This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / arch / powerpc / mm / numa.c
diff --git a/arch/powerpc/mm/numa.c b/arch/powerpc/mm/numa.c
new file mode 100644 (file)
index 0000000..092355f
--- /dev/null
@@ -0,0 +1,827 @@
+/*
+ * pSeries NUMA support
+ *
+ * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+#include <linux/threads.h>
+#include <linux/bootmem.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/mmzone.h>
+#include <linux/module.h>
+#include <linux/nodemask.h>
+#include <linux/cpu.h>
+#include <linux/notifier.h>
+#include <asm/sparsemem.h>
+#include <asm/lmb.h>
+#include <asm/system.h>
+#include <asm/smp.h>
+
+static int numa_enabled = 1;
+
+static int numa_debug;
+#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
+
+int numa_cpu_lookup_table[NR_CPUS];
+cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
+struct pglist_data *node_data[MAX_NUMNODES];
+
+EXPORT_SYMBOL(numa_cpu_lookup_table);
+EXPORT_SYMBOL(numa_cpumask_lookup_table);
+EXPORT_SYMBOL(node_data);
+
+static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
+static int min_common_depth;
+static int n_mem_addr_cells, n_mem_size_cells;
+
+/*
+ * We need somewhere to store start/end/node for each region until we have
+ * allocated the real node_data structures.
+ */
+#define MAX_REGIONS    (MAX_LMB_REGIONS*2)
+static struct {
+       unsigned long start_pfn;
+       unsigned long end_pfn;
+       int nid;
+} init_node_data[MAX_REGIONS] __initdata;
+
+int __init early_pfn_to_nid(unsigned long pfn)
+{
+       unsigned int i;
+
+       for (i = 0; init_node_data[i].end_pfn; i++) {
+               unsigned long start_pfn = init_node_data[i].start_pfn;
+               unsigned long end_pfn = init_node_data[i].end_pfn;
+
+               if ((start_pfn <= pfn) && (pfn < end_pfn))
+                       return init_node_data[i].nid;
+       }
+
+       return -1;
+}
+
+void __init add_region(unsigned int nid, unsigned long start_pfn,
+                      unsigned long pages)
+{
+       unsigned int i;
+
+       dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
+               nid, start_pfn, pages);
+
+       for (i = 0; init_node_data[i].end_pfn; i++) {
+               if (init_node_data[i].nid != nid)
+                       continue;
+               if (init_node_data[i].end_pfn == start_pfn) {
+                       init_node_data[i].end_pfn += pages;
+                       return;
+               }
+               if (init_node_data[i].start_pfn == (start_pfn + pages)) {
+                       init_node_data[i].start_pfn -= pages;
+                       return;
+               }
+       }
+
+       /*
+        * Leave last entry NULL so we dont iterate off the end (we use
+        * entry.end_pfn to terminate the walk).
+        */
+       if (i >= (MAX_REGIONS - 1)) {
+               printk(KERN_ERR "WARNING: too many memory regions in "
+                               "numa code, truncating\n");
+               return;
+       }
+
+       init_node_data[i].start_pfn = start_pfn;
+       init_node_data[i].end_pfn = start_pfn + pages;
+       init_node_data[i].nid = nid;
+}
+
+/* We assume init_node_data has no overlapping regions */
+void __init get_region(unsigned int nid, unsigned long *start_pfn,
+                      unsigned long *end_pfn, unsigned long *pages_present)
+{
+       unsigned int i;
+
+       *start_pfn = -1UL;
+       *end_pfn = *pages_present = 0;
+
+       for (i = 0; init_node_data[i].end_pfn; i++) {
+               if (init_node_data[i].nid != nid)
+                       continue;
+
+               *pages_present += init_node_data[i].end_pfn -
+                       init_node_data[i].start_pfn;
+
+               if (init_node_data[i].start_pfn < *start_pfn)
+                       *start_pfn = init_node_data[i].start_pfn;
+
+               if (init_node_data[i].end_pfn > *end_pfn)
+                       *end_pfn = init_node_data[i].end_pfn;
+       }
+
+       /* We didnt find a matching region, return start/end as 0 */
+       if (*start_pfn == -1UL)
+               *start_pfn = 0;
+}
+
+static void __cpuinit map_cpu_to_node(int cpu, int node)
+{
+       numa_cpu_lookup_table[cpu] = node;
+
+       dbg("adding cpu %d to node %d\n", cpu, node);
+
+       if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
+               cpu_set(cpu, numa_cpumask_lookup_table[node]);
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+static void unmap_cpu_from_node(unsigned long cpu)
+{
+       int node = numa_cpu_lookup_table[cpu];
+
+       dbg("removing cpu %lu from node %d\n", cpu, node);
+
+       if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
+               cpu_clear(cpu, numa_cpumask_lookup_table[node]);
+       } else {
+               printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
+                      cpu, node);
+       }
+}
+#endif /* CONFIG_HOTPLUG_CPU */
+
+static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
+{
+       unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
+       struct device_node *cpu_node = NULL;
+       unsigned int *interrupt_server, *reg;
+       int len;
+
+       while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
+               /* Try interrupt server first */
+               interrupt_server = (unsigned int *)get_property(cpu_node,
+                                       "ibm,ppc-interrupt-server#s", &len);
+
+               len = len / sizeof(u32);
+
+               if (interrupt_server && (len > 0)) {
+                       while (len--) {
+                               if (interrupt_server[len] == hw_cpuid)
+                                       return cpu_node;
+                       }
+               } else {
+                       reg = (unsigned int *)get_property(cpu_node,
+                                                          "reg", &len);
+                       if (reg && (len > 0) && (reg[0] == hw_cpuid))
+                               return cpu_node;
+               }
+       }
+
+       return NULL;
+}
+
+/* must hold reference to node during call */
+static int *of_get_associativity(struct device_node *dev)
+{
+       return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
+}
+
+/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
+ * info is found.
+ */
+static int of_node_to_nid_single(struct device_node *device)
+{
+       int nid = -1;
+       unsigned int *tmp;
+
+       if (min_common_depth == -1)
+               goto out;
+
+       tmp = of_get_associativity(device);
+       if (!tmp)
+               goto out;
+
+       if (tmp[0] >= min_common_depth)
+               nid = tmp[min_common_depth];
+
+       /* POWER4 LPAR uses 0xffff as invalid node */
+       if (nid == 0xffff || nid >= MAX_NUMNODES)
+               nid = -1;
+out:
+       return nid;
+}
+
+/* Walk the device tree upwards, looking for an associativity id */
+int of_node_to_nid(struct device_node *device)
+{
+       struct device_node *tmp;
+       int nid = -1;
+
+       of_node_get(device);
+       while (device) {
+               nid = of_node_to_nid_single(device);
+               if (nid != -1)
+                       break;
+
+               tmp = device;
+               device = of_get_parent(tmp);
+               of_node_put(tmp);
+       }
+       of_node_put(device);
+
+       return nid;
+}
+EXPORT_SYMBOL_GPL(of_node_to_nid);
+
+/*
+ * In theory, the "ibm,associativity" property may contain multiple
+ * associativity lists because a resource may be multiply connected
+ * into the machine.  This resource then has different associativity
+ * characteristics relative to its multiple connections.  We ignore
+ * this for now.  We also assume that all cpu and memory sets have
+ * their distances represented at a common level.  This won't be
+ * true for heirarchical NUMA.
+ *
+ * In any case the ibm,associativity-reference-points should give
+ * the correct depth for a normal NUMA system.
+ *
+ * - Dave Hansen <haveblue@us.ibm.com>
+ */
+static int __init find_min_common_depth(void)
+{
+       int depth;
+       unsigned int *ref_points;
+       struct device_node *rtas_root;
+       unsigned int len;
+
+       rtas_root = of_find_node_by_path("/rtas");
+
+       if (!rtas_root)
+               return -1;
+
+       /*
+        * this property is 2 32-bit integers, each representing a level of
+        * depth in the associativity nodes.  The first is for an SMP
+        * configuration (should be all 0's) and the second is for a normal
+        * NUMA configuration.
+        */
+       ref_points = (unsigned int *)get_property(rtas_root,
+                       "ibm,associativity-reference-points", &len);
+
+       if ((len >= 1) && ref_points) {
+               depth = ref_points[1];
+       } else {
+               dbg("NUMA: ibm,associativity-reference-points not found.\n");
+               depth = -1;
+       }
+       of_node_put(rtas_root);
+
+       return depth;
+}
+
+static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
+{
+       struct device_node *memory = NULL;
+
+       memory = of_find_node_by_type(memory, "memory");
+       if (!memory)
+               panic("numa.c: No memory nodes found!");
+
+       *n_addr_cells = prom_n_addr_cells(memory);
+       *n_size_cells = prom_n_size_cells(memory);
+       of_node_put(memory);
+}
+
+static unsigned long __devinit read_n_cells(int n, unsigned int **buf)
+{
+       unsigned long result = 0;
+
+       while (n--) {
+               result = (result << 32) | **buf;
+               (*buf)++;
+       }
+       return result;
+}
+
+/*
+ * Figure out to which domain a cpu belongs and stick it there.
+ * Return the id of the domain used.
+ */
+static int __cpuinit numa_setup_cpu(unsigned long lcpu)
+{
+       int nid = 0;
+       struct device_node *cpu = find_cpu_node(lcpu);
+
+       if (!cpu) {
+               WARN_ON(1);
+               goto out;
+       }
+
+       nid = of_node_to_nid_single(cpu);
+
+       if (nid < 0 || !node_online(nid))
+               nid = any_online_node(NODE_MASK_ALL);
+out:
+       map_cpu_to_node(lcpu, nid);
+
+       of_node_put(cpu);
+
+       return nid;
+}
+
+static int cpu_numa_callback(struct notifier_block *nfb,
+                            unsigned long action,
+                            void *hcpu)
+{
+       unsigned long lcpu = (unsigned long)hcpu;
+       int ret = NOTIFY_DONE;
+
+       switch (action) {
+       case CPU_UP_PREPARE:
+               numa_setup_cpu(lcpu);
+               ret = NOTIFY_OK;
+               break;
+#ifdef CONFIG_HOTPLUG_CPU
+       case CPU_DEAD:
+       case CPU_UP_CANCELED:
+               unmap_cpu_from_node(lcpu);
+               break;
+               ret = NOTIFY_OK;
+#endif
+       }
+       return ret;
+}
+
+/*
+ * Check and possibly modify a memory region to enforce the memory limit.
+ *
+ * Returns the size the region should have to enforce the memory limit.
+ * This will either be the original value of size, a truncated value,
+ * or zero. If the returned value of size is 0 the region should be
+ * discarded as it lies wholy above the memory limit.
+ */
+static unsigned long __init numa_enforce_memory_limit(unsigned long start,
+                                                     unsigned long size)
+{
+       /*
+        * We use lmb_end_of_DRAM() in here instead of memory_limit because
+        * we've already adjusted it for the limit and it takes care of
+        * having memory holes below the limit.
+        */
+
+       if (! memory_limit)
+               return size;
+
+       if (start + size <= lmb_end_of_DRAM())
+               return size;
+
+       if (start >= lmb_end_of_DRAM())
+               return 0;
+
+       return lmb_end_of_DRAM() - start;
+}
+
+static int __init parse_numa_properties(void)
+{
+       struct device_node *cpu = NULL;
+       struct device_node *memory = NULL;
+       int default_nid = 0;
+       unsigned long i;
+
+       if (numa_enabled == 0) {
+               printk(KERN_WARNING "NUMA disabled by user\n");
+               return -1;
+       }
+
+       min_common_depth = find_min_common_depth();
+
+       if (min_common_depth < 0)
+               return min_common_depth;
+
+       dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
+
+       /*
+        * Even though we connect cpus to numa domains later in SMP
+        * init, we need to know the node ids now. This is because
+        * each node to be onlined must have NODE_DATA etc backing it.
+        */
+       for_each_present_cpu(i) {
+               int nid;
+
+               cpu = find_cpu_node(i);
+               BUG_ON(!cpu);
+               nid = of_node_to_nid_single(cpu);
+               of_node_put(cpu);
+
+               /*
+                * Don't fall back to default_nid yet -- we will plug
+                * cpus into nodes once the memory scan has discovered
+                * the topology.
+                */
+               if (nid < 0)
+                       continue;
+               node_set_online(nid);
+       }
+
+       get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
+       memory = NULL;
+       while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
+               unsigned long start;
+               unsigned long size;
+               int nid;
+               int ranges;
+               unsigned int *memcell_buf;
+               unsigned int len;
+
+               memcell_buf = (unsigned int *)get_property(memory,
+                       "linux,usable-memory", &len);
+               if (!memcell_buf || len <= 0)
+                       memcell_buf =
+                               (unsigned int *)get_property(memory, "reg",
+                                       &len);
+               if (!memcell_buf || len <= 0)
+                       continue;
+
+               /* ranges in cell */
+               ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
+new_range:
+               /* these are order-sensitive, and modify the buffer pointer */
+               start = read_n_cells(n_mem_addr_cells, &memcell_buf);
+               size = read_n_cells(n_mem_size_cells, &memcell_buf);
+
+               /*
+                * Assumption: either all memory nodes or none will
+                * have associativity properties.  If none, then
+                * everything goes to default_nid.
+                */
+               nid = of_node_to_nid_single(memory);
+               if (nid < 0)
+                       nid = default_nid;
+               node_set_online(nid);
+
+               if (!(size = numa_enforce_memory_limit(start, size))) {
+                       if (--ranges)
+                               goto new_range;
+                       else
+                               continue;
+               }
+
+               add_region(nid, start >> PAGE_SHIFT,
+                          size >> PAGE_SHIFT);
+
+               if (--ranges)
+                       goto new_range;
+       }
+
+       return 0;
+}
+
+static void __init setup_nonnuma(void)
+{
+       unsigned long top_of_ram = lmb_end_of_DRAM();
+       unsigned long total_ram = lmb_phys_mem_size();
+       unsigned int i;
+
+       printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
+              top_of_ram, total_ram);
+       printk(KERN_INFO "Memory hole size: %ldMB\n",
+              (top_of_ram - total_ram) >> 20);
+
+       for (i = 0; i < lmb.memory.cnt; ++i)
+               add_region(0, lmb.memory.region[i].base >> PAGE_SHIFT,
+                          lmb_size_pages(&lmb.memory, i));
+       node_set_online(0);
+}
+
+void __init dump_numa_cpu_topology(void)
+{
+       unsigned int node;
+       unsigned int cpu, count;
+
+       if (min_common_depth == -1 || !numa_enabled)
+               return;
+
+       for_each_online_node(node) {
+               printk(KERN_INFO "Node %d CPUs:", node);
+
+               count = 0;
+               /*
+                * If we used a CPU iterator here we would miss printing
+                * the holes in the cpumap.
+                */
+               for (cpu = 0; cpu < NR_CPUS; cpu++) {
+                       if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
+                               if (count == 0)
+                                       printk(" %u", cpu);
+                               ++count;
+                       } else {
+                               if (count > 1)
+                                       printk("-%u", cpu - 1);
+                               count = 0;
+                       }
+               }
+
+               if (count > 1)
+                       printk("-%u", NR_CPUS - 1);
+               printk("\n");
+       }
+}
+
+static void __init dump_numa_memory_topology(void)
+{
+       unsigned int node;
+       unsigned int count;
+
+       if (min_common_depth == -1 || !numa_enabled)
+               return;
+
+       for_each_online_node(node) {
+               unsigned long i;
+
+               printk(KERN_INFO "Node %d Memory:", node);
+
+               count = 0;
+
+               for (i = 0; i < lmb_end_of_DRAM();
+                    i += (1 << SECTION_SIZE_BITS)) {
+                       if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
+                               if (count == 0)
+                                       printk(" 0x%lx", i);
+                               ++count;
+                       } else {
+                               if (count > 0)
+                                       printk("-0x%lx", i);
+                               count = 0;
+                       }
+               }
+
+               if (count > 0)
+                       printk("-0x%lx", i);
+               printk("\n");
+       }
+}
+
+/*
+ * Allocate some memory, satisfying the lmb or bootmem allocator where
+ * required. nid is the preferred node and end is the physical address of
+ * the highest address in the node.
+ *
+ * Returns the physical address of the memory.
+ */
+static void __init *careful_allocation(int nid, unsigned long size,
+                                      unsigned long align,
+                                      unsigned long end_pfn)
+{
+       int new_nid;
+       unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
+
+       /* retry over all memory */
+       if (!ret)
+               ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
+
+       if (!ret)
+               panic("numa.c: cannot allocate %lu bytes on node %d",
+                     size, nid);
+
+       /*
+        * If the memory came from a previously allocated node, we must
+        * retry with the bootmem allocator.
+        */
+       new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
+       if (new_nid < nid) {
+               ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
+                               size, align, 0);
+
+               if (!ret)
+                       panic("numa.c: cannot allocate %lu bytes on node %d",
+                             size, new_nid);
+
+               ret = __pa(ret);
+
+               dbg("alloc_bootmem %lx %lx\n", ret, size);
+       }
+
+       return (void *)ret;
+}
+
+void __init do_init_bootmem(void)
+{
+       int nid;
+       unsigned int i;
+       static struct notifier_block ppc64_numa_nb = {
+               .notifier_call = cpu_numa_callback,
+               .priority = 1 /* Must run before sched domains notifier. */
+       };
+
+       min_low_pfn = 0;
+       max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
+       max_pfn = max_low_pfn;
+
+       if (parse_numa_properties())
+               setup_nonnuma();
+       else
+               dump_numa_memory_topology();
+
+       register_cpu_notifier(&ppc64_numa_nb);
+       cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
+                         (void *)(unsigned long)boot_cpuid);
+
+       for_each_online_node(nid) {
+               unsigned long start_pfn, end_pfn, pages_present;
+               unsigned long bootmem_paddr;
+               unsigned long bootmap_pages;
+
+               get_region(nid, &start_pfn, &end_pfn, &pages_present);
+
+               /* Allocate the node structure node local if possible */
+               NODE_DATA(nid) = careful_allocation(nid,
+                                       sizeof(struct pglist_data),
+                                       SMP_CACHE_BYTES, end_pfn);
+               NODE_DATA(nid) = __va(NODE_DATA(nid));
+               memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
+
+               dbg("node %d\n", nid);
+               dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
+
+               NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
+               NODE_DATA(nid)->node_start_pfn = start_pfn;
+               NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
+
+               if (NODE_DATA(nid)->node_spanned_pages == 0)
+                       continue;
+
+               dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
+               dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
+
+               bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
+               bootmem_paddr = (unsigned long)careful_allocation(nid,
+                                       bootmap_pages << PAGE_SHIFT,
+                                       PAGE_SIZE, end_pfn);
+               memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
+
+               dbg("bootmap_paddr = %lx\n", bootmem_paddr);
+
+               init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
+                                 start_pfn, end_pfn);
+
+               /* Add free regions on this node */
+               for (i = 0; init_node_data[i].end_pfn; i++) {
+                       unsigned long start, end;
+
+                       if (init_node_data[i].nid != nid)
+                               continue;
+
+                       start = init_node_data[i].start_pfn << PAGE_SHIFT;
+                       end = init_node_data[i].end_pfn << PAGE_SHIFT;
+
+                       dbg("free_bootmem %lx %lx\n", start, end - start);
+                       free_bootmem_node(NODE_DATA(nid), start, end - start);
+               }
+
+               /* Mark reserved regions on this node */
+               for (i = 0; i < lmb.reserved.cnt; i++) {
+                       unsigned long physbase = lmb.reserved.region[i].base;
+                       unsigned long size = lmb.reserved.region[i].size;
+                       unsigned long start_paddr = start_pfn << PAGE_SHIFT;
+                       unsigned long end_paddr = end_pfn << PAGE_SHIFT;
+
+                       if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
+                           early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
+                               continue;
+
+                       if (physbase < end_paddr &&
+                           (physbase+size) > start_paddr) {
+                               /* overlaps */
+                               if (physbase < start_paddr) {
+                                       size -= start_paddr - physbase;
+                                       physbase = start_paddr;
+                               }
+
+                               if (size > end_paddr - physbase)
+                                       size = end_paddr - physbase;
+
+                               dbg("reserve_bootmem %lx %lx\n", physbase,
+                                   size);
+                               reserve_bootmem_node(NODE_DATA(nid), physbase,
+                                                    size);
+                       }
+               }
+
+               /* Add regions into sparsemem */
+               for (i = 0; init_node_data[i].end_pfn; i++) {
+                       unsigned long start, end;
+
+                       if (init_node_data[i].nid != nid)
+                               continue;
+
+                       start = init_node_data[i].start_pfn;
+                       end = init_node_data[i].end_pfn;
+
+                       memory_present(nid, start, end);
+               }
+       }
+}
+
+void __init paging_init(void)
+{
+       unsigned long zones_size[MAX_NR_ZONES];
+       unsigned long zholes_size[MAX_NR_ZONES];
+       int nid;
+
+       memset(zones_size, 0, sizeof(zones_size));
+       memset(zholes_size, 0, sizeof(zholes_size));
+
+       for_each_online_node(nid) {
+               unsigned long start_pfn, end_pfn, pages_present;
+
+               get_region(nid, &start_pfn, &end_pfn, &pages_present);
+
+               zones_size[ZONE_DMA] = end_pfn - start_pfn;
+               zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present;
+
+               dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
+                   zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
+
+               free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn,
+                                   zholes_size);
+       }
+}
+
+static int __init early_numa(char *p)
+{
+       if (!p)
+               return 0;
+
+       if (strstr(p, "off"))
+               numa_enabled = 0;
+
+       if (strstr(p, "debug"))
+               numa_debug = 1;
+
+       return 0;
+}
+early_param("numa", early_numa);
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+/*
+ * Find the node associated with a hot added memory section.  Section
+ * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
+ * sections are fully contained within a single LMB.
+ */
+int hot_add_scn_to_nid(unsigned long scn_addr)
+{
+       struct device_node *memory = NULL;
+       nodemask_t nodes;
+       int default_nid = any_online_node(NODE_MASK_ALL);
+       int nid;
+
+       if (!numa_enabled || (min_common_depth < 0))
+               return default_nid;
+
+       while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
+               unsigned long start, size;
+               int ranges;
+               unsigned int *memcell_buf;
+               unsigned int len;
+
+               memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
+               if (!memcell_buf || len <= 0)
+                       continue;
+
+               /* ranges in cell */
+               ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
+ha_new_range:
+               start = read_n_cells(n_mem_addr_cells, &memcell_buf);
+               size = read_n_cells(n_mem_size_cells, &memcell_buf);
+               nid = of_node_to_nid_single(memory);
+
+               /* Domains not present at boot default to 0 */
+               if (nid < 0 || !node_online(nid))
+                       nid = default_nid;
+
+               if ((scn_addr >= start) && (scn_addr < (start + size))) {
+                       of_node_put(memory);
+                       goto got_nid;
+               }
+
+               if (--ranges)           /* process all ranges in cell */
+                       goto ha_new_range;
+       }
+       BUG();  /* section address should be found above */
+       return 0;
+
+       /* Temporary code to ensure that returned node is not empty */
+got_nid:
+       nodes_setall(nodes);
+       while (NODE_DATA(nid)->node_spanned_pages == 0) {
+               node_clear(nid, nodes);
+               nid = any_online_node(nodes);
+       }
+       return nid;
+}
+#endif /* CONFIG_MEMORY_HOTPLUG */