This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / arch / powerpc / kernel / time.c
diff --git a/arch/powerpc/kernel/time.c b/arch/powerpc/kernel/time.c
new file mode 100644 (file)
index 0000000..24e3ad7
--- /dev/null
@@ -0,0 +1,1199 @@
+/*
+ * Common time routines among all ppc machines.
+ *
+ * Written by Cort Dougan (cort@cs.nmt.edu) to merge
+ * Paul Mackerras' version and mine for PReP and Pmac.
+ * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
+ * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
+ *
+ * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
+ * to make clock more stable (2.4.0-test5). The only thing
+ * that this code assumes is that the timebases have been synchronized
+ * by firmware on SMP and are never stopped (never do sleep
+ * on SMP then, nap and doze are OK).
+ * 
+ * Speeded up do_gettimeofday by getting rid of references to
+ * xtime (which required locks for consistency). (mikejc@us.ibm.com)
+ *
+ * TODO (not necessarily in this file):
+ * - improve precision and reproducibility of timebase frequency
+ * measurement at boot time. (for iSeries, we calibrate the timebase
+ * against the Titan chip's clock.)
+ * - for astronomical applications: add a new function to get
+ * non ambiguous timestamps even around leap seconds. This needs
+ * a new timestamp format and a good name.
+ *
+ * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
+ *             "A Kernel Model for Precision Timekeeping" by Dave Mills
+ *
+ *      This program is free software; you can redistribute it and/or
+ *      modify it under the terms of the GNU General Public License
+ *      as published by the Free Software Foundation; either version
+ *      2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/config.h>
+#include <linux/errno.h>
+#include <linux/module.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/param.h>
+#include <linux/string.h>
+#include <linux/mm.h>
+#include <linux/interrupt.h>
+#include <linux/timex.h>
+#include <linux/kernel_stat.h>
+#include <linux/time.h>
+#include <linux/init.h>
+#include <linux/profile.h>
+#include <linux/cpu.h>
+#include <linux/security.h>
+#include <linux/percpu.h>
+#include <linux/rtc.h>
+#include <linux/jiffies.h>
+#include <linux/posix-timers.h>
+
+#include <asm/io.h>
+#include <asm/processor.h>
+#include <asm/nvram.h>
+#include <asm/cache.h>
+#include <asm/machdep.h>
+#include <asm/uaccess.h>
+#include <asm/time.h>
+#include <asm/prom.h>
+#include <asm/irq.h>
+#include <asm/div64.h>
+#include <asm/smp.h>
+#include <asm/vdso_datapage.h>
+#ifdef CONFIG_PPC64
+#include <asm/firmware.h>
+#endif
+#ifdef CONFIG_PPC_ISERIES
+#include <asm/iseries/it_lp_queue.h>
+#include <asm/iseries/hv_call_xm.h>
+#endif
+#include <asm/smp.h>
+
+/* keep track of when we need to update the rtc */
+time_t last_rtc_update;
+extern int piranha_simulator;
+#ifdef CONFIG_PPC_ISERIES
+unsigned long iSeries_recal_titan = 0;
+unsigned long iSeries_recal_tb = 0; 
+static unsigned long first_settimeofday = 1;
+#endif
+
+/* The decrementer counts down by 128 every 128ns on a 601. */
+#define DECREMENTER_COUNT_601  (1000000000 / HZ)
+
+#define XSEC_PER_SEC (1024*1024)
+
+#ifdef CONFIG_PPC64
+#define SCALE_XSEC(xsec, max)  (((xsec) * max) / XSEC_PER_SEC)
+#else
+/* compute ((xsec << 12) * max) >> 32 */
+#define SCALE_XSEC(xsec, max)  mulhwu((xsec) << 12, max)
+#endif
+
+unsigned long tb_ticks_per_jiffy;
+unsigned long tb_ticks_per_usec = 100; /* sane default */
+EXPORT_SYMBOL(tb_ticks_per_usec);
+unsigned long tb_ticks_per_sec;
+EXPORT_SYMBOL(tb_ticks_per_sec);       /* for cputime_t conversions */
+u64 tb_to_xs;
+unsigned tb_to_us;
+
+#define TICKLEN_SCALE  (SHIFT_SCALE - 10)
+u64 last_tick_len;     /* units are ns / 2^TICKLEN_SCALE */
+u64 ticklen_to_xs;     /* 0.64 fraction */
+
+/* If last_tick_len corresponds to about 1/HZ seconds, then
+   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
+#define TICKLEN_SHIFT  (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
+
+DEFINE_SPINLOCK(rtc_lock);
+EXPORT_SYMBOL_GPL(rtc_lock);
+
+u64 tb_to_ns_scale;
+unsigned tb_to_ns_shift;
+
+struct gettimeofday_struct do_gtod;
+
+extern unsigned long wall_jiffies;
+
+extern struct timezone sys_tz;
+static long timezone_offset;
+
+unsigned long ppc_proc_freq;
+unsigned long ppc_tb_freq;
+
+u64 tb_last_jiffy __cacheline_aligned_in_smp;
+unsigned long tb_last_stamp;
+
+/*
+ * Note that on ppc32 this only stores the bottom 32 bits of
+ * the timebase value, but that's enough to tell when a jiffy
+ * has passed.
+ */
+DEFINE_PER_CPU(unsigned long, last_jiffy);
+
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING
+/*
+ * Factors for converting from cputime_t (timebase ticks) to
+ * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
+ * These are all stored as 0.64 fixed-point binary fractions.
+ */
+u64 __cputime_jiffies_factor;
+EXPORT_SYMBOL(__cputime_jiffies_factor);
+u64 __cputime_msec_factor;
+EXPORT_SYMBOL(__cputime_msec_factor);
+u64 __cputime_sec_factor;
+EXPORT_SYMBOL(__cputime_sec_factor);
+u64 __cputime_clockt_factor;
+EXPORT_SYMBOL(__cputime_clockt_factor);
+
+static void calc_cputime_factors(void)
+{
+       struct div_result res;
+
+       div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
+       __cputime_jiffies_factor = res.result_low;
+       div128_by_32(1000, 0, tb_ticks_per_sec, &res);
+       __cputime_msec_factor = res.result_low;
+       div128_by_32(1, 0, tb_ticks_per_sec, &res);
+       __cputime_sec_factor = res.result_low;
+       div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
+       __cputime_clockt_factor = res.result_low;
+}
+
+/*
+ * Read the PURR on systems that have it, otherwise the timebase.
+ */
+static u64 read_purr(void)
+{
+       if (cpu_has_feature(CPU_FTR_PURR))
+               return mfspr(SPRN_PURR);
+       return mftb();
+}
+
+/*
+ * Account time for a transition between system, hard irq
+ * or soft irq state.
+ */
+void account_system_vtime(struct task_struct *tsk)
+{
+       u64 now, delta;
+       unsigned long flags;
+
+       local_irq_save(flags);
+       now = read_purr();
+       delta = now - get_paca()->startpurr;
+       get_paca()->startpurr = now;
+       if (!in_interrupt()) {
+               delta += get_paca()->system_time;
+               get_paca()->system_time = 0;
+       }
+       account_system_time(tsk, 0, delta);
+       local_irq_restore(flags);
+}
+
+/*
+ * Transfer the user and system times accumulated in the paca
+ * by the exception entry and exit code to the generic process
+ * user and system time records.
+ * Must be called with interrupts disabled.
+ */
+void account_process_vtime(struct task_struct *tsk)
+{
+       cputime_t utime;
+
+       utime = get_paca()->user_time;
+       get_paca()->user_time = 0;
+       account_user_time(tsk, utime);
+}
+
+static void account_process_time(struct pt_regs *regs)
+{
+       int cpu = smp_processor_id();
+
+       account_process_vtime(current);
+       run_local_timers();
+       if (rcu_pending(cpu))
+               rcu_check_callbacks(cpu, user_mode(regs));
+       scheduler_tick();
+       run_posix_cpu_timers(current);
+}
+
+#ifdef CONFIG_PPC_SPLPAR
+/*
+ * Stuff for accounting stolen time.
+ */
+struct cpu_purr_data {
+       int     initialized;                    /* thread is running */
+       u64     tb0;                    /* timebase at origin time */
+       u64     purr0;                  /* PURR at origin time */
+       u64     tb;                     /* last TB value read */
+       u64     purr;                   /* last PURR value read */
+       u64     stolen;                 /* stolen time so far */
+       spinlock_t lock;
+};
+
+static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
+
+static void snapshot_tb_and_purr(void *data)
+{
+       struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
+
+       p->tb0 = mftb();
+       p->purr0 = mfspr(SPRN_PURR);
+       p->tb = p->tb0;
+       p->purr = 0;
+       wmb();
+       p->initialized = 1;
+}
+
+/*
+ * Called during boot when all cpus have come up.
+ */
+void snapshot_timebases(void)
+{
+       int cpu;
+
+       if (!cpu_has_feature(CPU_FTR_PURR))
+               return;
+       for_each_possible_cpu(cpu)
+               spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
+       on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
+}
+
+void calculate_steal_time(void)
+{
+       u64 tb, purr, t0;
+       s64 stolen;
+       struct cpu_purr_data *p0, *pme, *phim;
+       int cpu;
+
+       if (!cpu_has_feature(CPU_FTR_PURR))
+               return;
+       cpu = smp_processor_id();
+       pme = &per_cpu(cpu_purr_data, cpu);
+       if (!pme->initialized)
+               return;         /* this can happen in early boot */
+       p0 = &per_cpu(cpu_purr_data, cpu & ~1);
+       phim = &per_cpu(cpu_purr_data, cpu ^ 1);
+       spin_lock(&p0->lock);
+       tb = mftb();
+       purr = mfspr(SPRN_PURR) - pme->purr0;
+       if (!phim->initialized || !cpu_online(cpu ^ 1)) {
+               stolen = (tb - pme->tb) - (purr - pme->purr);
+       } else {
+               t0 = pme->tb0;
+               if (phim->tb0 < t0)
+                       t0 = phim->tb0;
+               stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
+       }
+       if (stolen > 0) {
+               account_steal_time(current, stolen);
+               p0->stolen += stolen;
+       }
+       pme->tb = tb;
+       pme->purr = purr;
+       spin_unlock(&p0->lock);
+}
+
+/*
+ * Must be called before the cpu is added to the online map when
+ * a cpu is being brought up at runtime.
+ */
+static void snapshot_purr(void)
+{
+       int cpu;
+       u64 purr;
+       struct cpu_purr_data *p0, *pme, *phim;
+       unsigned long flags;
+
+       if (!cpu_has_feature(CPU_FTR_PURR))
+               return;
+       cpu = smp_processor_id();
+       pme = &per_cpu(cpu_purr_data, cpu);
+       p0 = &per_cpu(cpu_purr_data, cpu & ~1);
+       phim = &per_cpu(cpu_purr_data, cpu ^ 1);
+       spin_lock_irqsave(&p0->lock, flags);
+       pme->tb = pme->tb0 = mftb();
+       purr = mfspr(SPRN_PURR);
+       if (!phim->initialized) {
+               pme->purr = 0;
+               pme->purr0 = purr;
+       } else {
+               /* set p->purr and p->purr0 for no change in p0->stolen */
+               pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
+               pme->purr0 = purr - pme->purr;
+       }
+       pme->initialized = 1;
+       spin_unlock_irqrestore(&p0->lock, flags);
+}
+
+#endif /* CONFIG_PPC_SPLPAR */
+
+#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
+#define calc_cputime_factors()
+#define account_process_time(regs)     update_process_times(user_mode(regs))
+#define calculate_steal_time()         do { } while (0)
+#endif
+
+#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
+#define snapshot_purr()                        do { } while (0)
+#endif
+
+/*
+ * Called when a cpu comes up after the system has finished booting,
+ * i.e. as a result of a hotplug cpu action.
+ */
+void snapshot_timebase(void)
+{
+       __get_cpu_var(last_jiffy) = get_tb();
+       snapshot_purr();
+}
+
+void __delay(unsigned long loops)
+{
+       unsigned long start;
+       int diff;
+
+       if (__USE_RTC()) {
+               start = get_rtcl();
+               do {
+                       /* the RTCL register wraps at 1000000000 */
+                       diff = get_rtcl() - start;
+                       if (diff < 0)
+                               diff += 1000000000;
+               } while (diff < loops);
+       } else {
+               start = get_tbl();
+               while (get_tbl() - start < loops)
+                       HMT_low();
+               HMT_medium();
+       }
+}
+EXPORT_SYMBOL(__delay);
+
+void udelay(unsigned long usecs)
+{
+       __delay(tb_ticks_per_usec * usecs);
+}
+EXPORT_SYMBOL(udelay);
+
+static __inline__ void timer_check_rtc(void)
+{
+        /*
+         * update the rtc when needed, this should be performed on the
+         * right fraction of a second. Half or full second ?
+         * Full second works on mk48t59 clocks, others need testing.
+         * Note that this update is basically only used through 
+         * the adjtimex system calls. Setting the HW clock in
+         * any other way is a /dev/rtc and userland business.
+         * This is still wrong by -0.5/+1.5 jiffies because of the
+         * timer interrupt resolution and possible delay, but here we 
+         * hit a quantization limit which can only be solved by higher
+         * resolution timers and decoupling time management from timer
+         * interrupts. This is also wrong on the clocks
+         * which require being written at the half second boundary.
+         * We should have an rtc call that only sets the minutes and
+         * seconds like on Intel to avoid problems with non UTC clocks.
+         */
+        if (ppc_md.set_rtc_time && ntp_synced() &&
+           xtime.tv_sec - last_rtc_update >= 659 &&
+           abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
+               struct rtc_time tm;
+               to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
+               tm.tm_year -= 1900;
+               tm.tm_mon -= 1;
+               if (ppc_md.set_rtc_time(&tm) == 0)
+                       last_rtc_update = xtime.tv_sec + 1;
+               else
+                       /* Try again one minute later */
+                       last_rtc_update += 60;
+        }
+}
+
+/*
+ * This version of gettimeofday has microsecond resolution.
+ */
+static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
+{
+       unsigned long sec, usec;
+       u64 tb_ticks, xsec;
+       struct gettimeofday_vars *temp_varp;
+       u64 temp_tb_to_xs, temp_stamp_xsec;
+
+       /*
+        * These calculations are faster (gets rid of divides)
+        * if done in units of 1/2^20 rather than microseconds.
+        * The conversion to microseconds at the end is done
+        * without a divide (and in fact, without a multiply)
+        */
+       temp_varp = do_gtod.varp;
+       tb_ticks = tb_val - temp_varp->tb_orig_stamp;
+       temp_tb_to_xs = temp_varp->tb_to_xs;
+       temp_stamp_xsec = temp_varp->stamp_xsec;
+       xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
+       sec = xsec / XSEC_PER_SEC;
+       usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
+       usec = SCALE_XSEC(usec, 1000000);
+
+       tv->tv_sec = sec;
+       tv->tv_usec = usec;
+}
+
+void do_gettimeofday(struct timeval *tv)
+{
+       if (__USE_RTC()) {
+               /* do this the old way */
+               unsigned long flags, seq;
+               unsigned int sec, nsec, usec;
+
+               do {
+                       seq = read_seqbegin_irqsave(&xtime_lock, flags);
+                       sec = xtime.tv_sec;
+                       nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
+               } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
+               usec = nsec / 1000;
+               while (usec >= 1000000) {
+                       usec -= 1000000;
+                       ++sec;
+               }
+               tv->tv_sec = sec;
+               tv->tv_usec = usec;
+               return;
+       }
+       __do_gettimeofday(tv, get_tb());
+}
+
+EXPORT_SYMBOL(do_gettimeofday);
+
+/*
+ * There are two copies of tb_to_xs and stamp_xsec so that no
+ * lock is needed to access and use these values in
+ * do_gettimeofday.  We alternate the copies and as long as a
+ * reasonable time elapses between changes, there will never
+ * be inconsistent values.  ntpd has a minimum of one minute
+ * between updates.
+ */
+static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
+                              u64 new_tb_to_xs)
+{
+       unsigned temp_idx;
+       struct gettimeofday_vars *temp_varp;
+
+       temp_idx = (do_gtod.var_idx == 0);
+       temp_varp = &do_gtod.vars[temp_idx];
+
+       temp_varp->tb_to_xs = new_tb_to_xs;
+       temp_varp->tb_orig_stamp = new_tb_stamp;
+       temp_varp->stamp_xsec = new_stamp_xsec;
+       smp_mb();
+       do_gtod.varp = temp_varp;
+       do_gtod.var_idx = temp_idx;
+
+       /*
+        * tb_update_count is used to allow the userspace gettimeofday code
+        * to assure itself that it sees a consistent view of the tb_to_xs and
+        * stamp_xsec variables.  It reads the tb_update_count, then reads
+        * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
+        * the two values of tb_update_count match and are even then the
+        * tb_to_xs and stamp_xsec values are consistent.  If not, then it
+        * loops back and reads them again until this criteria is met.
+        * We expect the caller to have done the first increment of
+        * vdso_data->tb_update_count already.
+        */
+       vdso_data->tb_orig_stamp = new_tb_stamp;
+       vdso_data->stamp_xsec = new_stamp_xsec;
+       vdso_data->tb_to_xs = new_tb_to_xs;
+       vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
+       vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
+       smp_wmb();
+       ++(vdso_data->tb_update_count);
+}
+
+/*
+ * When the timebase - tb_orig_stamp gets too big, we do a manipulation
+ * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
+ * difference tb - tb_orig_stamp small enough to always fit inside a
+ * 32 bits number. This is a requirement of our fast 32 bits userland
+ * implementation in the vdso. If we "miss" a call to this function
+ * (interrupt latency, CPU locked in a spinlock, ...) and we end up
+ * with a too big difference, then the vdso will fallback to calling
+ * the syscall
+ */
+static __inline__ void timer_recalc_offset(u64 cur_tb)
+{
+       unsigned long offset;
+       u64 new_stamp_xsec;
+       u64 tlen, t2x;
+       u64 tb, xsec_old, xsec_new;
+       struct gettimeofday_vars *varp;
+
+       if (__USE_RTC())
+               return;
+       tlen = current_tick_length();
+       offset = cur_tb - do_gtod.varp->tb_orig_stamp;
+       if (tlen == last_tick_len && offset < 0x80000000u)
+               return;
+       if (tlen != last_tick_len) {
+               t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
+               last_tick_len = tlen;
+       } else
+               t2x = do_gtod.varp->tb_to_xs;
+       new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
+       do_div(new_stamp_xsec, 1000000000);
+       new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
+
+       ++vdso_data->tb_update_count;
+       smp_mb();
+
+       /*
+        * Make sure time doesn't go backwards for userspace gettimeofday.
+        */
+       tb = get_tb();
+       varp = do_gtod.varp;
+       xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
+               + varp->stamp_xsec;
+       xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
+       if (xsec_new < xsec_old)
+               new_stamp_xsec += xsec_old - xsec_new;
+
+       update_gtod(cur_tb, new_stamp_xsec, t2x);
+}
+
+#ifdef CONFIG_SMP
+unsigned long profile_pc(struct pt_regs *regs)
+{
+       unsigned long pc = instruction_pointer(regs);
+
+       if (in_lock_functions(pc))
+               return regs->link;
+
+       return pc;
+}
+EXPORT_SYMBOL(profile_pc);
+#endif
+
+#ifdef CONFIG_PPC_ISERIES
+
+/* 
+ * This function recalibrates the timebase based on the 49-bit time-of-day
+ * value in the Titan chip.  The Titan is much more accurate than the value
+ * returned by the service processor for the timebase frequency.  
+ */
+
+static void iSeries_tb_recal(void)
+{
+       struct div_result divres;
+       unsigned long titan, tb;
+       tb = get_tb();
+       titan = HvCallXm_loadTod();
+       if ( iSeries_recal_titan ) {
+               unsigned long tb_ticks = tb - iSeries_recal_tb;
+               unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
+               unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
+               unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
+               long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
+               char sign = '+';                
+               /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
+               new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
+
+               if ( tick_diff < 0 ) {
+                       tick_diff = -tick_diff;
+                       sign = '-';
+               }
+               if ( tick_diff ) {
+                       if ( tick_diff < tb_ticks_per_jiffy/25 ) {
+                               printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
+                                               new_tb_ticks_per_jiffy, sign, tick_diff );
+                               tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
+                               tb_ticks_per_sec   = new_tb_ticks_per_sec;
+                               calc_cputime_factors();
+                               div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
+                               do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
+                               tb_to_xs = divres.result_low;
+                               do_gtod.varp->tb_to_xs = tb_to_xs;
+                               vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
+                               vdso_data->tb_to_xs = tb_to_xs;
+                       }
+                       else {
+                               printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
+                                       "                   new tb_ticks_per_jiffy = %lu\n"
+                                       "                   old tb_ticks_per_jiffy = %lu\n",
+                                       new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
+                       }
+               }
+       }
+       iSeries_recal_titan = titan;
+       iSeries_recal_tb = tb;
+}
+#endif
+
+/*
+ * For iSeries shared processors, we have to let the hypervisor
+ * set the hardware decrementer.  We set a virtual decrementer
+ * in the lppaca and call the hypervisor if the virtual
+ * decrementer is less than the current value in the hardware
+ * decrementer. (almost always the new decrementer value will
+ * be greater than the current hardware decementer so the hypervisor
+ * call will not be needed)
+ */
+
+/*
+ * timer_interrupt - gets called when the decrementer overflows,
+ * with interrupts disabled.
+ */
+void timer_interrupt(struct pt_regs * regs)
+{
+       int next_dec;
+       int cpu = smp_processor_id();
+       unsigned long ticks;
+
+#ifdef CONFIG_PPC32
+       if (atomic_read(&ppc_n_lost_interrupts) != 0)
+               do_IRQ(regs);
+#endif
+
+       irq_enter();
+
+       profile_tick(CPU_PROFILING, regs);
+       calculate_steal_time();
+
+#ifdef CONFIG_PPC_ISERIES
+       get_lppaca()->int_dword.fields.decr_int = 0;
+#endif
+
+       while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
+              >= tb_ticks_per_jiffy) {
+               /* Update last_jiffy */
+               per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
+               /* Handle RTCL overflow on 601 */
+               if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
+                       per_cpu(last_jiffy, cpu) -= 1000000000;
+
+               /*
+                * We cannot disable the decrementer, so in the period
+                * between this cpu's being marked offline in cpu_online_map
+                * and calling stop-self, it is taking timer interrupts.
+                * Avoid calling into the scheduler rebalancing code if this
+                * is the case.
+                */
+               if (!cpu_is_offline(cpu))
+                       account_process_time(regs);
+
+               /*
+                * No need to check whether cpu is offline here; boot_cpuid
+                * should have been fixed up by now.
+                */
+               if (cpu != boot_cpuid)
+                       continue;
+
+               write_seqlock(&xtime_lock);
+               tb_last_jiffy += tb_ticks_per_jiffy;
+               tb_last_stamp = per_cpu(last_jiffy, cpu);
+               do_timer(regs);
+               timer_recalc_offset(tb_last_jiffy);
+               timer_check_rtc();
+               write_sequnlock(&xtime_lock);
+       }
+       
+       next_dec = tb_ticks_per_jiffy - ticks;
+       set_dec(next_dec);
+
+#ifdef CONFIG_PPC_ISERIES
+       if (hvlpevent_is_pending())
+               process_hvlpevents(regs);
+#endif
+
+#ifdef CONFIG_PPC64
+       /* collect purr register values often, for accurate calculations */
+       if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
+               struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
+               cu->current_tb = mfspr(SPRN_PURR);
+       }
+#endif
+
+       irq_exit();
+}
+
+void wakeup_decrementer(void)
+{
+       unsigned long ticks;
+
+       /*
+        * The timebase gets saved on sleep and restored on wakeup,
+        * so all we need to do is to reset the decrementer.
+        */
+       ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
+       if (ticks < tb_ticks_per_jiffy)
+               ticks = tb_ticks_per_jiffy - ticks;
+       else
+               ticks = 1;
+       set_dec(ticks);
+}
+
+#ifdef CONFIG_SMP
+void __init smp_space_timers(unsigned int max_cpus)
+{
+       int i;
+       unsigned long half = tb_ticks_per_jiffy / 2;
+       unsigned long offset = tb_ticks_per_jiffy / max_cpus;
+       unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
+
+       /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
+       previous_tb -= tb_ticks_per_jiffy;
+       /*
+        * The stolen time calculation for POWER5 shared-processor LPAR
+        * systems works better if the two threads' timebase interrupts
+        * are staggered by half a jiffy with respect to each other.
+        */
+       for_each_possible_cpu(i) {
+               if (i == boot_cpuid)
+                       continue;
+               if (i == (boot_cpuid ^ 1))
+                       per_cpu(last_jiffy, i) =
+                               per_cpu(last_jiffy, boot_cpuid) - half;
+               else if (i & 1)
+                       per_cpu(last_jiffy, i) =
+                               per_cpu(last_jiffy, i ^ 1) + half;
+               else {
+                       previous_tb += offset;
+                       per_cpu(last_jiffy, i) = previous_tb;
+               }
+       }
+}
+#endif
+
+/*
+ * Scheduler clock - returns current time in nanosec units.
+ *
+ * Note: mulhdu(a, b) (multiply high double unsigned) returns
+ * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
+ * are 64-bit unsigned numbers.
+ */
+unsigned long long sched_clock(void)
+{
+       if (__USE_RTC())
+               return get_rtc();
+       return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
+}
+
+int do_settimeofday(struct timespec *tv)
+{
+       time_t wtm_sec, new_sec = tv->tv_sec;
+       long wtm_nsec, new_nsec = tv->tv_nsec;
+       unsigned long flags;
+       u64 new_xsec;
+       unsigned long tb_delta;
+
+       if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
+               return -EINVAL;
+
+       write_seqlock_irqsave(&xtime_lock, flags);
+
+       /*
+        * Updating the RTC is not the job of this code. If the time is
+        * stepped under NTP, the RTC will be updated after STA_UNSYNC
+        * is cleared.  Tools like clock/hwclock either copy the RTC
+        * to the system time, in which case there is no point in writing
+        * to the RTC again, or write to the RTC but then they don't call
+        * settimeofday to perform this operation.
+        */
+#ifdef CONFIG_PPC_ISERIES
+       if (first_settimeofday) {
+               iSeries_tb_recal();
+               first_settimeofday = 0;
+       }
+#endif
+
+       /* Make userspace gettimeofday spin until we're done. */
+       ++vdso_data->tb_update_count;
+       smp_mb();
+
+       /*
+        * Subtract off the number of nanoseconds since the
+        * beginning of the last tick.
+        * Note that since we don't increment jiffies_64 anywhere other
+        * than in do_timer (since we don't have a lost tick problem),
+        * wall_jiffies will always be the same as jiffies,
+        * and therefore the (jiffies - wall_jiffies) computation
+        * has been removed.
+        */
+       tb_delta = tb_ticks_since(tb_last_stamp);
+       tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
+       new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
+
+       wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
+       wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
+
+       set_normalized_timespec(&xtime, new_sec, new_nsec);
+       set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
+
+       /* In case of a large backwards jump in time with NTP, we want the 
+        * clock to be updated as soon as the PLL is again in lock.
+        */
+       last_rtc_update = new_sec - 658;
+
+       ntp_clear();
+
+       new_xsec = xtime.tv_nsec;
+       if (new_xsec != 0) {
+               new_xsec *= XSEC_PER_SEC;
+               do_div(new_xsec, NSEC_PER_SEC);
+       }
+       new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
+       update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
+
+       vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
+       vdso_data->tz_dsttime = sys_tz.tz_dsttime;
+
+       write_sequnlock_irqrestore(&xtime_lock, flags);
+       clock_was_set();
+       return 0;
+}
+
+EXPORT_SYMBOL(do_settimeofday);
+
+void __init generic_calibrate_decr(void)
+{
+       struct device_node *cpu;
+       unsigned int *fp;
+       int node_found;
+
+       /*
+        * The cpu node should have a timebase-frequency property
+        * to tell us the rate at which the decrementer counts.
+        */
+       cpu = of_find_node_by_type(NULL, "cpu");
+
+       ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
+       node_found = 0;
+       if (cpu) {
+               fp = (unsigned int *)get_property(cpu, "timebase-frequency",
+                                                 NULL);
+               if (fp) {
+                       node_found = 1;
+                       ppc_tb_freq = *fp;
+               }
+       }
+       if (!node_found)
+               printk(KERN_ERR "WARNING: Estimating decrementer frequency "
+                               "(not found)\n");
+
+       ppc_proc_freq = DEFAULT_PROC_FREQ;
+       node_found = 0;
+       if (cpu) {
+               fp = (unsigned int *)get_property(cpu, "clock-frequency",
+                                                 NULL);
+               if (fp) {
+                       node_found = 1;
+                       ppc_proc_freq = *fp;
+               }
+       }
+#ifdef CONFIG_BOOKE
+       /* Set the time base to zero */
+       mtspr(SPRN_TBWL, 0);
+       mtspr(SPRN_TBWU, 0);
+
+       /* Clear any pending timer interrupts */
+       mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
+
+       /* Enable decrementer interrupt */
+       mtspr(SPRN_TCR, TCR_DIE);
+#endif
+       if (!node_found)
+               printk(KERN_ERR "WARNING: Estimating processor frequency "
+                               "(not found)\n");
+
+       of_node_put(cpu);
+}
+
+unsigned long get_boot_time(void)
+{
+       struct rtc_time tm;
+
+       if (ppc_md.get_boot_time)
+               return ppc_md.get_boot_time();
+       if (!ppc_md.get_rtc_time)
+               return 0;
+       ppc_md.get_rtc_time(&tm);
+       return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
+                     tm.tm_hour, tm.tm_min, tm.tm_sec);
+}
+
+/* This function is only called on the boot processor */
+void __init time_init(void)
+{
+       unsigned long flags;
+       unsigned long tm = 0;
+       struct div_result res;
+       u64 scale, x;
+       unsigned shift;
+
+        if (ppc_md.time_init != NULL)
+                timezone_offset = ppc_md.time_init();
+
+       if (__USE_RTC()) {
+               /* 601 processor: dec counts down by 128 every 128ns */
+               ppc_tb_freq = 1000000000;
+               tb_last_stamp = get_rtcl();
+               tb_last_jiffy = tb_last_stamp;
+       } else {
+               /* Normal PowerPC with timebase register */
+               ppc_md.calibrate_decr();
+               printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
+                      ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
+               printk(KERN_INFO "time_init: processor frequency   = %lu.%.6lu MHz\n",
+                      ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
+               tb_last_stamp = tb_last_jiffy = get_tb();
+       }
+
+       tb_ticks_per_jiffy = ppc_tb_freq / HZ;
+       tb_ticks_per_sec = ppc_tb_freq;
+       tb_ticks_per_usec = ppc_tb_freq / 1000000;
+       tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
+       calc_cputime_factors();
+
+       /*
+        * Calculate the length of each tick in ns.  It will not be
+        * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
+        * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
+        * rounded up.
+        */
+       x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
+       do_div(x, ppc_tb_freq);
+       tick_nsec = x;
+       last_tick_len = x << TICKLEN_SCALE;
+
+       /*
+        * Compute ticklen_to_xs, which is a factor which gets multiplied
+        * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
+        * It is computed as:
+        * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
+        * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
+        * which turns out to be N = 51 - SHIFT_HZ.
+        * This gives the result as a 0.64 fixed-point fraction.
+        * That value is reduced by an offset amounting to 1 xsec per
+        * 2^31 timebase ticks to avoid problems with time going backwards
+        * by 1 xsec when we do timer_recalc_offset due to losing the
+        * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
+        * since there are 2^20 xsec in a second.
+        */
+       div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
+                    tb_ticks_per_jiffy << SHIFT_HZ, &res);
+       div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
+       ticklen_to_xs = res.result_low;
+
+       /* Compute tb_to_xs from tick_nsec */
+       tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
+
+       /*
+        * Compute scale factor for sched_clock.
+        * The calibrate_decr() function has set tb_ticks_per_sec,
+        * which is the timebase frequency.
+        * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
+        * the 128-bit result as a 64.64 fixed-point number.
+        * We then shift that number right until it is less than 1.0,
+        * giving us the scale factor and shift count to use in
+        * sched_clock().
+        */
+       div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
+       scale = res.result_low;
+       for (shift = 0; res.result_high != 0; ++shift) {
+               scale = (scale >> 1) | (res.result_high << 63);
+               res.result_high >>= 1;
+       }
+       tb_to_ns_scale = scale;
+       tb_to_ns_shift = shift;
+
+#ifdef CONFIG_PPC_ISERIES
+       if (!piranha_simulator)
+#endif
+               tm = get_boot_time();
+
+       write_seqlock_irqsave(&xtime_lock, flags);
+
+       /* If platform provided a timezone (pmac), we correct the time */
+        if (timezone_offset) {
+               sys_tz.tz_minuteswest = -timezone_offset / 60;
+               sys_tz.tz_dsttime = 0;
+               tm -= timezone_offset;
+        }
+
+       xtime.tv_sec = tm;
+       xtime.tv_nsec = 0;
+       do_gtod.varp = &do_gtod.vars[0];
+       do_gtod.var_idx = 0;
+       do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
+       __get_cpu_var(last_jiffy) = tb_last_stamp;
+       do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
+       do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
+       do_gtod.varp->tb_to_xs = tb_to_xs;
+       do_gtod.tb_to_us = tb_to_us;
+
+       vdso_data->tb_orig_stamp = tb_last_jiffy;
+       vdso_data->tb_update_count = 0;
+       vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
+       vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
+       vdso_data->tb_to_xs = tb_to_xs;
+
+       time_freq = 0;
+
+       last_rtc_update = xtime.tv_sec;
+       set_normalized_timespec(&wall_to_monotonic,
+                               -xtime.tv_sec, -xtime.tv_nsec);
+       write_sequnlock_irqrestore(&xtime_lock, flags);
+
+       /* Not exact, but the timer interrupt takes care of this */
+       set_dec(tb_ticks_per_jiffy);
+}
+
+
+#define FEBRUARY       2
+#define        STARTOFTIME     1970
+#define SECDAY         86400L
+#define SECYR          (SECDAY * 365)
+#define        leapyear(year)          ((year) % 4 == 0 && \
+                                ((year) % 100 != 0 || (year) % 400 == 0))
+#define        days_in_year(a)         (leapyear(a) ? 366 : 365)
+#define        days_in_month(a)        (month_days[(a) - 1])
+
+static int month_days[12] = {
+       31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
+};
+
+/*
+ * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
+ */
+void GregorianDay(struct rtc_time * tm)
+{
+       int leapsToDate;
+       int lastYear;
+       int day;
+       int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
+
+       lastYear = tm->tm_year - 1;
+
+       /*
+        * Number of leap corrections to apply up to end of last year
+        */
+       leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
+
+       /*
+        * This year is a leap year if it is divisible by 4 except when it is
+        * divisible by 100 unless it is divisible by 400
+        *
+        * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
+        */
+       day = tm->tm_mon > 2 && leapyear(tm->tm_year);
+
+       day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
+                  tm->tm_mday;
+
+       tm->tm_wday = day % 7;
+}
+
+void to_tm(int tim, struct rtc_time * tm)
+{
+       register int    i;
+       register long   hms, day;
+
+       day = tim / SECDAY;
+       hms = tim % SECDAY;
+
+       /* Hours, minutes, seconds are easy */
+       tm->tm_hour = hms / 3600;
+       tm->tm_min = (hms % 3600) / 60;
+       tm->tm_sec = (hms % 3600) % 60;
+
+       /* Number of years in days */
+       for (i = STARTOFTIME; day >= days_in_year(i); i++)
+               day -= days_in_year(i);
+       tm->tm_year = i;
+
+       /* Number of months in days left */
+       if (leapyear(tm->tm_year))
+               days_in_month(FEBRUARY) = 29;
+       for (i = 1; day >= days_in_month(i); i++)
+               day -= days_in_month(i);
+       days_in_month(FEBRUARY) = 28;
+       tm->tm_mon = i;
+
+       /* Days are what is left over (+1) from all that. */
+       tm->tm_mday = day + 1;
+
+       /*
+        * Determine the day of week
+        */
+       GregorianDay(tm);
+}
+
+/* Auxiliary function to compute scaling factors */
+/* Actually the choice of a timebase running at 1/4 the of the bus
+ * frequency giving resolution of a few tens of nanoseconds is quite nice.
+ * It makes this computation very precise (27-28 bits typically) which
+ * is optimistic considering the stability of most processor clock
+ * oscillators and the precision with which the timebase frequency
+ * is measured but does not harm.
+ */
+unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
+{
+        unsigned mlt=0, tmp, err;
+        /* No concern for performance, it's done once: use a stupid
+         * but safe and compact method to find the multiplier.
+         */
+  
+        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
+                if (mulhwu(inscale, mlt|tmp) < outscale)
+                       mlt |= tmp;
+        }
+  
+        /* We might still be off by 1 for the best approximation.
+         * A side effect of this is that if outscale is too large
+         * the returned value will be zero.
+         * Many corner cases have been checked and seem to work,
+         * some might have been forgotten in the test however.
+         */
+  
+        err = inscale * (mlt+1);
+        if (err <= inscale/2)
+               mlt++;
+        return mlt;
+}
+
+/*
+ * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
+ * result.
+ */
+void div128_by_32(u64 dividend_high, u64 dividend_low,
+                 unsigned divisor, struct div_result *dr)
+{
+       unsigned long a, b, c, d;
+       unsigned long w, x, y, z;
+       u64 ra, rb, rc;
+
+       a = dividend_high >> 32;
+       b = dividend_high & 0xffffffff;
+       c = dividend_low >> 32;
+       d = dividend_low & 0xffffffff;
+
+       w = a / divisor;
+       ra = ((u64)(a - (w * divisor)) << 32) + b;
+
+       rb = ((u64) do_div(ra, divisor) << 32) + c;
+       x = ra;
+
+       rc = ((u64) do_div(rb, divisor) << 32) + d;
+       y = rb;
+
+       do_div(rc, divisor);
+       z = rc;
+
+       dr->result_high = ((u64)w << 32) + x;
+       dr->result_low  = ((u64)y << 32) + z;
+
+}