ckrm-E13
[linux-2.6.git] / net / ipv4 / tcp_minisocks.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro, <bir7@leland.Stanford.Edu>
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 #include <linux/config.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/sysctl.h>
27 #include <linux/workqueue.h>
28 #include <net/tcp.h>
29 #include <net/inet_common.h>
30 #include <net/xfrm.h>
31
32 #ifdef CONFIG_SYSCTL
33 #define SYNC_INIT 0 /* let the user enable it */
34 #else
35 #define SYNC_INIT 1
36 #endif
37
38 int sysctl_tcp_tw_recycle;
39 int sysctl_tcp_max_tw_buckets = NR_FILE*2;
40
41 int sysctl_tcp_syncookies = SYNC_INIT; 
42 int sysctl_tcp_abort_on_overflow;
43
44 static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
45 {
46         if (seq == s_win)
47                 return 1;
48         if (after(end_seq, s_win) && before(seq, e_win))
49                 return 1;
50         return (seq == e_win && seq == end_seq);
51 }
52
53 /* New-style handling of TIME_WAIT sockets. */
54
55 int tcp_tw_count;
56
57
58 /* Must be called with locally disabled BHs. */
59 static void tcp_timewait_kill(struct tcp_tw_bucket *tw)
60 {
61         struct tcp_ehash_bucket *ehead;
62         struct tcp_bind_hashbucket *bhead;
63         struct tcp_bind_bucket *tb;
64
65         /* Unlink from established hashes. */
66         ehead = &tcp_ehash[tw->tw_hashent];
67         write_lock(&ehead->lock);
68         if (hlist_unhashed(&tw->tw_node)) {
69                 write_unlock(&ehead->lock);
70                 return;
71         }
72         __hlist_del(&tw->tw_node);
73         sk_node_init(&tw->tw_node);
74         write_unlock(&ehead->lock);
75
76         /* Disassociate with bind bucket. */
77         bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)];
78         spin_lock(&bhead->lock);
79         tb = tw->tw_tb;
80         __hlist_del(&tw->tw_bind_node);
81         tw->tw_tb = NULL;
82         tcp_bucket_destroy(tb);
83         spin_unlock(&bhead->lock);
84
85 #ifdef INET_REFCNT_DEBUG
86         if (atomic_read(&tw->tw_refcnt) != 1) {
87                 printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw,
88                        atomic_read(&tw->tw_refcnt));
89         }
90 #endif
91         tcp_tw_put(tw);
92 }
93
94 /* 
95  * * Main purpose of TIME-WAIT state is to close connection gracefully,
96  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
97  *   (and, probably, tail of data) and one or more our ACKs are lost.
98  * * What is TIME-WAIT timeout? It is associated with maximal packet
99  *   lifetime in the internet, which results in wrong conclusion, that
100  *   it is set to catch "old duplicate segments" wandering out of their path.
101  *   It is not quite correct. This timeout is calculated so that it exceeds
102  *   maximal retransmission timeout enough to allow to lose one (or more)
103  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
104  * * When TIME-WAIT socket receives RST, it means that another end
105  *   finally closed and we are allowed to kill TIME-WAIT too.
106  * * Second purpose of TIME-WAIT is catching old duplicate segments.
107  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
108  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
109  * * If we invented some more clever way to catch duplicates
110  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
111  *
112  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
113  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
114  * from the very beginning.
115  *
116  * NOTE. With recycling (and later with fin-wait-2) TW bucket
117  * is _not_ stateless. It means, that strictly speaking we must
118  * spinlock it. I do not want! Well, probability of misbehaviour
119  * is ridiculously low and, seems, we could use some mb() tricks
120  * to avoid misread sequence numbers, states etc.  --ANK
121  */
122 enum tcp_tw_status
123 tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb,
124                            struct tcphdr *th, unsigned len)
125 {
126         struct tcp_opt tp;
127         int paws_reject = 0;
128
129         tp.saw_tstamp = 0;
130         if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) {
131                 tcp_parse_options(skb, &tp, 0);
132
133                 if (tp.saw_tstamp) {
134                         tp.ts_recent       = tw->tw_ts_recent;
135                         tp.ts_recent_stamp = tw->tw_ts_recent_stamp;
136                         paws_reject = tcp_paws_check(&tp, th->rst);
137                 }
138         }
139
140         if (tw->tw_substate == TCP_FIN_WAIT2) {
141                 /* Just repeat all the checks of tcp_rcv_state_process() */
142
143                 /* Out of window, send ACK */
144                 if (paws_reject ||
145                     !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
146                                    tw->tw_rcv_nxt,
147                                    tw->tw_rcv_nxt + tw->tw_rcv_wnd))
148                         return TCP_TW_ACK;
149
150                 if (th->rst)
151                         goto kill;
152
153                 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt))
154                         goto kill_with_rst;
155
156                 /* Dup ACK? */
157                 if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) ||
158                     TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
159                         tcp_tw_put(tw);
160                         return TCP_TW_SUCCESS;
161                 }
162
163                 /* New data or FIN. If new data arrive after half-duplex close,
164                  * reset.
165                  */
166                 if (!th->fin ||
167                     TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) {
168 kill_with_rst:
169                         tcp_tw_deschedule(tw);
170                         tcp_tw_put(tw);
171                         return TCP_TW_RST;
172                 }
173
174                 /* FIN arrived, enter true time-wait state. */
175                 tw->tw_substate = TCP_TIME_WAIT;
176                 tw->tw_rcv_nxt  = TCP_SKB_CB(skb)->end_seq;
177                 if (tp.saw_tstamp) {
178                         tw->tw_ts_recent_stamp  = xtime.tv_sec;
179                         tw->tw_ts_recent        = tp.rcv_tsval;
180                 }
181
182                 /* I am shamed, but failed to make it more elegant.
183                  * Yes, it is direct reference to IP, which is impossible
184                  * to generalize to IPv6. Taking into account that IPv6
185                  * do not undertsnad recycling in any case, it not
186                  * a big problem in practice. --ANK */
187                 if (tw->tw_family == AF_INET &&
188                     sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp &&
189                     tcp_v4_tw_remember_stamp(tw))
190                         tcp_tw_schedule(tw, tw->tw_timeout);
191                 else
192                         tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
193                 return TCP_TW_ACK;
194         }
195
196         /*
197          *      Now real TIME-WAIT state.
198          *
199          *      RFC 1122:
200          *      "When a connection is [...] on TIME-WAIT state [...]
201          *      [a TCP] MAY accept a new SYN from the remote TCP to
202          *      reopen the connection directly, if it:
203          *      
204          *      (1)  assigns its initial sequence number for the new
205          *      connection to be larger than the largest sequence
206          *      number it used on the previous connection incarnation,
207          *      and
208          *
209          *      (2)  returns to TIME-WAIT state if the SYN turns out 
210          *      to be an old duplicate".
211          */
212
213         if (!paws_reject &&
214             (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt &&
215              (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
216                 /* In window segment, it may be only reset or bare ack. */
217
218                 if (th->rst) {
219                         /* This is TIME_WAIT assasination, in two flavors.
220                          * Oh well... nobody has a sufficient solution to this
221                          * protocol bug yet.
222                          */
223                         if (sysctl_tcp_rfc1337 == 0) {
224 kill:
225                                 tcp_tw_deschedule(tw);
226                                 tcp_tw_put(tw);
227                                 return TCP_TW_SUCCESS;
228                         }
229                 }
230                 tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
231
232                 if (tp.saw_tstamp) {
233                         tw->tw_ts_recent        = tp.rcv_tsval;
234                         tw->tw_ts_recent_stamp  = xtime.tv_sec;
235                 }
236
237                 tcp_tw_put(tw);
238                 return TCP_TW_SUCCESS;
239         }
240
241         /* Out of window segment.
242
243            All the segments are ACKed immediately.
244
245            The only exception is new SYN. We accept it, if it is
246            not old duplicate and we are not in danger to be killed
247            by delayed old duplicates. RFC check is that it has
248            newer sequence number works at rates <40Mbit/sec.
249            However, if paws works, it is reliable AND even more,
250            we even may relax silly seq space cutoff.
251
252            RED-PEN: we violate main RFC requirement, if this SYN will appear
253            old duplicate (i.e. we receive RST in reply to SYN-ACK),
254            we must return socket to time-wait state. It is not good,
255            but not fatal yet.
256          */
257
258         if (th->syn && !th->rst && !th->ack && !paws_reject &&
259             (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) ||
260              (tp.saw_tstamp && (s32)(tw->tw_ts_recent - tp.rcv_tsval) < 0))) {
261                 u32 isn = tw->tw_snd_nxt + 65535 + 2;
262                 if (isn == 0)
263                         isn++;
264                 TCP_SKB_CB(skb)->when = isn;
265                 return TCP_TW_SYN;
266         }
267
268         if (paws_reject)
269                 NET_INC_STATS_BH(PAWSEstabRejected);
270
271         if(!th->rst) {
272                 /* In this case we must reset the TIMEWAIT timer.
273                  *
274                  * If it is ACKless SYN it may be both old duplicate
275                  * and new good SYN with random sequence number <rcv_nxt.
276                  * Do not reschedule in the last case.
277                  */
278                 if (paws_reject || th->ack)
279                         tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
280
281                 /* Send ACK. Note, we do not put the bucket,
282                  * it will be released by caller.
283                  */
284                 return TCP_TW_ACK;
285         }
286         tcp_tw_put(tw);
287         return TCP_TW_SUCCESS;
288 }
289
290 /* Enter the time wait state.  This is called with locally disabled BH.
291  * Essentially we whip up a timewait bucket, copy the
292  * relevant info into it from the SK, and mess with hash chains
293  * and list linkage.
294  */
295 static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw)
296 {
297         struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent];
298         struct tcp_bind_hashbucket *bhead;
299
300         /* Step 1: Put TW into bind hash. Original socket stays there too.
301            Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in
302            binding cache, even if it is closed.
303          */
304         bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)];
305         spin_lock(&bhead->lock);
306         tw->tw_tb = tcp_sk(sk)->bind_hash;
307         BUG_TRAP(tcp_sk(sk)->bind_hash);
308         tw_add_bind_node(tw, &tw->tw_tb->owners);
309         spin_unlock(&bhead->lock);
310
311         write_lock(&ehead->lock);
312
313         /* Step 2: Remove SK from established hash. */
314         if (__sk_del_node_init(sk))
315                 sock_prot_dec_use(sk->sk_prot);
316
317         /* Step 3: Hash TW into TIMEWAIT half of established hash table. */
318         tw_add_node(tw, &(ehead + tcp_ehash_size)->chain);
319         atomic_inc(&tw->tw_refcnt);
320
321         write_unlock(&ehead->lock);
322 }
323
324 /* 
325  * Move a socket to time-wait or dead fin-wait-2 state.
326  */ 
327 void tcp_time_wait(struct sock *sk, int state, int timeo)
328 {
329         struct tcp_tw_bucket *tw = NULL;
330         struct tcp_opt *tp = tcp_sk(sk);
331         int recycle_ok = 0;
332
333         if (sysctl_tcp_tw_recycle && tp->ts_recent_stamp)
334                 recycle_ok = tp->af_specific->remember_stamp(sk);
335
336         if (tcp_tw_count < sysctl_tcp_max_tw_buckets)
337                 tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC);
338
339         if(tw != NULL) {
340                 struct inet_opt *inet = inet_sk(sk);
341                 int rto = (tp->rto<<2) - (tp->rto>>1);
342
343                 /* Give us an identity. */
344                 tw->tw_daddr            = inet->daddr;
345                 tw->tw_rcv_saddr        = inet->rcv_saddr;
346                 tw->tw_bound_dev_if     = sk->sk_bound_dev_if;
347                 tw->tw_num              = inet->num;
348                 tw->tw_state            = TCP_TIME_WAIT;
349                 tw->tw_substate         = state;
350                 tw->tw_sport            = inet->sport;
351                 tw->tw_dport            = inet->dport;
352                 tw->tw_family           = sk->sk_family;
353                 tw->tw_reuse            = sk->sk_reuse;
354                 tw->tw_rcv_wscale       = tp->rcv_wscale;
355                 atomic_set(&tw->tw_refcnt, 1);
356
357                 tw->tw_hashent          = sk->sk_hashent;
358                 tw->tw_rcv_nxt          = tp->rcv_nxt;
359                 tw->tw_snd_nxt          = tp->snd_nxt;
360                 tw->tw_rcv_wnd          = tcp_receive_window(tp);
361                 tw->tw_ts_recent        = tp->ts_recent;
362                 tw->tw_ts_recent_stamp  = tp->ts_recent_stamp;
363                 tw_dead_node_init(tw);
364
365 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
366                 if (tw->tw_family == PF_INET6) {
367                         struct ipv6_pinfo *np = inet6_sk(sk);
368
369                         ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr);
370                         ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr);
371                         tw->tw_v6_ipv6only = np->ipv6only;
372                 } else {
373                         memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr));
374                         memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr));
375                         tw->tw_v6_ipv6only = 0;
376                 }
377 #endif
378                 /* Linkage updates. */
379                 __tcp_tw_hashdance(sk, tw);
380
381                 /* Get the TIME_WAIT timeout firing. */
382                 if (timeo < rto)
383                         timeo = rto;
384
385                 if (recycle_ok) {
386                         tw->tw_timeout = rto;
387                 } else {
388                         tw->tw_timeout = TCP_TIMEWAIT_LEN;
389                         if (state == TCP_TIME_WAIT)
390                                 timeo = TCP_TIMEWAIT_LEN;
391                 }
392
393                 tcp_tw_schedule(tw, timeo);
394                 tcp_tw_put(tw);
395         } else {
396                 /* Sorry, if we're out of memory, just CLOSE this
397                  * socket up.  We've got bigger problems than
398                  * non-graceful socket closings.
399                  */
400                 if (net_ratelimit())
401                         printk(KERN_INFO "TCP: time wait bucket table overflow\n");
402         }
403
404         tcp_update_metrics(sk);
405         tcp_done(sk);
406 }
407
408 /* Kill off TIME_WAIT sockets once their lifetime has expired. */
409 static int tcp_tw_death_row_slot;
410
411 static void tcp_twkill(unsigned long);
412
413 /* TIME_WAIT reaping mechanism. */
414 #define TCP_TWKILL_SLOTS        8       /* Please keep this a power of 2. */
415 #define TCP_TWKILL_PERIOD       (TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS)
416
417 #define TCP_TWKILL_QUOTA        100
418
419 static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS];
420 static spinlock_t tw_death_lock = SPIN_LOCK_UNLOCKED;
421 static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0);
422 static void twkill_work(void *);
423 static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL);
424 static u32 twkill_thread_slots;
425
426 /* Returns non-zero if quota exceeded.  */
427 static int tcp_do_twkill_work(int slot, unsigned int quota)
428 {
429         struct tcp_tw_bucket *tw;
430         struct hlist_node *node;
431         unsigned int killed;
432         int ret;
433
434         /* NOTE: compare this to previous version where lock
435          * was released after detaching chain. It was racy,
436          * because tw buckets are scheduled in not serialized context
437          * in 2.3 (with netfilter), and with softnet it is common, because
438          * soft irqs are not sequenced.
439          */
440         killed = 0;
441         ret = 0;
442 rescan:
443         tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) {
444                 __tw_del_dead_node(tw);
445                 spin_unlock(&tw_death_lock);
446                 tcp_timewait_kill(tw);
447                 tcp_tw_put(tw);
448                 killed++;
449                 spin_lock(&tw_death_lock);
450                 if (killed > quota) {
451                         ret = 1;
452                         break;
453                 }
454
455                 /* While we dropped tw_death_lock, another cpu may have
456                  * killed off the next TW bucket in the list, therefore
457                  * do a fresh re-read of the hlist head node with the
458                  * lock reacquired.  We still use the hlist traversal
459                  * macro in order to get the prefetches.
460                  */
461                 goto rescan;
462         }
463
464         tcp_tw_count -= killed;
465         NET_ADD_STATS_BH(TimeWaited, killed);
466
467         return ret;
468 }
469
470 static void tcp_twkill(unsigned long dummy)
471 {
472         int need_timer, ret;
473
474         spin_lock(&tw_death_lock);
475
476         if (tcp_tw_count == 0)
477                 goto out;
478
479         need_timer = 0;
480         ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA);
481         if (ret) {
482                 twkill_thread_slots |= (1 << tcp_tw_death_row_slot);
483                 mb();
484                 schedule_work(&tcp_twkill_work);
485                 need_timer = 1;
486         } else {
487                 /* We purged the entire slot, anything left?  */
488                 if (tcp_tw_count)
489                         need_timer = 1;
490         }
491         tcp_tw_death_row_slot =
492                 ((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1));
493         if (need_timer)
494                 mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD);
495 out:
496         spin_unlock(&tw_death_lock);
497 }
498
499 extern void twkill_slots_invalid(void);
500
501 static void twkill_work(void *dummy)
502 {
503         int i;
504
505         if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8))
506                 twkill_slots_invalid();
507
508         while (twkill_thread_slots) {
509                 spin_lock_bh(&tw_death_lock);
510                 for (i = 0; i < TCP_TWKILL_SLOTS; i++) {
511                         if (!(twkill_thread_slots & (1 << i)))
512                                 continue;
513
514                         while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) {
515                                 if (need_resched()) {
516                                         spin_unlock_bh(&tw_death_lock);
517                                         schedule();
518                                         spin_lock_bh(&tw_death_lock);
519                                 }
520                         }
521
522                         twkill_thread_slots &= ~(1 << i);
523                 }
524                 spin_unlock_bh(&tw_death_lock);
525         }
526 }
527
528 /* These are always called from BH context.  See callers in
529  * tcp_input.c to verify this.
530  */
531
532 /* This is for handling early-kills of TIME_WAIT sockets. */
533 void tcp_tw_deschedule(struct tcp_tw_bucket *tw)
534 {
535         spin_lock(&tw_death_lock);
536         if (tw_del_dead_node(tw)) {
537                 tcp_tw_put(tw);
538                 if (--tcp_tw_count == 0)
539                         del_timer(&tcp_tw_timer);
540         }
541         spin_unlock(&tw_death_lock);
542         tcp_timewait_kill(tw);
543 }
544
545 /* Short-time timewait calendar */
546
547 static int tcp_twcal_hand = -1;
548 static int tcp_twcal_jiffie;
549 static void tcp_twcal_tick(unsigned long);
550 static struct timer_list tcp_twcal_timer =
551                 TIMER_INITIALIZER(tcp_twcal_tick, 0, 0);
552 static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS];
553
554 void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo)
555 {
556         struct hlist_head *list;
557         int slot;
558
559         /* timeout := RTO * 3.5
560          *
561          * 3.5 = 1+2+0.5 to wait for two retransmits.
562          *
563          * RATIONALE: if FIN arrived and we entered TIME-WAIT state,
564          * our ACK acking that FIN can be lost. If N subsequent retransmitted
565          * FINs (or previous seqments) are lost (probability of such event
566          * is p^(N+1), where p is probability to lose single packet and
567          * time to detect the loss is about RTO*(2^N - 1) with exponential
568          * backoff). Normal timewait length is calculated so, that we
569          * waited at least for one retransmitted FIN (maximal RTO is 120sec).
570          * [ BTW Linux. following BSD, violates this requirement waiting
571          *   only for 60sec, we should wait at least for 240 secs.
572          *   Well, 240 consumes too much of resources 8)
573          * ]
574          * This interval is not reduced to catch old duplicate and
575          * responces to our wandering segments living for two MSLs.
576          * However, if we use PAWS to detect
577          * old duplicates, we can reduce the interval to bounds required
578          * by RTO, rather than MSL. So, if peer understands PAWS, we
579          * kill tw bucket after 3.5*RTO (it is important that this number
580          * is greater than TS tick!) and detect old duplicates with help
581          * of PAWS.
582          */
583         slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK;
584
585         spin_lock(&tw_death_lock);
586
587         /* Unlink it, if it was scheduled */
588         if (tw_del_dead_node(tw))
589                 tcp_tw_count--;
590         else
591                 atomic_inc(&tw->tw_refcnt);
592
593         if (slot >= TCP_TW_RECYCLE_SLOTS) {
594                 /* Schedule to slow timer */
595                 if (timeo >= TCP_TIMEWAIT_LEN) {
596                         slot = TCP_TWKILL_SLOTS-1;
597                 } else {
598                         slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD;
599                         if (slot >= TCP_TWKILL_SLOTS)
600                                 slot = TCP_TWKILL_SLOTS-1;
601                 }
602                 tw->tw_ttd = jiffies + timeo;
603                 slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1);
604                 list = &tcp_tw_death_row[slot];
605         } else {
606                 tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK);
607
608                 if (tcp_twcal_hand < 0) {
609                         tcp_twcal_hand = 0;
610                         tcp_twcal_jiffie = jiffies;
611                         tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK);
612                         add_timer(&tcp_twcal_timer);
613                 } else {
614                         if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK)))
615                                 mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK));
616                         slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1);
617                 }
618                 list = &tcp_twcal_row[slot];
619         }
620
621         hlist_add_head(&tw->tw_death_node, list);
622
623         if (tcp_tw_count++ == 0)
624                 mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD);
625         spin_unlock(&tw_death_lock);
626 }
627
628 void tcp_twcal_tick(unsigned long dummy)
629 {
630         int n, slot;
631         unsigned long j;
632         unsigned long now = jiffies;
633         int killed = 0;
634         int adv = 0;
635
636         spin_lock(&tw_death_lock);
637         if (tcp_twcal_hand < 0)
638                 goto out;
639
640         slot = tcp_twcal_hand;
641         j = tcp_twcal_jiffie;
642
643         for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) {
644                 if (time_before_eq(j, now)) {
645                         struct hlist_node *node, *safe;
646                         struct tcp_tw_bucket *tw;
647
648                         tw_for_each_inmate_safe(tw, node, safe,
649                                            &tcp_twcal_row[slot]) {
650                                 __tw_del_dead_node(tw);
651                                 tcp_timewait_kill(tw);
652                                 tcp_tw_put(tw);
653                                 killed++;
654                         }
655                 } else {
656                         if (!adv) {
657                                 adv = 1;
658                                 tcp_twcal_jiffie = j;
659                                 tcp_twcal_hand = slot;
660                         }
661
662                         if (!hlist_empty(&tcp_twcal_row[slot])) {
663                                 mod_timer(&tcp_twcal_timer, j);
664                                 goto out;
665                         }
666                 }
667                 j += (1<<TCP_TW_RECYCLE_TICK);
668                 slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1);
669         }
670         tcp_twcal_hand = -1;
671
672 out:
673         if ((tcp_tw_count -= killed) == 0)
674                 del_timer(&tcp_tw_timer);
675         NET_ADD_STATS_BH(TimeWaitKilled, killed);
676         spin_unlock(&tw_death_lock);
677 }
678
679 /* This is not only more efficient than what we used to do, it eliminates
680  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
681  *
682  * Actually, we could lots of memory writes here. tp of listening
683  * socket contains all necessary default parameters.
684  */
685 struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb)
686 {
687         /* allocate the newsk from the same slab of the master sock,
688          * if not, at sk_free time we'll try to free it from the wrong
689          * slabcache (i.e. is it TCPv4 or v6?) -acme */
690         struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, 0, sk->sk_slab);
691
692         if(newsk != NULL) {
693                 struct tcp_opt *newtp;
694                 struct sk_filter *filter;
695
696                 memcpy(newsk, sk, sizeof(struct tcp_sock));
697                 newsk->sk_state = TCP_SYN_RECV;
698
699                 /* SANITY */
700                 sk_node_init(&newsk->sk_node);
701                 tcp_sk(newsk)->bind_hash = NULL;
702
703                 /* Clone the TCP header template */
704                 inet_sk(newsk)->dport = req->rmt_port;
705
706                 sock_lock_init(newsk);
707                 bh_lock_sock(newsk);
708
709                 newsk->sk_dst_lock = RW_LOCK_UNLOCKED;
710                 atomic_set(&newsk->sk_rmem_alloc, 0);
711                 skb_queue_head_init(&newsk->sk_receive_queue);
712                 atomic_set(&newsk->sk_wmem_alloc, 0);
713                 skb_queue_head_init(&newsk->sk_write_queue);
714                 atomic_set(&newsk->sk_omem_alloc, 0);
715                 newsk->sk_wmem_queued = 0;
716                 newsk->sk_forward_alloc = 0;
717
718                 sock_reset_flag(newsk, SOCK_DONE);
719                 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
720                 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
721                 newsk->sk_callback_lock = RW_LOCK_UNLOCKED;
722                 skb_queue_head_init(&newsk->sk_error_queue);
723                 newsk->sk_write_space = tcp_write_space;
724
725                 if ((filter = newsk->sk_filter) != NULL)
726                         sk_filter_charge(newsk, filter);
727
728                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
729                         /* It is still raw copy of parent, so invalidate
730                          * destructor and make plain sk_free() */
731                         newsk->sk_destruct = NULL;
732                         sk_free(newsk);
733                         return NULL;
734                 }
735
736                 /* Now setup tcp_opt */
737                 newtp = tcp_sk(newsk);
738                 newtp->pred_flags = 0;
739                 newtp->rcv_nxt = req->rcv_isn + 1;
740                 newtp->snd_nxt = req->snt_isn + 1;
741                 newtp->snd_una = req->snt_isn + 1;
742                 newtp->snd_sml = req->snt_isn + 1;
743
744                 tcp_prequeue_init(newtp);
745
746                 tcp_init_wl(newtp, req->snt_isn, req->rcv_isn);
747
748                 newtp->retransmits = 0;
749                 newtp->backoff = 0;
750                 newtp->srtt = 0;
751                 newtp->mdev = TCP_TIMEOUT_INIT;
752                 newtp->rto = TCP_TIMEOUT_INIT;
753
754                 newtp->packets_out = 0;
755                 newtp->left_out = 0;
756                 newtp->retrans_out = 0;
757                 newtp->sacked_out = 0;
758                 newtp->fackets_out = 0;
759                 newtp->snd_ssthresh = 0x7fffffff;
760
761                 /* So many TCP implementations out there (incorrectly) count the
762                  * initial SYN frame in their delayed-ACK and congestion control
763                  * algorithms that we must have the following bandaid to talk
764                  * efficiently to them.  -DaveM
765                  */
766                 newtp->snd_cwnd = 2;
767                 newtp->snd_cwnd_cnt = 0;
768
769                 newtp->bictcp.cnt = 0;
770                 newtp->bictcp.last_max_cwnd = newtp->bictcp.last_cwnd = 0;
771
772                 newtp->frto_counter = 0;
773                 newtp->frto_highmark = 0;
774
775                 tcp_set_ca_state(newtp, TCP_CA_Open);
776                 tcp_init_xmit_timers(newsk);
777                 skb_queue_head_init(&newtp->out_of_order_queue);
778                 newtp->send_head = NULL;
779                 newtp->rcv_wup = req->rcv_isn + 1;
780                 newtp->write_seq = req->snt_isn + 1;
781                 newtp->pushed_seq = newtp->write_seq;
782                 newtp->copied_seq = req->rcv_isn + 1;
783
784                 newtp->saw_tstamp = 0;
785
786                 newtp->dsack = 0;
787                 newtp->eff_sacks = 0;
788
789                 newtp->probes_out = 0;
790                 newtp->num_sacks = 0;
791                 newtp->urg_data = 0;
792                 newtp->listen_opt = NULL;
793 #ifdef CONFIG_ACCEPT_QUEUES
794                 newtp->accept_queue = NULL;
795                 memset(newtp->acceptq, 0,sizeof(newtp->acceptq));
796                 newtp->class_index = 0;
797
798 #else
799                 newtp->accept_queue = newtp->accept_queue_tail = NULL;
800 #endif
801                 /* Deinitialize syn_wait_lock to trap illegal accesses. */
802                 memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock));
803
804                 /* Back to base struct sock members. */
805                 newsk->sk_err = 0;
806                 newsk->sk_priority = 0;
807                 atomic_set(&newsk->sk_refcnt, 2);
808 #ifdef INET_REFCNT_DEBUG
809                 atomic_inc(&inet_sock_nr);
810 #endif
811                 atomic_inc(&tcp_sockets_allocated);
812
813                 if (sock_flag(newsk, SOCK_KEEPOPEN))
814                         tcp_reset_keepalive_timer(newsk,
815                                                   keepalive_time_when(newtp));
816                 newsk->sk_socket = NULL;
817                 newsk->sk_sleep = NULL;
818                 newsk->sk_owner = NULL;
819
820                 newtp->tstamp_ok = req->tstamp_ok;
821                 if((newtp->sack_ok = req->sack_ok) != 0) {
822                         if (sysctl_tcp_fack)
823                                 newtp->sack_ok |= 2;
824                 }
825                 newtp->window_clamp = req->window_clamp;
826                 newtp->rcv_ssthresh = req->rcv_wnd;
827                 newtp->rcv_wnd = req->rcv_wnd;
828                 newtp->wscale_ok = req->wscale_ok;
829                 if (newtp->wscale_ok) {
830                         newtp->snd_wscale = req->snd_wscale;
831                         newtp->rcv_wscale = req->rcv_wscale;
832                 } else {
833                         newtp->snd_wscale = newtp->rcv_wscale = 0;
834                         newtp->window_clamp = min(newtp->window_clamp, 65535U);
835                 }
836                 newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->snd_wscale;
837                 newtp->max_window = newtp->snd_wnd;
838
839                 if (newtp->tstamp_ok) {
840                         newtp->ts_recent = req->ts_recent;
841                         newtp->ts_recent_stamp = xtime.tv_sec;
842                         newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
843                 } else {
844                         newtp->ts_recent_stamp = 0;
845                         newtp->tcp_header_len = sizeof(struct tcphdr);
846                 }
847                 if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
848                         newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len;
849                 newtp->mss_clamp = req->mss;
850                 TCP_ECN_openreq_child(newtp, req);
851                 if (newtp->ecn_flags&TCP_ECN_OK)
852                         newsk->sk_no_largesend = 1;
853
854                 tcp_vegas_init(newtp);
855                 TCP_INC_STATS_BH(TcpPassiveOpens);
856         }
857         return newsk;
858 }
859
860 /* 
861  *      Process an incoming packet for SYN_RECV sockets represented
862  *      as an open_request.
863  */
864
865 struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
866                            struct open_request *req,
867                            struct open_request **prev)
868 {
869         struct tcphdr *th = skb->h.th;
870         struct tcp_opt *tp = tcp_sk(sk);
871         u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
872         int paws_reject = 0;
873         struct tcp_opt ttp;
874         struct sock *child;
875
876         ttp.saw_tstamp = 0;
877         if (th->doff > (sizeof(struct tcphdr)>>2)) {
878                 tcp_parse_options(skb, &ttp, 0);
879
880                 if (ttp.saw_tstamp) {
881                         ttp.ts_recent = req->ts_recent;
882                         /* We do not store true stamp, but it is not required,
883                          * it can be estimated (approximately)
884                          * from another data.
885                          */
886                         ttp.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
887                         paws_reject = tcp_paws_check(&ttp, th->rst);
888                 }
889         }
890
891         /* Check for pure retransmitted SYN. */
892         if (TCP_SKB_CB(skb)->seq == req->rcv_isn &&
893             flg == TCP_FLAG_SYN &&
894             !paws_reject) {
895                 /*
896                  * RFC793 draws (Incorrectly! It was fixed in RFC1122)
897                  * this case on figure 6 and figure 8, but formal
898                  * protocol description says NOTHING.
899                  * To be more exact, it says that we should send ACK,
900                  * because this segment (at least, if it has no data)
901                  * is out of window.
902                  *
903                  *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
904                  *  describe SYN-RECV state. All the description
905                  *  is wrong, we cannot believe to it and should
906                  *  rely only on common sense and implementation
907                  *  experience.
908                  *
909                  * Enforce "SYN-ACK" according to figure 8, figure 6
910                  * of RFC793, fixed by RFC1122.
911                  */
912                 req->class->rtx_syn_ack(sk, req, NULL);
913                 return NULL;
914         }
915
916         /* Further reproduces section "SEGMENT ARRIVES"
917            for state SYN-RECEIVED of RFC793.
918            It is broken, however, it does not work only
919            when SYNs are crossed.
920
921            You would think that SYN crossing is impossible here, since
922            we should have a SYN_SENT socket (from connect()) on our end,
923            but this is not true if the crossed SYNs were sent to both
924            ends by a malicious third party.  We must defend against this,
925            and to do that we first verify the ACK (as per RFC793, page
926            36) and reset if it is invalid.  Is this a true full defense?
927            To convince ourselves, let us consider a way in which the ACK
928            test can still pass in this 'malicious crossed SYNs' case.
929            Malicious sender sends identical SYNs (and thus identical sequence
930            numbers) to both A and B:
931
932                 A: gets SYN, seq=7
933                 B: gets SYN, seq=7
934
935            By our good fortune, both A and B select the same initial
936            send sequence number of seven :-)
937
938                 A: sends SYN|ACK, seq=7, ack_seq=8
939                 B: sends SYN|ACK, seq=7, ack_seq=8
940
941            So we are now A eating this SYN|ACK, ACK test passes.  So
942            does sequence test, SYN is truncated, and thus we consider
943            it a bare ACK.
944
945            If tp->defer_accept, we silently drop this bare ACK.  Otherwise,
946            we create an established connection.  Both ends (listening sockets)
947            accept the new incoming connection and try to talk to each other. 8-)
948
949            Note: This case is both harmless, and rare.  Possibility is about the
950            same as us discovering intelligent life on another plant tomorrow.
951
952            But generally, we should (RFC lies!) to accept ACK
953            from SYNACK both here and in tcp_rcv_state_process().
954            tcp_rcv_state_process() does not, hence, we do not too.
955
956            Note that the case is absolutely generic:
957            we cannot optimize anything here without
958            violating protocol. All the checks must be made
959            before attempt to create socket.
960          */
961
962         /* RFC793 page 36: "If the connection is in any non-synchronized state ...
963          *                  and the incoming segment acknowledges something not yet
964          *                  sent (the segment carries an unaccaptable ACK) ...
965          *                  a reset is sent."
966          *
967          * Invalid ACK: reset will be sent by listening socket
968          */
969         if ((flg & TCP_FLAG_ACK) &&
970             (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1))
971                 return sk;
972
973         /* Also, it would be not so bad idea to check rcv_tsecr, which
974          * is essentially ACK extension and too early or too late values
975          * should cause reset in unsynchronized states.
976          */
977
978         /* RFC793: "first check sequence number". */
979
980         if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
981                                           req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) {
982                 /* Out of window: send ACK and drop. */
983                 if (!(flg & TCP_FLAG_RST))
984                         req->class->send_ack(skb, req);
985                 if (paws_reject)
986                         NET_INC_STATS_BH(PAWSEstabRejected);
987                 return NULL;
988         }
989
990         /* In sequence, PAWS is OK. */
991
992         if (ttp.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1))
993                 req->ts_recent = ttp.rcv_tsval;
994
995         if (TCP_SKB_CB(skb)->seq == req->rcv_isn) {
996                 /* Truncate SYN, it is out of window starting
997                    at req->rcv_isn+1. */
998                 flg &= ~TCP_FLAG_SYN;
999         }
1000
1001         /* RFC793: "second check the RST bit" and
1002          *         "fourth, check the SYN bit"
1003          */
1004         if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
1005                 goto embryonic_reset;
1006
1007         /* ACK sequence verified above, just make sure ACK is
1008          * set.  If ACK not set, just silently drop the packet.
1009          */
1010         if (!(flg & TCP_FLAG_ACK))
1011                 return NULL;
1012
1013         /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
1014         if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) {
1015                 req->acked = 1;
1016                 return NULL;
1017         }
1018
1019         /* OK, ACK is valid, create big socket and
1020          * feed this segment to it. It will repeat all
1021          * the tests. THIS SEGMENT MUST MOVE SOCKET TO
1022          * ESTABLISHED STATE. If it will be dropped after
1023          * socket is created, wait for troubles.
1024          */
1025         child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
1026         if (child == NULL)
1027                 goto listen_overflow;
1028
1029         sk_set_owner(child, sk->sk_owner);
1030         tcp_synq_unlink(tp, req, prev);
1031         tcp_synq_removed(sk, req);
1032
1033         tcp_acceptq_queue(sk, req, child);
1034         return child;
1035
1036 listen_overflow:
1037         if (!sysctl_tcp_abort_on_overflow) {
1038                 req->acked = 1;
1039                 return NULL;
1040         }
1041
1042 embryonic_reset:
1043         NET_INC_STATS_BH(EmbryonicRsts);
1044         if (!(flg & TCP_FLAG_RST))
1045                 req->class->send_reset(skb);
1046
1047         tcp_synq_drop(sk, req, prev);
1048         return NULL;
1049 }
1050
1051 /*
1052  * Queue segment on the new socket if the new socket is active,
1053  * otherwise we just shortcircuit this and continue with
1054  * the new socket.
1055  */
1056
1057 int tcp_child_process(struct sock *parent, struct sock *child,
1058                       struct sk_buff *skb)
1059 {
1060         int ret = 0;
1061         int state = child->sk_state;
1062
1063         if (!sock_owned_by_user(child)) {
1064                 ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
1065
1066                 /* Wakeup parent, send SIGIO */
1067                 if (state == TCP_SYN_RECV && child->sk_state != state)
1068                         parent->sk_data_ready(parent, 0);
1069         } else {
1070                 /* Alas, it is possible again, because we do lookup
1071                  * in main socket hash table and lock on listening
1072                  * socket does not protect us more.
1073                  */
1074                 sk_add_backlog(child, skb);
1075         }
1076
1077         bh_unlock_sock(child);
1078         sock_put(child);
1079         return ret;
1080 }
1081
1082 EXPORT_SYMBOL(tcp_check_req);
1083 EXPORT_SYMBOL(tcp_child_process);
1084 EXPORT_SYMBOL(tcp_create_openreq_child);
1085 EXPORT_SYMBOL(tcp_timewait_state_process);
1086 EXPORT_SYMBOL(tcp_tw_deschedule);
1087
1088 #ifdef CONFIG_SYSCTL
1089 EXPORT_SYMBOL(sysctl_tcp_tw_recycle);
1090 #endif