = NULL;
1403         int did_down = 0;
1404
1405         if (!capable(CAP_SYS_ADMIN))
1406                 return -EPERM;
1407         spin_lock(&swap_lock);
1408         p = swap_info;
1409         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1410                 if (!(p->flags & SWP_USED))
1411                         break;
1412         error = -EPERM;
1413         /*
1414          * Test if adding another swap device is possible. There are
1415          * two limiting factors: 1) the number of bits for the swap
1416          * type swp_entry_t definition and 2) the number of bits for
1417          * the swap type in the swap ptes as defined by the different
1418          * architectures. To honor both limitations a swap entry
1419          * with swap offset 0 and swap type ~0UL is created, encoded
1420          * to a swap pte, decoded to a swp_entry_t again and finally
1421          * the swap type part is extracted. This will mask all bits
1422          * from the initial ~0UL that can't be encoded in either the
1423          * swp_entry_t or the architecture definition of a swap pte.
1424          */
1425         if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1426                 spin_unlock(&swap_lock);
1427                 goto out;
1428         }
1429         if (type >= nr_swapfiles)
1430                 nr_swapfiles = type+1;
1431         INIT_LIST_HEAD(&p->extent_list);
1432         p->flags = SWP_USED;
1433         p->swap_file = NULL;
1434         p->old_block_size = 0;
1435         p->swap_map = NULL;
1436         p->lowest_bit = 0;
1437         p->highest_bit = 0;
1438         p->cluster_nr = 0;
1439         p->inuse_pages = 0;
1440         p->next = -1;
1441         if (swap_flags & SWAP_FLAG_PREFER) {
1442                 p->prio =
1443                   (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1444         } else {
1445                 p->prio = --least_priority;
1446         }
1447         spin_unlock(&swap_lock);
1448         name = getname(specialfile);
1449         error = PTR_ERR(name);
1450         if (IS_ERR(name)) {
1451                 name = NULL;
1452                 goto bad_swap_2;
1453         }
1454         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1455         error = PTR_ERR(swap_file);
1456         if (IS_ERR(swap_file)) {
1457                 swap_file = NULL;
1458                 goto bad_swap_2;
1459         }
1460
1461         p->swap_file = swap_file;
1462         mapping = swap_file->f_mapping;
1463         inode = mapping->host;
1464
1465         error = -EBUSY;
1466         for (i = 0; i < nr_swapfiles; i++) {
1467                 struct swap_info_struct *q = &swap_info[i];
1468
1469                 if (i == type || !q->swap_file)
1470                         continue;
1471                 if (mapping == q->swap_file->f_mapping)
1472                         goto bad_swap;
1473         }
1474
1475         error = -EINVAL;
1476         if (S_ISBLK(inode->i_mode)) {
1477                 bdev = I_BDEV(inode);
1478                 error = bd_claim(bdev, sys_swapon);
1479                 if (error < 0) {
1480                         bdev = NULL;
1481                         error = -EINVAL;
1482                         goto bad_swap;
1483                 }
1484                 p->old_block_size = block_size(bdev);
1485                 error = set_blocksize(bdev, PAGE_SIZE);
1486                 if (error < 0)
1487                         goto bad_swap;
1488                 p->bdev = bdev;
1489         } else if (S_ISREG(inode->i_mode)) {
1490                 p->bdev = inode->i_sb->s_bdev;
1491                 mutex_lock(&inode->i_mutex);
1492                 did_down = 1;
1493                 if (IS_SWAPFILE(inode)) {
1494                         error = -EBUSY;
1495                         goto bad_swap;
1496                 }
1497         } else {
1498                 goto bad_swap;
1499         }
1500
1501         swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1502
1503         /*
1504          * Read the swap header.
1505          */
1506         if (!mapping->a_ops->readpage) {
1507                 error = -EINVAL;
1508                 goto bad_swap;
1509         }
1510         page = read_cache_page(mapping, 0,
1511                         (filler_t *)mapping->a_ops->readpage, swap_file);
1512         if (IS_ERR(page)) {
1513                 error = PTR_ERR(page);
1514                 goto bad_swap;
1515         }
1516         wait_on_page_locked(page);
1517         if (!PageUptodate(page))
1518                 goto bad_swap;
1519         kmap(page);
1520         swap_header = page_address(page);
1521
1522         if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1523                 swap_header_version = 1;
1524         else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1525                 swap_header_version = 2;
1526         else {
1527                 printk(KERN_ERR "Unable to find swap-space signature\n");
1528                 error = -EINVAL;
1529                 goto bad_swap;
1530         }
1531         
1532         switch (swap_header_version) {
1533         case 1:
1534                 printk(KERN_ERR "version 0 swap is no longer supported. "
1535                         "Use mkswap -v1 %s\n", name);
1536                 error = -EINVAL;
1537                 goto bad_swap;
1538         case 2:
1539                 /* Check the swap header's sub-version and the size of
1540                    the swap file and bad block lists */
1541                 if (swap_header->info.version != 1) {
1542                         printk(KERN_WARNING
1543                                "Unable to handle swap header version %d\n",
1544                                swap_header->info.version);
1545                         error = -EINVAL;
1546                         goto bad_swap;
1547                 }
1548
1549                 p->lowest_bit  = 1;
1550                 p->cluster_next = 1;
1551
1552                 /*
1553                  * Find out how many pages are allowed for a single swap
1554                  * device. There are two limiting factors: 1) the number of
1555                  * bits for the swap offset in the swp_entry_t type and
1556                  * 2) the number of bits in the a swap pte as defined by
1557                  * the different architectures. In order to find the
1558                  * largest possible bit mask a swap entry with swap type 0
1559                  * and swap offset ~0UL is created, encoded to a swap pte,
1560                  * decoded to a swp_entry_t again and finally the swap
1561                  * offset is extracted. This will mask all the bits from
1562                  * the initial ~0UL mask that can't be encoded in either
1563                  * the swp_entry_t or the architecture definition of a
1564                  * swap pte.
1565                  */
1566                 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1567                 if (maxpages > swap_header->info.last_page)
1568                         maxpages = swap_header->info.last_page;
1569                 p->highest_bit = maxpages - 1;
1570
1571                 error = -EINVAL;
1572                 if (!maxpages)
1573                         goto bad_swap;
1574                 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1575                         goto bad_swap;
1576                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1577                         goto bad_swap;
1578
1579                 /* OK, set up the swap map and apply the bad block list */
1580                 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1581                         error = -ENOMEM;
1582                         goto bad_swap;
1583                 }
1584
1585                 error = 0;
1586                 memset(p->swap_map, 0, maxpages * sizeof(short));
1587                 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1588                         int page_nr = swap_header->info.badpages[i];
1589                         if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1590                                 error = -EINVAL;
1591                         else
1592                                 p->swap_map[page_nr] = SWAP_MAP_BAD;
1593                 }
1594                 nr_good_pages = swap_header->info.last_page -
1595                                 swap_header->info.nr_badpages -
1596                                 1 /* header page */;
1597                 if (error)
1598                         goto bad_swap;
1599         }
1600
1601         if (swapfilesize && maxpages > swapfilesize) {
1602                 printk(KERN_WARNING
1603                        "Swap area shorter than signature indicates\n");
1604                 error = -EINVAL;
1605                 goto bad_swap;
1606         }
1607         if (nr_good_pages) {
1608                 p->swap_map[0] = SWAP_MAP_BAD;
1609                 p->max = maxpages;
1610                 p->pages = nr_good_pages;
1611                 nr_extents = setup_swap_extents(p, &span);
1612                 if (nr_extents < 0) {
1613                         error = nr_extents;
1614                         goto bad_swap;
1615                 }
1616                 nr_good_pages = p->pages;
1617         }
1618         if (!nr_good_pages) {
1619                 printk(KERN_WARNING "Empty swap-file\n");
1620                 error = -EINVAL;
1621                 goto bad_swap;
1622         }
1623
1624         mutex_lock(&swapon_mutex);
1625         spin_lock(&swap_lock);
1626         p->flags = SWP_ACTIVE;
1627         nr_swap_pages += nr_good_pages;
1628         total_swap_pages += nr_good_pages;
1629
1630         printk(KERN_INFO "Adding %uk swap on %s.  "
1631                         "Priority:%d extents:%d across:%lluk\n",
1632                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1633                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1634
1635         /* insert swap space into swap_list: */
1636         prev = -1;
1637         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1638                 if (p->prio >= swap_info[i].prio) {
1639                         break;
1640                 }
1641                 prev = i;
1642         }
1643         p->next = i;
1644         if (prev < 0) {
1645                 swap_list.head = swap_list.next = p - swap_info;
1646         } else {
1647                 swap_info[prev].next = p - swap_info;
1648         }
1649         spin_unlock(&swap_lock);
1650         mutex_unlock(&swapon_mutex);
1651         error = 0;
1652         goto out;
1653 bad_swap:
1654         if (bdev) {
1655                 set_blocksize(bdev, p->old_block_size);
1656                 bd_release(bdev);
1657         }
1658         destroy_swap_extents(p);
1659 bad_swap_2:
1660         spin_lock(&swap_lock);
1661         swap_map = p->swap_map;
1662         p->swap_file = NULL;
1663         p->swap_map = NULL;
1664         p->flags = 0;
1665         if (!(swap_flags & SWAP_FLAG_PREFER))
1666                 ++least_priority;
1667         spin_unlock(&swap_lock);
1668         vfree(swap_map);
1669         if (swap_file)
1670                 filp_close(swap_file, NULL);
1671 out:
1672         if (page && !IS_ERR(page)) {
1673                 kunmap(page);
1674                 page_cache_release(page);
1675         }
1676         if (name)
1677                 putname(name);
1678         if (did_down) {
1679                 if (!error)
1680                         inode->i_flags |= S_SWAPFILE;
1681                 mutex_unlock(&inode->i_mutex);
1682         }
1683         return error;
1684 }
1685
1686 void si_swapinfo(struct sysinfo *val)
1687 {
1688         unsigned int i;
1689         unsigned long nr_to_be_unused = 0;
1690
1691         spin_lock(&swap_lock);
1692         for (i = 0; i < nr_swapfiles; i++) {
1693                 if (!(swap_info[i].flags & SWP_USED) ||
1694                      (swap_info[i].flags & SWP_WRITEOK))
1695                         continue;
1696                 nr_to_be_unused += swap_info[i].inuse_pages;
1697         }
1698         val->freeswap = nr_swap_pages + nr_to_be_unused;
1699         val->totalswap = total_swap_pages + nr_to_be_unused;
1700         spin_unlock(&swap_lock);
1701         if (vx_flags(VXF_VIRT_MEM, 0))
1702                 vx_vsi_swapinfo(val);
1703 }
1704
1705 /*
1706  * Verify that a swap entry is valid and increment its swap map count.
1707  *
1708  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1709  * "permanent", but will be reclaimed by the next swapoff.
1710  */
1711 int swap_duplicate(swp_entry_t entry)
1712 {
1713         struct swap_info_struct * p;
1714         unsigned long offset, type;
1715         int result = 0;
1716
1717         type = swp_type(entry);
1718         if (type >= nr_swapfiles)
1719                 goto bad_file;
1720         p = type + swap_info;
1721         offset = swp_offset(entry);
1722
1723         spin_lock(&swap_lock);
1724         if (offset < p->max && p->swap_map[offset]) {
1725                 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1726                         p->swap_map[offset]++;
1727                         result = 1;
1728                 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1729                         if (swap_overflow++ < 5)
1730                                 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1731                         p->swap_map[offset] = SWAP_MAP_MAX;
1732                         result = 1;
1733                 }
1734         }
1735         spin_unlock(&swap_lock);
1736 out:
1737         return result;
1738
1739 bad_file:
1740         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1741         goto out;
1742 }
1743
1744 struct swap_info_struct *
1745 get_swap_info_struct(unsigned type)
1746 {
1747         return &swap_info[type];
1748 }
1749
1750 /*
1751  * swap_lock prevents swap_map being freed. Don't grab an extra
1752  * reference on the swaphandle, it doesn't matter if it becomes unused.
1753  */
1754 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1755 {
1756         int ret = 0, i = 1 << page_cluster;
1757         unsigned long toff;
1758         struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1759
1760         if (!page_cluster)      /* no readahead */
1761                 return 0;
1762         toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1763         if (!toff)              /* first page is swap header */
1764                 toff++, i--;
1765         *offset = toff;
1766
1767         spin_lock(&swap_lock);
1768         do {
1769                 /* Don't read-ahead past the end of the swap area */
1770                 if (toff >= swapdev->max)
1771                         break;
1772                 /* Don't read in free or bad pages */
1773                 if (!swapdev->swap_map[toff])
1774                         break;
1775                 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1776                         break;
1777                 toff++;
1778                 ret++;
1779         } while (--i);
1780         spin_unlock(&swap_lock);
1781         return ret;
1782 }