Fedora kernel-2.6.17-1.2142_FC4 patched with stable patch-2.6.17.4-vs2.0.2-rc26.diff
[linux-2.6.git] / arch / x86_64 / kernel / smpboot.c
index 4d9c47f..28e351d 100644 (file)
@@ -12,8 +12,7 @@
  *     Pentium Pro and Pentium-II/Xeon MP machines.
  *     Original development of Linux SMP code supported by Caldera.
  *
- *     This code is released under the GNU General Public License version 2 or
- *     later.
+ *     This code is released under the GNU General Public License version 2
  *
  *     Fixes
  *             Felix Koop      :       NR_CPUS used properly
  *             Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
  *     Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
  *     Andi Kleen              :       Changed for SMP boot into long mode.
- *             Rusty Russell   :       Hacked into shape for new "hotplug" boot process. 
+ *             Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
+ *      Andi Kleen              :       Converted to new state machine.
+ *                                     Various cleanups.
+ *                                     Probably mostly hotplug CPU ready now.
+ *     Ashok Raj                       : CPU hotplug support
  */
 
+
 #include <linux/config.h>
 #include <linux/init.h>
 
 #include <linux/mm.h>
 #include <linux/kernel_stat.h>
 #include <linux/smp_lock.h>
-#include <linux/irq.h>
 #include <linux/bootmem.h>
 #include <linux/thread_info.h>
+#include <linux/module.h>
 
 #include <linux/delay.h>
 #include <linux/mc146818rtc.h>
 #include <asm/kdebug.h>
 #include <asm/tlbflush.h>
 #include <asm/proto.h>
+#include <asm/nmi.h>
+#include <asm/irq.h>
+#include <asm/hw_irq.h>
+#include <asm/numa.h>
 
 /* Number of siblings per CPU package */
 int smp_num_siblings = 1;
-char phys_proc_id[NR_CPUS]; /* Package ID of each logical CPU */
+/* Package ID of each logical CPU */
+u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
+/* core ID of each logical CPU */
+u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
+
+/* Last level cache ID of each logical CPU */
+u8 cpu_llc_id[NR_CPUS] __cpuinitdata  = {[0 ... NR_CPUS-1] = BAD_APICID};
 
 /* Bitmask of currently online CPUs */
-cpumask_t cpu_online_map;
+cpumask_t cpu_online_map __read_mostly;
 
-/* which logical CPU number maps to which CPU (physical APIC ID) */
-volatile char x86_cpu_to_apicid[NR_CPUS];
+EXPORT_SYMBOL(cpu_online_map);
 
-static cpumask_t cpu_callin_map;
+/*
+ * Private maps to synchronize booting between AP and BP.
+ * Probably not needed anymore, but it makes for easier debugging. -AK
+ */
+cpumask_t cpu_callin_map;
 cpumask_t cpu_callout_map;
-static cpumask_t smp_commenced_mask;
+
+cpumask_t cpu_possible_map;
+EXPORT_SYMBOL(cpu_possible_map);
 
 /* Per CPU bogomips and other parameters */
 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
@@ -73,14 +92,32 @@ struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
 /* Set when the idlers are all forked */
 int smp_threads_ready;
 
-char cpu_sibling_map[NR_CPUS] __cacheline_aligned;
+/* representing HT siblings of each logical CPU */
+cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
+
+/* representing HT and core siblings of each logical CPU */
+cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
+EXPORT_SYMBOL(cpu_core_map);
 
 /*
  * Trampoline 80x86 program as an array.
  */
 
-extern unsigned char trampoline_data [];
-extern unsigned char trampoline_end  [];
+extern unsigned char trampoline_data[];
+extern unsigned char trampoline_end[];
+
+/* State of each CPU */
+DEFINE_PER_CPU(int, cpu_state) = { 0 };
+
+/*
+ * Store all idle threads, this can be reused instead of creating
+ * a new thread. Also avoids complicated thread destroy functionality
+ * for idle threads.
+ */
+struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
+
+#define get_idle_for_cpu(x)     (idle_thread_array[(x)])
+#define set_idle_for_cpu(x,p)   (idle_thread_array[(x)] = (p))
 
 /*
  * Currently trivial. Write the real->protected mode
@@ -88,11 +125,9 @@ extern unsigned char trampoline_end  [];
  * has made sure it's suitably aligned.
  */
 
-static unsigned long __init setup_trampoline(void)
+static unsigned long __cpuinit setup_trampoline(void)
 {
        void *tramp = __va(SMP_TRAMPOLINE_BASE); 
-       extern volatile __u32 tramp_gdt_ptr; 
-       tramp_gdt_ptr = __pa_symbol(&cpu_gdt_table); 
        memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
        return virt_to_phys(tramp);
 }
@@ -102,154 +137,233 @@ static unsigned long __init setup_trampoline(void)
  * a given CPU
  */
 
-static void __init smp_store_cpu_info(int id)
+static void __cpuinit smp_store_cpu_info(int id)
 {
        struct cpuinfo_x86 *c = cpu_data + id;
 
        *c = boot_cpu_data;
        identify_cpu(c);
+       print_cpu_info(c);
 }
 
 /*
- * TSC synchronization.
+ * New Funky TSC sync algorithm borrowed from IA64.
+ * Main advantage is that it doesn't reset the TSCs fully and
+ * in general looks more robust and it works better than my earlier
+ * attempts. I believe it was written by David Mosberger. Some minor
+ * adjustments for x86-64 by me -AK
+ *
+ * Original comment reproduced below.
+ *
+ * Synchronize TSC of the current (slave) CPU with the TSC of the
+ * MASTER CPU (normally the time-keeper CPU).  We use a closed loop to
+ * eliminate the possibility of unaccounted-for errors (such as
+ * getting a machine check in the middle of a calibration step).  The
+ * basic idea is for the slave to ask the master what itc value it has
+ * and to read its own itc before and after the master responds.  Each
+ * iteration gives us three timestamps:
+ *
+ *     slave           master
+ *
+ *     t0 ---\
+ *             ---\
+ *                --->
+ *                     tm
+ *                /---
+ *            /---
+ *     t1 <---
+ *
+ *
+ * The goal is to adjust the slave's TSC such that tm falls exactly
+ * half-way between t0 and t1.  If we achieve this, the clocks are
+ * synchronized provided the interconnect between the slave and the
+ * master is symmetric.  Even if the interconnect were asymmetric, we
+ * would still know that the synchronization error is smaller than the
+ * roundtrip latency (t0 - t1).
+ *
+ * When the interconnect is quiet and symmetric, this lets us
+ * synchronize the TSC to within one or two cycles.  However, we can
+ * only *guarantee* that the synchronization is accurate to within a
+ * round-trip time, which is typically in the range of several hundred
+ * cycles (e.g., ~500 cycles).  In practice, this means that the TSCs
+ * are usually almost perfectly synchronized, but we shouldn't assume
+ * that the accuracy is much better than half a micro second or so.
  *
- * We first check whether all CPUs have their TSC's synchronized,
- * then we print a warning if not, and always resync.
+ * [there are other errors like the latency of RDTSC and of the
+ * WRMSR. These can also account to hundreds of cycles. So it's
+ * probably worse. It claims 153 cycles error on a dual Opteron,
+ * but I suspect the numbers are actually somewhat worse -AK]
  */
 
-static atomic_t tsc_start_flag = ATOMIC_INIT(0);
-static atomic_t tsc_count_start = ATOMIC_INIT(0);
-static atomic_t tsc_count_stop = ATOMIC_INIT(0);
-static unsigned long long tsc_values[NR_CPUS];
+#define MASTER 0
+#define SLAVE  (SMP_CACHE_BYTES/8)
 
-#define NR_LOOPS 5
+/* Intentionally don't use cpu_relax() while TSC synchronization
+   because we don't want to go into funky power save modi or cause
+   hypervisors to schedule us away.  Going to sleep would likely affect
+   latency and low latency is the primary objective here. -AK */
+#define no_cpu_relax() barrier()
 
-extern unsigned int fast_gettimeoffset_quotient;
+static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
+static volatile __cpuinitdata unsigned long go[SLAVE + 1];
+static int notscsync __cpuinitdata;
 
-static void __init synchronize_tsc_bp (void)
+#undef DEBUG_TSC_SYNC
+
+#define NUM_ROUNDS     64      /* magic value */
+#define NUM_ITERS      5       /* likewise */
+
+/* Callback on boot CPU */
+static __cpuinit void sync_master(void *arg)
 {
+       unsigned long flags, i;
+
+       go[MASTER] = 0;
+
+       local_irq_save(flags);
+       {
+               for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
+                       while (!go[MASTER])
+                               no_cpu_relax();
+                       go[MASTER] = 0;
+                       rdtscll(go[SLAVE]);
+               }
+       }
+       local_irq_restore(flags);
+}
+
+/*
+ * Return the number of cycles by which our tsc differs from the tsc
+ * on the master (time-keeper) CPU.  A positive number indicates our
+ * tsc is ahead of the master, negative that it is behind.
+ */
+static inline long
+get_delta(long *rt, long *master)
+{
+       unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
+       unsigned long tcenter, t0, t1, tm;
        int i;
-       unsigned long long t0;
-       unsigned long long sum, avg;
-       long long delta;
-       long one_usec;
-       int buggy = 0;
 
-       printk(KERN_INFO "checking TSC synchronization across %u CPUs: ",num_booting_cpus());
+       for (i = 0; i < NUM_ITERS; ++i) {
+               rdtscll(t0);
+               go[MASTER] = 1;
+               while (!(tm = go[SLAVE]))
+                       no_cpu_relax();
+               go[SLAVE] = 0;
+               rdtscll(t1);
 
-       one_usec = cpu_khz; 
+               if (t1 - t0 < best_t1 - best_t0)
+                       best_t0 = t0, best_t1 = t1, best_tm = tm;
+       }
 
-       atomic_set(&tsc_start_flag, 1);
-       wmb();
+       *rt = best_t1 - best_t0;
+       *master = best_tm - best_t0;
 
-       /*
-        * We loop a few times to get a primed instruction cache,
-        * then the last pass is more or less synchronized and
-        * the BP and APs set their cycle counters to zero all at
-        * once. This reduces the chance of having random offsets
-        * between the processors, and guarantees that the maximum
-        * delay between the cycle counters is never bigger than
-        * the latency of information-passing (cachelines) between
-        * two CPUs.
-        */
-       for (i = 0; i < NR_LOOPS; i++) {
-               /*
-                * all APs synchronize but they loop on '== num_cpus'
-                */
-               while (atomic_read(&tsc_count_start) != num_booting_cpus()-1) mb();
-               atomic_set(&tsc_count_stop, 0);
-               wmb();
-               /*
-                * this lets the APs save their current TSC:
-                */
-               atomic_inc(&tsc_count_start);
+       /* average best_t0 and best_t1 without overflow: */
+       tcenter = (best_t0/2 + best_t1/2);
+       if (best_t0 % 2 + best_t1 % 2 == 2)
+               ++tcenter;
+       return tcenter - best_tm;
+}
 
-               sync_core();
-               rdtscll(tsc_values[smp_processor_id()]);
-               /*
-                * We clear the TSC in the last loop:
-                */
-               if (i == NR_LOOPS-1)
-                       write_tsc(0, 0);
+static __cpuinit void sync_tsc(unsigned int master)
+{
+       int i, done = 0;
+       long delta, adj, adjust_latency = 0;
+       unsigned long flags, rt, master_time_stamp, bound;
+#ifdef DEBUG_TSC_SYNC
+       static struct syncdebug {
+               long rt;        /* roundtrip time */
+               long master;    /* master's timestamp */
+               long diff;      /* difference between midpoint and master's timestamp */
+               long lat;       /* estimate of tsc adjustment latency */
+       } t[NUM_ROUNDS] __cpuinitdata;
+#endif
 
-               /*
-                * Wait for all APs to leave the synchronization point:
-                */
-               while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1) mb();
-               atomic_set(&tsc_count_start, 0);
-               wmb();
-               atomic_inc(&tsc_count_stop);
-       }
+       printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
+               smp_processor_id(), master);
 
-       sum = 0;
-       for (i = 0; i < NR_CPUS; i++) {
-               if (cpu_isset(i, cpu_callout_map)) {
-               t0 = tsc_values[i];
-               sum += t0;
-       }
-       }
-       avg = sum / num_booting_cpus();
+       go[MASTER] = 1;
+
+       /* It is dangerous to broadcast IPI as cpus are coming up,
+        * as they may not be ready to accept them.  So since
+        * we only need to send the ipi to the boot cpu direct
+        * the message, and avoid the race.
+        */
+       smp_call_function_single(master, sync_master, NULL, 1, 0);
 
-       sum = 0;
-       for (i = 0; i < NR_CPUS; i++) {
-               if (!cpu_isset(i, cpu_callout_map))
-                       continue;
+       while (go[MASTER])      /* wait for master to be ready */
+               no_cpu_relax();
 
-               delta = tsc_values[i] - avg;
-               if (delta < 0)
-                       delta = -delta;
-               /*
-                * We report bigger than 2 microseconds clock differences.
-                */
-               if (delta > 2*one_usec) {
-                       long realdelta;
-                       if (!buggy) {
-                               buggy = 1;
-                               printk("\n");
+       spin_lock_irqsave(&tsc_sync_lock, flags);
+       {
+               for (i = 0; i < NUM_ROUNDS; ++i) {
+                       delta = get_delta(&rt, &master_time_stamp);
+                       if (delta == 0) {
+                               done = 1;       /* let's lock on to this... */
+                               bound = rt;
                        }
-                       realdelta = delta / one_usec;
-                       if (tsc_values[i] < avg)
-                               realdelta = -realdelta;
 
-                       printk("BIOS BUG: CPU#%d improperly initialized, has %ld usecs TSC skew! FIXED.\n",
-                               i, realdelta);
-               }
+                       if (!done) {
+                               unsigned long t;
+                               if (i > 0) {
+                                       adjust_latency += -delta;
+                                       adj = -delta + adjust_latency/4;
+                               } else
+                                       adj = -delta;
 
-               sum += delta;
+                               rdtscll(t);
+                               wrmsrl(MSR_IA32_TSC, t + adj);
+                       }
+#ifdef DEBUG_TSC_SYNC
+                       t[i].rt = rt;
+                       t[i].master = master_time_stamp;
+                       t[i].diff = delta;
+                       t[i].lat = adjust_latency/4;
+#endif
+               }
        }
-       if (!buggy)
-               printk("passed.\n");
+       spin_unlock_irqrestore(&tsc_sync_lock, flags);
+
+#ifdef DEBUG_TSC_SYNC
+       for (i = 0; i < NUM_ROUNDS; ++i)
+               printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
+                      t[i].rt, t[i].master, t[i].diff, t[i].lat);
+#endif
+
+       printk(KERN_INFO
+              "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
+              "maxerr %lu cycles)\n",
+              smp_processor_id(), master, delta, rt);
 }
 
-static void __init synchronize_tsc_ap (void)
+static void __cpuinit tsc_sync_wait(void)
 {
-       int i;
-
        /*
-        * Not every cpu is online at the time
-        * this gets called, so we first wait for the BP to
-        * finish SMP initialization:
+        * When the CPU has synchronized TSCs assume the BIOS
+        * or the hardware already synced.  Otherwise we could
+        * mess up a possible perfect synchronization with a
+        * not-quite-perfect algorithm.
         */
-       while (!atomic_read(&tsc_start_flag)) mb();
-
-       for (i = 0; i < NR_LOOPS; i++) {
-               atomic_inc(&tsc_count_start);
-               while (atomic_read(&tsc_count_start) != num_booting_cpus()) mb();
-
-               sync_core();
-               rdtscll(tsc_values[smp_processor_id()]);
-               if (i == NR_LOOPS-1)
-                       write_tsc(0, 0);
+       if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
+               return;
+       sync_tsc(0);
+}
 
-               atomic_inc(&tsc_count_stop);
-               while (atomic_read(&tsc_count_stop) != num_booting_cpus()) mb();
-       }
+static __init int notscsync_setup(char *s)
+{
+       notscsync = 1;
+       return 1;
 }
-#undef NR_LOOPS
+__setup("notscsync", notscsync_setup);
 
-static atomic_t init_deasserted;
+static atomic_t init_deasserted __cpuinitdata;
 
-void __init smp_callin(void)
+/*
+ * Report back to the Boot Processor.
+ * Running on AP.
+ */
+void __cpuinit smp_callin(void)
 {
        int cpuid, phys_id;
        unsigned long timeout;
@@ -260,7 +374,8 @@ void __init smp_callin(void)
         * our local APIC.  We have to wait for the IPI or we'll
         * lock up on an APIC access.
         */
-       while (!atomic_read(&init_deasserted));
+       while (!atomic_read(&init_deasserted))
+               cpu_relax();
 
        /*
         * (This works even if the APIC is not enabled.)
@@ -291,7 +406,7 @@ void __init smp_callin(void)
                 */
                if (cpu_isset(cpuid, cpu_callout_map))
                        break;
-               rep_nop();
+               cpu_relax();
        }
 
        if (!time_before(jiffies, timeout)) {
@@ -309,12 +424,15 @@ void __init smp_callin(void)
        Dprintk("CALLIN, before setup_local_APIC().\n");
        setup_local_APIC();
 
-       local_irq_enable();
-
        /*
         * Get our bogomips.
+        *
+        * Need to enable IRQs because it can take longer and then
+        * the NMI watchdog might kill us.
         */
+       local_irq_enable();
        calibrate_delay();
+       local_irq_disable();
        Dprintk("Stack at about %p\n",&cpuid);
 
        disable_APIC_timer();
@@ -324,26 +442,93 @@ void __init smp_callin(void)
         */
        smp_store_cpu_info(cpuid);
 
-       local_irq_disable();
-
        /*
         * Allow the master to continue.
         */
        cpu_set(cpuid, cpu_callin_map);
+}
 
+/* maps the cpu to the sched domain representing multi-core */
+cpumask_t cpu_coregroup_map(int cpu)
+{
+       struct cpuinfo_x86 *c = cpu_data + cpu;
        /*
-        *      Synchronize the TSC with the BP
+        * For perf, we return last level cache shared map.
+        * TBD: when power saving sched policy is added, we will return
+        *      cpu_core_map when power saving policy is enabled
         */
-       if (cpu_has_tsc)
-               synchronize_tsc_ap();
+       return c->llc_shared_map;
 }
 
-int cpucount;
+/* representing cpus for which sibling maps can be computed */
+static cpumask_t cpu_sibling_setup_map;
+
+static inline void set_cpu_sibling_map(int cpu)
+{
+       int i;
+       struct cpuinfo_x86 *c = cpu_data;
+
+       cpu_set(cpu, cpu_sibling_setup_map);
+
+       if (smp_num_siblings > 1) {
+               for_each_cpu_mask(i, cpu_sibling_setup_map) {
+                       if (phys_proc_id[cpu] == phys_proc_id[i] &&
+                           cpu_core_id[cpu] == cpu_core_id[i]) {
+                               cpu_set(i, cpu_sibling_map[cpu]);
+                               cpu_set(cpu, cpu_sibling_map[i]);
+                               cpu_set(i, cpu_core_map[cpu]);
+                               cpu_set(cpu, cpu_core_map[i]);
+                               cpu_set(i, c[cpu].llc_shared_map);
+                               cpu_set(cpu, c[i].llc_shared_map);
+                       }
+               }
+       } else {
+               cpu_set(cpu, cpu_sibling_map[cpu]);
+       }
+
+       cpu_set(cpu, c[cpu].llc_shared_map);
+
+       if (current_cpu_data.x86_max_cores == 1) {
+               cpu_core_map[cpu] = cpu_sibling_map[cpu];
+               c[cpu].booted_cores = 1;
+               return;
+       }
+
+       for_each_cpu_mask(i, cpu_sibling_setup_map) {
+               if (cpu_llc_id[cpu] != BAD_APICID &&
+                   cpu_llc_id[cpu] == cpu_llc_id[i]) {
+                       cpu_set(i, c[cpu].llc_shared_map);
+                       cpu_set(cpu, c[i].llc_shared_map);
+               }
+               if (phys_proc_id[cpu] == phys_proc_id[i]) {
+                       cpu_set(i, cpu_core_map[cpu]);
+                       cpu_set(cpu, cpu_core_map[i]);
+                       /*
+                        *  Does this new cpu bringup a new core?
+                        */
+                       if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
+                               /*
+                                * for each core in package, increment
+                                * the booted_cores for this new cpu
+                                */
+                               if (first_cpu(cpu_sibling_map[i]) == i)
+                                       c[cpu].booted_cores++;
+                               /*
+                                * increment the core count for all
+                                * the other cpus in this package
+                                */
+                               if (i != cpu)
+                                       c[i].booted_cores++;
+                       } else if (i != cpu && !c[cpu].booted_cores)
+                               c[cpu].booted_cores = c[i].booted_cores;
+               }
+       }
+}
 
 /*
- * Activate a secondary processor.
+ * Setup code on secondary processor (after comming out of the trampoline)
  */
-void __init start_secondary(void)
+void __cpuinit start_secondary(void)
 {
        /*
         * Dont put anything before smp_callin(), SMP
@@ -351,19 +536,16 @@ void __init start_secondary(void)
         * things done here to the most necessary things.
         */
        cpu_init();
+       preempt_disable();
        smp_callin();
 
        /* otherwise gcc will move up the smp_processor_id before the cpu_init */
        barrier();
 
-       Dprintk("cpu %d: waiting for commence\n", smp_processor_id()); 
-       while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
-               rep_nop();
-
        Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());         
        setup_secondary_APIC_clock();
 
-       Dprintk("cpu %d: enabling apic timer\n", smp_processor_id()); 
+       Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
 
        if (nmi_watchdog == NMI_IO_APIC) {
                disable_8259A_irq(0);
@@ -371,37 +553,47 @@ void __init start_secondary(void)
                enable_8259A_irq(0);
        }
 
+       enable_APIC_timer();
 
-       enable_APIC_timer(); 
+       /*
+        * The sibling maps must be set before turing the online map on for
+        * this cpu
+        */
+       set_cpu_sibling_map(smp_processor_id());
+
+       /* 
+        * Wait for TSC sync to not schedule things before.
+        * We still process interrupts, which could see an inconsistent
+        * time in that window unfortunately. 
+        * Do this here because TSC sync has global unprotected state.
+        */
+       tsc_sync_wait();
 
        /*
-        * low-memory mappings have been cleared, flush them from
-        * the local TLBs too.
+        * We need to hold call_lock, so there is no inconsistency
+        * between the time smp_call_function() determines number of
+        * IPI receipients, and the time when the determination is made
+        * for which cpus receive the IPI in genapic_flat.c. Holding this
+        * lock helps us to not include this cpu in a currently in progress
+        * smp_call_function().
         */
-       local_flush_tlb();
+       lock_ipi_call_lock();
 
-       Dprintk("cpu %d eSetting cpu_online_map\n", smp_processor_id()); 
+       /*
+        * Allow the master to continue.
+        */
        cpu_set(smp_processor_id(), cpu_online_map);
-       wmb();
-       
+       per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
+       unlock_ipi_call_lock();
+
        cpu_idle();
 }
 
-extern volatile unsigned long init_rsp; 
+extern volatile unsigned long init_rsp;
 extern void (*initial_code)(void);
 
-static struct task_struct * __init fork_by_hand(void)
-{
-       struct pt_regs regs;
-       /*
-        * don't care about the eip and regs settings since
-        * we'll never reschedule the forked task.
-        */
-       return copy_process(CLONE_VM|CLONE_IDLETASK, 0, &regs, 0, NULL, NULL);
-}
-
-#if APIC_DEBUG
-static inline void inquire_remote_apic(int apicid)
+#ifdef APIC_DEBUG
+static void inquire_remote_apic(int apicid)
 {
        unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
        char *names[] = { "ID", "VERSION", "SPIV" };
@@ -417,8 +609,8 @@ static inline void inquire_remote_apic(int apicid)
                 */
                apic_wait_icr_idle();
 
-               apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
-               apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
+               apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
+               apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
 
                timeout = 0;
                do {
@@ -438,7 +630,10 @@ static inline void inquire_remote_apic(int apicid)
 }
 #endif
 
-static int __init wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
+/*
+ * Kick the secondary to wake up.
+ */
+static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
 {
        unsigned long send_status = 0, accept_status = 0;
        int maxlvt, timeout, num_starts, j;
@@ -448,12 +643,12 @@ static int __init wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_
        /*
         * Turn INIT on target chip
         */
-       apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
+       apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
 
        /*
         * Send IPI
         */
-       apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
+       apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
                                | APIC_DM_INIT);
 
        Dprintk("Waiting for send to finish...\n");
@@ -469,10 +664,10 @@ static int __init wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_
        Dprintk("Deasserting INIT.\n");
 
        /* Target chip */
-       apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
+       apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
 
        /* Send IPI */
-       apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
+       apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
 
        Dprintk("Waiting for send to finish...\n");
        timeout = 0;
@@ -482,18 +677,10 @@ static int __init wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_
                send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
        } while (send_status && (timeout++ < 1000));
 
+       mb();
        atomic_set(&init_deasserted, 1);
 
-       /*
-        * Should we send STARTUP IPIs ?
-        *
-        * Determine this based on the APIC version.
-        * If we don't have an integrated APIC, don't send the STARTUP IPIs.
-        */
-       if (APIC_INTEGRATED(apic_version[phys_apicid]))
-               num_starts = 2;
-       else
-               num_starts = 0;
+       num_starts = 2;
 
        /*
         * Run STARTUP IPI loop.
@@ -504,7 +691,6 @@ static int __init wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_
 
        for (j = 1; j <= num_starts; j++) {
                Dprintk("Sending STARTUP #%d.\n",j);
-               apic_read_around(APIC_SPIV);
                apic_write(APIC_ESR, 0);
                apic_read(APIC_ESR);
                Dprintk("After apic_write.\n");
@@ -514,12 +700,11 @@ static int __init wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_
                 */
 
                /* Target chip */
-               apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
+               apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
 
                /* Boot on the stack */
                /* Kick the second */
-               apic_write_around(APIC_ICR, APIC_DM_STARTUP
-                                       | (start_rip >> 12));
+               apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
 
                /*
                 * Give the other CPU some time to accept the IPI.
@@ -544,7 +729,6 @@ static int __init wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_
                 * Due to the Pentium erratum 3AP.
                 */
                if (maxlvt > 3) {
-                       apic_read_around(APIC_SPIV);
                        apic_write(APIC_ESR, 0);
                }
                accept_status = (apic_read(APIC_ESR) & 0xEF);
@@ -561,43 +745,105 @@ static int __init wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_
        return (send_status | accept_status);
 }
 
-static void __init do_boot_cpu (int apicid)
-{
+struct create_idle {
        struct task_struct *idle;
+       struct completion done;
+       int cpu;
+};
+
+void do_fork_idle(void *_c_idle)
+{
+       struct create_idle *c_idle = _c_idle;
+
+       c_idle->idle = fork_idle(c_idle->cpu);
+       complete(&c_idle->done);
+}
+
+/*
+ * Boot one CPU.
+ */
+static int __cpuinit do_boot_cpu(int cpu, int apicid)
+{
        unsigned long boot_error;
-       int timeout, cpu;
+       int timeout;
        unsigned long start_rip;
+       struct create_idle c_idle = {
+               .cpu = cpu,
+               .done = COMPLETION_INITIALIZER(c_idle.done),
+       };
+       DECLARE_WORK(work, do_fork_idle, &c_idle);
+
+       /* allocate memory for gdts of secondary cpus. Hotplug is considered */
+       if (!cpu_gdt_descr[cpu].address &&
+               !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
+               printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
+               return -1;
+       }
 
-       cpu = ++cpucount;
-       /*
-        * We can't use kernel_thread since we must avoid to
-        * reschedule the child.
-        */
-       idle = fork_by_hand();
-       if (IS_ERR(idle))
-               panic("failed fork for CPU %d", cpu);
-       wake_up_forked_process(idle);   
-       x86_cpu_to_apicid[cpu] = apicid;
+       /* Allocate node local memory for AP pdas */
+       if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
+               struct x8664_pda *newpda, *pda;
+               int node = cpu_to_node(cpu);
+               pda = cpu_pda(cpu);
+               newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
+                                     node);
+               if (newpda) {
+                       memcpy(newpda, pda, sizeof (struct x8664_pda));
+                       cpu_pda(cpu) = newpda;
+               } else
+                       printk(KERN_ERR
+               "Could not allocate node local PDA for CPU %d on node %d\n",
+                               cpu, node);
+       }
+
+
+       c_idle.idle = get_idle_for_cpu(cpu);
+
+       if (c_idle.idle) {
+               c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
+                       (THREAD_SIZE +  task_stack_page(c_idle.idle))) - 1);
+               init_idle(c_idle.idle, cpu);
+               goto do_rest;
+       }
 
        /*
-        * We remove it from the pidhash and the runqueue
-        * once we got the process:
+        * During cold boot process, keventd thread is not spun up yet.
+        * When we do cpu hot-add, we create idle threads on the fly, we should
+        * not acquire any attributes from the calling context. Hence the clean
+        * way to create kernel_threads() is to do that from keventd().
+        * We do the current_is_keventd() due to the fact that ACPI notifier
+        * was also queuing to keventd() and when the caller is already running
+        * in context of keventd(), we would end up with locking up the keventd
+        * thread.
         */
-       init_idle(idle,cpu);
+       if (!keventd_up() || current_is_keventd())
+               work.func(work.data);
+       else {
+               schedule_work(&work);
+               wait_for_completion(&c_idle.done);
+       }
+
+       if (IS_ERR(c_idle.idle)) {
+               printk("failed fork for CPU %d\n", cpu);
+               return PTR_ERR(c_idle.idle);
+       }
+
+       set_idle_for_cpu(cpu, c_idle.idle);
 
-       unhash_process(idle);
+do_rest:
 
-       cpu_pda[cpu].pcurrent = idle;
+       cpu_pda(cpu)->pcurrent = c_idle.idle;
 
        start_rip = setup_trampoline();
 
-       init_rsp = idle->thread.rsp; 
-       init_tss[cpu].rsp0 = init_rsp;
+       init_rsp = c_idle.idle->thread.rsp;
+       per_cpu(init_tss,cpu).rsp0 = init_rsp;
        initial_code = start_secondary;
-       clear_ti_thread_flag(idle->thread_info, TIF_FORK);
+       clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
 
-       printk(KERN_INFO "Booting processor %d/%d rip %lx rsp %lx\n", cpu, apicid, 
-              start_rip, init_rsp);
+       printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
+               cpus_weight(cpu_present_map),
+               apicid);
 
        /*
         * This grunge runs the startup process for
@@ -619,11 +865,8 @@ static void __init do_boot_cpu (int apicid)
        /*
         * Be paranoid about clearing APIC errors.
         */
-       if (APIC_INTEGRATED(apic_version[apicid])) {
-               apic_read_around(APIC_SPIV);
-               apic_write(APIC_ESR, 0);
-               apic_read(APIC_ESR);
-       }
+       apic_write(APIC_ESR, 0);
+       apic_read(APIC_ESR);
 
        /*
         * Status is now clean
@@ -633,7 +876,7 @@ static void __init do_boot_cpu (int apicid)
        /*
         * Starting actual IPI sequence...
         */
-       boot_error = wakeup_secondary_via_INIT(apicid, start_rip); 
+       boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
 
        if (!boot_error) {
                /*
@@ -654,19 +897,17 @@ static void __init do_boot_cpu (int apicid)
 
                if (cpu_isset(cpu, cpu_callin_map)) {
                        /* number CPUs logically, starting from 1 (BSP is 0) */
-                       Dprintk("OK.\n");
-                       print_cpu_info(&cpu_data[cpu]);
                        Dprintk("CPU has booted.\n");
                } else {
                        boot_error = 1;
-                       if (*((volatile unsigned char *)phys_to_virt(8192))
+                       if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
                                        == 0xA5)
                                /* trampoline started but...? */
                                printk("Stuck ??\n");
                        else
                                /* trampoline code not run */
                                printk("Not responding.\n");
-#if APIC_DEBUG
+#ifdef APIC_DEBUG
                        inquire_remote_apic(apicid);
 #endif
                }
@@ -674,77 +915,109 @@ static void __init do_boot_cpu (int apicid)
        if (boot_error) {
                cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
                clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
-               cpucount--;
+               clear_node_cpumask(cpu); /* was set by numa_add_cpu */
+               cpu_clear(cpu, cpu_present_map);
+               cpu_clear(cpu, cpu_possible_map);
+               x86_cpu_to_apicid[cpu] = BAD_APICID;
+               x86_cpu_to_log_apicid[cpu] = BAD_APICID;
+               return -EIO;
        }
 
-       /* mark "stuck" area as not stuck */
-       *((volatile unsigned *)phys_to_virt(8192)) = 0;
+       return 0;
 }
 
 cycles_t cacheflush_time;
 unsigned long cache_decay_ticks;
 
-static void smp_tune_scheduling (void)
+/*
+ * Cleanup possible dangling ends...
+ */
+static __cpuinit void smp_cleanup_boot(void)
 {
-       int cachesize;       /* kB   */
-       unsigned long bandwidth = 1000; /* MB/s */
        /*
-        * Rough estimation for SMP scheduling, this is the number of
-        * cycles it takes for a fully memory-limited process to flush
-        * the SMP-local cache.
-        *
-        * (For a P5 this pretty much means we will choose another idle
-        *  CPU almost always at wakeup time (this is due to the small
-        *  L1 cache), on PIIs it's around 50-100 usecs, depending on
-        *  the cache size)
+        * Paranoid:  Set warm reset code and vector here back
+        * to default values.
         */
+       CMOS_WRITE(0, 0xf);
 
-       if (!cpu_khz) {
-               /*
-                * this basically disables processor-affinity
-                * scheduling on SMP without a TSC.
-                */
-               cacheflush_time = 0;
-               return;
-       } else {
-               cachesize = boot_cpu_data.x86_cache_size;
-               if (cachesize == -1) {
-                       cachesize = 16; /* Pentiums, 2x8kB cache */
-                       bandwidth = 100;
-               }
+       /*
+        * Reset trampoline flag
+        */
+       *((volatile int *) phys_to_virt(0x467)) = 0;
+}
 
-               cacheflush_time = (cpu_khz>>10) * (cachesize<<10) / bandwidth;
-       }
+/*
+ * Fall back to non SMP mode after errors.
+ *
+ * RED-PEN audit/test this more. I bet there is more state messed up here.
+ */
+static __init void disable_smp(void)
+{
+       cpu_present_map = cpumask_of_cpu(0);
+       cpu_possible_map = cpumask_of_cpu(0);
+       if (smp_found_config)
+               phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
+       else
+               phys_cpu_present_map = physid_mask_of_physid(0);
+       cpu_set(0, cpu_sibling_map[0]);
+       cpu_set(0, cpu_core_map[0]);
+}
 
-       cache_decay_ticks = (long)cacheflush_time/cpu_khz * HZ / 1000;
+#ifdef CONFIG_HOTPLUG_CPU
 
-       printk(KERN_INFO "per-CPU timeslice cutoff: %ld.%02ld usecs.\n",
-               (long)cacheflush_time/(cpu_khz/1000),
-               ((long)cacheflush_time*100/(cpu_khz/1000)) % 100);
-       printk(KERN_INFO "task migration cache decay timeout: %ld msecs.\n",
-               (cache_decay_ticks + 1) * 1000 / HZ);
-}
+int additional_cpus __initdata = -1;
 
 /*
- * Cycle through the processors sending APIC IPIs to boot each.
+ * cpu_possible_map should be static, it cannot change as cpu's
+ * are onlined, or offlined. The reason is per-cpu data-structures
+ * are allocated by some modules at init time, and dont expect to
+ * do this dynamically on cpu arrival/departure.
+ * cpu_present_map on the other hand can change dynamically.
+ * In case when cpu_hotplug is not compiled, then we resort to current
+ * behaviour, which is cpu_possible == cpu_present.
+ * - Ashok Raj
+ *
+ * Three ways to find out the number of additional hotplug CPUs:
+ * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
+ * - The user can overwrite it with additional_cpus=NUM
+ * - Otherwise don't reserve additional CPUs.
+ * We do this because additional CPUs waste a lot of memory.
+ * -AK
  */
-
-static void __init smp_boot_cpus(unsigned int max_cpus)
+__init void prefill_possible_map(void)
 {
-       unsigned apicid, cpu, bit, kicked;
+       int i;
+       int possible;
+
+       if (additional_cpus == -1) {
+               if (disabled_cpus > 0)
+                       additional_cpus = disabled_cpus;
+               else
+                       additional_cpus = 0;
+       }
+       possible = num_processors + additional_cpus;
+       if (possible > NR_CPUS) 
+               possible = NR_CPUS;
+
+       if (possible == 0) {    /* Could be SMP kernel on UP hw with broken BIOS */
+               possible = 1;
+               printk (KERN_DEBUG "BIOS never enumerated boot CPU, fixing.\n");
+       }
 
-       nmi_watchdog_default();
+       printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
+               possible,
+               max_t(int, possible - num_processors, 0));
 
-       /*
-        * Setup boot CPU information
-        */
-       smp_store_cpu_info(0); /* Final full version of the data */
-       printk(KERN_INFO "CPU%d: ", 0);
-       print_cpu_info(&cpu_data[0]);
-
-       current_thread_info()->cpu = 0;
-       smp_tune_scheduling();
+       for (i = 0; i < possible; i++)
+               cpu_set(i, cpu_possible_map);
+}
+#endif
 
+/*
+ * Various sanity checks.
+ */
+static int __init smp_sanity_check(unsigned max_cpus)
+{
        if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
                printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
                       hard_smp_processor_id());
@@ -757,13 +1030,11 @@ static void __init smp_boot_cpus(unsigned int max_cpus)
         */
        if (!smp_found_config) {
                printk(KERN_NOTICE "SMP motherboard not detected.\n");
-               io_apic_irqs = 0;
-               cpu_online_map = cpumask_of_cpu(0);
-               phys_cpu_present_map = physid_mask_of_physid(0);
+               disable_smp();
                if (APIC_init_uniprocessor())
                        printk(KERN_NOTICE "Local APIC not detected."
                                           " Using dummy APIC emulation.\n");
-               goto smp_done;
+               return -1;
        }
 
        /*
@@ -779,190 +1050,243 @@ static void __init smp_boot_cpus(unsigned int max_cpus)
        /*
         * If we couldn't find a local APIC, then get out of here now!
         */
-       if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
+       if (!cpu_has_apic) {
                printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
                        boot_cpu_id);
                printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
-               io_apic_irqs = 0;
-               cpu_online_map = cpumask_of_cpu(0);
-               phys_cpu_present_map = physid_mask_of_physid(0);
-               disable_apic = 1;
-               goto smp_done;
+               nr_ioapics = 0;
+               return -1;
        }
 
-       verify_local_APIC();
-
        /*
         * If SMP should be disabled, then really disable it!
         */
        if (!max_cpus) {
-               smp_found_config = 0;
                printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
-               io_apic_irqs = 0;
-               cpu_online_map = cpumask_of_cpu(0);
-               phys_cpu_present_map = physid_mask_of_physid(0);
-               disable_apic = 1;
-               goto smp_done;
+               nr_ioapics = 0;
+               return -1;
        }
 
+       return 0;
+}
+
+/*
+ * Prepare for SMP bootup.  The MP table or ACPI has been read
+ * earlier.  Just do some sanity checking here and enable APIC mode.
+ */
+void __init smp_prepare_cpus(unsigned int max_cpus)
+{
+       nmi_watchdog_default();
+       current_cpu_data = boot_cpu_data;
+       current_thread_info()->cpu = 0;  /* needed? */
+       set_cpu_sibling_map(0);
+
+       if (smp_sanity_check(max_cpus) < 0) {
+               printk(KERN_INFO "SMP disabled\n");
+               disable_smp();
+               return;
+       }
+
+
+       /*
+        * Switch from PIC to APIC mode.
+        */
        connect_bsp_APIC();
        setup_local_APIC();
 
-       if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id)
-               BUG();
+       if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
+               panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
+                     GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
+               /* Or can we switch back to PIC here? */
+       }
 
-       x86_cpu_to_apicid[0] = boot_cpu_id;
+       /*
+        * Now start the IO-APICs
+        */
+       if (!skip_ioapic_setup && nr_ioapics)
+               setup_IO_APIC();
+       else
+               nr_ioapics = 0;
 
        /*
-        * Now scan the CPU present map and fire up the other CPUs.
+        * Set up local APIC timer on boot CPU.
         */
-       Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
 
-       kicked = 1;
-       for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
-               apicid = cpu_present_to_apicid(bit);
-               /*
-                * Don't even attempt to start the boot CPU!
-                */
-               if (apicid == boot_cpu_id || (apicid == BAD_APICID))
-                       continue;
+       setup_boot_APIC_clock();
+}
 
-               if (!cpu_isset(apicid, phys_cpu_present_map))
-                       continue;
-               if ((max_cpus >= 0) && (max_cpus <= cpucount+1))
-                       continue;
+/*
+ * Early setup to make printk work.
+ */
+void __init smp_prepare_boot_cpu(void)
+{
+       int me = smp_processor_id();
+       cpu_set(me, cpu_online_map);
+       cpu_set(me, cpu_callout_map);
+       per_cpu(cpu_state, me) = CPU_ONLINE;
+}
 
-               do_boot_cpu(apicid);
-               ++kicked;
-       }
+/*
+ * Entry point to boot a CPU.
+ */
+int __cpuinit __cpu_up(unsigned int cpu)
+{
+       int err;
+       int apicid = cpu_present_to_apicid(cpu);
 
-       /*
-        * Cleanup possible dangling ends...
-        */
-       {
-               /*
-                * Install writable page 0 entry to set BIOS data area.
-                */
-               local_flush_tlb();
+       WARN_ON(irqs_disabled());
 
-               /*
-                * Paranoid:  Set warm reset code and vector here back
-                * to default values.
-                */
-               CMOS_WRITE(0, 0xf);
+       Dprintk("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
 
-               *((volatile int *) phys_to_virt(0x467)) = 0;
+       if (apicid == BAD_APICID || apicid == boot_cpu_id ||
+           !physid_isset(apicid, phys_cpu_present_map)) {
+               printk("__cpu_up: bad cpu %d\n", cpu);
+               return -EINVAL;
        }
 
        /*
-        * Allow the user to impress friends.
+        * Already booted CPU?
         */
+       if (cpu_isset(cpu, cpu_callin_map)) {
+               Dprintk("do_boot_cpu %d Already started\n", cpu);
+               return -ENOSYS;
+       }
 
-       Dprintk("Before bogomips.\n");
-       if (!cpucount) {
-               printk(KERN_INFO "Only one processor found.\n");
-       } else {
-               unsigned long bogosum = 0;
-               for (cpu = 0; cpu < NR_CPUS; cpu++)
-                       if (cpu_isset(cpu, cpu_callout_map))
-                               bogosum += cpu_data[cpu].loops_per_jiffy;
-               printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
-                       cpucount+1,
-                       bogosum/(500000/HZ),
-                       (bogosum/(5000/HZ))%100);
-               Dprintk("Before bogocount - setting activated=1.\n");
-       }
-
-       /*
-        * If Hyper-Threading is avaialble, construct cpu_sibling_map[], so
-        * that we can tell the sibling CPU efficiently.
-        */
-       if (cpu_has_ht && smp_num_siblings > 1) {
-               for (cpu = 0; cpu < NR_CPUS; cpu++)
-                       cpu_sibling_map[cpu] = NO_PROC_ID;
-               
-               for (cpu = 0; cpu < NR_CPUS; cpu++) {
-                       int     i;
-                       if (!cpu_isset(cpu, cpu_callout_map))
-                               continue;
-
-                       for (i = 0; i < NR_CPUS; i++) {
-                               if (i == cpu || !cpu_isset(i, cpu_callout_map))
-                                       continue;
-                               if (phys_proc_id[cpu] == phys_proc_id[i]) {
-                                       cpu_sibling_map[cpu] = i;
-                                       break;
-                               }
-                       }
-                       if (cpu_sibling_map[cpu] == (char)NO_PROC_ID) {
-                               smp_num_siblings = 1;
-                               printk(KERN_WARNING "WARNING: No sibling found for CPU %d.\n", cpu);
-                       }
-               }
+       per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
+       /* Boot it! */
+       err = do_boot_cpu(cpu, apicid);
+       if (err < 0) {
+               Dprintk("do_boot_cpu failed %d\n", err);
+               return err;
        }
 
-       Dprintk("Boot done.\n");
+       /* Unleash the CPU! */
+       Dprintk("waiting for cpu %d\n", cpu);
+
+       while (!cpu_isset(cpu, cpu_online_map))
+               cpu_relax();
+       err = 0;
 
-       /*
-        * Here we can be sure that there is an IO-APIC in the system. Let's
-        * go and set it up:
-        */
-       if (!skip_ioapic_setup && nr_ioapics)
-               setup_IO_APIC();
-       else
-               nr_ioapics = 0;
+       return err;
+}
 
-       setup_boot_APIC_clock();
+/*
+ * Finish the SMP boot.
+ */
+void __init smp_cpus_done(unsigned int max_cpus)
+{
+       smp_cleanup_boot();
 
-       /*
-        * Synchronize the TSC with the AP
-        */
-       if (cpu_has_tsc && cpucount)
-               synchronize_tsc_bp();
+#ifdef CONFIG_X86_IO_APIC
+       setup_ioapic_dest();
+#endif
 
- smp_done:
-       time_init_smp();
+       check_nmi_watchdog();
 }
 
-/* These are wrappers to interface to the new boot process.  Someone
-   who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
-void __init smp_prepare_cpus(unsigned int max_cpus)
+#ifdef CONFIG_HOTPLUG_CPU
+
+static void remove_siblinginfo(int cpu)
 {
-       smp_boot_cpus(max_cpus);
+       int sibling;
+       struct cpuinfo_x86 *c = cpu_data;
+
+       for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
+               cpu_clear(cpu, cpu_core_map[sibling]);
+               /*
+                * last thread sibling in this cpu core going down
+                */
+               if (cpus_weight(cpu_sibling_map[cpu]) == 1)
+                       c[sibling].booted_cores--;
+       }
+                       
+       for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
+               cpu_clear(cpu, cpu_sibling_map[sibling]);
+       cpus_clear(cpu_sibling_map[cpu]);
+       cpus_clear(cpu_core_map[cpu]);
+       phys_proc_id[cpu] = BAD_APICID;
+       cpu_core_id[cpu] = BAD_APICID;
+       cpu_clear(cpu, cpu_sibling_setup_map);
 }
 
-void __devinit smp_prepare_boot_cpu(void)
+void remove_cpu_from_maps(void)
 {
-       cpu_set(smp_processor_id(), cpu_online_map);
-       cpu_set(smp_processor_id(), cpu_callout_map);
+       int cpu = smp_processor_id();
+
+       cpu_clear(cpu, cpu_callout_map);
+       cpu_clear(cpu, cpu_callin_map);
+       clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
+       clear_node_cpumask(cpu);
 }
 
-int __devinit __cpu_up(unsigned int cpu)
+int __cpu_disable(void)
 {
-       /* This only works at boot for x86.  See "rewrite" above. */
-       if (cpu_isset(cpu, smp_commenced_mask)) {
-               local_irq_enable();
-               return -ENOSYS;
-       }
+       int cpu = smp_processor_id();
 
-       /* In case one didn't come up */
-       if (!cpu_isset(cpu, cpu_callin_map)) {
-               local_irq_enable();
-               return -EIO;
-       }
+       /*
+        * Perhaps use cpufreq to drop frequency, but that could go
+        * into generic code.
+        *
+        * We won't take down the boot processor on i386 due to some
+        * interrupts only being able to be serviced by the BSP.
+        * Especially so if we're not using an IOAPIC   -zwane
+        */
+       if (cpu == 0)
+               return -EBUSY;
+
+       clear_local_APIC();
+
+       /*
+        * HACK:
+        * Allow any queued timer interrupts to get serviced
+        * This is only a temporary solution until we cleanup
+        * fixup_irqs as we do for IA64.
+        */
        local_irq_enable();
+       mdelay(1);
 
-       /* Unleash the CPU! */
-       Dprintk("waiting for cpu %d\n", cpu);
+       local_irq_disable();
+       remove_siblinginfo(cpu);
 
-       cpu_set(cpu, smp_commenced_mask);
-       while (!cpu_isset(cpu, cpu_online_map))
-               mb();
+       /* It's now safe to remove this processor from the online map */
+       cpu_clear(cpu, cpu_online_map);
+       remove_cpu_from_maps();
+       fixup_irqs(cpu_online_map);
        return 0;
 }
 
-void __init smp_cpus_done(unsigned int max_cpus)
+void __cpu_die(unsigned int cpu)
 {
-       zap_low_mappings();
+       /* We don't do anything here: idle task is faking death itself. */
+       unsigned int i;
+
+       for (i = 0; i < 10; i++) {
+               /* They ack this in play_dead by setting CPU_DEAD */
+               if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
+                       printk ("CPU %d is now offline\n", cpu);
+                       return;
+               }
+               msleep(100);
+       }
+       printk(KERN_ERR "CPU %u didn't die...\n", cpu);
 }
 
+__init int setup_additional_cpus(char *s)
+{
+       return get_option(&s, &additional_cpus);
+}
+__setup("additional_cpus=", setup_additional_cpus);
+
+#else /* ... !CONFIG_HOTPLUG_CPU */
+
+int __cpu_disable(void)
+{
+       return -ENOSYS;
+}
+
+void __cpu_die(unsigned int cpu)
+{
+       /* We said "no" in __cpu_disable */
+       BUG();
+}
+#endif /* CONFIG_HOTPLUG_CPU */