fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / Documentation / MSI-HOWTO.txt
index 1852669..d389388 100644 (file)
@@ -3,20 +3,29 @@
                        10/03/2003
        Revised Feb 12, 2004 by Martine Silbermann
                email: Martine.Silbermann@hp.com
+       Revised Jun 25, 2004 by Tom L Nguyen
 
 1. About this guide
 
-This guide describes the basics of Message Signaled Interrupts(MSI), the
-advantages of using MSI over traditional interrupt mechanisms, and how
-to enable your driver to use MSI or MSI-X. Also included is a Frequently
-Asked Questions.
+This guide describes the basics of Message Signaled Interrupts (MSI),
+the advantages of using MSI over traditional interrupt mechanisms,
+and how to enable your driver to use MSI or MSI-X. Also included is
+a Frequently Asked Questions (FAQ) section.
+
+1.1 Terminology
+
+PCI devices can be single-function or multi-function.  In either case,
+when this text talks about enabling or disabling MSI on a "device
+function," it is referring to one specific PCI device and function and
+not to all functions on a PCI device (unless the PCI device has only
+one function).
 
 2. Copyright 2003 Intel Corporation
 
 3. What is MSI/MSI-X?
 
 Message Signaled Interrupt (MSI), as described in the PCI Local Bus
-Specification Revision 2.3 or latest, is an optional feature, and a
+Specification Revision 2.3 or later, is an optional feature, and a
 required feature for PCI Express devices. MSI enables a device function
 to request service by sending an Inbound Memory Write on its PCI bus to
 the FSB as a Message Signal Interrupt transaction. Because MSI is
@@ -26,7 +35,7 @@ supported.
 
 A PCI device that supports MSI must also support pin IRQ assertion
 interrupt mechanism to provide backward compatibility for systems that
-do not support MSI. In Systems, which support MSI, the bus driver is
+do not support MSI. In systems which support MSI, the bus driver is
 responsible for initializing the message address and message data of
 the device function's MSI/MSI-X capability structure during device
 initial configuration.
@@ -35,7 +44,7 @@ An MSI capable device function indicates MSI support by implementing
 the MSI/MSI-X capability structure in its PCI capability list. The
 device function may implement both the MSI capability structure and
 the MSI-X capability structure; however, the bus driver should not
-enable both, but instead enable only the MSI-X capability structure.
+enable both.
 
 The MSI capability structure contains Message Control register,
 Message Address register and Message Data register. These registers
@@ -60,17 +69,17 @@ over the MSI capability structure as described below.
 
         - MSI and MSI-X both support per-vector masking. Per-vector
        masking is an optional extension of MSI but a required
-       feature for MSI-X. Per-vector masking provides the kernel
-       the ability to mask/unmask MSI when servicing its software
-       interrupt service routing handler. If per-vector masking is
+       feature for MSI-X. Per-vector masking provides the kernel the
+       ability to mask/unmask a single MSI while running its
+       interrupt service routine. If per-vector masking is
        not supported, then the device driver should provide the
        hardware/software synchronization to ensure that the device
        generates MSI when the driver wants it to do so.
 
 4. Why use MSI?
 
-As a benefit the simplification of board design, MSI allows board
-designers to remove out of band interrupt routing. MSI is another
+As a benefit to the simplification of board design, MSI allows board
+designers to remove out-of-band interrupt routing. MSI is another
 step towards a legacy-free environment.
 
 Due to increasing pressure on chipset and processor packages to
@@ -86,37 +95,64 @@ support. As a result, the PCI Express technology requires MSI
 support for better interrupt performance.
 
 Using MSI enables the device functions to support two or more
-vectors, which can be configure to target different CPU's to
+vectors, which can be configured to target different CPUs to
 increase scalability.
 
 5. Configuring a driver to use MSI/MSI-X
 
 By default, the kernel will not enable MSI/MSI-X on all devices that
-support this capability. The CONFIG_PCI_USE_VECTOR kernel option
+support this capability. The CONFIG_PCI_MSI kernel option
 must be selected to enable MSI/MSI-X support.
 
-5.1 Including MSI support into the kernel
+5.1 Including MSI/MSI-X support into the kernel
 
-To allow MSI-Capable device drivers to selectively enable MSI (using
-pci_enable_msi as described below), the VECTOR based scheme needs to
-be enabled by setting CONFIG_PCI_USE_VECTOR.
+To allow MSI/MSI-X capable device drivers to selectively enable
+MSI/MSI-X (using pci_enable_msi()/pci_enable_msix() as described
+below), the VECTOR based scheme needs to be enabled by setting
+CONFIG_PCI_MSI during kernel config.
 
 Since the target of the inbound message is the local APIC, providing
-CONFIG_PCI_USE_VECTOR is dependent on whether CONFIG_X86_LOCAL_APIC
-is enabled or not.
+CONFIG_X86_LOCAL_APIC must be enabled as well as CONFIG_PCI_MSI.
 
-int pci_enable_msi(struct pci_dev *)
+5.2 Configuring for MSI support
 
-With this new API, any existing device driver, which like to have
-MSI enabled on its device function, must call this explicitly. A
-successful call will initialize the MSI/MSI-X capability structure
-with ONE vector, regardless of whether the device function is
+Due to the non-contiguous fashion in vector assignment of the
+existing Linux kernel, this version does not support multiple
+messages regardless of a device function is capable of supporting
+more than one vector. To enable MSI on a device function's MSI
+capability structure requires a device driver to call the function
+pci_enable_msi() explicitly.
+
+5.2.1 API pci_enable_msi
+
+int pci_enable_msi(struct pci_dev *dev)
+
+With this new API, a device driver that wants to have MSI
+enabled on its device function must call this API to enable MSI.
+A successful call will initialize the MSI capability structure
+with ONE vector, regardless of whether a device function is
 capable of supporting multiple messages. This vector replaces the
-pre-assigned dev->irq with a new MSI vector. To avoid the conflict
-of new assigned vector with existing pre-assigned vector requires
-the device driver to call this API before calling request_irq(...).
+pre-assigned dev->irq with a new MSI vector. To avoid a conflict
+of the new assigned vector with existing pre-assigned vector requires
+a device driver to call this API before calling request_irq().
+
+5.2.2 API pci_disable_msi
 
-The below diagram shows the events, which switches the interrupt
+void pci_disable_msi(struct pci_dev *dev)
+
+This API should always be used to undo the effect of pci_enable_msi()
+when a device driver is unloading. This API restores dev->irq with
+the pre-assigned IOAPIC vector and switches a device's interrupt
+mode to PCI pin-irq assertion/INTx emulation mode.
+
+Note that a device driver should always call free_irq() on the MSI vector
+that it has done request_irq() on before calling this API. Failure to do
+so results in a BUG_ON() and a device will be left with MSI enabled and
+leaks its vector.
+
+5.2.3 MSI mode vs. legacy mode diagram
+
+The below diagram shows the events which switch the interrupt
 mode on the MSI-capable device function between MSI mode and
 PIN-IRQ assertion mode.
 
@@ -124,142 +160,297 @@ PIN-IRQ assertion mode.
        |            | <=============== |                        |
        | MSI MODE   |                  | PIN-IRQ ASSERTION MODE |
        |            | ===============> |                        |
-        ------------   free_irq         ------------------------
+        ------------   pci_disable_msi  ------------------------
 
-5.2 Configuring for MSI support
 
-Due to the non-contiguous fashion in vector assignment of the
-existing Linux kernel, this version does not support multiple
-messages regardless of the device function is capable of supporting
-more than one vector. The bus driver initializes only entry 0 of
-this capability if pci_enable_msi(...) is called successfully by
-the device driver.
+Figure 1. MSI Mode vs. Legacy Mode
+
+In Figure 1, a device operates by default in legacy mode. Legacy
+in this context means PCI pin-irq assertion or PCI-Express INTx
+emulation. A successful MSI request (using pci_enable_msi()) switches
+a device's interrupt mode to MSI mode. A pre-assigned IOAPIC vector
+stored in dev->irq will be saved by the PCI subsystem and a new
+assigned MSI vector will replace dev->irq.
+
+To return back to its default mode, a device driver should always call
+pci_disable_msi() to undo the effect of pci_enable_msi(). Note that a
+device driver should always call free_irq() on the MSI vector it has
+done request_irq() on before calling pci_disable_msi(). Failure to do
+so results in a BUG_ON() and a device will be left with MSI enabled and
+leaks its vector. Otherwise, the PCI subsystem restores a device's
+dev->irq with a pre-assigned IOAPIC vector and marks the released
+MSI vector as unused.
+
+Once being marked as unused, there is no guarantee that the PCI
+subsystem will reserve this MSI vector for a device. Depending on
+the availability of current PCI vector resources and the number of
+MSI/MSI-X requests from other drivers, this MSI may be re-assigned.
+
+For the case where the PCI subsystem re-assigns this MSI vector to
+another driver, a request to switch back to MSI mode may result
+in being assigned a different MSI vector or a failure if no more
+vectors are available.
 
 5.3 Configuring for MSI-X support
 
-Both the MSI capability structure and the MSI-X capability structure
-share the same above semantics; however, due to the ability of the
-system software to configure each vector of the MSI-X capability
-structure with an independent message address and message data, the
-non-contiguous fashion in vector assignment of the existing Linux
-kernel has no impact on supporting multiple messages on an MSI-X
-capable device functions. By default, as mentioned above, ONE vector
-should be always allocated to the MSI-X capability structure at
-entry 0. The bus driver does not initialize other entries of the
-MSI-X table.
-
-Note that the PCI subsystem should have full control of a MSI-X
-table that resides in Memory Space. The software device driver
-should not access this table.
-
-To request for additional vectors, the device software driver should
-call function msi_alloc_vectors(). It is recommended that the
-software driver should call this function once during the
+Due to the ability of the system software to configure each vector of
+the MSI-X capability structure with an independent message address
+and message data, the non-contiguous fashion in vector assignment of
+the existing Linux kernel has no impact on supporting multiple
+messages on an MSI-X capable device functions. To enable MSI-X on
+a device function's MSI-X capability structure requires its device
+driver to call the function pci_enable_msix() explicitly.
+
+The function pci_enable_msix(), once invoked, enables either
+all or nothing, depending on the current availability of PCI vector
+resources. If the PCI vector resources are available for the number
+of vectors requested by a device driver, this function will configure
+the MSI-X table of the MSI-X capability structure of a device with
+requested messages. To emphasize this reason, for example, a device
+may be capable for supporting the maximum of 32 vectors while its
+software driver usually may request 4 vectors. It is recommended
+that the device driver should call this function once during the
 initialization phase of the device driver.
 
-The function msi_alloc_vectors(), once invoked, enables either
-all or nothing, depending on the current availability of vector
-resources. If no vector resources are available, the device function
-still works with ONE vector. If the vector resources are available
-for the number of vectors requested by the driver, this function
-will reconfigure the MSI-X capability structure of the device with
-additional messages, starting from entry 1. To emphasize this
-reason, for example, the device may be capable for supporting the
-maximum of 32 vectors while its software driver usually may request
-4 vectors.
-
-For each vector, after this successful call, the device driver is
-responsible to call other functions like request_irq(), enable_irq(),
-etc. to enable this vector with its corresponding interrupt service
-handler. It is the device driver's choice to have all vectors shared
-the same interrupt service handler or each vector with a unique
-interrupt service handler.
-
-In addition to the function msi_alloc_vectors(), another function
-msi_free_vectors() is provided to allow the software driver to
-release a number of vectors back to the vector resources. Once
-invoked, the PCI subsystem disables (masks) each vector released.
-These vectors are no longer valid for the hardware device and its
-software driver to use. Like free_irq, it recommends that the
-device driver should also call msi_free_vectors to release all
-additional vectors previously requested.
-
-int msi_alloc_vectors(struct pci_dev *dev, int *vector, int nvec)
-
-This API enables the software driver to request the PCI subsystem
-for additional messages. Depending on the number of vectors
-available, the PCI subsystem enables either all or nothing.
-
-Argument dev points to the device (pci_dev) structure.
-Argument vector is a pointer of integer type. The number of
-elements is indicated in argument nvec.
-Argument nvec is an integer indicating the number of messages
-requested.
-A return of zero indicates that the number of allocated vector is
-successfully allocated. Otherwise, indicate resources not
-available.
-
-int msi_free_vectors(struct pci_dev* dev, int *vector, int nvec)
-
-This API enables the software driver to inform the PCI subsystem
-that it is willing to release a number of vectors back to the
-MSI resource pool. Once invoked, the PCI subsystem disables each
-MSI-X entry associated with each vector stored in the argument 2.
-These vectors are no longer valid for the hardware device and
-its software driver to use.
-
-Argument dev points to the device (pci_dev) structure.
-Argument vector is a pointer of integer type. The number of
-elements is indicated in argument nvec.
-Argument nvec is an integer indicating the number of messages
-released.
-A return of zero indicates that the number of allocated vectors
-is successfully released. Otherwise, indicates a failure.
-
-5.4 Hardware requirements for MSI support
-MSI support requires support from both system hardware and
+Unlike the function pci_enable_msi(), the function pci_enable_msix()
+does not replace the pre-assigned IOAPIC dev->irq with a new MSI
+vector because the PCI subsystem writes the 1:1 vector-to-entry mapping
+into the field vector of each element contained in a second argument.
+Note that the pre-assigned IOAPIC dev->irq is valid only if the device
+operates in PIN-IRQ assertion mode. In MSI-X mode, any attempt at
+using dev->irq by the device driver to request for interrupt service
+may result in unpredictable behavior.
+
+For each MSI-X vector granted, a device driver is responsible for calling
+other functions like request_irq(), enable_irq(), etc. to enable
+this vector with its corresponding interrupt service handler. It is
+a device driver's choice to assign all vectors with the same
+interrupt service handler or each vector with a unique interrupt
+service handler.
+
+5.3.1 Handling MMIO address space of MSI-X Table
+
+The PCI 3.0 specification has implementation notes that MMIO address
+space for a device's MSI-X structure should be isolated so that the
+software system can set different pages for controlling accesses to the
+MSI-X structure. The implementation of MSI support requires the PCI
+subsystem, not a device driver, to maintain full control of the MSI-X
+table/MSI-X PBA (Pending Bit Array) and MMIO address space of the MSI-X
+table/MSI-X PBA.  A device driver is prohibited from requesting the MMIO
+address space of the MSI-X table/MSI-X PBA. Otherwise, the PCI subsystem
+will fail enabling MSI-X on its hardware device when it calls the function
+pci_enable_msix().
+
+5.3.2 Handling MSI-X allocation
+
+Determining the number of MSI-X vectors allocated to a function is
+dependent on the number of MSI capable devices and MSI-X capable
+devices populated in the system. The policy of allocating MSI-X
+vectors to a function is defined as the following:
+
+#of MSI-X vectors allocated to a function = (x - y)/z where
+
+x =    The number of available PCI vector resources by the time
+       the device driver calls pci_enable_msix(). The PCI vector
+       resources is the sum of the number of unassigned vectors
+       (new) and the number of released vectors when any MSI/MSI-X
+       device driver switches its hardware device back to a legacy
+       mode or is hot-removed. The number of unassigned vectors
+       may exclude some vectors reserved, as defined in parameter
+       NR_HP_RESERVED_VECTORS, for the case where the system is
+       capable of supporting hot-add/hot-remove operations. Users
+       may change the value defined in NR_HR_RESERVED_VECTORS to
+       meet their specific needs.
+
+y =    The number of MSI capable devices populated in the system.
+       This policy ensures that each MSI capable device has its
+       vector reserved to avoid the case where some MSI-X capable
+       drivers may attempt to claim all available vector resources.
+
+z =    The number of MSI-X capable devices populated in the system.
+       This policy ensures that maximum (x - y) is distributed
+       evenly among MSI-X capable devices.
+
+Note that the PCI subsystem scans y and z during a bus enumeration.
+When the PCI subsystem completes configuring MSI/MSI-X capability
+structure of a device as requested by its device driver, y/z is
+decremented accordingly.
+
+5.3.3 Handling MSI-X shortages
+
+For the case where fewer MSI-X vectors are allocated to a function
+than requested, the function pci_enable_msix() will return the
+maximum number of MSI-X vectors available to the caller. A device
+driver may re-send its request with fewer or equal vectors indicated
+in the return. For example, if a device driver requests 5 vectors, but
+the number of available vectors is 3 vectors, a value of 3 will be
+returned as a result of pci_enable_msix() call. A function could be
+designed for its driver to use only 3 MSI-X table entries as
+different combinations as ABC--, A-B-C, A--CB, etc. Note that this
+patch does not support multiple entries with the same vector. Such
+attempt by a device driver to use 5 MSI-X table entries with 3 vectors
+as ABBCC, AABCC, BCCBA, etc will result as a failure by the function
+pci_enable_msix(). Below are the reasons why supporting multiple
+entries with the same vector is an undesirable solution.
+
+       - The PCI subsystem cannot determine the entry that
+         generated the message to mask/unmask MSI while handling
+         software driver ISR. Attempting to walk through all MSI-X
+         table entries (2048 max) to mask/unmask any match vector
+         is an undesirable solution.
+
+       - Walking through all MSI-X table entries (2048 max) to handle
+         SMP affinity of any match vector is an undesirable solution.
+
+5.3.4 API pci_enable_msix
+
+int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec)
+
+This API enables a device driver to request the PCI subsystem
+to enable MSI-X messages on its hardware device. Depending on
+the availability of PCI vectors resources, the PCI subsystem enables
+either all or none of the requested vectors.
+
+Argument 'dev' points to the device (pci_dev) structure.
+
+Argument 'entries' is a pointer to an array of msix_entry structs.
+The number of entries is indicated in argument 'nvec'.
+struct msix_entry is defined in /driver/pci/msi.h:
+
+struct msix_entry {
+       u16     vector; /* kernel uses to write alloc vector */
+       u16     entry; /* driver uses to specify entry */
+};
+
+A device driver is responsible for initializing the field 'entry' of
+each element with a unique entry supported by MSI-X table. Otherwise,
+-EINVAL will be returned as a result. A successful return of zero
+indicates the PCI subsystem completed initializing each of the requested
+entries of the MSI-X table with message address and message data.
+Last but not least, the PCI subsystem will write the 1:1
+vector-to-entry mapping into the field 'vector' of each element. A
+device driver is responsible for keeping track of allocated MSI-X
+vectors in its internal data structure.
+
+A return of zero indicates that the number of MSI-X vectors was
+successfully allocated. A return of greater than zero indicates
+MSI-X vector shortage. Or a return of less than zero indicates
+a failure. This failure may be a result of duplicate entries
+specified in second argument, or a result of no available vector,
+or a result of failing to initialize MSI-X table entries.
+
+5.3.5 API pci_disable_msix
+
+void pci_disable_msix(struct pci_dev *dev)
+
+This API should always be used to undo the effect of pci_enable_msix()
+when a device driver is unloading. Note that a device driver should
+always call free_irq() on all MSI-X vectors it has done request_irq()
+on before calling this API. Failure to do so results in a BUG_ON() and
+a device will be left with MSI-X enabled and leaks its vectors.
+
+5.3.6 MSI-X mode vs. legacy mode diagram
+
+The below diagram shows the events which switch the interrupt
+mode on the MSI-X capable device function between MSI-X mode and
+PIN-IRQ assertion mode (legacy).
+
+        ------------   pci_enable_msix(,,n) ------------------------
+       |            | <===============     |                        |
+       | MSI-X MODE |                      | PIN-IRQ ASSERTION MODE |
+       |            | ===============>     |                        |
+        ------------   pci_disable_msix     ------------------------
+
+Figure 2. MSI-X Mode vs. Legacy Mode
+
+In Figure 2, a device operates by default in legacy mode. A
+successful MSI-X request (using pci_enable_msix()) switches a
+device's interrupt mode to MSI-X mode. A pre-assigned IOAPIC vector
+stored in dev->irq will be saved by the PCI subsystem; however,
+unlike MSI mode, the PCI subsystem will not replace dev->irq with
+assigned MSI-X vector because the PCI subsystem already writes the 1:1
+vector-to-entry mapping into the field 'vector' of each element
+specified in second argument.
+
+To return back to its default mode, a device driver should always call
+pci_disable_msix() to undo the effect of pci_enable_msix(). Note that
+a device driver should always call free_irq() on all MSI-X vectors it
+has done request_irq() on before calling pci_disable_msix(). Failure
+to do so results in a BUG_ON() and a device will be left with MSI-X
+enabled and leaks its vectors. Otherwise, the PCI subsystem switches a
+device function's interrupt mode from MSI-X mode to legacy mode and
+marks all allocated MSI-X vectors as unused.
+
+Once being marked as unused, there is no guarantee that the PCI
+subsystem will reserve these MSI-X vectors for a device. Depending on
+the availability of current PCI vector resources and the number of
+MSI/MSI-X requests from other drivers, these MSI-X vectors may be
+re-assigned.
+
+For the case where the PCI subsystem re-assigned these MSI-X vectors
+to other drivers, a request to switch back to MSI-X mode may result
+being assigned with another set of MSI-X vectors or a failure if no
+more vectors are available.
+
+5.4 Handling function implementing both MSI and MSI-X capabilities
+
+For the case where a function implements both MSI and MSI-X
+capabilities, the PCI subsystem enables a device to run either in MSI
+mode or MSI-X mode but not both. A device driver determines whether it
+wants MSI or MSI-X enabled on its hardware device. Once a device
+driver requests for MSI, for example, it is prohibited from requesting
+MSI-X; in other words, a device driver is not permitted to ping-pong
+between MSI mod MSI-X mode during a run-time.
+
+5.5 Hardware requirements for MSI/MSI-X support
+
+MSI/MSI-X support requires support from both system hardware and
 individual hardware device functions.
 
-5.4.1 System hardware support
+5.5.1 System hardware support
+
 Since the target of MSI address is the local APIC CPU, enabling
-MSI support in Linux kernel is dependent on whether existing
-system hardware supports local APIC. Users should verify their
-system whether it runs when CONFIG_X86_LOCAL_APIC=y.
+MSI/MSI-X support in the Linux kernel is dependent on whether existing
+system hardware supports local APIC. Users should verify that their
+system supports local APIC operation by testing that it runs when
+CONFIG_X86_LOCAL_APIC=y.
 
 In SMP environment, CONFIG_X86_LOCAL_APIC is automatically set;
 however, in UP environment, users must manually set
 CONFIG_X86_LOCAL_APIC. Once CONFIG_X86_LOCAL_APIC=y, setting
-CONFIG_PCI_USE_VECTOR enables the VECTOR based scheme and
-the option for MSI-capable device drivers to selectively enable
-MSI (using pci_enable_msi as described below).
+CONFIG_PCI_MSI enables the VECTOR based scheme and the option for
+MSI-capable device drivers to selectively enable MSI/MSI-X.
 
-Note that CONFIG_X86_IO_APIC setting is irrelevant because MSI
-vector is allocated new during runtime and MSI support does not
-depend on BIOS support. This key independency enables MSI support
-on future IOxAPIC free platform.
+Note that CONFIG_X86_IO_APIC setting is irrelevant because MSI/MSI-X
+vector is allocated new during runtime and MSI/MSI-X support does not
+depend on BIOS support. This key independency enables MSI/MSI-X
+support on future IOxAPIC free platforms.
+
+5.5.2 Device hardware support
 
-5.4.2 Device hardware support
 The hardware device function supports MSI by indicating the
 MSI/MSI-X capability structure on its PCI capability list. By
 default, this capability structure will not be initialized by
 the kernel to enable MSI during the system boot. In other words,
 the device function is running on its default pin assertion mode.
 Note that in many cases the hardware supporting MSI have bugs,
-which may result in system hang. The software driver of specific
-MSI-capable hardware is responsible for whether calling
+which may result in system hangs. The software driver of specific
+MSI-capable hardware is responsible for deciding whether to call
 pci_enable_msi or not. A return of zero indicates the kernel
-successfully initializes the MSI/MSI-X capability structure of the
-device funtion. The device function is now running on MSI mode.
+successfully initialized the MSI/MSI-X capability structure of the
+device function. The device function is now running on MSI/MSI-X mode.
 
-5.5 How to tell whether MSI is enabled on device function
+5.6 How to tell whether MSI/MSI-X is enabled on device function
 
-At the driver level, a return of zero from pci_enable_msi(...)
-indicates to the device driver that its device function is
-initialized successfully and ready to run in MSI mode.
+At the driver level, a return of zero from the function call of
+pci_enable_msi()/pci_enable_msix() indicates to a device driver that
+its device function is initialized successfully and ready to run in
+MSI/MSI-X mode.
 
-At the user level, users can use command 'cat /proc/interrupts'
-to display the vector allocated for the device and its interrupt
-mode, as shown below.
+At the user level, users can use the command 'cat /proc/interrupts'
+to display the vectors allocated for devices and their interrupt
+MSI/MSI-X modes ("PCI-MSI"/"PCI-MSI-X"). Below shows MSI mode is
+enabled on a SCSI Adaptec 39320D Ultra320 controller.
 
            CPU0       CPU1
   0:     324639          0    IO-APIC-edge  timer
@@ -270,8 +461,8 @@ mode, as shown below.
  15:          1          0    IO-APIC-edge  ide1
 169:          0          0   IO-APIC-level  uhci-hcd
 185:          0          0   IO-APIC-level  uhci-hcd
-193:        138         10         PCI MSI  aic79xx
-201:         30          0         PCI MSI  aic79xx
+193:        138         10         PCI-MSI  aic79xx
+201:         30          0         PCI-MSI  aic79xx
 225:         30          0   IO-APIC-level  aic7xxx
 233:         30          0   IO-APIC-level  aic7xxx
 NMI:          0          0
@@ -279,7 +470,68 @@ LOC:     324553     325068
 ERR:          0
 MIS:          0
 
-6. FAQ
+6. MSI quirks
+
+Several PCI chipsets or devices are known to not support MSI.
+The PCI stack provides 3 possible levels of MSI disabling:
+* on a single device
+* on all devices behind a specific bridge
+* globally
+
+6.1. Disabling MSI on a single device
+
+Under some circumstances, it might be required to disable MSI on a
+single device, It may be achived by either not calling pci_enable_msi()
+or all, or setting the pci_dev->no_msi flag before (most of the time
+in a quirk).
+
+6.2. Disabling MSI below a bridge
+
+The vast majority of MSI quirks are required by PCI bridges not
+being able to route MSI between busses. In this case, MSI have to be
+disabled on all devices behind this bridge. It is achieves by setting
+the PCI_BUS_FLAGS_NO_MSI flag in the pci_bus->bus_flags of the bridge
+subordinate bus. There is no need to set the same flag on bridges that
+are below the broken brigde. When pci_enable_msi() is called to enable
+MSI on a device, pci_msi_supported() takes care of checking the NO_MSI
+flag in all parent busses of the device.
+
+Some bridges actually support dynamic MSI support enabling/disabling
+by changing some bits in their PCI configuration space (especially
+the Hypertransport chipsets such as the nVidia nForce and Serverworks
+HT2000). It may then be required to update the NO_MSI flag on the
+corresponding devices in the sysfs hierarchy. To enable MSI support
+on device "0000:00:0e", do:
+
+       echo 1 > /sys/bus/pci/devices/0000:00:0e/msi_bus
+
+To disable MSI support, echo 0 instead of 1. Note that it should be
+used with caution since changing this value might break interrupts.
+
+6.3. Disabling MSI globally
+
+Some extreme cases may require to disable MSI globally on the system.
+For now, the only known case is a Serverworks PCI-X chipsets (MSI are
+not supported on several busses that are not all connected to the
+chipset in the Linux PCI hierarchy). In the vast majority of other
+cases, disabling only behind a specific bridge is enough.
+
+For debugging purpose, the user may also pass pci=nomsi on the kernel
+command-line to explicitly disable MSI globally. But, once the appro-
+priate quirks are added to the kernel, this option should not be
+required anymore.
+
+6.4. Finding why MSI cannot be enabled on a device
+
+Assuming that MSI are not enabled on a device, you should look at
+dmesg to find messages that quirks may output when disabling MSI
+on some devices, some bridges or even globally.
+Then, lspci -t gives the list of bridges above a device. Reading
+/sys/bus/pci/devices/0000:00:0e/msi_bus will tell you whether MSI
+are enabled (1) or disabled (0). In 0 is found in a single bridge
+msi_bus file above the device, MSI cannot be enabled.
+
+7. FAQ
 
 Q1. Are there any limitations on using the MSI?
 
@@ -307,8 +559,8 @@ target address set as 0xfeexxxxx, as conformed to PCI
 specification 2.3 or latest, then it should work.
 
 Q4. From the driver point of view, if the MSI is lost because
-of the errors occur during inbound memory write, then it may
-wait for ever. Is there a mechanism for it to recover?
+of errors occurring during inbound memory write, then it may
+wait forever. Is there a mechanism for it to recover?
 
 A4. Since the target of the transaction is an inbound memory
 write, all transaction termination conditions (Retry,