fedora core 6 1.2949 + vserver 2.2.0
[linux-2.6.git] / drivers / mtd / nand / rtc_from4.c
index 02305a2..9189ec8 100644 (file)
@@ -2,11 +2,11 @@
  *  drivers/mtd/nand/rtc_from4.c
  *
  *  Copyright (C) 2004  Red Hat, Inc.
- * 
+ *
  *  Derived from drivers/mtd/nand/spia.c
  *       Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  *
- * $Id: rtc_from4.c,v 1.7 2004/11/04 12:53:10 gleixner Exp $
+ * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
@@ -14,8 +14,8 @@
  *
  * Overview:
  *   This is a device driver for the AG-AND flash device found on the
- *   Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4), 
- *   which utilizes the Renesas HN29V1G91T-30 part. 
+ *   Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
+ *   which utilizes the Renesas HN29V1G91T-30 part.
  *   This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
  */
 
@@ -24,6 +24,7 @@
 #include <linux/init.h>
 #include <linux/slab.h>
 #include <linux/rslib.h>
+#include <linux/bitrev.h>
 #include <linux/module.h>
 #include <linux/mtd/compatmac.h>
 #include <linux/mtd/mtd.h>
@@ -83,31 +84,36 @@ static struct mtd_info *rtc_from4_mtd = NULL;
 #define RTC_FROM4_RS_ECC_CHK           (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
 #define RTC_FROM4_RS_ECC_CHK_ERROR     (1 << 7)
 
+#define ERR_STAT_ECC_AVAILABLE         0x20
+
 /* Undefine for software ECC */
 #define RTC_FROM4_HWECC        1
 
+/* Define as 1 for no virtual erase blocks (in JFFS2) */
+#define RTC_FROM4_NO_VIRTBLOCKS        0
+
 /*
  * Module stuff
  */
-static void __iomem *rtc_from4_fio_base = P2SEGADDR(RTC_FROM4_FIO_BASE);
-
-const static struct mtd_partition partition_info[] = {
-        {
-                .name   = "Renesas flash partition 1",
-                .offset = 0,
-                .size   = MTDPART_SIZ_FULL
-        },
+static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
+
+static const struct mtd_partition partition_info[] = {
+       {
+        .name = "Renesas flash partition 1",
+        .offset = 0,
+        .size = MTDPART_SIZ_FULL},
 };
+
 #define NUM_PARTITIONS 1
 
-/* 
+/*
  *     hardware specific flash bbt decriptors
- *     Note: this is to allow debugging by disabling 
+ *     Note: this is to allow debugging by disabling
  *             NAND_BBT_CREATE and/or NAND_BBT_WRITE
  *
  */
-static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
-static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
 
 static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
@@ -129,112 +135,51 @@ static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
        .pattern = mirror_pattern
 };
 
-
-
 #ifdef RTC_FROM4_HWECC
 
 /* the Reed Solomon control structure */
 static struct rs_control *rs_decoder;
 
-/* 
+/*
  *      hardware specific Out Of Band information
  */
-static struct nand_oobinfo rtc_from4_nand_oobinfo = {
-       .useecc = MTD_NANDECC_AUTOPLACE,
+static struct nand_ecclayout rtc_from4_nand_oobinfo = {
        .eccbytes = 32,
        .eccpos = {
-                0,  1,  2,  3,  4,  5,  6,  7,
-                8,  9, 10, 11, 12, 13, 14, 15,
-               16, 17, 18, 19, 20, 21, 22, 23,
-               24, 25, 26, 27, 28, 29, 30, 31},
-       .oobfree = { {32, 32} }
-};
-
-/* Aargh. I missed the reversed bit order, when I
- * was talking to Renesas about the FPGA.
- *
- * The table is used for bit reordering and inversion
- * of the ecc byte which we get from the FPGA
- */
-static uint8_t revbits[256] = {
-        0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
-        0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
-        0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
-        0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
-        0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
-        0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
-        0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
-        0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
-        0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
-        0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
-        0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
-        0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
-        0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
-        0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
-        0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
-        0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
-        0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
-        0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
-        0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
-        0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
-        0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
-        0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
-        0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
-        0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
-        0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
-        0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
-        0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
-        0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
-        0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
-        0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
-        0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
-        0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
+                  0, 1, 2, 3, 4, 5, 6, 7,
+                  8, 9, 10, 11, 12, 13, 14, 15,
+                  16, 17, 18, 19, 20, 21, 22, 23,
+                  24, 25, 26, 27, 28, 29, 30, 31},
+       .oobfree = {{32, 32}}
 };
 
 #endif
 
-
-
-/* 
+/*
  * rtc_from4_hwcontrol - hardware specific access to control-lines
  * @mtd:       MTD device structure
  * @cmd:       hardware control command
  *
- * Address lines (A5 and A4) are used to control Command and Address Latch 
+ * Address lines (A5 and A4) are used to control Command and Address Latch
  * Enable on this board, so set the read/write address appropriately.
  *
- * Chip Enable is also controlled by the Chip Select (CS5) and 
+ * Chip Enable is also controlled by the Chip Select (CS5) and
  * Address lines (A24-A22), so no action is required here.
  *
  */
-static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd)
+static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
+                               unsigned int ctrl)
 {
-       struct nand_chip* this = (struct nand_chip *) (mtd->priv);
-       
-       switch(cmd) {
-               
-       case NAND_CTL_SETCLE: 
-               this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_CLE);
-               break;
-       case NAND_CTL_CLRCLE: 
-               this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_CLE);
-               break;
-               
-       case NAND_CTL_SETALE:
-               this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_ALE);
-               break;
-       case NAND_CTL_CLRALE:
-               this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_ALE);
-               break;
-               
-       case NAND_CTL_SETNCE:
-               break;
-       case NAND_CTL_CLRNCE:
-               break;
+       struct nand_chip *chip = (mtd->priv);
 
-       }
-}
+       if (cmd == NAND_CMD_NONE)
+               return;
 
+       if (ctrl & NAND_CLE)
+               writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
+       else
+               writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
+}
 
 /*
  * rtc_from4_nand_select_chip - hardware specific chip select
@@ -247,27 +192,25 @@ static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd)
  */
 static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
 {
-        struct nand_chip *this = mtd->priv;
+       struct nand_chip *this = mtd->priv;
 
        this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
        this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
 
-        switch(chip) {
+       switch (chip) {
 
-        case 0:                /* select slot 3 chip */
+       case 0:         /* select slot 3 chip */
                this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
                this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
-                break;
-        case 1:                /* select slot 4 chip */
+               break;
+       case 1:         /* select slot 4 chip */
                this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
                this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
-                break;
+               break;
 
-        }
+       }
 }
 
-
-
 /*
  * rtc_from4_nand_device_ready - hardware specific ready/busy check
  * @mtd:       MTD device structure
@@ -286,43 +229,72 @@ static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
 
 }
 
+/*
+ * deplete - code to perform device recovery in case there was a power loss
+ * @mtd:       MTD device structure
+ * @chip:      Chip to select (0 == slot 3, 1 == slot 4)
+ *
+ * If there was a sudden loss of power during an erase operation, a
+ * "device recovery" operation must be performed when power is restored
+ * to ensure correct operation.  This routine performs the required steps
+ * for the requested chip.
+ *
+ * See page 86 of the data sheet for details.
+ *
+ */
+static void deplete(struct mtd_info *mtd, int chip)
+{
+       struct nand_chip *this = mtd->priv;
+
+       /* wait until device is ready */
+       while (!this->dev_ready(mtd)) ;
+
+       this->select_chip(mtd, chip);
+
+       /* Send the commands for device recovery, phase 1 */
+       this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
+       this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
+
+       /* Send the commands for device recovery, phase 2 */
+       this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
+       this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
+
+}
+
 #ifdef RTC_FROM4_HWECC
 /*
  * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
  * @mtd:       MTD device structure
  * @mode:      I/O mode; read or write
  *
- * enable hardware ECC for data read or write 
+ * enable hardware ECC for data read or write
  *
  */
 static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
 {
-       volatile unsigned short * rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
+       volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
        unsigned short status;
 
        switch (mode) {
-           case NAND_ECC_READ :
-               status =  RTC_FROM4_RS_ECC_CTL_CLR 
-                       | RTC_FROM4_RS_ECC_CTL_FD_E;
+       case NAND_ECC_READ:
+               status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
 
                *rs_ecc_ctl = status;
                break;
 
-           case NAND_ECC_READSYN :
-               status =  0x00;
+       case NAND_ECC_READSYN:
+               status = 0x00;
 
                *rs_ecc_ctl = status;
                break;
 
-           case NAND_ECC_WRITE :
-               status =  RTC_FROM4_RS_ECC_CTL_CLR 
-                       | RTC_FROM4_RS_ECC_CTL_GEN 
-                       | RTC_FROM4_RS_ECC_CTL_FD_E;
+       case NAND_ECC_WRITE:
+               status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
 
                *rs_ecc_ctl = status;
                break;
 
-           default:
+       default:
                BUG();
                break;
        }
@@ -344,7 +316,7 @@ static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
  */
 static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
 {
-       volatile unsigned short * rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
+       volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
        unsigned short value;
        int i;
 
@@ -365,18 +337,16 @@ static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_c
  *
  * The FPGA tells us fast, if there's an error or not. If no, we go back happy
  * else we read the ecc results from the fpga and call the rs library to decode
- * and hopefully correct the error
+ * and hopefully correct the error.
  *
- * For now I use the code, which we read from the FLASH to use the RS lib,
- * as the syndrom conversion has a unresolved issue.
  */
 static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
 {
        int i, j, res;
-       unsigned short status; 
-       uint16_t par[6], syn[6], tmp;
+       unsigned short status;
+       uint16_t par[6], syn[6];
        uint8_t ecc[8];
-        volatile unsigned short *rs_ecc;
+       volatile unsigned short *rs_ecc;
 
        status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
 
@@ -386,23 +356,18 @@ static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_cha
 
        /* Read the syndrom pattern from the FPGA and correct the bitorder */
        rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
-        for (i = 0; i < 8; i++) {
-                ecc[i] = revbits[(*rs_ecc) & 0xFF];
-                rs_ecc++;
-        }
+       for (i = 0; i < 8; i++) {
+               ecc[i] = bitrev8(*rs_ecc);
+               rs_ecc++;
+       }
 
        /* convert into 6 10bit syndrome fields */
-       par[5] = rs_decoder->index_of[(((uint16_t)ecc[0] >> 0) & 0x0ff) | 
-                                     (((uint16_t)ecc[1] << 8) & 0x300)];
-       par[4] = rs_decoder->index_of[(((uint16_t)ecc[1] >> 2) & 0x03f) |
-                                     (((uint16_t)ecc[2] << 6) & 0x3c0)];
-       par[3] = rs_decoder->index_of[(((uint16_t)ecc[2] >> 4) & 0x00f) |
-                                     (((uint16_t)ecc[3] << 4) & 0x3f0)];
-       par[2] = rs_decoder->index_of[(((uint16_t)ecc[3] >> 6) & 0x003) |
-                                     (((uint16_t)ecc[4] << 2) & 0x3fc)];
-       par[1] = rs_decoder->index_of[(((uint16_t)ecc[5] >> 0) & 0x0ff) |
-                                     (((uint16_t)ecc[6] << 8) & 0x300)];
-       par[0] = (((uint16_t)ecc[6] >> 2) & 0x03f) | (((uint16_t)ecc[7] << 6) & 0x3c0);
+       par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
+       par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
+       par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
+       par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
+       par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
+       par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
 
        /* Convert to computable syndrome */
        for (i = 0; i < 6; i++) {
@@ -415,41 +380,122 @@ static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_cha
                syn[i] = rs_decoder->index_of[syn[i]];
        }
 
-       /* Let the library code do its magic.*/
-       res = decode_rs8(rs_decoder, buf, par, 512, syn, 0, NULL, 0xff, NULL);
+       /* Let the library code do its magic. */
+       res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
        if (res > 0) {
-               DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " 
-                       "ECC corrected %d errors on read\n", res);
+               DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
        }
        return res;
 }
+
+/**
+ * rtc_from4_errstat - perform additional error status checks
+ * @mtd:       MTD device structure
+ * @this:      NAND chip structure
+ * @state:     state or the operation
+ * @status:    status code returned from read status
+ * @page:      startpage inside the chip, must be called with (page & this->pagemask)
+ *
+ * Perform additional error status checks on erase and write failures
+ * to determine if errors are correctable.  For this device, correctable
+ * 1-bit errors on erase and write are considered acceptable.
+ *
+ * note: see pages 34..37 of data sheet for details.
+ *
+ */
+static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
+                            int state, int status, int page)
+{
+       int er_stat = 0;
+       int rtn, retlen;
+       size_t len;
+       uint8_t *buf;
+       int i;
+
+       this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
+
+       if (state == FL_ERASING) {
+
+               for (i = 0; i < 4; i++) {
+                       if (!(status & 1 << (i + 1)))
+                               continue;
+                       this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
+                                     -1, -1);
+                       rtn = this->read_byte(mtd);
+                       this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
+
+                       /* err_ecc_not_avail */
+                       if (!(rtn & ERR_STAT_ECC_AVAILABLE))
+                               er_stat |= 1 << (i + 1);
+               }
+
+       } else if (state == FL_WRITING) {
+
+               unsigned long corrected = mtd->ecc_stats.corrected;
+
+               /* single bank write logic */
+               this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
+               rtn = this->read_byte(mtd);
+               this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
+
+               if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
+                       /* err_ecc_not_avail */
+                       er_stat |= 1 << 1;
+                       goto out;
+               }
+
+               len = mtd->writesize;
+               buf = kmalloc(len, GFP_KERNEL);
+               if (!buf) {
+                       printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
+                       er_stat = 1;
+                       goto out;
+               }
+
+               /* recovery read */
+               rtn = nand_do_read(mtd, page, len, &retlen, buf);
+
+               /* if read failed or > 1-bit error corrected */
+               if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
+                       er_stat |= 1 << 1;
+               kfree(buf);
+       }
+
+       rtn = status;
+       if (er_stat == 0) {     /* if ECC is available   */
+               rtn = (status & ~NAND_STATUS_FAIL);     /*   clear the error bit */
+       }
+
+       return rtn;
+}
 #endif
 
 /*
  * Main initialization routine
  */
-int __init rtc_from4_init (void)
+static int __init rtc_from4_init(void)
 {
        struct nand_chip *this;
        unsigned short bcr1, bcr2, wcr2;
+       int i;
 
        /* Allocate memory for MTD device structure and private data */
-       rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof (struct nand_chip),
-                               GFP_KERNEL);
+       rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
        if (!rtc_from4_mtd) {
-               printk ("Unable to allocate Renesas NAND MTD device structure.\n");
+               printk("Unable to allocate Renesas NAND MTD device structure.\n");
                return -ENOMEM;
        }
 
        /* Get pointer to private data */
-       this = (struct nand_chip *) (&rtc_from4_mtd[1]);
+       this = (struct nand_chip *)(&rtc_from4_mtd[1]);
 
        /* Initialize structures */
-       memset((char *) rtc_from4_mtd, 0, sizeof(struct mtd_info));
-       memset((char *) this, 0, sizeof(struct nand_chip));
+       memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
+       memset(this, 0, sizeof(struct nand_chip));
 
        /* Link the private data with the MTD structure */
        rtc_from4_mtd->priv = this;
+       rtc_from4_mtd->owner = THIS_MODULE;
 
        /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
        bcr1 = *SH77X9_BCR1 & ~0x0002;
@@ -470,9 +516,9 @@ int __init rtc_from4_init (void)
        this->IO_ADDR_R = rtc_from4_fio_base;
        this->IO_ADDR_W = rtc_from4_fio_base;
        /* Set address of hardware control function */
-       this->hwcontrol = rtc_from4_hwcontrol;
+       this->cmd_ctrl = rtc_from4_hwcontrol;
        /* Set address of chip select function */
-        this->select_chip = rtc_from4_nand_select_chip;
+       this->select_chip = rtc_from4_nand_select_chip;
        /* command delay time (in us) */
        this->chip_delay = 100;
        /* return the status of the Ready/Busy line */
@@ -481,17 +527,20 @@ int __init rtc_from4_init (void)
 #ifdef RTC_FROM4_HWECC
        printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
 
-        this->eccmode = NAND_ECC_HW8_512;
-       this->options |= NAND_HWECC_SYNDROME;
+       this->ecc.mode = NAND_ECC_HW_SYNDROME;
+       this->ecc.size = 512;
+       this->ecc.bytes = 8;
+       /* return the status of extra status and ECC checks */
+       this->errstat = rtc_from4_errstat;
        /* set the nand_oobinfo to support FPGA H/W error detection */
-       this->autooob = &rtc_from4_nand_oobinfo;
-       this->enable_hwecc = rtc_from4_enable_hwecc;
-       this->calculate_ecc = rtc_from4_calculate_ecc;
-       this->correct_data = rtc_from4_correct_data;
+       this->ecc.layout = &rtc_from4_nand_oobinfo;
+       this->ecc.hwctl = rtc_from4_enable_hwecc;
+       this->ecc.calculate = rtc_from4_calculate_ecc;
+       this->ecc.correct = rtc_from4_correct_data;
 #else
        printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
 
-       this->eccmode = NAND_ECC_SOFT;
+       this->ecc.mode = NAND_ECC_SOFT;
 #endif
 
        /* set the bad block tables to support debugging */
@@ -504,12 +553,24 @@ int __init rtc_from4_init (void)
                return -ENXIO;
        }
 
+       /* Perform 'device recovery' for each chip in case there was a power loss. */
+       for (i = 0; i < this->numchips; i++) {
+               deplete(rtc_from4_mtd, i);
+       }
+
+#if RTC_FROM4_NO_VIRTBLOCKS
+       /* use a smaller erase block to minimize wasted space when a block is bad */
+       /* note: this uses eight times as much RAM as using the default and makes */
+       /*       mounts take four times as long. */
+       rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
+#endif
+
        /* Register the partitions */
        add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
 
 #ifdef RTC_FROM4_HWECC
        /* We could create the decoder on demand, if memory is a concern.
-        * This way we have it handy, if an error happens 
+        * This way we have it handy, if an error happens
         *
         * Symbolsize is 10 (bits)
         * Primitve polynomial is x^10+x^3+1
@@ -519,7 +580,7 @@ int __init rtc_from4_init (void)
         */
        rs_decoder = init_rs(10, 0x409, 0, 1, 6);
        if (!rs_decoder) {
-               printk (KERN_ERR "Could not create a RS decoder\n");
+               printk(KERN_ERR "Could not create a RS decoder\n");
                nand_release(rtc_from4_mtd);
                kfree(rtc_from4_mtd);
                return -ENOMEM;
@@ -528,20 +589,19 @@ int __init rtc_from4_init (void)
        /* Return happy */
        return 0;
 }
-module_init(rtc_from4_init);
 
+module_init(rtc_from4_init);
 
 /*
  * Clean up routine
  */
-#ifdef MODULE
-static void __exit rtc_from4_cleanup (void)
+static void __exit rtc_from4_cleanup(void)
 {
        /* Release resource, unregister partitions */
        nand_release(rtc_from4_mtd);
 
        /* Free the MTD device structure */
-       kfree (rtc_from4_mtd);
+       kfree(rtc_from4_mtd);
 
 #ifdef RTC_FROM4_HWECC
        /* Free the reed solomon resources */
@@ -550,10 +610,9 @@ static void __exit rtc_from4_cleanup (void)
        }
 #endif
 }
+
 module_exit(rtc_from4_cleanup);
-#endif
 
 MODULE_LICENSE("GPL");
 MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
 MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
-