This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / drivers / crypto / padlock-aes.c
diff --git a/drivers/crypto/padlock-aes.c b/drivers/crypto/padlock-aes.c
new file mode 100644 (file)
index 0000000..ed708b4
--- /dev/null
@@ -0,0 +1,468 @@
+/* 
+ * Cryptographic API.
+ *
+ * Support for VIA PadLock hardware crypto engine.
+ *
+ * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
+ *
+ * Key expansion routine taken from crypto/aes.c
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * ---------------------------------------------------------------------------
+ * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
+ * All rights reserved.
+ *
+ * LICENSE TERMS
+ *
+ * The free distribution and use of this software in both source and binary
+ * form is allowed (with or without changes) provided that:
+ *
+ *   1. distributions of this source code include the above copyright
+ *      notice, this list of conditions and the following disclaimer;
+ *
+ *   2. distributions in binary form include the above copyright
+ *      notice, this list of conditions and the following disclaimer
+ *      in the documentation and/or other associated materials;
+ *
+ *   3. the copyright holder's name is not used to endorse products
+ *      built using this software without specific written permission.
+ *
+ * ALTERNATIVELY, provided that this notice is retained in full, this product
+ * may be distributed under the terms of the GNU General Public License (GPL),
+ * in which case the provisions of the GPL apply INSTEAD OF those given above.
+ *
+ * DISCLAIMER
+ *
+ * This software is provided 'as is' with no explicit or implied warranties
+ * in respect of its properties, including, but not limited to, correctness
+ * and/or fitness for purpose.
+ * ---------------------------------------------------------------------------
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/errno.h>
+#include <linux/crypto.h>
+#include <linux/interrupt.h>
+#include <asm/byteorder.h>
+#include "padlock.h"
+
+#define AES_MIN_KEY_SIZE       16      /* in uint8_t units */
+#define AES_MAX_KEY_SIZE       32      /* ditto */
+#define AES_BLOCK_SIZE         16      /* ditto */
+#define AES_EXTENDED_KEY_SIZE  64      /* in uint32_t units */
+#define AES_EXTENDED_KEY_SIZE_B        (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
+
+struct aes_ctx {
+       uint32_t e_data[AES_EXTENDED_KEY_SIZE+4];
+       uint32_t d_data[AES_EXTENDED_KEY_SIZE+4];
+       uint32_t *E;
+       uint32_t *D;
+       int key_length;
+};
+
+/* ====== Key management routines ====== */
+
+static inline uint32_t
+generic_rotr32 (const uint32_t x, const unsigned bits)
+{
+       const unsigned n = bits % 32;
+       return (x >> n) | (x << (32 - n));
+}
+
+static inline uint32_t
+generic_rotl32 (const uint32_t x, const unsigned bits)
+{
+       const unsigned n = bits % 32;
+       return (x << n) | (x >> (32 - n));
+}
+
+#define rotl generic_rotl32
+#define rotr generic_rotr32
+
+/*
+ * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 
+ */
+static inline uint8_t
+byte(const uint32_t x, const unsigned n)
+{
+       return x >> (n << 3);
+}
+
+#define uint32_t_in(x) le32_to_cpu(*(const uint32_t *)(x))
+#define uint32_t_out(to, from) (*(uint32_t *)(to) = cpu_to_le32(from))
+
+#define E_KEY ctx->E
+#define D_KEY ctx->D
+
+static uint8_t pow_tab[256];
+static uint8_t log_tab[256];
+static uint8_t sbx_tab[256];
+static uint8_t isb_tab[256];
+static uint32_t rco_tab[10];
+static uint32_t ft_tab[4][256];
+static uint32_t it_tab[4][256];
+
+static uint32_t fl_tab[4][256];
+static uint32_t il_tab[4][256];
+
+static inline uint8_t
+f_mult (uint8_t a, uint8_t b)
+{
+       uint8_t aa = log_tab[a], cc = aa + log_tab[b];
+
+       return pow_tab[cc + (cc < aa ? 1 : 0)];
+}
+
+#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
+
+#define f_rn(bo, bi, n, k)                                     \
+    bo[n] =  ft_tab[0][byte(bi[n],0)] ^                                \
+             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^              \
+             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^              \
+             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
+
+#define i_rn(bo, bi, n, k)                                     \
+    bo[n] =  it_tab[0][byte(bi[n],0)] ^                                \
+             it_tab[1][byte(bi[(n + 3) & 3],1)] ^              \
+             it_tab[2][byte(bi[(n + 2) & 3],2)] ^              \
+             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
+
+#define ls_box(x)                              \
+    ( fl_tab[0][byte(x, 0)] ^                  \
+      fl_tab[1][byte(x, 1)] ^                  \
+      fl_tab[2][byte(x, 2)] ^                  \
+      fl_tab[3][byte(x, 3)] )
+
+#define f_rl(bo, bi, n, k)                                     \
+    bo[n] =  fl_tab[0][byte(bi[n],0)] ^                                \
+             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^              \
+             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^              \
+             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
+
+#define i_rl(bo, bi, n, k)                                     \
+    bo[n] =  il_tab[0][byte(bi[n],0)] ^                                \
+             il_tab[1][byte(bi[(n + 3) & 3],1)] ^              \
+             il_tab[2][byte(bi[(n + 2) & 3],2)] ^              \
+             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
+
+static void
+gen_tabs (void)
+{
+       uint32_t i, t;
+       uint8_t p, q;
+
+       /* log and power tables for GF(2**8) finite field with
+          0x011b as modular polynomial - the simplest prmitive
+          root is 0x03, used here to generate the tables */
+
+       for (i = 0, p = 1; i < 256; ++i) {
+               pow_tab[i] = (uint8_t) p;
+               log_tab[p] = (uint8_t) i;
+
+               p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
+       }
+
+       log_tab[1] = 0;
+
+       for (i = 0, p = 1; i < 10; ++i) {
+               rco_tab[i] = p;
+
+               p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
+       }
+
+       for (i = 0; i < 256; ++i) {
+               p = (i ? pow_tab[255 - log_tab[i]] : 0);
+               q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
+               p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
+               sbx_tab[i] = p;
+               isb_tab[p] = (uint8_t) i;
+       }
+
+       for (i = 0; i < 256; ++i) {
+               p = sbx_tab[i];
+
+               t = p;
+               fl_tab[0][i] = t;
+               fl_tab[1][i] = rotl (t, 8);
+               fl_tab[2][i] = rotl (t, 16);
+               fl_tab[3][i] = rotl (t, 24);
+
+               t = ((uint32_t) ff_mult (2, p)) |
+                   ((uint32_t) p << 8) |
+                   ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
+
+               ft_tab[0][i] = t;
+               ft_tab[1][i] = rotl (t, 8);
+               ft_tab[2][i] = rotl (t, 16);
+               ft_tab[3][i] = rotl (t, 24);
+
+               p = isb_tab[i];
+
+               t = p;
+               il_tab[0][i] = t;
+               il_tab[1][i] = rotl (t, 8);
+               il_tab[2][i] = rotl (t, 16);
+               il_tab[3][i] = rotl (t, 24);
+
+               t = ((uint32_t) ff_mult (14, p)) |
+                   ((uint32_t) ff_mult (9, p) << 8) |
+                   ((uint32_t) ff_mult (13, p) << 16) |
+                   ((uint32_t) ff_mult (11, p) << 24);
+
+               it_tab[0][i] = t;
+               it_tab[1][i] = rotl (t, 8);
+               it_tab[2][i] = rotl (t, 16);
+               it_tab[3][i] = rotl (t, 24);
+       }
+}
+
+#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
+
+#define imix_col(y,x)       \
+    u   = star_x(x);        \
+    v   = star_x(u);        \
+    w   = star_x(v);        \
+    t   = w ^ (x);          \
+   (y)  = u ^ v ^ w;        \
+   (y) ^= rotr(u ^ t,  8) ^ \
+          rotr(v ^ t, 16) ^ \
+          rotr(t,24)
+
+/* initialise the key schedule from the user supplied key */
+
+#define loop4(i)                                    \
+{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
+    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
+    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
+    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
+    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
+}
+
+#define loop6(i)                                    \
+{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
+    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
+    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
+    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
+    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
+    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
+    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
+}
+
+#define loop8(i)                                    \
+{   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
+    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
+    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
+    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
+    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
+    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
+    E_KEY[8 * i + 12] = t;                \
+    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
+    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
+    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
+}
+
+/* Tells whether the ACE is capable to generate
+   the extended key for a given key_len. */
+static inline int
+aes_hw_extkey_available(uint8_t key_len)
+{
+       /* TODO: We should check the actual CPU model/stepping
+                as it's possible that the capability will be
+                added in the next CPU revisions. */
+       if (key_len == 16)
+               return 1;
+       return 0;
+}
+
+static int
+aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags)
+{
+       struct aes_ctx *ctx = ctx_arg;
+       uint32_t i, t, u, v, w;
+       uint32_t P[AES_EXTENDED_KEY_SIZE];
+       uint32_t rounds;
+
+       if (key_len != 16 && key_len != 24 && key_len != 32) {
+               *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
+               return -EINVAL;
+       }
+
+       ctx->key_length = key_len;
+
+       ctx->E = ctx->e_data;
+       ctx->D = ctx->d_data;
+
+       /* Ensure 16-Bytes alignmentation of keys for VIA PadLock. */
+       if ((int)(ctx->e_data) & 0x0F)
+               ctx->E += 4 - (((int)(ctx->e_data) & 0x0F) / sizeof (ctx->e_data[0]));
+
+       if ((int)(ctx->d_data) & 0x0F)
+               ctx->D += 4 - (((int)(ctx->d_data) & 0x0F) / sizeof (ctx->d_data[0]));
+
+       E_KEY[0] = uint32_t_in (in_key);
+       E_KEY[1] = uint32_t_in (in_key + 4);
+       E_KEY[2] = uint32_t_in (in_key + 8);
+       E_KEY[3] = uint32_t_in (in_key + 12);
+
+       /* Don't generate extended keys if the hardware can do it. */
+       if (aes_hw_extkey_available(key_len))
+               return 0;
+
+       switch (key_len) {
+       case 16:
+               t = E_KEY[3];
+               for (i = 0; i < 10; ++i)
+                       loop4 (i);
+               break;
+
+       case 24:
+               E_KEY[4] = uint32_t_in (in_key + 16);
+               t = E_KEY[5] = uint32_t_in (in_key + 20);
+               for (i = 0; i < 8; ++i)
+                       loop6 (i);
+               break;
+
+       case 32:
+               E_KEY[4] = uint32_t_in (in_key + 16);
+               E_KEY[5] = uint32_t_in (in_key + 20);
+               E_KEY[6] = uint32_t_in (in_key + 24);
+               t = E_KEY[7] = uint32_t_in (in_key + 28);
+               for (i = 0; i < 7; ++i)
+                       loop8 (i);
+               break;
+       }
+
+       D_KEY[0] = E_KEY[0];
+       D_KEY[1] = E_KEY[1];
+       D_KEY[2] = E_KEY[2];
+       D_KEY[3] = E_KEY[3];
+
+       for (i = 4; i < key_len + 24; ++i) {
+               imix_col (D_KEY[i], E_KEY[i]);
+       }
+
+       /* PadLock needs a different format of the decryption key. */
+       rounds = 10 + (key_len - 16) / 4;
+
+       for (i = 0; i < rounds; i++) {
+               P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
+               P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
+               P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
+               P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
+       }
+
+       P[0] = E_KEY[(rounds * 4) + 0];
+       P[1] = E_KEY[(rounds * 4) + 1];
+       P[2] = E_KEY[(rounds * 4) + 2];
+       P[3] = E_KEY[(rounds * 4) + 3];
+
+       memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
+
+       return 0;
+}
+
+/* ====== Encryption/decryption routines ====== */
+
+/* This is the real call to PadLock. */
+static inline void
+padlock_xcrypt_ecb(uint8_t *input, uint8_t *output, uint8_t *key,
+                  void *control_word, uint32_t count)
+{
+       asm volatile ("pushfl; popfl");         /* enforce key reload. */
+       asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"       /* rep xcryptecb */
+                     : "+S"(input), "+D"(output)
+                     : "d"(control_word), "b"(key), "c"(count));
+}
+
+static void
+aes_padlock(void *ctx_arg, uint8_t *out_arg, const uint8_t *in_arg, int encdec)
+{
+       /* Don't blindly modify this structure - the items must 
+          fit on 16-Bytes boundaries! */
+       struct padlock_xcrypt_data {
+               uint8_t buf[AES_BLOCK_SIZE];
+               union cword cword;
+       };
+
+       struct aes_ctx *ctx = ctx_arg;
+       char bigbuf[sizeof(struct padlock_xcrypt_data) + 16];
+       struct padlock_xcrypt_data *data;
+       void *key;
+
+       /* Place 'data' at the first 16-Bytes aligned address in 'bigbuf'. */
+       if (((long)bigbuf) & 0x0F)
+               data = (void*)(bigbuf + 16 - ((long)bigbuf & 0x0F));
+       else
+               data = (void*)bigbuf;
+
+       /* Prepare Control word. */
+       memset (data, 0, sizeof(struct padlock_xcrypt_data));
+       data->cword.b.encdec = !encdec; /* in the rest of cryptoapi ENC=1/DEC=0 */
+       data->cword.b.rounds = 10 + (ctx->key_length - 16) / 4;
+       data->cword.b.ksize = (ctx->key_length - 16) / 8;
+
+       /* Is the hardware capable to generate the extended key? */
+       if (!aes_hw_extkey_available(ctx->key_length))
+               data->cword.b.keygen = 1;
+
+       /* ctx->E starts with a plain key - if the hardware is capable
+          to generate the extended key itself we must supply
+          the plain key for both Encryption and Decryption. */
+       if (encdec == CRYPTO_DIR_ENCRYPT || data->cword.b.keygen == 0)
+               key = ctx->E;
+       else
+               key = ctx->D;
+       
+       memcpy(data->buf, in_arg, AES_BLOCK_SIZE);
+       padlock_xcrypt_ecb(data->buf, data->buf, key, &data->cword, 1);
+       memcpy(out_arg, data->buf, AES_BLOCK_SIZE);
+}
+
+static void
+aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
+{
+       aes_padlock(ctx_arg, out, in, CRYPTO_DIR_ENCRYPT);
+}
+
+static void
+aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
+{
+       aes_padlock(ctx_arg, out, in, CRYPTO_DIR_DECRYPT);
+}
+
+static struct crypto_alg aes_alg = {
+       .cra_name               =       "aes",
+       .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
+       .cra_blocksize          =       AES_BLOCK_SIZE,
+       .cra_ctxsize            =       sizeof(struct aes_ctx),
+       .cra_module             =       THIS_MODULE,
+       .cra_list               =       LIST_HEAD_INIT(aes_alg.cra_list),
+       .cra_u                  =       {
+               .cipher = {
+                       .cia_min_keysize        =       AES_MIN_KEY_SIZE,
+                       .cia_max_keysize        =       AES_MAX_KEY_SIZE,
+                       .cia_setkey             =       aes_set_key,
+                       .cia_encrypt            =       aes_encrypt,
+                       .cia_decrypt            =       aes_decrypt
+               }
+       }
+};
+
+int __init padlock_init_aes(void)
+{
+       printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
+
+       gen_tabs();
+       return crypto_register_alg(&aes_alg);
+}
+
+void __exit padlock_fini_aes(void)
+{
+       crypto_unregister_alg(&aes_alg);
+}