This commit was manufactured by cvs2svn to create tag
[linux-2.6.git] / kernel / pid.c
index 1082e9a..e1a1f4d 100644 (file)
@@ -1,9 +1,8 @@
 /*
  * Generic pidhash and scalable, time-bounded PID allocator
  *
- * (C) 2002-2003 William Irwin, IBM
- * (C) 2004 William Irwin, Oracle
- * (C) 2002-2004 Ingo Molnar, Red Hat
+ * (C) 2002 William Irwin, IBM
+ * (C) 2002 Ingo Molnar, Red Hat
  *
  * pid-structures are backing objects for tasks sharing a given ID to chain
  * against. There is very little to them aside from hashing them and
@@ -36,15 +35,9 @@ int last_pid;
 
 #define RESERVED_PIDS          300
 
-int pid_max_min = RESERVED_PIDS + 1;
-int pid_max_max = PID_MAX_LIMIT;
-
-#define PIDMAP_ENTRIES         ((PID_MAX_LIMIT + 8*PAGE_SIZE - 1)/PAGE_SIZE/8)
+#define PIDMAP_ENTRIES         (PID_MAX_LIMIT/PAGE_SIZE/8)
 #define BITS_PER_PAGE          (PAGE_SIZE*8)
 #define BITS_PER_PAGE_MASK     (BITS_PER_PAGE-1)
-#define mk_pid(map, off)       (((map) - pidmap_array)*BITS_PER_PAGE + (off))
-#define find_next_offset(map, off)                                     \
-               find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
 
 /*
  * PID-map pages start out as NULL, they get allocated upon
@@ -60,6 +53,8 @@ typedef struct pidmap {
 static pidmap_t pidmap_array[PIDMAP_ENTRIES] =
         { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } };
 
+static pidmap_t *map_limit = pidmap_array + PIDMAP_ENTRIES;
+
 static spinlock_t pidmap_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
 
 fastcall void free_pidmap(int pid)
@@ -71,18 +66,15 @@ fastcall void free_pidmap(int pid)
        atomic_inc(&map->nr_free);
 }
 
-int alloc_pidmap(void)
+/*
+ * Here we search for the next map that has free bits left.
+ * Normally the next map has free PIDs.
+ */
+static inline pidmap_t *next_free_map(pidmap_t *map, int *max_steps)
 {
-       int i, offset, max_scan, pid, last = last_pid;
-       pidmap_t *map;
-
-       pid = last + 1;
-       if (pid >= pid_max)
-               pid = RESERVED_PIDS;
-       offset = pid & BITS_PER_PAGE_MASK;
-       map = &pidmap_array[pid/BITS_PER_PAGE];
-       max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
-       for (i = 0; i <= max_scan; ++i) {
+       while (--*max_steps) {
+               if (++map == map_limit)
+                       map = pidmap_array;
                if (unlikely(!map->page)) {
                        unsigned long page = get_zeroed_page(GFP_KERNEL);
                        /*
@@ -95,39 +87,62 @@ int alloc_pidmap(void)
                        else
                                map->page = (void *)page;
                        spin_unlock(&pidmap_lock);
-                       if (unlikely(!map->page))
-                               break;
-               }
-               if (likely(atomic_read(&map->nr_free))) {
-                       do {
-                               if (!test_and_set_bit(offset, map->page)) {
-                                       atomic_dec(&map->nr_free);
-                                       last_pid = pid;
-                                       return pid;
-                               }
-                               offset = find_next_offset(map, offset);
-                               pid = mk_pid(map, offset);
-                       /*
-                        * find_next_offset() found a bit, the pid from it
-                        * is in-bounds, and if we fell back to the last
-                        * bitmap block and the final block was the same
-                        * as the starting point, pid is before last_pid.
-                        */
-                       } while (offset < BITS_PER_PAGE && pid < pid_max &&
-                                       (i != max_scan || pid < last ||
-                                           !((last+1) & BITS_PER_PAGE_MASK)));
-               }
-               if (map < &pidmap_array[(pid_max-1)/BITS_PER_PAGE]) {
-                       ++map;
-                       offset = 0;
-               } else {
-                       map = &pidmap_array[0];
-                       offset = RESERVED_PIDS;
-                       if (unlikely(last == offset))
+
+                       if (!map->page)
                                break;
                }
-               pid = mk_pid(map, offset);
+               if (atomic_read(&map->nr_free))
+                       return map;
        }
+       return NULL;
+}
+
+int alloc_pidmap(void)
+{
+       int pid, offset, max_steps = PIDMAP_ENTRIES + 1;
+       pidmap_t *map;
+
+       pid = last_pid + 1;
+       if (pid >= pid_max)
+               pid = RESERVED_PIDS;
+
+       offset = pid & BITS_PER_PAGE_MASK;
+       map = pidmap_array + pid / BITS_PER_PAGE;
+
+       if (likely(map->page && !test_and_set_bit(offset, map->page))) {
+               /*
+                * There is a small window for last_pid updates to race,
+                * but in that case the next allocation will go into the
+                * slowpath and that fixes things up.
+                */
+return_pid:
+               atomic_dec(&map->nr_free);
+               last_pid = pid;
+               return pid;
+       }
+       
+       if (!offset || !atomic_read(&map->nr_free)) {
+next_map:
+               map = next_free_map(map, &max_steps);
+               if (!map)
+                       goto failure;
+               offset = 0;
+       }
+       /*
+        * Find the next zero bit:
+        */
+scan_more:
+       offset = find_next_zero_bit(map->page, BITS_PER_PAGE, offset);
+       if (offset >= BITS_PER_PAGE)
+               goto next_map;
+       if (test_and_set_bit(offset, map->page))
+               goto scan_more;
+
+       /* we got the PID: */
+       pid = (map - pidmap_array) * BITS_PER_PAGE + offset;
+       goto return_pid;
+
+failure:
        return -1;
 }
 
@@ -163,18 +178,15 @@ int fastcall attach_pid(task_t *task, enum pid_type type, int nr)
        return 0;
 }
 
-static fastcall int __detach_pid(task_t *task, enum pid_type type)
+static inline int __detach_pid(task_t *task, enum pid_type type)
 {
        struct pid *pid, *pid_next;
-       int nr = 0;
+       int nr;
 
        pid = &task->pids[type];
        if (!hlist_unhashed(&pid->pid_chain)) {
                hlist_del(&pid->pid_chain);
-
-               if (list_empty(&pid->pid_list))
-                       nr = pid->nr;
-               else {
+               if (!list_empty(&pid->pid_list)) {
                        pid_next = list_entry(pid->pid_list.next,
                                                struct pid, pid_list);
                        /* insert next pid from pid_list to hash */
@@ -182,8 +194,8 @@ static fastcall int __detach_pid(task_t *task, enum pid_type type)
                                &pid_hash[type][pid_hashfn(pid_next->nr)]);
                }
        }
-
        list_del(&pid->pid_list);
+       nr = pid->nr;
        pid->nr = 0;
 
        return nr;
@@ -191,16 +203,15 @@ static fastcall int __detach_pid(task_t *task, enum pid_type type)
 
 void fastcall detach_pid(task_t *task, enum pid_type type)
 {
-       int tmp, nr;
+       int nr;
 
        nr = __detach_pid(task, type);
        if (!nr)
                return;
 
-       for (tmp = PIDTYPE_MAX; --tmp >= 0; )
-               if (tmp != type && find_pid(tmp, nr))
+       for (type = 0; type < PIDTYPE_MAX; ++type)
+               if (find_pid(type, nr))
                        return;
-
        free_pidmap(nr);
 }
 
@@ -247,6 +258,19 @@ void switch_exec_pids(task_t *leader, task_t *thread)
        attach_pid(leader, PIDTYPE_SID, leader->signal->session);
 }
 
+/**
+ * pid_alive - check that a task structure is not stale
+ * @p: Task structure to be checked.
+ *
+ * Test if a process is not yet dead (at most zombie state)
+ * If pid_alive fails, then pointers within the task structure
+ * can be stale and must not be dereferenced.
+ */
+int pid_alive(struct task_struct *p)
+{
+       return p->pids[PIDTYPE_PID].nr != 0;
+}
+
 /*
  * The pid hash table is scaled according to the amount of memory in the
  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or