This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / arch / arm / mach-footbridge / time.c
diff --git a/arch/arm/mach-footbridge/time.c b/arch/arm/mach-footbridge/time.c
new file mode 100644 (file)
index 0000000..e9f5708
--- /dev/null
@@ -0,0 +1,296 @@
+/*
+ *  linux/include/asm-arm/arch-ebsa285/time.h
+ *
+ *  Copyright (C) 1998 Russell King.
+ *  Copyright (C) 1998 Phil Blundell
+ *
+ * CATS has a real-time clock, though the evaluation board doesn't.
+ *
+ * Changelog:
+ *  21-Mar-1998        RMK     Created
+ *  27-Aug-1998        PJB     CATS support
+ *  28-Dec-1998        APH     Made leds optional
+ *  20-Jan-1999        RMK     Started merge of EBSA285, CATS and NetWinder
+ *  16-Mar-1999        RMK     More support for EBSA285-like machines with RTCs in
+ */
+
+#define RTC_PORT(x)            (rtc_base+(x))
+#define RTC_ALWAYS_BCD         0
+
+#include <linux/timex.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/sched.h>
+#include <linux/mc146818rtc.h>
+#include <linux/bcd.h>
+
+#include <asm/hardware/dec21285.h>
+
+#include <asm/hardware.h>
+#include <asm/irq.h>
+#include <asm/leds.h>
+#include <asm/mach-types.h>
+#include <asm/io.h>
+#include <asm/hardware/clps7111.h>
+
+#include <asm/mach/time.h>
+
+static int rtc_base;
+
+#define mSEC_10_from_14 ((14318180 + 100) / 200)
+
+static unsigned long isa_gettimeoffset(void)
+{
+       int count;
+
+       static int count_p = (mSEC_10_from_14/6);    /* for the first call after boot */
+       static unsigned long jiffies_p = 0;
+
+       /*
+        * cache volatile jiffies temporarily; we have IRQs turned off. 
+        */
+       unsigned long jiffies_t;
+
+       /* timer count may underflow right here */
+       outb_p(0x00, 0x43);     /* latch the count ASAP */
+
+       count = inb_p(0x40);    /* read the latched count */
+
+       /*
+        * We do this guaranteed double memory access instead of a _p 
+        * postfix in the previous port access. Wheee, hackady hack
+        */
+       jiffies_t = jiffies;
+
+       count |= inb_p(0x40) << 8;
+
+       /* Detect timer underflows.  If we haven't had a timer tick since 
+          the last time we were called, and time is apparently going
+          backwards, the counter must have wrapped during this routine. */
+       if ((jiffies_t == jiffies_p) && (count > count_p))
+               count -= (mSEC_10_from_14/6);
+       else
+               jiffies_p = jiffies_t;
+
+       count_p = count;
+
+       count = (((mSEC_10_from_14/6)-1) - count) * (tick_nsec / 1000);
+       count = (count + (mSEC_10_from_14/6)/2) / (mSEC_10_from_14/6);
+
+       return count;
+}
+
+static irqreturn_t
+isa_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+       timer_tick(regs);
+
+       return IRQ_HANDLED;
+}
+
+static unsigned long __init get_isa_cmos_time(void)
+{
+       unsigned int year, mon, day, hour, min, sec;
+       int i;
+
+       // check to see if the RTC makes sense.....
+       if ((CMOS_READ(RTC_VALID) & RTC_VRT) == 0)
+               return mktime(1970, 1, 1, 0, 0, 0);
+
+       /* The Linux interpretation of the CMOS clock register contents:
+        * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
+        * RTC registers show the second which has precisely just started.
+        * Let's hope other operating systems interpret the RTC the same way.
+        */
+       /* read RTC exactly on falling edge of update flag */
+       for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
+               if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
+                       break;
+
+       for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */
+               if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
+                       break;
+
+       do { /* Isn't this overkill ? UIP above should guarantee consistency */
+               sec  = CMOS_READ(RTC_SECONDS);
+               min  = CMOS_READ(RTC_MINUTES);
+               hour = CMOS_READ(RTC_HOURS);
+               day  = CMOS_READ(RTC_DAY_OF_MONTH);
+               mon  = CMOS_READ(RTC_MONTH);
+               year = CMOS_READ(RTC_YEAR);
+       } while (sec != CMOS_READ(RTC_SECONDS));
+
+       if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
+               BCD_TO_BIN(sec);
+               BCD_TO_BIN(min);
+               BCD_TO_BIN(hour);
+               BCD_TO_BIN(day);
+               BCD_TO_BIN(mon);
+               BCD_TO_BIN(year);
+       }
+       if ((year += 1900) < 1970)
+               year += 100;
+       return mktime(year, mon, day, hour, min, sec);
+}
+
+static int
+set_isa_cmos_time(void)
+{
+       int retval = 0;
+       int real_seconds, real_minutes, cmos_minutes;
+       unsigned char save_control, save_freq_select;
+       unsigned long nowtime = xtime.tv_sec;
+
+       save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
+       CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
+
+       save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
+       CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
+
+       cmos_minutes = CMOS_READ(RTC_MINUTES);
+       if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
+               BCD_TO_BIN(cmos_minutes);
+
+       /*
+        * since we're only adjusting minutes and seconds,
+        * don't interfere with hour overflow. This avoids
+        * messing with unknown time zones but requires your
+        * RTC not to be off by more than 15 minutes
+        */
+       real_seconds = nowtime % 60;
+       real_minutes = nowtime / 60;
+       if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
+               real_minutes += 30;             /* correct for half hour time zone */
+       real_minutes %= 60;
+
+       if (abs(real_minutes - cmos_minutes) < 30) {
+               if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
+                       BIN_TO_BCD(real_seconds);
+                       BIN_TO_BCD(real_minutes);
+               }
+               CMOS_WRITE(real_seconds,RTC_SECONDS);
+               CMOS_WRITE(real_minutes,RTC_MINUTES);
+       } else
+               retval = -1;
+
+       /* The following flags have to be released exactly in this order,
+        * otherwise the DS12887 (popular MC146818A clone with integrated
+        * battery and quartz) will not reset the oscillator and will not
+        * update precisely 500 ms later. You won't find this mentioned in
+        * the Dallas Semiconductor data sheets, but who believes data
+        * sheets anyway ...                           -- Markus Kuhn
+        */
+       CMOS_WRITE(save_control, RTC_CONTROL);
+       CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
+
+       return retval;
+}
+
+
+static unsigned long timer1_latch;
+
+static unsigned long timer1_gettimeoffset (void)
+{
+       unsigned long value = timer1_latch - *CSR_TIMER1_VALUE;
+
+       return ((tick_nsec / 1000) * value) / timer1_latch;
+}
+
+static irqreturn_t
+timer1_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+       *CSR_TIMER1_CLR = 0;
+
+       timer_tick(regs);
+
+       return IRQ_HANDLED;
+}
+
+static struct irqaction footbridge_timer_irq = {
+       .flags  = SA_INTERRUPT
+};
+
+/*
+ * Set up timer interrupt.
+ */
+void __init footbridge_init_time(void)
+{
+       if (machine_is_co285() ||
+           machine_is_personal_server())
+               /*
+                * Add-in 21285s shouldn't access the RTC
+                */
+               rtc_base = 0;
+       else
+               rtc_base = 0x70;
+
+       if (rtc_base) {
+               int reg_d, reg_b;
+
+               /*
+                * Probe for the RTC.
+                */
+               reg_d = CMOS_READ(RTC_REG_D);
+
+               /*
+                * make sure the divider is set
+                */
+               CMOS_WRITE(RTC_REF_CLCK_32KHZ, RTC_REG_A);
+
+               /*
+                * Set control reg B
+                *   (24 hour mode, update enabled)
+                */
+               reg_b = CMOS_READ(RTC_REG_B) & 0x7f;
+               reg_b |= 2;
+               CMOS_WRITE(reg_b, RTC_REG_B);
+
+               if ((CMOS_READ(RTC_REG_A) & 0x7f) == RTC_REF_CLCK_32KHZ &&
+                   CMOS_READ(RTC_REG_B) == reg_b) {
+                       struct timespec tv;
+
+                       /*
+                        * We have a RTC.  Check the battery
+                        */
+                       if ((reg_d & 0x80) == 0)
+                               printk(KERN_WARNING "RTC: *** warning: CMOS battery bad\n");
+
+                       tv.tv_nsec = 0;
+                       tv.tv_sec = get_isa_cmos_time();
+                       do_settimeofday(&tv);
+                       set_rtc = set_isa_cmos_time;
+               } else
+                       rtc_base = 0;
+       }
+
+       if (machine_is_ebsa285() ||
+           machine_is_co285() ||
+           machine_is_personal_server()) {
+               gettimeoffset = timer1_gettimeoffset;
+
+               timer1_latch = (mem_fclk_21285 + 8 * HZ) / (16 * HZ);
+
+               *CSR_TIMER1_CLR  = 0;
+               *CSR_TIMER1_LOAD = timer1_latch;
+               *CSR_TIMER1_CNTL = TIMER_CNTL_ENABLE | TIMER_CNTL_AUTORELOAD | TIMER_CNTL_DIV16;
+
+               footbridge_timer_irq.name = "Timer1 Timer Tick";
+               footbridge_timer_irq.handler = timer1_interrupt;
+               
+               setup_irq(IRQ_TIMER1, &footbridge_timer_irq);
+
+       } else {
+               /* enable PIT timer */
+               /* set for periodic (4) and LSB/MSB write (0x30) */
+               outb(0x34, 0x43);
+               outb((mSEC_10_from_14/6) & 0xFF, 0x40);
+               outb((mSEC_10_from_14/6) >> 8, 0x40);
+
+               gettimeoffset = isa_gettimeoffset;
+
+               footbridge_timer_irq.name = "ISA Timer Tick";
+               footbridge_timer_irq.handler = isa_timer_interrupt;
+               
+               setup_irq(IRQ_ISA_TIMER, &footbridge_timer_irq);
+       }
+}